xref: /openbmc/linux/fs/fs-writeback.c (revision 2596e07a)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32 
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
37 
38 struct wb_completion {
39 	atomic_t		cnt;
40 };
41 
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46 	long nr_pages;
47 	struct super_block *sb;
48 	unsigned long *older_than_this;
49 	enum writeback_sync_modes sync_mode;
50 	unsigned int tagged_writepages:1;
51 	unsigned int for_kupdate:1;
52 	unsigned int range_cyclic:1;
53 	unsigned int for_background:1;
54 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55 	unsigned int auto_free:1;	/* free on completion */
56 	enum wb_reason reason;		/* why was writeback initiated? */
57 
58 	struct list_head list;		/* pending work list */
59 	struct wb_completion *done;	/* set if the caller waits */
60 };
61 
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
70 	struct wb_completion cmpl = {					\
71 		.cnt		= ATOMIC_INIT(1),			\
72 	}
73 
74 
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86 
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 	return list_entry(head, struct inode, i_io_list);
90 }
91 
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101 
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 	if (wb_has_dirty_io(wb)) {
105 		return false;
106 	} else {
107 		set_bit(WB_has_dirty_io, &wb->state);
108 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 		atomic_long_add(wb->avg_write_bandwidth,
110 				&wb->bdi->tot_write_bandwidth);
111 		return true;
112 	}
113 }
114 
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 		clear_bit(WB_has_dirty_io, &wb->state);
120 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 					&wb->bdi->tot_write_bandwidth) < 0);
122 	}
123 }
124 
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 				      struct bdi_writeback *wb,
137 				      struct list_head *head)
138 {
139 	assert_spin_locked(&wb->list_lock);
140 
141 	list_move(&inode->i_io_list, head);
142 
143 	/* dirty_time doesn't count as dirty_io until expiration */
144 	if (head != &wb->b_dirty_time)
145 		return wb_io_lists_populated(wb);
146 
147 	wb_io_lists_depopulated(wb);
148 	return false;
149 }
150 
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160 				     struct bdi_writeback *wb)
161 {
162 	assert_spin_locked(&wb->list_lock);
163 
164 	list_del_init(&inode->i_io_list);
165 	wb_io_lists_depopulated(wb);
166 }
167 
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 	spin_lock_bh(&wb->work_lock);
171 	if (test_bit(WB_registered, &wb->state))
172 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 	spin_unlock_bh(&wb->work_lock);
174 }
175 
176 static void wb_queue_work(struct bdi_writeback *wb,
177 			  struct wb_writeback_work *work)
178 {
179 	trace_writeback_queue(wb, work);
180 
181 	spin_lock_bh(&wb->work_lock);
182 	if (!test_bit(WB_registered, &wb->state))
183 		goto out_unlock;
184 	if (work->done)
185 		atomic_inc(&work->done->cnt);
186 	list_add_tail(&work->list, &wb->work_list);
187 	mod_delayed_work(bdi_wq, &wb->dwork, 0);
188 out_unlock:
189 	spin_unlock_bh(&wb->work_lock);
190 }
191 
192 /**
193  * wb_wait_for_completion - wait for completion of bdi_writeback_works
194  * @bdi: bdi work items were issued to
195  * @done: target wb_completion
196  *
197  * Wait for one or more work items issued to @bdi with their ->done field
198  * set to @done, which should have been defined with
199  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
200  * work items are completed.  Work items which are waited upon aren't freed
201  * automatically on completion.
202  */
203 static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 				   struct wb_completion *done)
205 {
206 	atomic_dec(&done->cnt);		/* put down the initial count */
207 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208 }
209 
210 #ifdef CONFIG_CGROUP_WRITEBACK
211 
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
217 
218 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 					/* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
222 					/* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 					/* one round can affect upto 5 slots */
225 
226 void __inode_attach_wb(struct inode *inode, struct page *page)
227 {
228 	struct backing_dev_info *bdi = inode_to_bdi(inode);
229 	struct bdi_writeback *wb = NULL;
230 
231 	if (inode_cgwb_enabled(inode)) {
232 		struct cgroup_subsys_state *memcg_css;
233 
234 		if (page) {
235 			memcg_css = mem_cgroup_css_from_page(page);
236 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
237 		} else {
238 			/* must pin memcg_css, see wb_get_create() */
239 			memcg_css = task_get_css(current, memory_cgrp_id);
240 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
241 			css_put(memcg_css);
242 		}
243 	}
244 
245 	if (!wb)
246 		wb = &bdi->wb;
247 
248 	/*
249 	 * There may be multiple instances of this function racing to
250 	 * update the same inode.  Use cmpxchg() to tell the winner.
251 	 */
252 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
253 		wb_put(wb);
254 }
255 
256 /**
257  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
258  * @inode: inode of interest with i_lock held
259  *
260  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
261  * held on entry and is released on return.  The returned wb is guaranteed
262  * to stay @inode's associated wb until its list_lock is released.
263  */
264 static struct bdi_writeback *
265 locked_inode_to_wb_and_lock_list(struct inode *inode)
266 	__releases(&inode->i_lock)
267 	__acquires(&wb->list_lock)
268 {
269 	while (true) {
270 		struct bdi_writeback *wb = inode_to_wb(inode);
271 
272 		/*
273 		 * inode_to_wb() association is protected by both
274 		 * @inode->i_lock and @wb->list_lock but list_lock nests
275 		 * outside i_lock.  Drop i_lock and verify that the
276 		 * association hasn't changed after acquiring list_lock.
277 		 */
278 		wb_get(wb);
279 		spin_unlock(&inode->i_lock);
280 		spin_lock(&wb->list_lock);
281 		wb_put(wb);		/* not gonna deref it anymore */
282 
283 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
284 		if (likely(wb == inode->i_wb))
285 			return wb;	/* @inode already has ref */
286 
287 		spin_unlock(&wb->list_lock);
288 		cpu_relax();
289 		spin_lock(&inode->i_lock);
290 	}
291 }
292 
293 /**
294  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
295  * @inode: inode of interest
296  *
297  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
298  * on entry.
299  */
300 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
301 	__acquires(&wb->list_lock)
302 {
303 	spin_lock(&inode->i_lock);
304 	return locked_inode_to_wb_and_lock_list(inode);
305 }
306 
307 struct inode_switch_wbs_context {
308 	struct inode		*inode;
309 	struct bdi_writeback	*new_wb;
310 
311 	struct rcu_head		rcu_head;
312 	struct work_struct	work;
313 };
314 
315 static void inode_switch_wbs_work_fn(struct work_struct *work)
316 {
317 	struct inode_switch_wbs_context *isw =
318 		container_of(work, struct inode_switch_wbs_context, work);
319 	struct inode *inode = isw->inode;
320 	struct super_block *sb = inode->i_sb;
321 	struct address_space *mapping = inode->i_mapping;
322 	struct bdi_writeback *old_wb = inode->i_wb;
323 	struct bdi_writeback *new_wb = isw->new_wb;
324 	struct radix_tree_iter iter;
325 	bool switched = false;
326 	void **slot;
327 
328 	/*
329 	 * By the time control reaches here, RCU grace period has passed
330 	 * since I_WB_SWITCH assertion and all wb stat update transactions
331 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
332 	 * synchronizing against mapping->tree_lock.
333 	 *
334 	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
335 	 * gives us exclusion against all wb related operations on @inode
336 	 * including IO list manipulations and stat updates.
337 	 */
338 	if (old_wb < new_wb) {
339 		spin_lock(&old_wb->list_lock);
340 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
341 	} else {
342 		spin_lock(&new_wb->list_lock);
343 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
344 	}
345 	spin_lock(&inode->i_lock);
346 	spin_lock_irq(&mapping->tree_lock);
347 
348 	/*
349 	 * Once I_FREEING is visible under i_lock, the eviction path owns
350 	 * the inode and we shouldn't modify ->i_io_list.
351 	 */
352 	if (unlikely(inode->i_state & I_FREEING))
353 		goto skip_switch;
354 
355 	/*
356 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
357 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
358 	 * pages actually under underwriteback.
359 	 */
360 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
361 				   PAGECACHE_TAG_DIRTY) {
362 		struct page *page = radix_tree_deref_slot_protected(slot,
363 							&mapping->tree_lock);
364 		if (likely(page) && PageDirty(page)) {
365 			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
366 			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
367 		}
368 	}
369 
370 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
371 				   PAGECACHE_TAG_WRITEBACK) {
372 		struct page *page = radix_tree_deref_slot_protected(slot,
373 							&mapping->tree_lock);
374 		if (likely(page)) {
375 			WARN_ON_ONCE(!PageWriteback(page));
376 			__dec_wb_stat(old_wb, WB_WRITEBACK);
377 			__inc_wb_stat(new_wb, WB_WRITEBACK);
378 		}
379 	}
380 
381 	wb_get(new_wb);
382 
383 	/*
384 	 * Transfer to @new_wb's IO list if necessary.  The specific list
385 	 * @inode was on is ignored and the inode is put on ->b_dirty which
386 	 * is always correct including from ->b_dirty_time.  The transfer
387 	 * preserves @inode->dirtied_when ordering.
