xref: /openbmc/linux/fs/fs-writeback.c (revision 2572f00d)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32 
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
37 
38 struct wb_completion {
39 	atomic_t		cnt;
40 };
41 
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46 	long nr_pages;
47 	struct super_block *sb;
48 	unsigned long *older_than_this;
49 	enum writeback_sync_modes sync_mode;
50 	unsigned int tagged_writepages:1;
51 	unsigned int for_kupdate:1;
52 	unsigned int range_cyclic:1;
53 	unsigned int for_background:1;
54 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55 	unsigned int auto_free:1;	/* free on completion */
56 	enum wb_reason reason;		/* why was writeback initiated? */
57 
58 	struct list_head list;		/* pending work list */
59 	struct wb_completion *done;	/* set if the caller waits */
60 };
61 
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
70 	struct wb_completion cmpl = {					\
71 		.cnt		= ATOMIC_INIT(1),			\
72 	}
73 
74 
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86 
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 	return list_entry(head, struct inode, i_io_list);
90 }
91 
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101 
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 	if (wb_has_dirty_io(wb)) {
105 		return false;
106 	} else {
107 		set_bit(WB_has_dirty_io, &wb->state);
108 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 		atomic_long_add(wb->avg_write_bandwidth,
110 				&wb->bdi->tot_write_bandwidth);
111 		return true;
112 	}
113 }
114 
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 		clear_bit(WB_has_dirty_io, &wb->state);
120 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 					&wb->bdi->tot_write_bandwidth) < 0);
122 	}
123 }
124 
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 				      struct bdi_writeback *wb,
137 				      struct list_head *head)
138 {
139 	assert_spin_locked(&wb->list_lock);
140 
141 	list_move(&inode->i_io_list, head);
142 
143 	/* dirty_time doesn't count as dirty_io until expiration */
144 	if (head != &wb->b_dirty_time)
145 		return wb_io_lists_populated(wb);
146 
147 	wb_io_lists_depopulated(wb);
148 	return false;
149 }
150 
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160 				     struct bdi_writeback *wb)
161 {
162 	assert_spin_locked(&wb->list_lock);
163 
164 	list_del_init(&inode->i_io_list);
165 	wb_io_lists_depopulated(wb);
166 }
167 
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 	spin_lock_bh(&wb->work_lock);
171 	if (test_bit(WB_registered, &wb->state))
172 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 	spin_unlock_bh(&wb->work_lock);
174 }
175 
176 static void wb_queue_work(struct bdi_writeback *wb,
177 			  struct wb_writeback_work *work)
178 {
179 	trace_writeback_queue(wb, work);
180 
181 	spin_lock_bh(&wb->work_lock);
182 	if (!test_bit(WB_registered, &wb->state))
183 		goto out_unlock;
184 	if (work->done)
185 		atomic_inc(&work->done->cnt);
186 	list_add_tail(&work->list, &wb->work_list);
187 	mod_delayed_work(bdi_wq, &wb->dwork, 0);
188 out_unlock:
189 	spin_unlock_bh(&wb->work_lock);
190 }
191 
192 /**
193  * wb_wait_for_completion - wait for completion of bdi_writeback_works
194  * @bdi: bdi work items were issued to
195  * @done: target wb_completion
196  *
197  * Wait for one or more work items issued to @bdi with their ->done field
198  * set to @done, which should have been defined with
199  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
200  * work items are completed.  Work items which are waited upon aren't freed
201  * automatically on completion.