388 	 */
389 	if (!list_empty(&inode->i_io_list)) {
390 		struct inode *pos;
391 
392 		inode_io_list_del_locked(inode, old_wb);
393 		inode->i_wb = new_wb;
394 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
395 			if (time_after_eq(inode->dirtied_when,
396 					  pos->dirtied_when))
397 				break;
398 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
399 	} else {
400 		inode->i_wb = new_wb;
401 	}
402 
403 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
404 	inode->i_wb_frn_winner = 0;
405 	inode->i_wb_frn_avg_time = 0;
406 	inode->i_wb_frn_history = 0;
407 	switched = true;
408 skip_switch:
409 	/*
410 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
411 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
412 	 */
413 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
414 
415 	spin_unlock_irq(&mapping->tree_lock);
416 	spin_unlock(&inode->i_lock);
417 	spin_unlock(&new_wb->list_lock);
418 	spin_unlock(&old_wb->list_lock);
419 
420 	if (switched) {
421 		wb_wakeup(new_wb);
422 		wb_put(old_wb);
423 	}
424 	wb_put(new_wb);
425 
426 	iput(inode);
427 	deactivate_super(sb);
428 	kfree(isw);
429 }
430 
431 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
432 {
433 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
434 				struct inode_switch_wbs_context, rcu_head);
435 
436 	/* needs to grab bh-unsafe locks, bounce to work item */
437 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
438 	schedule_work(&isw->work);
439 }
440 
441 /**
442  * inode_switch_wbs - change the wb association of an inode
443  * @inode: target inode
444  * @new_wb_id: ID of the new wb
445  *
446  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
447  * switching is performed asynchronously and may fail silently.
448  */
449 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
450 {
451 	struct backing_dev_info *bdi = inode_to_bdi(inode);
452 	struct cgroup_subsys_state *memcg_css;
453 	struct inode_switch_wbs_context *isw;
454 
455 	/* noop if seems to be already in progress */
456 	if (inode->i_state & I_WB_SWITCH)
457 		return;
458 
459 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
460 	if (!isw)
461 		return;
462 
463 	/* find and pin the new wb */
464 	rcu_read_lock();
465 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
466 	if (memcg_css)
467 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
468 	rcu_read_unlock();
469 	if (!isw->new_wb)
470 		goto out_free;
471 
472 	/* while holding I_WB_SWITCH, no one else can update the association */
473 	spin_lock(&inode->i_lock);
474 
475 	if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
476 	    inode_to_wb(inode) == isw->new_wb)
477 		goto out_unlock;
478 
479 	if (!atomic_inc_not_zero(&inode->i_sb->s_active))
480 		goto out_unlock;
481 
482 	inode->i_state |= I_WB_SWITCH;
483 	spin_unlock(&inode->i_lock);
484 
485 	ihold(inode);
486 	isw->inode = inode;
487 
488 	/*
489 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
490 	 * the RCU protected stat update paths to grab the mapping's
491 	 * tree_lock so that stat transfer can synchronize against them.
492 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
493 	 */
494 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
495 	return;
496 
497 out_unlock:
498 	spin_unlock(&inode->i_lock);
499 out_free:
500 	if (isw->new_wb)
501 		wb_put(isw->new_wb);
502 	kfree(isw);
503 }
504 
505 /**
506  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
507  * @wbc: writeback_control of interest
508  * @inode: target inode
509  *
510  * @inode is locked and about to be written back under the control of @wbc.
511  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
512  * writeback completion, wbc_detach_inode() should be called.  This is used
513  * to track the cgroup writeback context.
514  */
515 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
516 				 struct inode *inode)
517 {
518 	if (!inode_cgwb_enabled(inode)) {
519 		spin_unlock(&inode->i_lock);
520 		return;
521 	}
522 
523 	wbc->wb = inode_to_wb(inode);
524 	wbc->inode = inode;
525 
526 	wbc->wb_id = wbc->wb->memcg_css->id;
527 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
528 	wbc->wb_tcand_id = 0;
529 	wbc->wb_bytes = 0;
530 	wbc->wb_lcand_bytes = 0;
531 	wbc->wb_tcand_bytes = 0;
532 
533 	wb_get(wbc->wb);
534 	spin_unlock(&inode->i_lock);
535 
536 	/*
537 	 * A dying wb indicates that the memcg-blkcg mapping has changed
538 	 * and a new wb is already serving the memcg.  Switch immediately.
539 	 */
540 	if (unlikely(wb_dying(wbc->wb)))
541 		inode_switch_wbs(inode, wbc->wb_id);
542 }
543 
544 /**
545  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
546  * @wbc: writeback_control of the just finished writeback
547  *
548  * To be called after a writeback attempt of an inode finishes and undoes
549  * wbc_attach_and_unlock_inode().  Can be called under any context.
550  *
551  * As concurrent write sharing of an inode is expected to be very rare and
552  * memcg only tracks page ownership on first-use basis severely confining
553  * the usefulness of such sharing, cgroup writeback tracks ownership
554  * per-inode.  While the support for concurrent write sharing of an inode
555  * is deemed unnecessary, an inode being written to by different cgroups at
556  * different points in time is a lot more common, and, more importantly,
557  * charging only by first-use can too readily lead to grossly incorrect
558  * behaviors (single foreign page can lead to gigabytes of writeback to be
559  * incorrectly attributed).
560  *
561  * To resolve this issue, cgroup writeback detects the majority dirtier of
562  * an inode and transfers the ownership to it.  To avoid unnnecessary
563  * oscillation, the detection mechanism keeps track of history and gives
564  * out the switch verdict only if the foreign usage pattern is stable over
565  * a certain amount of time and/or writeback attempts.
566  *
567  * On each writeback attempt, @wbc tries to detect the majority writer
568  * using Boyer-Moore majority vote algorithm.  In addition to the byte
569  * count from the majority voting, it also counts the bytes written for the
570  * current wb and the last round's winner wb (max of last round's current
571  * wb, the winner from two rounds ago, and the last round's majority
572  * candidate).  Keeping track of the historical winner helps the algorithm
573  * to semi-reliably detect the most active writer even when it's not the
574  * absolute majority.
575  *
576  * Once the winner of the round is determined, whether the winner is
577  * foreign or not and how much IO time the round consumed is recorded in
578  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
579  * over a certain threshold, the switch verdict is given.
580  */
581 void wbc_detach_inode(struct writeback_control *wbc)
582 {
583 	struct bdi_writeback *wb = wbc->wb;
584 	struct inode *inode = wbc->inode;
585 	unsigned long avg_time, max_bytes, max_time;
586 	u16 history;
587 	int max_id;
588 
589 	if (!wb)
590 		return;
591 
592 	history = inode->i_wb_frn_history;
593 	avg_time = inode->i_wb_frn_avg_time;
594 
595 	/* pick the winner of this round */
596 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
597 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
598 		max_id = wbc->wb_id;
599 		max_bytes = wbc->wb_bytes;
600 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
601 		max_id = wbc->wb_lcand_id;
602 		max_bytes = wbc->wb_lcand_bytes;
603 	} else {
604 		max_id = wbc->wb_tcand_id;
605 		max_bytes = wbc->wb_tcand_bytes;
606 	}
607 
608 	/*
609 	 * Calculate the amount of IO time the winner consumed and fold it
610 	 * into the running average kept per inode.  If the consumed IO
611 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
612 	 * deciding whether to switch or not.  This is to prevent one-off
613 	 * small dirtiers from skewing the verdict.
614 	 */
615 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
616 				wb->avg_write_bandwidth);
617 	if (avg_time)
618 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
619 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
620 	else
621 		avg_time = max_time;	/* immediate catch up on first run */
622 
623 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
624 		int slots;
625 
626 		/*
627 		 * The switch verdict is reached if foreign wb's consume
628 		 * more than a certain proportion of IO time in a
629 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
630 		 * history mask where each bit represents one sixteenth of
631 		 * the period.  Determine the number of slots to shift into
632 		 * history from @max_time.
633 		 */
634 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
635 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
636 		history <<= slots;
637 		if (wbc->wb_id != max_id)
638 			history |= (1U << slots) - 1;
639 
640 		/*
641 		 * Switch if the current wb isn't the consistent winner.
642 		 * If there are multiple closely competing dirtiers, the
643 		 * inode may switch across them repeatedly over time, which
644 		 * is okay.  The main goal is avoiding keeping an inode on
645 		 * the wrong wb for an extended period of time.
646 		 */
647 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
648 			inode_switch_wbs(inode, max_id);
649 	}
650 
651 	/*
652 	 * Multiple instances of this function may race to update the
653 	 * following fields but we don't mind occassional inaccuracies.
654 	 */
655 	inode->i_wb_frn_winner = max_id;
656 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
657 	inode->i_wb_frn_history = history;
658 
659 	wb_put(wbc->wb);
660 	wbc->wb = NULL;
661 }
662 
663 /**
664  * wbc_account_io - account IO issued during writeback
665  * @wbc: writeback_control of the writeback in progress
666  * @page: page being written out
667  * @bytes: number of bytes being written out
668  *
669  * @bytes from @page are about to written out during the writeback
670  * controlled by @wbc.  Keep the book for foreign inode detection.  See
671  * wbc_detach_inode().