202  */
203 static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 				   struct wb_completion *done)
205 {
206 	atomic_dec(&done->cnt);		/* put down the initial count */
207 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208 }
209 
210 #ifdef CONFIG_CGROUP_WRITEBACK
211 
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
217 
218 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 					/* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
222 					/* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 					/* one round can affect upto 5 slots */
225 
226 void __inode_attach_wb(struct inode *inode, struct page *page)
227 {
228 	struct backing_dev_info *bdi = inode_to_bdi(inode);
229 	struct bdi_writeback *wb = NULL;
230 
231 	if (inode_cgwb_enabled(inode)) {
232 		struct cgroup_subsys_state *memcg_css;
233 
234 		if (page) {
235 			memcg_css = mem_cgroup_css_from_page(page);
236 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
237 		} else {
238 			/* must pin memcg_css, see wb_get_create() */
239 			memcg_css = task_get_css(current, memory_cgrp_id);
240 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
241 			css_put(memcg_css);
242 		}
243 	}
244 
245 	if (!wb)
246 		wb = &bdi->wb;
247 
248 	/*
249 	 * There may be multiple instances of this function racing to
250 	 * update the same inode.  Use cmpxchg() to tell the winner.
251 	 */
252 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
253 		wb_put(wb);
254 }
255 
256 /**
257  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
258  * @inode: inode of interest with i_lock held
259  *
260  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
261  * held on entry and is released on return.  The returned wb is guaranteed
262  * to stay @inode's associated wb until its list_lock is released.
263  */
264 static struct bdi_writeback *
265 locked_inode_to_wb_and_lock_list(struct inode *inode)
266 	__releases(&inode->i_lock)
267 	__acquires(&wb->list_lock)
268 {
269 	while (true) {
270 		struct bdi_writeback *wb = inode_to_wb(inode);
271 
272 		/*
273 		 * inode_to_wb() association is protected by both
274 		 * @inode->i_lock and @wb->list_lock but list_lock nests
275 		 * outside i_lock.  Drop i_lock and verify that the
276 		 * association hasn't changed after acquiring list_lock.
277 		 */
278 		wb_get(wb);
279 		spin_unlock(&inode->i_lock);
280 		spin_lock(&wb->list_lock);
281 		wb_put(wb);		/* not gonna deref it anymore */
282 
283 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
284 		if (likely(wb == inode->i_wb))
285 			return wb;	/* @inode already has ref */
286 
287 		spin_unlock(&wb->list_lock);
288 		cpu_relax();
289 		spin_lock(&inode->i_lock);
290 	}
291 }
292 
293 /**
294  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
295  * @inode: inode of interest
296  *
297  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
298  * on entry.
299  */
300 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
301 	__acquires(&wb->list_lock)
302 {
303 	spin_lock(&inode->i_lock);
304 	return locked_inode_to_wb_and_lock_list(inode);
305 }
306 
307 struct inode_switch_wbs_context {
308 	struct inode		*inode;
309 	struct bdi_writeback	*new_wb;
310 
311 	struct rcu_head		rcu_head;
312 	struct work_struct	work;
313 };
314 
315 static void inode_switch_wbs_work_fn(struct work_struct *work)
316 {
317 	struct inode_switch_wbs_context *isw =
318 		container_of(work, struct inode_switch_wbs_context, work);
319 	struct inode *inode = isw->inode;
320 	struct address_space *mapping = inode->i_mapping;
321 	struct bdi_writeback *old_wb = inode->i_wb;
322 	struct bdi_writeback *new_wb = isw->new_wb;
323 	struct radix_tree_iter iter;
324 	bool switched = false;
325 	void **slot;
326 
327 	/*
328 	 * By the time control reaches here, RCU grace period has passed
329 	 * since I_WB_SWITCH assertion and all wb stat update transactions
330 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
331 	 * synchronizing against mapping->tree_lock.
332 	 *
333 	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
334 	 * gives us exclusion against all wb related operations on @inode
335 	 * including IO list manipulations and stat updates.
336 	 */
337 	if (old_wb < new_wb) {
338 		spin_lock(&old_wb->list_lock);
339 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
340 	} else {
341 		spin_lock(&new_wb->list_lock);
342 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
343 	}
344 	spin_lock(&inode->i_lock);
345 	spin_lock_irq(&mapping->tree_lock);
346 
347 	/*
348 	 * Once I_FREEING is visible under i_lock, the eviction path owns
349 	 * the inode and we shouldn't modify ->i_io_list.
350 	 */
351 	if (unlikely(inode->i_state & I_FREEING))
352 		goto skip_switch;
353 
354 	/*
355 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
356 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
357 	 * pages actually under underwriteback.
358 	 */
359 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
360 				   PAGECACHE_TAG_DIRTY) {
361 		struct page *page = radix_tree_deref_slot_protected(slot,
362 							&mapping->tree_lock);
363 		if (likely(page) && PageDirty(page)) {
364 			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
365 			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
366 		}
367 	}
368 
369 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
370 				   PAGECACHE_TAG_WRITEBACK) {
371 		struct page *page = radix_tree_deref_slot_protected(slot,
372 							&mapping->tree_lock);
373 		if (likely(page)) {
374 			WARN_ON_ONCE(!PageWriteback(page));
375 			__dec_wb_stat(old_wb, WB_WRITEBACK);
376 			__inc_wb_stat(new_wb, WB_WRITEBACK);
377 		}
378 	}
379 
380 	wb_get(new_wb);
381 
382 	/*
383 	 * Transfer to @new_wb's IO list if necessary.  The specific list
384 	 * @inode was on is ignored and the inode is put on ->b_dirty which
385 	 * is always correct including from ->b_dirty_time.  The transfer
386 	 * preserves @inode->dirtied_when ordering.
387 	 */
388 	if (!list_empty(&inode->i_io_list)) {
389 		struct inode *pos;
390 
391 		inode_io_list_del_locked(inode, old_wb);
392 		inode->i_wb = new_wb;
393 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
394 			if (time_after_eq(inode->dirtied_when,
395 					  pos->dirtied_when))
396 				break;
397 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
398 	} else {
399 		inode->i_wb = new_wb;
400 	}
401 
402 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
403 	inode->i_wb_frn_winner = 0;
404 	inode->i_wb_frn_avg_time = 0;
405 	inode->i_wb_frn_history = 0;
406 	switched = true;
407 skip_switch:
408 	/*
409 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
410 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
411 	 */
412 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
413 
414 	spin_unlock_irq(&mapping->tree_lock);
415 	spin_unlock(&inode->i_lock);
416 	spin_unlock(&new_wb->list_lock);
417 	spin_unlock(&old_wb->list_lock);
418 
419 	if (switched) {
420 		wb_wakeup(new_wb);
421 		wb_put(old_wb);
422 	}
423 	wb_put(new_wb);
424 
425 	iput(inode);
426 	kfree(isw);
427 }
428 
429 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
430 {
431 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
432 				struct inode_switch_wbs_context, rcu_head);
433 
434 	/* needs to grab bh-unsafe locks, bounce to work item */
435 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
436 	schedule_work(&isw->work);
437 }
438 
439 /**
440  * inode_switch_wbs - change the wb association of an inode
441  * @inode: target inode
442  * @new_wb_id: ID of the new wb
443  *
444  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
445  * switching is performed asynchronously and may fail silently.
446  */
447 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
448 {
449 	struct backing_dev_info *bdi = inode_to_bdi(inode);
450 	struct cgroup_subsys_state *memcg_css;
451 	struct inode_switch_wbs_context *isw;
452 
453 	/* noop if seems to be already in progress */
454 	if (inode->i_state & I_WB_SWITCH)
455 		return;
456 
457 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
458 	if (!isw)
459 		return;
460 
461 	/* find and pin the new wb */
462 	rcu_read_lock();
463 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
464 	if (memcg_css)
465 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
466 	rcu_read_unlock();
467 	if (!isw->new_wb)
468 		goto out_free;
469 
470 	/* while holding I_WB_SWITCH, no one else can update the association */
471 	spin_lock(&inode->i_lock);
472 	if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
473 	    inode_to_wb(inode) == isw->new_wb) {
474 		spin_unlock(&inode->i_lock);
475 		goto out_free;
476 	}
477 	inode->i_state |= I_WB_SWITCH;
478 	spin_unlock(&inode->i_lock);
479 
480 	ihold(inode);
481 	isw->inode = inode;
482 
483 	/*
484 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
485 	 * the RCU protected stat update paths to grab the mapping's
486 	 * tree_lock so that stat transfer can synchronize against them.