672  */
673 void wbc_account_io(struct writeback_control *wbc, struct page *page,
674 		    size_t bytes)
675 {
676 	int id;
677 
678 	/*
679 	 * pageout() path doesn't attach @wbc to the inode being written
680 	 * out.  This is intentional as we don't want the function to block
681 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
682 	 * regular writeback instead of writing things out itself.
683 	 */
684 	if (!wbc->wb)
685 		return;
686 
687 	id = mem_cgroup_css_from_page(page)->id;
688 
689 	if (id == wbc->wb_id) {
690 		wbc->wb_bytes += bytes;
691 		return;
692 	}
693 
694 	if (id == wbc->wb_lcand_id)
695 		wbc->wb_lcand_bytes += bytes;
696 
697 	/* Boyer-Moore majority vote algorithm */
698 	if (!wbc->wb_tcand_bytes)
699 		wbc->wb_tcand_id = id;
700 	if (id == wbc->wb_tcand_id)
701 		wbc->wb_tcand_bytes += bytes;
702 	else
703 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
704 }
705 EXPORT_SYMBOL_GPL(wbc_account_io);
706 
707 /**
708  * inode_congested - test whether an inode is congested
709  * @inode: inode to test for congestion (may be NULL)
710  * @cong_bits: mask of WB_[a]sync_congested bits to test
711  *
712  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
713  * bits to test and the return value is the mask of set bits.
714  *
715  * If cgroup writeback is enabled for @inode, the congestion state is
716  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
717  * associated with @inode is congested; otherwise, the root wb's congestion
718  * state is used.
719  *
720  * @inode is allowed to be NULL as this function is often called on
721  * mapping->host which is NULL for the swapper space.
722  */
723 int inode_congested(struct inode *inode, int cong_bits)
724 {
725 	/*
726 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
727 	 * Start transaction iff ->i_wb is visible.
728 	 */
729 	if (inode && inode_to_wb_is_valid(inode)) {
730 		struct bdi_writeback *wb;
731 		bool locked, congested;
732 
733 		wb = unlocked_inode_to_wb_begin(inode, &locked);
734 		congested = wb_congested(wb, cong_bits);
735 		unlocked_inode_to_wb_end(inode, locked);
736 		return congested;
737 	}
738 
739 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
740 }
741 EXPORT_SYMBOL_GPL(inode_congested);
742 
743 /**
744  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
745  * @wb: target bdi_writeback to split @nr_pages to
746  * @nr_pages: number of pages to write for the whole bdi
747  *
748  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
749  * relation to the total write bandwidth of all wb's w/ dirty inodes on
750  * @wb->bdi.
751  */
752 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
753 {
754 	unsigned long this_bw = wb->avg_write_bandwidth;
755 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
756 
757 	if (nr_pages == LONG_MAX)
758 		return LONG_MAX;
759 
760 	/*
761 	 * This may be called on clean wb's and proportional distribution
762 	 * may not make sense, just use the original @nr_pages in those
763 	 * cases.  In general, we wanna err on the side of writing more.
764 	 */
765 	if (!tot_bw || this_bw >= tot_bw)
766 		return nr_pages;
767 	else
768 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
769 }
770 
771 /**
772  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
773  * @bdi: target backing_dev_info
774  * @base_work: wb_writeback_work to issue
775  * @skip_if_busy: skip wb's which already have writeback in progress
776  *
777  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
778  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
779  * distributed to the busy wbs according to each wb's proportion in the
780  * total active write bandwidth of @bdi.
781  */
782 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
783 				  struct wb_writeback_work *base_work,
784 				  bool skip_if_busy)
785 {
786 	struct bdi_writeback *last_wb = NULL;
787 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
788 					      struct bdi_writeback, bdi_node);
789 
790 	might_sleep();
791 restart:
792 	rcu_read_lock();
793 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
794 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
795 		struct wb_writeback_work fallback_work;
796 		struct wb_writeback_work *work;
797 		long nr_pages;
798 
799 		if (last_wb) {
800 			wb_put(last_wb);
801 			last_wb = NULL;
802 		}
803 
804 		/* SYNC_ALL writes out I_DIRTY_TIME too */
805 		if (!wb_has_dirty_io(wb) &&
806 		    (base_work->sync_mode == WB_SYNC_NONE ||
807 		     list_empty(&wb->b_dirty_time)))
808 			continue;
809 		if (skip_if_busy && writeback_in_progress(wb))
810 			continue;
811 
812 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
813 
814 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
815 		if (work) {
816 			*work = *base_work;
817 			work->nr_pages = nr_pages;
818 			work->auto_free = 1;
819 			wb_queue_work(wb, work);
820 			continue;
821 		}
822 
823 		/* alloc failed, execute synchronously using on-stack fallback */
824 		work = &fallback_work;
825 		*work = *base_work;
826 		work->nr_pages = nr_pages;
827 		work->auto_free = 0;
828 		work->done = &fallback_work_done;
829 
830 		wb_queue_work(wb, work);
831 
832 		/*
833 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
834 		 * continuing iteration from @wb after dropping and
835 		 * regrabbing rcu read lock.
836 		 */
837 		wb_get(wb);
838 		last_wb = wb;
839 
840 		rcu_read_unlock();
841 		wb_wait_for_completion(bdi, &fallback_work_done);
842 		goto restart;
843 	}
844 	rcu_read_unlock();
845 
846 	if (last_wb)
847 		wb_put(last_wb);
848 }
849 
850 #else	/* CONFIG_CGROUP_WRITEBACK */
851 
852 static struct bdi_writeback *
853 locked_inode_to_wb_and_lock_list(struct inode *inode)
854 	__releases(&inode->i_lock)
855 	__acquires(&wb->list_lock)
856 {
857 	struct bdi_writeback *wb = inode_to_wb(inode);
858 
859 	spin_unlock(&inode->i_lock);
860 	spin_lock(&wb->list_lock);
861 	return wb;
862 }
863 
864 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
865 	__acquires(&wb->list_lock)
866 {
867 	struct bdi_writeback *wb = inode_to_wb(inode);
868 
869 	spin_lock(&wb->list_lock);
870 	return wb;
871 }
872 
873 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
874 {
875 	return nr_pages;
876 }
877 
878 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
879 				  struct wb_writeback_work *base_work,
880 				  bool skip_if_busy)
881 {
882 	might_sleep();
883 
884 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
885 		base_work->auto_free = 0;
886 		wb_queue_work(&bdi->wb, base_work);
887 	}
888 }
889 
890 #endif	/* CONFIG_CGROUP_WRITEBACK */
891 
892 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
893 			bool range_cyclic, enum wb_reason reason)
894 {
895 	struct wb_writeback_work *work;
896 
897 	if (!wb_has_dirty_io(wb))
898 		return;
899 
900 	/*
901 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
902 	 * wakeup the thread for old dirty data writeback
903 	 */
904 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
905 	if (!work) {
906 		trace_writeback_nowork(wb);
907 		wb_wakeup(wb);
908 		return;
909 	}
910 
911 	work->sync_mode	= WB_SYNC_NONE;
912 	work->nr_pages	= nr_pages;
913 	work->range_cyclic = range_cyclic;
914 	work->reason	= reason;
915 	work->auto_free	= 1;
916 
917 	wb_queue_work(wb, work);
918 }
919 
920 /**
921  * wb_start_background_writeback - start background writeback
922  * @wb: bdi_writback to write from
923  *
924  * Description:
925  *   This makes sure WB_SYNC_NONE background writeback happens. When
926  *   this function returns, it is only guaranteed that for given wb
927  *   some IO is happening if we are over background dirty threshold.
928  *   Caller need not hold sb s_umount semaphore.
929  */
930 void wb_start_background_writeback(struct bdi_writeback *wb)
931 {
932 	/*
933 	 * We just wake up the flusher thread. It will perform background
934 	 * writeback as soon as there is no other work to do.
935 	 */
936 	trace_writeback_wake_background(wb);
937 	wb_wakeup(wb);
938 }
939 
940 /*
941  * Remove the inode from the writeback list it is on.
942  */
943 void inode_io_list_del(struct inode *inode)
944 {
945 	struct bdi_writeback *wb;
946 
947 	wb = inode_to_wb_and_lock_list(inode);
948 	inode_io_list_del_locked(inode, wb);
949 	spin_unlock(&wb->list_lock);
950 }
951 
952 /*
953  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
954  * furthest end of its superblock's dirty-inode list.
955  *
956  * Before stamping the inode's ->dirtied_when, we check to see whether it is
957  * already the most-recently-dirtied inode on the b_dirty list.  If that is
958  * the case then the inode must have been redirtied while it was being written
959  * out and we don't reset its dirtied_when.
960  */
961 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
962 {
963 	if (!list_empty(&wb->b_dirty)) {
964 		struct inode *tail;
965 
966 		tail = wb_inode(wb->b_dirty.next);
967 		if (time_before(inode->dirtied_when, tail->dirtied_when))
968 			inode->dirtied_when = jiffies;
969 	}
970 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
971 }
972 
973 /*
974  * requeue inode for re-scanning after bdi->b_io list is exhausted.