487 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
488 	 */
489 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
490 	return;
491 
492 out_free:
493 	if (isw->new_wb)
494 		wb_put(isw->new_wb);
495 	kfree(isw);
496 }
497 
498 /**
499  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
500  * @wbc: writeback_control of interest
501  * @inode: target inode
502  *
503  * @inode is locked and about to be written back under the control of @wbc.
504  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
505  * writeback completion, wbc_detach_inode() should be called.  This is used
506  * to track the cgroup writeback context.
507  */
508 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
509 				 struct inode *inode)
510 {
511 	if (!inode_cgwb_enabled(inode)) {
512 		spin_unlock(&inode->i_lock);
513 		return;
514 	}
515 
516 	wbc->wb = inode_to_wb(inode);
517 	wbc->inode = inode;
518 
519 	wbc->wb_id = wbc->wb->memcg_css->id;
520 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
521 	wbc->wb_tcand_id = 0;
522 	wbc->wb_bytes = 0;
523 	wbc->wb_lcand_bytes = 0;
524 	wbc->wb_tcand_bytes = 0;
525 
526 	wb_get(wbc->wb);
527 	spin_unlock(&inode->i_lock);
528 
529 	/*
530 	 * A dying wb indicates that the memcg-blkcg mapping has changed
531 	 * and a new wb is already serving the memcg.  Switch immediately.
532 	 */
533 	if (unlikely(wb_dying(wbc->wb)))
534 		inode_switch_wbs(inode, wbc->wb_id);
535 }
536 
537 /**
538  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
539  * @wbc: writeback_control of the just finished writeback
540  *
541  * To be called after a writeback attempt of an inode finishes and undoes
542  * wbc_attach_and_unlock_inode().  Can be called under any context.
543  *
544  * As concurrent write sharing of an inode is expected to be very rare and
545  * memcg only tracks page ownership on first-use basis severely confining
546  * the usefulness of such sharing, cgroup writeback tracks ownership
547  * per-inode.  While the support for concurrent write sharing of an inode
548  * is deemed unnecessary, an inode being written to by different cgroups at
549  * different points in time is a lot more common, and, more importantly,
550  * charging only by first-use can too readily lead to grossly incorrect
551  * behaviors (single foreign page can lead to gigabytes of writeback to be
552  * incorrectly attributed).
553  *
554  * To resolve this issue, cgroup writeback detects the majority dirtier of
555  * an inode and transfers the ownership to it.  To avoid unnnecessary
556  * oscillation, the detection mechanism keeps track of history and gives
557  * out the switch verdict only if the foreign usage pattern is stable over
558  * a certain amount of time and/or writeback attempts.
559  *
560  * On each writeback attempt, @wbc tries to detect the majority writer
561  * using Boyer-Moore majority vote algorithm.  In addition to the byte
562  * count from the majority voting, it also counts the bytes written for the
563  * current wb and the last round's winner wb (max of last round's current
564  * wb, the winner from two rounds ago, and the last round's majority
565  * candidate).  Keeping track of the historical winner helps the algorithm
566  * to semi-reliably detect the most active writer even when it's not the
567  * absolute majority.
568  *
569  * Once the winner of the round is determined, whether the winner is
570  * foreign or not and how much IO time the round consumed is recorded in
571  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
572  * over a certain threshold, the switch verdict is given.