975  */
976 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
977 {
978 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
979 }
980 
981 static void inode_sync_complete(struct inode *inode)
982 {
983 	inode->i_state &= ~I_SYNC;
984 	/* If inode is clean an unused, put it into LRU now... */
985 	inode_add_lru(inode);
986 	/* Waiters must see I_SYNC cleared before being woken up */
987 	smp_mb();
988 	wake_up_bit(&inode->i_state, __I_SYNC);
989 }
990 
991 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
992 {
993 	bool ret = time_after(inode->dirtied_when, t);
994 #ifndef CONFIG_64BIT
995 	/*
996 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
997 	 * It _appears_ to be in the future, but is actually in distant past.
998 	 * This test is necessary to prevent such wrapped-around relative times
999 	 * from permanently stopping the whole bdi writeback.
1000 	 */
1001 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1002 #endif
1003 	return ret;
1004 }
1005 
1006 #define EXPIRE_DIRTY_ATIME 0x0001
1007 
1008 /*
1009  * Move expired (dirtied before work->older_than_this) dirty inodes from
1010  * @delaying_queue to @dispatch_queue.
1011  */
1012 static int move_expired_inodes(struct list_head *delaying_queue,
1013 			       struct list_head *dispatch_queue,
1014 			       int flags,
1015 			       struct wb_writeback_work *work)
1016 {
1017 	unsigned long *older_than_this = NULL;
1018 	unsigned long expire_time;
1019 	LIST_HEAD(tmp);
1020 	struct list_head *pos, *node;
1021 	struct super_block *sb = NULL;
1022 	struct inode *inode;
1023 	int do_sb_sort = 0;
1024 	int moved = 0;
1025 
1026 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1027 		older_than_this = work->older_than_this;
1028 	else if (!work->for_sync) {
1029 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1030 		older_than_this = &expire_time;
1031 	}
1032 	while (!list_empty(delaying_queue)) {
1033 		inode = wb_inode(delaying_queue->prev);
1034 		if (older_than_this &&
1035 		    inode_dirtied_after(inode, *older_than_this))
1036 			break;
1037 		list_move(&inode->i_io_list, &tmp);
1038 		moved++;
1039 		if (flags & EXPIRE_DIRTY_ATIME)
1040 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1041 		if (sb_is_blkdev_sb(inode->i_sb))
1042 			continue;
1043 		if (sb && sb != inode->i_sb)
1044 			do_sb_sort = 1;
1045 		sb = inode->i_sb;
1046 	}
1047 
1048 	/* just one sb in list, splice to dispatch_queue and we're done */
1049 	if (!do_sb_sort) {
1050 		list_splice(&tmp, dispatch_queue);
1051 		goto out;
1052 	}
1053 
1054 	/* Move inodes from one superblock together */
1055 	while (!list_empty(&tmp)) {
1056 		sb = wb_inode(tmp.prev)->i_sb;
1057 		list_for_each_prev_safe(pos, node, &tmp) {
1058 			inode = wb_inode(pos);
1059 			if (inode->i_sb == sb)
1060 				list_move(&inode->i_io_list, dispatch_queue);
1061 		}
1062 	}
1063 out:
1064 	return moved;
1065 }
1066 
1067 /*
1068  * Queue all expired dirty inodes for io, eldest first.
1069  * Before
1070  *         newly dirtied     b_dirty    b_io    b_more_io
1071  *         =============>    gf         edc     BA
1072  * After
1073  *         newly dirtied     b_dirty    b_io    b_more_io
1074  *         =============>    g          fBAedc
1075  *                                           |
1076  *                                           +--> dequeue for IO
1077  */
1078 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1079 {
1080 	int moved;
1081 
1082 	assert_spin_locked(&wb->list_lock);
1083 	list_splice_init(&wb->b_more_io, &wb->b_io);
1084 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1085 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1086 				     EXPIRE_DIRTY_ATIME, work);
1087 	if (moved)
1088 		wb_io_lists_populated(wb);
1089 	trace_writeback_queue_io(wb, work, moved);
1090 }
1091 
1092 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1093 {
1094 	int ret;
1095 
1096 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1097 		trace_writeback_write_inode_start(inode, wbc);
1098 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1099 		trace_writeback_write_inode(inode, wbc);
1100 		return ret;
1101 	}
1102 	return 0;
1103 }
1104 
1105 /*
1106  * Wait for writeback on an inode to complete. Called with i_lock held.
1107  * Caller must make sure inode cannot go away when we drop i_lock.
1108  */
1109 static void __inode_wait_for_writeback(struct inode *inode)
1110 	__releases(inode->i_lock)
1111 	__acquires(inode->i_lock)
1112 {
1113 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1114 	wait_queue_head_t *wqh;
1115 
1116 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1117 	while (inode->i_state & I_SYNC) {
1118 		spin_unlock(&inode->i_lock);
1119 		__wait_on_bit(wqh, &wq, bit_wait,
1120 			      TASK_UNINTERRUPTIBLE);
1121 		spin_lock(&inode->i_lock);
1122 	}
1123 }
1124 
1125 /*
1126  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1127  */
1128 void inode_wait_for_writeback(struct inode *inode)
1129 {
1130 	spin_lock(&inode->i_lock);
1131 	__inode_wait_for_writeback(inode);
1132 	spin_unlock(&inode->i_lock);
1133 }
1134 
1135 /*
1136  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1137  * held and drops it. It is aimed for callers not holding any inode reference
1138  * so once i_lock is dropped, inode can go away.
1139  */
1140 static void inode_sleep_on_writeback(struct inode *inode)
1141 	__releases(inode->i_lock)
1142 {
1143 	DEFINE_WAIT(wait);
1144 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1145 	int sleep;
1146 
1147 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1148 	sleep = inode->i_state & I_SYNC;
1149 	spin_unlock(&inode->i_lock);
1150 	if (sleep)
1151 		schedule();
1152 	finish_wait(wqh, &wait);
1153 }
1154 
1155 /*
1156  * Find proper writeback list for the inode depending on its current state and
1157  * possibly also change of its state while we were doing writeback.  Here we
1158  * handle things such as livelock prevention or fairness of writeback among
1159  * inodes. This function can be called only by flusher thread - noone else
1160  * processes all inodes in writeback lists and requeueing inodes behind flusher
1161  * thread's back can have unexpected consequences.
1162  */
1163 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1164 			  struct writeback_control *wbc)
1165 {
1166 	if (inode->i_state & I_FREEING)
1167 		return;
1168 
1169 	/*
1170 	 * Sync livelock prevention. Each inode is tagged and synced in one
1171 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1172 	 * the dirty time to prevent enqueue and sync it again.
1173 	 */
1174 	if ((inode->i_state & I_DIRTY) &&
1175 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1176 		inode->dirtied_when = jiffies;
1177 
1178 	if (wbc->pages_skipped) {
1179 		/*
1180 		 * writeback is not making progress due to locked
1181 		 * buffers. Skip this inode for now.
1182 		 */
1183 		redirty_tail(inode, wb);
1184 		return;
1185 	}
1186 
1187 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1188 		/*
1189 		 * We didn't write back all the pages.  nfs_writepages()
1190 		 * sometimes bales out without doing anything.
1191 		 */
1192 		if (wbc->nr_to_write <= 0) {
1193 			/* Slice used up. Queue for next turn. */
1194 			requeue_io(inode, wb);
1195 		} else {
1196 			/*
1197 			 * Writeback blocked by something other than
1198 			 * congestion. Delay the inode for some time to
1199 			 * avoid spinning on the CPU (100% iowait)
1200 			 * retrying writeback of the dirty page/inode
1201 			 * that cannot be performed immediately.
1202 			 */
1203 			redirty_tail(inode, wb);
1204 		}
1205 	} else if (inode->i_state & I_DIRTY) {
1206 		/*
1207 		 * Filesystems can dirty the inode during writeback operations,
1208 		 * such as delayed allocation during submission or metadata
1209 		 * updates after data IO completion.
1210 		 */
1211 		redirty_tail(inode, wb);
1212 	} else if (inode->i_state & I_DIRTY_TIME) {
1213 		inode->dirtied_when = jiffies;
1214 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1215 	} else {
1216 		/* The inode is clean. Remove from writeback lists. */
1217 		inode_io_list_del_locked(inode, wb);
1218 	}
1219 }
1220 
1221 /*
1222  * Write out an inode and its dirty pages. Do not update the writeback list
1223  * linkage. That is left to the caller. The caller is also responsible for
1224  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1225  */
1226 static int
1227 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1228 {
1229 	struct address_space *mapping = inode->i_mapping;
1230 	long nr_to_write = wbc->nr_to_write;
1231 	unsigned dirty;
1232 	int ret;
1233 
1234 	WARN_ON(!(inode->i_state & I_SYNC));
1235 
1236 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1237 
1238 	ret = do_writepages(mapping, wbc);
1239 
1240 	/*
1241 	 * Make sure to wait on the data before writing out the metadata.
1242 	 * This is important for filesystems that modify metadata on data
1243 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1244 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1245 	 * inode metadata is written back correctly.
1246 	 */
1247 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1248 		int err = filemap_fdatawait(mapping);
1249 		if (ret == 0)
1250 			ret = err;
1251 	}
1252 
1253 	/*
1254 	 * Some filesystems may redirty the inode during the writeback
1255 	 * due to delalloc, clear dirty metadata flags right before
1256 	 * write_inode()
1257 	 */
1258 	spin_lock(&inode->i_lock);
1259 
1260 	dirty = inode->i_state & I_DIRTY;
1261 	if (inode->i_state & I_DIRTY_TIME) {
1262 		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1263 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1264 		    unlikely(time_after(jiffies,
1265 					(inode->dirtied_time_when +
1266 					 dirtytime_expire_interval * HZ)))) {
1267 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1268 			trace_writeback_lazytime(inode);
1269 		}
1270 	} else
1271 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1272 	inode->i_state &= ~dirty;
1273 
1274 	/*
1275 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1276 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1277 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1278 	 * inode.
1279 	 *
1280 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1281 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1282 	 * necessary.  This guarantees that either __mark_inode_dirty()
1283 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1284 	 */
1285 	smp_mb();
1286 
1287 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1288 		inode->i_state |= I_DIRTY_PAGES;
1289 
1290 	spin_unlock(&inode->i_lock);
1291 
1292 	if (dirty & I_DIRTY_TIME)
1293 		mark_inode_dirty_sync(inode);
1294 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1295 	if (dirty & ~I_DIRTY_PAGES) {
1296 		int err = write_inode(inode, wbc);
1297 		if (ret == 0)
1298 			ret = err;
1299 	}
1300 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1301 	return ret;
1302 }
1303 
1304 /*
1305  * Write out an inode's dirty pages. Either the caller has an active reference
1306  * on the inode or the inode has I_WILL_FREE set.
1307  *
1308  * This function is designed to be called for writing back one inode which
1309  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1310  * and does more profound writeback list handling in writeback_sb_inodes().
1311  */
1312 static int
1313 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1314 		       struct writeback_control *wbc)
1315 {
1316 	int ret = 0;
1317 
1318 	spin_lock(&inode->i_lock);
1319 	if (!atomic_read(&inode->i_count))
1320 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1321 	else
1322 		WARN_ON(inode->i_state & I_WILL_FREE);
1323 
1324 	if (inode->i_state & I_SYNC) {
1325 		if (wbc->sync_mode != WB_SYNC_ALL)
1326 			goto out;
1327 		/*
1328 		 * It's a data-integrity sync. We must wait. Since callers hold
1329 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1330 		 * away under us.
1331 		 */
1332 		__inode_wait_for_writeback(inode);
1333 	}
1334 	WARN_ON(inode->i_state & I_SYNC);
1335 	/*
1336 	 * Skip inode if it is clean and we have no outstanding writeback in
1337 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1338 	 * function since flusher thread may be doing for example sync in
1339 	 * parallel and if we move the inode, it could get skipped. So here we
1340 	 * make sure inode is on some writeback list and leave it there unless
1341 	 * we have completely cleaned the inode.
1342 	 */
1343 	if (!(inode->i_state & I_DIRTY_ALL) &&
1344 	    (wbc->sync_mode != WB_SYNC_ALL ||
1345 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1346 		goto out;
1347 	inode->i_state |= I_SYNC;
1348 	wbc_attach_and_unlock_inode(wbc, inode);
1349 
1350 	ret = __writeback_single_inode(inode, wbc);
1351 
1352 	wbc_detach_inode(wbc);
1353 	spin_lock(&wb->list_lock);
1354 	spin_lock(&inode->i_lock);
1355 	/*
1356 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1357 	 * touch it. See comment above for explanation.
1358 	 */
1359 	if (!(inode->i_state & I_DIRTY_ALL))
1360 		inode_io_list_del_locked(inode, wb);
1361 	spin_unlock(&wb->list_lock);
1362 	inode_sync_complete(inode);
1363 out:
1364 	spin_unlock(&inode->i_lock);
1365 	return ret;
1366 }
1367 
1368 static long writeback_chunk_size(struct bdi_writeback *wb,
1369 				 struct wb_writeback_work *work)
1370 {
1371 	long pages;
1372 
1373 	/*
1374 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1375 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1376 	 * here avoids calling into writeback_inodes_wb() more than once.
1377 	 *
1378 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1379 	 *
1380 	 *      wb_writeback()
1381 	 *          writeback_sb_inodes()       <== called only once
1382 	 *              write_cache_pages()     <== called once for each inode
1383 	 *                   (quickly) tag currently dirty pages
1384 	 *                   (maybe slowly) sync all tagged pages
1385 	 */
1386 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1387 		pages = LONG_MAX;
1388 	else {
1389 		pages = min(wb->avg_write_bandwidth / 2,
1390 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1391 		pages = min(pages, work->nr_pages);
1392 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1393 				   MIN_WRITEBACK_PAGES);
1394 	}
1395 
1396 	return pages;
1397 }
1398 
1399 /*
1400  * Write a portion of b_io inodes which belong to @sb.
1401  *
1402  * Return the number of pages and/or inodes written.
1403  *
1404  * NOTE! This is called with wb->list_lock held, and will
1405  * unlock and relock that for each inode it ends up doing
1406  * IO for.
1407  */
1408 static long writeback_sb_inodes(struct super_block *sb,
1409 				struct bdi_writeback *wb,
1410 				struct wb_writeback_work *work)
1411 {
1412 	struct writeback_control wbc = {
1413 		.sync_mode		= work->sync_mode,
1414 		.tagged_writepages	= work->tagged_writepages,
1415 		.for_kupdate		= work->for_kupdate,
1416 		.for_background		= work->for_background,
1417 		.for_sync		= work->for_sync,
1418 		.range_cyclic		= work->range_cyclic,
1419 		.range_start		= 0,
1420 		.range_end		= LLONG_MAX,
1421 	};
1422 	unsigned long start_time = jiffies;
1423 	long write_chunk;
1424 	long wrote = 0;  /* count both pages and inodes */
1425 
1426 	while (!list_empty(&wb->b_io)) {
1427 		struct inode *inode = wb_inode(wb->b_io.prev);
1428 
1429 		if (inode->i_sb != sb) {
1430 			if (work->sb) {
1431 				/*
1432 				 * We only want to write back data for this
1433 				 * superblock, move all inodes not belonging
1434 				 * to it back onto the dirty list.
1435 				 */
1436 				redirty_tail(inode, wb);
1437 				continue;
1438 			}
1439 
1440 			/*
1441 			 * The inode belongs to a different superblock.
1442 			 * Bounce back to the caller to unpin this and
1443 			 * pin the next superblock.
1444 			 */
1445 			break;
1446 		}
1447 
1448 		/*
1449 		 * Don't bother with new inodes or inodes being freed, first
1450 		 * kind does not need periodic writeout yet, and for the latter
1451 		 * kind writeout is handled by the freer.
1452 		 */
1453 		spin_lock(&inode->i_lock);
1454 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1455 			spin_unlock(&inode->i_lock);
1456 			redirty_tail(inode, wb);
1457 			continue;
1458 		}
1459 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1460 			/*
1461 			 * If this inode is locked for writeback and we are not
1462 			 * doing writeback-for-data-integrity, move it to
1463 			 * b_more_io so that writeback can proceed with the
1464 			 * other inodes on s_io.
1465 			 *
1466 			 * We'll have another go at writing back this inode
1467 			 * when we completed a full scan of b_io.
1468 			 */
1469 			spin_unlock(&inode->i_lock);
1470 			requeue_io(inode, wb);
1471 			trace_writeback_sb_inodes_requeue(inode);
1472 			continue;
1473 		}
1474 		spin_unlock(&wb->list_lock);
1475 
1476 		/*
1477 		 * We already requeued the inode if it had I_SYNC set and we
1478 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1479 		 * WB_SYNC_ALL case.
1480 		 */
1481 		if (inode->i_state & I_SYNC) {
1482 			/* Wait for I_SYNC. This function drops i_lock... */
1483 			inode_sleep_on_writeback(inode);
1484 			/* Inode may be gone, start again */
1485 			spin_lock(&wb->list_lock);
1486 			continue;
1487 		}
1488 		inode->i_state |= I_SYNC;
1489 		wbc_attach_and_unlock_inode(&wbc, inode);
1490 
1491 		write_chunk = writeback_chunk_size(wb, work);
1492 		wbc.nr_to_write = write_chunk;
1493 		wbc.pages_skipped = 0;
1494 
1495 		/*
1496 		 * We use I_SYNC to pin the inode in memory. While it is set
1497 		 * evict_inode() will wait so the inode cannot be freed.
1498 		 */
1499 		__writeback_single_inode(inode, &wbc);
1500 
1501 		wbc_detach_inode(&wbc);
1502 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1503 		wrote += write_chunk - wbc.nr_to_write;
1504 
1505 		if (need_resched()) {
1506 			/*
1507 			 * We're trying to balance between building up a nice
1508 			 * long list of IOs to improve our merge rate, and
1509 			 * getting those IOs out quickly for anyone throttling
1510 			 * in balance_dirty_pages().  cond_resched() doesn't
1511 			 * unplug, so get our IOs out the door before we
1512 			 * give up the CPU.
1513 			 */
1514 			blk_flush_plug(current);
1515 			cond_resched();
1516 		}
1517 
1518 
1519 		spin_lock(&wb->list_lock);
1520 		spin_lock(&inode->i_lock);
1521 		if (!(inode->i_state & I_DIRTY_ALL))
1522 			wrote++;
1523 		requeue_inode(inode, wb, &wbc);
1524 		inode_sync_complete(inode);
1525 		spin_unlock(&inode->i_lock);
1526 
1527 		/*
1528 		 * bail out to wb_writeback() often enough to check
1529 		 * background threshold and other termination conditions.