573  */
574 void wbc_detach_inode(struct writeback_control *wbc)
575 {
576 	struct bdi_writeback *wb = wbc->wb;
577 	struct inode *inode = wbc->inode;
578 	unsigned long avg_time, max_bytes, max_time;
579 	u16 history;
580 	int max_id;
581 
582 	if (!wb)
583 		return;
584 
585 	history = inode->i_wb_frn_history;
586 	avg_time = inode->i_wb_frn_avg_time;
587 
588 	/* pick the winner of this round */
589 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
590 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
591 		max_id = wbc->wb_id;
592 		max_bytes = wbc->wb_bytes;
593 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
594 		max_id = wbc->wb_lcand_id;
595 		max_bytes = wbc->wb_lcand_bytes;
596 	} else {
597 		max_id = wbc->wb_tcand_id;
598 		max_bytes = wbc->wb_tcand_bytes;
599 	}
600 
601 	/*
602 	 * Calculate the amount of IO time the winner consumed and fold it
603 	 * into the running average kept per inode.  If the consumed IO
604 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
605 	 * deciding whether to switch or not.  This is to prevent one-off
606 	 * small dirtiers from skewing the verdict.
607 	 */
608 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
609 				wb->avg_write_bandwidth);
610 	if (avg_time)
611 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
612 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
613 	else
614 		avg_time = max_time;	/* immediate catch up on first run */
615 
616 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
617 		int slots;
618 
619 		/*
620 		 * The switch verdict is reached if foreign wb's consume
621 		 * more than a certain proportion of IO time in a
622 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
623 		 * history mask where each bit represents one sixteenth of
624 		 * the period.  Determine the number of slots to shift into
625 		 * history from @max_time.
626 		 */
627 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
628 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
629 		history <<= slots;
630 		if (wbc->wb_id != max_id)
631 			history |= (1U << slots) - 1;
632 
633 		/*
634 		 * Switch if the current wb isn't the consistent winner.
635 		 * If there are multiple closely competing dirtiers, the
636 		 * inode may switch across them repeatedly over time, which
637 		 * is okay.  The main goal is avoiding keeping an inode on
638 		 * the wrong wb for an extended period of time.
639 		 */
640 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
641 			inode_switch_wbs(inode, max_id);
642 	}
643 
644 	/*
645 	 * Multiple instances of this function may race to update the
646 	 * following fields but we don't mind occassional inaccuracies.
647 	 */
648 	inode->i_wb_frn_winner = max_id;
649 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
650 	inode->i_wb_frn_history = history;
651 
652 	wb_put(wbc->wb);
653 	wbc->wb = NULL;
654 }
655 
656 /**
657  * wbc_account_io - account IO issued during writeback
658  * @wbc: writeback_control of the writeback in progress
659  * @page: page being written out
660  * @bytes: number of bytes being written out
661  *
662  * @bytes from @page are about to written out during the writeback
663  * controlled by @wbc.  Keep the book for foreign inode detection.  See
664  * wbc_detach_inode().
665  */
666 void wbc_account_io(struct writeback_control *wbc, struct page *page,
667 		    size_t bytes)
668 {
669 	int id;
670 
671 	/*
672 	 * pageout() path doesn't attach @wbc to the inode being written
673 	 * out.  This is intentional as we don't want the function to block
674 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
675 	 * regular writeback instead of writing things out itself.
676 	 */
677 	if (!wbc->wb)
678 		return;
679 
680 	rcu_read_lock();
681 	id = mem_cgroup_css_from_page(page)->id;
682 	rcu_read_unlock();
683 
684 	if (id == wbc->wb_id) {
685 		wbc->wb_bytes += bytes;
686 		return;
687 	}
688 
689 	if (id == wbc->wb_lcand_id)
690 		wbc->wb_lcand_bytes += bytes;
691 
692 	/* Boyer-Moore majority vote algorithm */
693 	if (!wbc->wb_tcand_bytes)
694 		wbc->wb_tcand_id = id;
695 	if (id == wbc->wb_tcand_id)
696 		wbc->wb_tcand_bytes += bytes;
697 	else
698 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
699 }
700 EXPORT_SYMBOL_GPL(wbc_account_io);
701 
702 /**
703  * inode_congested - test whether an inode is congested
704  * @inode: inode to test for congestion (may be NULL)
705  * @cong_bits: mask of WB_[a]sync_congested bits to test
706  *
707  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
708  * bits to test and the return value is the mask of set bits.