1530 		 */
1531 		if (wrote) {
1532 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1533 				break;
1534 			if (work->nr_pages <= 0)
1535 				break;
1536 		}
1537 	}
1538 	return wrote;
1539 }
1540 
1541 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1542 				  struct wb_writeback_work *work)
1543 {
1544 	unsigned long start_time = jiffies;
1545 	long wrote = 0;
1546 
1547 	while (!list_empty(&wb->b_io)) {
1548 		struct inode *inode = wb_inode(wb->b_io.prev);
1549 		struct super_block *sb = inode->i_sb;
1550 
1551 		if (!trylock_super(sb)) {
1552 			/*
1553 			 * trylock_super() may fail consistently due to
1554 			 * s_umount being grabbed by someone else. Don't use
1555 			 * requeue_io() to avoid busy retrying the inode/sb.
1556 			 */
1557 			redirty_tail(inode, wb);
1558 			continue;
1559 		}
1560 		wrote += writeback_sb_inodes(sb, wb, work);
1561 		up_read(&sb->s_umount);
1562 
1563 		/* refer to the same tests at the end of writeback_sb_inodes */
1564 		if (wrote) {
1565 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1566 				break;
1567 			if (work->nr_pages <= 0)
1568 				break;
1569 		}
1570 	}
1571 	/* Leave any unwritten inodes on b_io */
1572 	return wrote;
1573 }
1574 
1575 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1576 				enum wb_reason reason)
1577 {
1578 	struct wb_writeback_work work = {
1579 		.nr_pages	= nr_pages,
1580 		.sync_mode	= WB_SYNC_NONE,
1581 		.range_cyclic	= 1,
1582 		.reason		= reason,
1583 	};
1584 	struct blk_plug plug;
1585 
1586 	blk_start_plug(&plug);
1587 	spin_lock(&wb->list_lock);
1588 	if (list_empty(&wb->b_io))
1589 		queue_io(wb, &work);
1590 	__writeback_inodes_wb(wb, &work);
1591 	spin_unlock(&wb->list_lock);
1592 	blk_finish_plug(&plug);
1593 
1594 	return nr_pages - work.nr_pages;
1595 }
1596 
1597 /*
1598  * Explicit flushing or periodic writeback of "old" data.
1599  *
1600  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1601  * dirtying-time in the inode's address_space.  So this periodic writeback code
1602  * just walks the superblock inode list, writing back any inodes which are
1603  * older than a specific point in time.
1604  *
1605  * Try to run once per dirty_writeback_interval.  But if a writeback event
1606  * takes longer than a dirty_writeback_interval interval, then leave a
1607  * one-second gap.
1608  *
1609  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1610  * all dirty pages if they are all attached to "old" mappings.
1611  */
1612 static long wb_writeback(struct bdi_writeback *wb,
1613 			 struct wb_writeback_work *work)
1614 {
1615 	unsigned long wb_start = jiffies;
1616 	long nr_pages = work->nr_pages;
1617 	unsigned long oldest_jif;
1618 	struct inode *inode;
1619 	long progress;
1620 	struct blk_plug plug;
1621 
1622 	oldest_jif = jiffies;
1623 	work->older_than_this = &oldest_jif;
1624 
1625 	blk_start_plug(&plug);
1626 	spin_lock(&wb->list_lock);
1627 	for (;;) {
1628 		/*
1629 		 * Stop writeback when nr_pages has been consumed
1630 		 */
1631 		if (work->nr_pages <= 0)
1632 			break;
1633 
1634 		/*
1635 		 * Background writeout and kupdate-style writeback may
1636 		 * run forever. Stop them if there is other work to do
1637 		 * so that e.g. sync can proceed. They'll be restarted
1638 		 * after the other works are all done.
1639 		 */
1640 		if ((work->for_background || work->for_kupdate) &&
1641 		    !list_empty(&wb->work_list))
1642 			break;
1643 
1644 		/*
1645 		 * For background writeout, stop when we are below the
1646 		 * background dirty threshold
1647 		 */
1648 		if (work->for_background && !wb_over_bg_thresh(wb))
1649 			break;
1650 
1651 		/*
1652 		 * Kupdate and background works are special and we want to
1653 		 * include all inodes that need writing. Livelock avoidance is
1654 		 * handled by these works yielding to any other work so we are
1655 		 * safe.
1656 		 */
1657 		if (work->for_kupdate) {
1658 			oldest_jif = jiffies -
1659 				msecs_to_jiffies(dirty_expire_interval * 10);
1660 		} else if (work->for_background)
1661 			oldest_jif = jiffies;
1662 
1663 		trace_writeback_start(wb, work);
1664 		if (list_empty(&wb->b_io))
1665 			queue_io(wb, work);
1666 		if (work->sb)
1667 			progress = writeback_sb_inodes(work->sb, wb, work);
1668 		else
1669 			progress = __writeback_inodes_wb(wb, work);
1670 		trace_writeback_written(wb, work);
1671 
1672 		wb_update_bandwidth(wb, wb_start);
1673 
1674 		/*
1675 		 * Did we write something? Try for more
1676 		 *
1677 		 * Dirty inodes are moved to b_io for writeback in batches.
1678 		 * The completion of the current batch does not necessarily
1679 		 * mean the overall work is done. So we keep looping as long
1680 		 * as made some progress on cleaning pages or inodes.
1681 		 */
1682 		if (progress)
1683 			continue;
1684 		/*
1685 		 * No more inodes for IO, bail
1686 		 */
1687 		if (list_empty(&wb->b_more_io))
1688 			break;
1689 		/*
1690 		 * Nothing written. Wait for some inode to
1691 		 * become available for writeback. Otherwise
1692 		 * we'll just busyloop.
1693 		 */
1694 		if (!list_empty(&wb->b_more_io))  {
1695 			trace_writeback_wait(wb, work);
1696 			inode = wb_inode(wb->b_more_io.prev);
1697 			spin_lock(&inode->i_lock);
1698 			spin_unlock(&wb->list_lock);
1699 			/* This function drops i_lock... */
1700 			inode_sleep_on_writeback(inode);
1701 			spin_lock(&wb->list_lock);
1702 		}
1703 	}
1704 	spin_unlock(&wb->list_lock);
1705 	blk_finish_plug(&plug);
1706 
1707 	return nr_pages - work->nr_pages;
1708 }
1709 
1710 /*
1711  * Return the next wb_writeback_work struct that hasn't been processed yet.
1712  */
1713 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1714 {
1715 	struct wb_writeback_work *work = NULL;
1716 
1717 	spin_lock_bh(&wb->work_lock);
1718 	if (!list_empty(&wb->work_list)) {
1719 		work = list_entry(wb->work_list.next,
1720 				  struct wb_writeback_work, list);
1721 		list_del_init(&work->list);
1722 	}
1723 	spin_unlock_bh(&wb->work_lock);
1724 	return work;
1725 }
1726 
1727 /*
1728  * Add in the number of potentially dirty inodes, because each inode
1729  * write can dirty pagecache in the underlying blockdev.
1730  */
1731 static unsigned long get_nr_dirty_pages(void)
1732 {
1733 	return global_page_state(NR_FILE_DIRTY) +
1734 		global_page_state(NR_UNSTABLE_NFS) +
1735 		get_nr_dirty_inodes();
1736 }
1737 
1738 static long wb_check_background_flush(struct bdi_writeback *wb)
1739 {
1740 	if (wb_over_bg_thresh(wb)) {
1741 
1742 		struct wb_writeback_work work = {
1743 			.nr_pages	= LONG_MAX,
1744 			.sync_mode	= WB_SYNC_NONE,
1745 			.for_background	= 1,
1746 			.range_cyclic	= 1,
1747 			.reason		= WB_REASON_BACKGROUND,
1748 		};
1749 
1750 		return wb_writeback(wb, &work);
1751 	}
1752 
1753 	return 0;
1754 }
1755 
1756 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1757 {
1758 	unsigned long expired;
1759 	long nr_pages;
1760 
1761 	/*
1762 	 * When set to zero, disable periodic writeback
1763 	 */
1764 	if (!dirty_writeback_interval)
1765 		return 0;
1766 
1767 	expired = wb->last_old_flush +
1768 			msecs_to_jiffies(dirty_writeback_interval * 10);
1769 	if (time_before(jiffies, expired))
1770 		return 0;
1771 
1772 	wb->last_old_flush = jiffies;
1773 	nr_pages = get_nr_dirty_pages();
1774 
1775 	if (nr_pages) {
1776 		struct wb_writeback_work work = {
1777 			.nr_pages	= nr_pages,
1778 			.sync_mode	= WB_SYNC_NONE,
1779 			.for_kupdate	= 1,
1780 			.range_cyclic	= 1,
1781 			.reason		= WB_REASON_PERIODIC,
1782 		};
1783 
1784 		return wb_writeback(wb, &work);
1785 	}
1786 
1787 	return 0;
1788 }
1789 
1790 /*
1791  * Retrieve work items and do the writeback they describe
1792  */
1793 static long wb_do_writeback(struct bdi_writeback *wb)
1794 {
1795 	struct wb_writeback_work *work;
1796 	long wrote = 0;
1797 
1798 	set_bit(WB_writeback_running, &wb->state);
1799 	while ((work = get_next_work_item(wb)) != NULL) {
1800 		struct wb_completion *done = work->done;
1801 
1802 		trace_writeback_exec(wb, work);
1803 
1804 		wrote += wb_writeback(wb, work);
1805 
1806 		if (work->auto_free)
1807 			kfree(work);
1808 		if (done && atomic_dec_and_test(&done->cnt))
1809 			wake_up_all(&wb->bdi->wb_waitq);
1810 	}
1811 
1812 	/*
1813 	 * Check for periodic writeback, kupdated() style
1814 	 */
1815 	wrote += wb_check_old_data_flush(wb);
1816 	wrote += wb_check_background_flush(wb);
1817 	clear_bit(WB_writeback_running, &wb->state);
1818 
1819 	return wrote;
1820 }
1821 
1822 /*
1823  * Handle writeback of dirty data for the device backed by this bdi. Also
1824  * reschedules periodically and does kupdated style flushing.