709  *
710  * If cgroup writeback is enabled for @inode, the congestion state is
711  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
712  * associated with @inode is congested; otherwise, the root wb's congestion
713  * state is used.
714  *
715  * @inode is allowed to be NULL as this function is often called on
716  * mapping->host which is NULL for the swapper space.
717  */
718 int inode_congested(struct inode *inode, int cong_bits)
719 {
720 	/*
721 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
722 	 * Start transaction iff ->i_wb is visible.
723 	 */
724 	if (inode && inode_to_wb_is_valid(inode)) {
725 		struct bdi_writeback *wb;
726 		bool locked, congested;
727 
728 		wb = unlocked_inode_to_wb_begin(inode, &locked);
729 		congested = wb_congested(wb, cong_bits);
730 		unlocked_inode_to_wb_end(inode, locked);
731 		return congested;
732 	}
733 
734 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
735 }
736 EXPORT_SYMBOL_GPL(inode_congested);
737 
738 /**
739  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
740  * @wb: target bdi_writeback to split @nr_pages to
741  * @nr_pages: number of pages to write for the whole bdi
742  *
743  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
744  * relation to the total write bandwidth of all wb's w/ dirty inodes on
745  * @wb->bdi.
746  */
747 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
748 {
749 	unsigned long this_bw = wb->avg_write_bandwidth;
750 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
751 
752 	if (nr_pages == LONG_MAX)
753 		return LONG_MAX;
754 
755 	/*
756 	 * This may be called on clean wb's and proportional distribution
757 	 * may not make sense, just use the original @nr_pages in those
758 	 * cases.  In general, we wanna err on the side of writing more.
759 	 */
760 	if (!tot_bw || this_bw >= tot_bw)
761 		return nr_pages;
762 	else
763 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
764 }
765 
766 /**
767  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
768  * @bdi: target backing_dev_info
769  * @base_work: wb_writeback_work to issue
770  * @skip_if_busy: skip wb's which already have writeback in progress
771  *
772  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
773  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
774  * distributed to the busy wbs according to each wb's proportion in the
775  * total active write bandwidth of @bdi.
776  */
777 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
778 				  struct wb_writeback_work *base_work,
779 				  bool skip_if_busy)
780 {
781 	struct bdi_writeback *last_wb = NULL;
782 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
783 					      struct bdi_writeback, bdi_node);
784 
785 	might_sleep();
786 restart:
787 	rcu_read_lock();
788 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
789 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
790 		struct wb_writeback_work fallback_work;
791 		struct wb_writeback_work *work;
792 		long nr_pages;
793 
794 		if (last_wb) {
795 			wb_put(last_wb);
796 			last_wb = NULL;
797 		}
798 
799 		/* SYNC_ALL writes out I_DIRTY_TIME too */
800 		if (!wb_has_dirty_io(wb) &&
801 		    (base_work->sync_mode == WB_SYNC_NONE ||
802 		     list_empty(&wb->b_dirty_time)))
803 			continue;
804 		if (skip_if_busy && writeback_in_progress(wb))
805 			continue;
806 
807 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
808 
809 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
810 		if (work) {
811 			*work = *base_work;
812 			work->nr_pages = nr_pages;
813 			work->auto_free = 1;
814 			wb_queue_work(wb, work);
815 			continue;
816 		}
817 
818 		/* alloc failed, execute synchronously using on-stack fallback */
819 		work = &fallback_work;
820 		*work = *base_work;
821 		work->nr_pages = nr_pages;
822 		work->auto_free = 0;
823 		work->done = &fallback_work_done;
824 
825 		wb_queue_work(wb, work);
826 
827 		/*
828 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
829 		 * continuing iteration from @wb after dropping and
830 		 * regrabbing rcu read lock.
831 		 */
832 		wb_get(wb);
833 		last_wb = wb;
834 
835 		rcu_read_unlock();
836 		wb_wait_for_completion(bdi, &fallback_work_done);
837 		goto restart;
838 	}
839 	rcu_read_unlock();
840 
841 	if (last_wb)
842 		wb_put(last_wb);
843 }
844 
845 #else	/* CONFIG_CGROUP_WRITEBACK */
846 
847 static struct bdi_writeback *
848 locked_inode_to_wb_and_lock_list(struct inode *inode)
849 	__releases(&inode->i_lock)
850 	__acquires(&wb->list_lock)
851 {
852 	struct bdi_writeback *wb = inode_to_wb(inode);
853 
854 	spin_unlock(&inode->i_lock);
855 	spin_lock(&wb->list_lock);
856 	return wb;
857 }
858 
859 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
860 	__acquires(&wb->list_lock)
861 {
862 	struct bdi_writeback *wb = inode_to_wb(inode);
863 
864 	spin_lock(&wb->list_lock);
865 	return wb;
866 }
867 
868 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
869 {
870 	return nr_pages;
871 }
872 
873 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
874 				  struct wb_writeback_work *base_work,
875 				  bool skip_if_busy)
876 {
877 	might_sleep();
878 
879 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
880 		base_work->auto_free = 0;
881 		wb_queue_work(&bdi->wb, base_work);
882 	}
883 }
884 
885 #endif	/* CONFIG_CGROUP_WRITEBACK */
886 
887 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
888 			bool range_cyclic, enum wb_reason reason)
889 {
890 	struct wb_writeback_work *work;
891 
892 	if (!wb_has_dirty_io(wb))
893 		return;
894 
895 	/*
896 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
897 	 * wakeup the thread for old dirty data writeback
898 	 */
899 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
900 	if (!work) {
901 		trace_writeback_nowork(wb);
902 		wb_wakeup(wb);
903 		return;
904 	}
905 
906 	work->sync_mode	= WB_SYNC_NONE;
907 	work->nr_pages	= nr_pages;
908 	work->range_cyclic = range_cyclic;
909 	work->reason	= reason;
910 	work->auto_free	= 1;
911 
912 	wb_queue_work(wb, work);
913 }
914 
915 /**
916  * wb_start_background_writeback - start background writeback
917  * @wb: bdi_writback to write from
918  *
919  * Description:
920  *   This makes sure WB_SYNC_NONE background writeback happens. When
921  *   this function returns, it is only guaranteed that for given wb
922  *   some IO is happening if we are over background dirty threshold.
923  *   Caller need not hold sb s_umount semaphore.
924  */
925 void wb_start_background_writeback(struct bdi_writeback *wb)
926 {
927 	/*
928 	 * We just wake up the flusher thread. It will perform background
929 	 * writeback as soon as there is no other work to do.
930 	 */
931 	trace_writeback_wake_background(wb);
932 	wb_wakeup(wb);
933 }
934 
935 /*
936  * Remove the inode from the writeback list it is on.
937  */
938 void inode_io_list_del(struct inode *inode)
939 {
940 	struct bdi_writeback *wb;
941 
942 	wb = inode_to_wb_and_lock_list(inode);
943 	inode_io_list_del_locked(inode, wb);
944 	spin_unlock(&wb->list_lock);
945 }
946 
947 /*
948  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
949  * furthest end of its superblock's dirty-inode list.
950  *
951  * Before stamping the inode's ->dirtied_when, we check to see whether it is
952  * already the most-recently-dirtied inode on the b_dirty list.  If that is
953  * the case then the inode must have been redirtied while it was being written
954  * out and we don't reset its dirtied_when.