1825  */
1826 void wb_workfn(struct work_struct *work)
1827 {
1828 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1829 						struct bdi_writeback, dwork);
1830 	long pages_written;
1831 
1832 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1833 	current->flags |= PF_SWAPWRITE;
1834 
1835 	if (likely(!current_is_workqueue_rescuer() ||
1836 		   !test_bit(WB_registered, &wb->state))) {
1837 		/*
1838 		 * The normal path.  Keep writing back @wb until its
1839 		 * work_list is empty.  Note that this path is also taken
1840 		 * if @wb is shutting down even when we're running off the
1841 		 * rescuer as work_list needs to be drained.
1842 		 */
1843 		do {
1844 			pages_written = wb_do_writeback(wb);
1845 			trace_writeback_pages_written(pages_written);
1846 		} while (!list_empty(&wb->work_list));
1847 	} else {
1848 		/*
1849 		 * bdi_wq can't get enough workers and we're running off
1850 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1851 		 * enough for efficient IO.
1852 		 */
1853 		pages_written = writeback_inodes_wb(wb, 1024,
1854 						    WB_REASON_FORKER_THREAD);
1855 		trace_writeback_pages_written(pages_written);
1856 	}
1857 
1858 	if (!list_empty(&wb->work_list))
1859 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1860 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1861 		wb_wakeup_delayed(wb);
1862 
1863 	current->flags &= ~PF_SWAPWRITE;
1864 }
1865 
1866 /*
1867  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1868  * the whole world.
1869  */
1870 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1871 {
1872 	struct backing_dev_info *bdi;
1873 
1874 	if (!nr_pages)
1875 		nr_pages = get_nr_dirty_pages();
1876 
1877 	rcu_read_lock();
1878 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1879 		struct bdi_writeback *wb;
1880 
1881 		if (!bdi_has_dirty_io(bdi))
1882 			continue;
1883 
1884 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1885 			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1886 					   false, reason);
1887 	}
1888 	rcu_read_unlock();
1889 }
1890 
1891 /*
1892  * Wake up bdi's periodically to make sure dirtytime inodes gets
1893  * written back periodically.  We deliberately do *not* check the
1894  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1895  * kernel to be constantly waking up once there are any dirtytime
1896  * inodes on the system.  So instead we define a separate delayed work
1897  * function which gets called much more rarely.  (By default, only
1898  * once every 12 hours.)
1899  *
1900  * If there is any other write activity going on in the file system,
1901  * this function won't be necessary.  But if the only thing that has
1902  * happened on the file system is a dirtytime inode caused by an atime
1903  * update, we need this infrastructure below to make sure that inode
1904  * eventually gets pushed out to disk.
1905  */
1906 static void wakeup_dirtytime_writeback(struct work_struct *w);
1907 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1908 
1909 static void wakeup_dirtytime_writeback(struct work_struct *w)
1910 {
1911 	struct backing_dev_info *bdi;
1912 
1913 	rcu_read_lock();
1914 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1915 		struct bdi_writeback *wb;
1916 
1917 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1918 			if (!list_empty(&wb->b_dirty_time))
1919 				wb_wakeup(wb);
1920 	}
1921 	rcu_read_unlock();
1922 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1923 }
1924 
1925 static int __init start_dirtytime_writeback(void)
1926 {
1927 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1928 	return 0;
1929 }
1930 __initcall(start_dirtytime_writeback);
1931 
1932 int dirtytime_interval_handler(struct ctl_table *table, int write,
1933 			       void __user *buffer, size_t *lenp, loff_t *ppos)
1934 {
1935 	int ret;
1936 
1937 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1938 	if (ret == 0 && write)
1939 		mod_delayed_work(system_wq, &dirtytime_work, 0);
1940 	return ret;
1941 }
1942 
1943 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1944 {
1945 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1946 		struct dentry *dentry;
1947 		const char *name = "?";
1948 
1949 		dentry = d_find_alias(inode);
1950 		if (dentry) {
1951 			spin_lock(&dentry->d_lock);
1952 			name = (const char *) dentry->d_name.name;
1953 		}
1954 		printk(KERN_DEBUG
1955 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1956 		       current->comm, task_pid_nr(current), inode->i_ino,
1957 		       name, inode->i_sb->s_id);
1958 		if (dentry) {
1959 			spin_unlock(&dentry->d_lock);
1960 			dput(dentry);
1961 		}
1962 	}
1963 }
1964 
1965 /**
1966  *	__mark_inode_dirty -	internal function
1967  *	@inode: inode to mark
1968  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1969  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1970  *  	mark_inode_dirty_sync.
1971  *
1972  * Put the inode on the super block's dirty list.
1973  *
1974  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1975  * dirty list only if it is hashed or if it refers to a blockdev.
1976  * If it was not hashed, it will never be added to the dirty list
1977  * even if it is later hashed, as it will have been marked dirty already.
1978  *
1979  * In short, make sure you hash any inodes _before_ you start marking
1980  * them dirty.
1981  *
1982  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1983  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1984  * the kernel-internal blockdev inode represents the dirtying time of the
1985  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1986  * page->mapping->host, so the page-dirtying time is recorded in the internal
1987  * blockdev inode.
1988  */
1989 void __mark_inode_dirty(struct inode *inode, int flags)
1990 {
1991 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1992 	struct super_block *sb = inode->i_sb;
1993 	int dirtytime;
1994 
1995 	trace_writeback_mark_inode_dirty(inode, flags);
1996 
1997 	/*
1998 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1999 	 * dirty the inode itself
2000 	 */
2001 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2002 		trace_writeback_dirty_inode_start(inode, flags);
2003 
2004 		if (sb->s_op->dirty_inode)
2005 			sb->s_op->dirty_inode(inode, flags);
2006 
2007 		trace_writeback_dirty_inode(inode, flags);
2008 	}
2009 	if (flags & I_DIRTY_INODE)
2010 		flags &= ~I_DIRTY_TIME;
2011 	dirtytime = flags & I_DIRTY_TIME;
2012 
2013 	/*
2014 	 * Paired with smp_mb() in __writeback_single_inode() for the
2015 	 * following lockless i_state test.  See there for details.
2016 	 */
2017 	smp_mb();
2018 
2019 	if (((inode->i_state & flags) == flags) ||
2020 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2021 		return;
2022 
2023 	if (unlikely(block_dump))
2024 		block_dump___mark_inode_dirty(inode);
2025 
2026 	spin_lock(&inode->i_lock);
2027 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2028 		goto out_unlock_inode;
2029 	if ((inode->i_state & flags) != flags) {
2030 		const int was_dirty = inode->i_state & I_DIRTY;
2031 
2032 		inode_attach_wb(inode, NULL);
2033 
2034 		if (flags & I_DIRTY_INODE)
2035 			inode->i_state &= ~I_DIRTY_TIME;
2036 		inode->i_state |= flags;
2037 
2038 		/*
2039 		 * If the inode is being synced, just update its dirty state.
2040 		 * The unlocker will place the inode on the appropriate
2041 		 * superblock list, based upon its state.
2042 		 */
2043 		if (inode->i_state & I_SYNC)
2044 			goto out_unlock_inode;
2045 
2046 		/*
2047 		 * Only add valid (hashed) inodes to the superblock's
2048 		 * dirty list.  Add blockdev inodes as well.
2049 		 */
2050 		if (!S_ISBLK(inode->i_mode)) {
2051 			if (inode_unhashed(inode))
2052 				goto out_unlock_inode;
2053 		}
2054 		if (inode->i_state & I_FREEING)
2055 			goto out_unlock_inode;
2056 
2057 		/*
2058 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2059 		 * reposition it (that would break b_dirty time-ordering).
2060 		 */
2061 		if (!was_dirty) {
2062 			struct bdi_writeback *wb;
2063 			struct list_head *dirty_list;
2064 			bool wakeup_bdi = false;
2065 
2066 			wb = locked_inode_to_wb_and_lock_list(inode);
2067 
2068 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2069 			     !test_bit(WB_registered, &wb->state),
2070 			     "bdi-%s not registered\n", wb->bdi->name);
2071 
2072 			inode->dirtied_when = jiffies;
2073 			if (dirtytime)
2074 				inode->dirtied_time_when = jiffies;
2075 
2076 			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2077 				dirty_list = &wb->b_dirty;
2078 			else
2079 				dirty_list = &wb->b_dirty_time;
2080 
2081 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2082 							       dirty_list);
2083 
2084 			spin_unlock(&wb->list_lock);
2085 			trace_writeback_dirty_inode_enqueue(inode);
2086 
2087 			/*
2088 			 * If this is the first dirty inode for this bdi,
2089 			 * we have to wake-up the corresponding bdi thread
2090 			 * to make sure background write-back happens
2091 			 * later.
2092 			 */
2093 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2094 				wb_wakeup_delayed(wb);
2095 			return;
2096 		}
2097 	}
2098 out_unlock_inode:
2099 	spin_unlock(&inode->i_lock);
2100 
2101 #undef I_DIRTY_INODE
2102 }
2103 EXPORT_SYMBOL(__mark_inode_dirty);
2104 
2105 /*
2106  * The @s_sync_lock is used to serialise concurrent sync operations
2107  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2108  * Concurrent callers will block on the s_sync_lock rather than doing contending
2109  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2110  * has been issued up to the time this function is enter is guaranteed to be
2111  * completed by the time we have gained the lock and waited for all IO that is
2112  * in progress regardless of the order callers are granted the lock.
2113  */
2114 static void wait_sb_inodes(struct super_block *sb)
2115 {
2116 	struct inode *inode, *old_inode = NULL;
2117 
2118 	/*
2119 	 * We need to be protected against the filesystem going from
2120 	 * r/o to r/w or vice versa.
2121 	 */
2122 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2123 
2124 	mutex_lock(&sb->s_sync_lock);
2125 	spin_lock(&sb->s_inode_list_lock);
2126 
2127 	/*
2128 	 * Data integrity sync. Must wait for all pages under writeback,
2129 	 * because there may have been pages dirtied before our sync
2130 	 * call, but which had writeout started before we write it out.
2131 	 * In which case, the inode may not be on the dirty list, but
2132 	 * we still have to wait for that writeout.
2133 	 */
2134 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2135 		struct address_space *mapping = inode->i_mapping;
2136 
2137 		spin_lock(&inode->i_lock);
2138 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2139 		    (mapping->nrpages == 0)) {
2140 			spin_unlock(&inode->i_lock);
2141 			continue;
2142 		}
2143 		__iget(inode);
2144 		spin_unlock(&inode->i_lock);
2145 		spin_unlock(&sb->s_inode_list_lock);
2146 
2147 		/*
2148 		 * We hold a reference to 'inode' so it couldn't have been
2149 		 * removed from s_inodes list while we dropped the
2150 		 * s_inode_list_lock.  We cannot iput the inode now as we can
2151 		 * be holding the last reference and we cannot iput it under
2152 		 * s_inode_list_lock. So we keep the reference and iput it
2153 		 * later.
2154 		 */
2155 		iput(old_inode);
2156 		old_inode = inode;
2157 
2158 		/*
2159 		 * We keep the error status of individual mapping so that
2160 		 * applications can catch the writeback error using fsync(2).
2161 		 * See filemap_fdatawait_keep_errors() for details.
2162 		 */
2163 		filemap_fdatawait_keep_errors(mapping);
2164 
2165 		cond_resched();
2166 
2167 		spin_lock(&sb->s_inode_list_lock);
2168 	}
2169 	spin_unlock(&sb->s_inode_list_lock);
2170 	iput(old_inode);
2171 	mutex_unlock(&sb->s_sync_lock);
2172 }
2173 
2174 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2175 				     enum wb_reason reason, bool skip_if_busy)
2176 {
2177 	DEFINE_WB_COMPLETION_ONSTACK(done);
2178 	struct wb_writeback_work work = {
2179 		.sb			= sb,
2180 		.sync_mode		= WB_SYNC_NONE,
2181 		.tagged_writepages	= 1,
2182 		.done			= &done,
2183 		.nr_pages		= nr,
2184 		.reason			= reason,
2185 	};
2186 	struct backing_dev_info *bdi = sb->s_bdi;
2187 
2188 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2189 		return;
2190 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2191 
2192 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2193 	wb_wait_for_completion(bdi, &done);
2194 }
2195 
2196 /**
2197  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2198  * @sb: the superblock
2199  * @nr: the number of pages to write
2200  * @reason: reason why some writeback work initiated
2201  *
2202  * Start writeback on some inodes on this super_block. No guarantees are made
2203  * on how many (if any) will be written, and this function does not wait
2204  * for IO completion of submitted IO.
2205  */
2206 void writeback_inodes_sb_nr(struct super_block *sb,
2207 			    unsigned long nr,
2208 			    enum wb_reason reason)
2209 {
2210 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2211 }
2212 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2213 
2214 /**
2215  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2216  * @sb: the superblock
2217  * @reason: reason why some writeback work was initiated
2218  *
2219  * Start writeback on some inodes on this super_block. No guarantees are made
2220  * on how many (if any) will be written, and this function does not wait
2221  * for IO completion of submitted IO.
2222  */
2223 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2224 {
2225 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2226 }
2227 EXPORT_SYMBOL(writeback_inodes_sb);
2228 
2229 /**
2230  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2231  * @sb: the superblock
2232  * @nr: the number of pages to write
2233  * @reason: the reason of writeback
2234  *
2235  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2236  * Returns 1 if writeback was started, 0 if not.
2237  */
2238 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2239 				   enum wb_reason reason)
2240 {
2241 	if (!down_read_trylock(&sb->s_umount))
2242 		return false;
2243 
2244 	__writeback_inodes_sb_nr(sb, nr, reason, true);
2245 	up_read(&sb->s_umount);
2246 	return true;
2247 }
2248 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2249 
2250 /**
2251  * try_to_writeback_inodes_sb - try to start writeback if none underway
2252  * @sb: the superblock
2253  * @reason: reason why some writeback work was initiated
2254  *
2255  * Implement by try_to_writeback_inodes_sb_nr()
2256  * Returns 1 if writeback was started, 0 if not.
2257  */
2258 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2259 {
2260 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2261 }
2262 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2263 
2264 /**
2265  * sync_inodes_sb	-	sync sb inode pages
2266  * @sb: the superblock
2267  *
2268  * This function writes and waits on any dirty inode belonging to this
2269  * super_block.
2270  */
2271 void sync_inodes_sb(struct super_block *sb)
2272 {
2273 	DEFINE_WB_COMPLETION_ONSTACK(done);
2274 	struct wb_writeback_work work = {
2275 		.sb		= sb,
2276 		.sync_mode	= WB_SYNC_ALL,
2277 		.nr_pages	= LONG_MAX,
2278 		.range_cyclic	= 0,
2279 		.done		= &done,
2280 		.reason		= WB_REASON_SYNC,
2281 		.for_sync	= 1,
2282 	};
2283 	struct backing_dev_info *bdi = sb->s_bdi;
2284 
2285 	/*
2286 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2287 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2288 	 * bdi_has_dirty() need to be written out too.
2289 	 */
2290 	if (bdi == &noop_backing_dev_info)
2291 		return;
2292 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2293 
2294 	bdi_split_work_to_wbs(bdi, &work, false);
2295 	wb_wait_for_completion(bdi, &done);
2296 
2297 	wait_sb_inodes(sb);
2298 }
2299 EXPORT_SYMBOL(sync_inodes_sb);
2300 
2301 /**
2302  * write_inode_now	-	write an inode to disk
2303  * @inode: inode to write to disk
2304  * @sync: whether the write should be synchronous or not
2305  *
2306  * This function commits an inode to disk immediately if it is dirty. This is
2307  * primarily needed by knfsd.
2308  *
2309  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2310  */
2311 int write_inode_now(struct inode *inode, int sync)
2312 {
2313 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2314 	struct writeback_control wbc = {
2315 		.nr_to_write = LONG_MAX,
2316 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2317 		.range_start = 0,
2318 		.range_end = LLONG_MAX,
2319 	};
2320 
2321 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2322 		wbc.nr_to_write = 0;
2323 
2324 	might_sleep();
2325 	return writeback_single_inode(inode, wb, &wbc);
2326 }
2327 EXPORT_SYMBOL(write_inode_now);
2328 
2329 /**
2330  * sync_inode - write an inode and its pages to disk.
2331  * @inode: the inode to sync
2332  * @wbc: controls the writeback mode
2333  *
2334  * sync_inode() will write an inode and its pages to disk.  It will also
2335  * correctly update the inode on its superblock's dirty inode lists and will
2336  * update inode->i_state.
2337  *
2338  * The caller must have a ref on the inode.
2339  */
2340 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2341 {
2342 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2343 }
2344 EXPORT_SYMBOL(sync_inode);
2345 
2346 /**
2347  * sync_inode_metadata - write an inode to disk
2348  * @inode: the inode to sync
2349  * @wait: wait for I/O to complete.
2350  *
2351  * Write an inode to disk and adjust its dirty state after completion.
2352  *
2353  * Note: only writes the actual inode, no associated data or other metadata.
2354  */
2355 int sync_inode_metadata(struct inode *inode, int wait)
2356 {
2357 	struct writeback_control wbc = {
2358 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2359 		.nr_to_write = 0, /* metadata-only */
2360 	};
2361 
2362 	return sync_inode(inode, &wbc);
2363 }
2364 EXPORT_SYMBOL(sync_inode_metadata);
2365