955  */
956 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
957 {
958 	if (!list_empty(&wb->b_dirty)) {
959 		struct inode *tail;
960 
961 		tail = wb_inode(wb->b_dirty.next);
962 		if (time_before(inode->dirtied_when, tail->dirtied_when))
963 			inode->dirtied_when = jiffies;
964 	}
965 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
966 }
967 
968 /*
969  * requeue inode for re-scanning after bdi->b_io list is exhausted.
970  */
971 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
972 {
973 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
974 }
975 
976 static void inode_sync_complete(struct inode *inode)
977 {
978 	inode->i_state &= ~I_SYNC;
979 	/* If inode is clean an unused, put it into LRU now... */
980 	inode_add_lru(inode);
981 	/* Waiters must see I_SYNC cleared before being woken up */
982 	smp_mb();
983 	wake_up_bit(&inode->i_state, __I_SYNC);
984 }
985 
986 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
987 {
988 	bool ret = time_after(inode->dirtied_when, t);
989 #ifndef CONFIG_64BIT
990 	/*
991 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
992 	 * It _appears_ to be in the future, but is actually in distant past.
993 	 * This test is necessary to prevent such wrapped-around relative times
994 	 * from permanently stopping the whole bdi writeback.
995 	 */
996 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
997 #endif
998 	return ret;
999 }
1000 
1001 #define EXPIRE_DIRTY_ATIME 0x0001
1002 
1003 /*
1004  * Move expired (dirtied before work->older_than_this) dirty inodes from
1005  * @delaying_queue to @dispatch_queue.
1006  */
1007 static int move_expired_inodes(struct list_head *delaying_queue,
1008 			       struct list_head *dispatch_queue,
1009 			       int flags,
1010 			       struct wb_writeback_work *work)
1011 {
1012 	unsigned long *older_than_this = NULL;
1013 	unsigned long expire_time;
1014 	LIST_HEAD(tmp);
1015 	struct list_head *pos, *node;
1016 	struct super_block *sb = NULL;
1017 	struct inode *inode;
1018 	int do_sb_sort = 0;
1019 	int moved = 0;
1020 
1021 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1022 		older_than_this = work->older_than_this;
1023 	else if (!work->for_sync) {
1024 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1025 		older_than_this = &expire_time;
1026 	}
1027 	while (!list_empty(delaying_queue)) {
1028 		inode = wb_inode(delaying_queue->prev);
1029 		if (older_than_this &&
1030 		    inode_dirtied_after(inode, *older_than_this))
1031 			break;
1032 		list_move(&inode->i_io_list, &tmp);
1033 		moved++;
1034 		if (flags & EXPIRE_DIRTY_ATIME)
1035 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1036 		if (sb_is_blkdev_sb(inode->i_sb))
1037 			continue;
1038 		if (sb && sb != inode->i_sb)
1039 			do_sb_sort = 1;
1040 		sb = inode->i_sb;
1041 	}
1042 
1043 	/* just one sb in list, splice to dispatch_queue and we're done */
1044 	if (!do_sb_sort) {
1045 		list_splice(&tmp, dispatch_queue);
1046 		goto out;
1047 	}
1048 
1049 	/* Move inodes from one superblock together */
1050 	while (!list_empty(&tmp)) {
1051 		sb = wb_inode(tmp.prev)->i_sb;
1052 		list_for_each_prev_safe(pos, node, &tmp) {
1053 			inode = wb_inode(pos);
1054 			if (inode->i_sb == sb)
1055 				list_move(&inode->i_io_list, dispatch_queue);
1056 		}
1057 	}
1058 out:
1059 	return moved;
1060 }
1061 
1062 /*
1063  * Queue all expired dirty inodes for io, eldest first.
1064  * Before
1065  *         newly dirtied     b_dirty    b_io    b_more_io
1066  *         =============>    gf         edc     BA
1067  * After
1068  *         newly dirtied     b_dirty    b_io    b_more_io
1069  *         =============>    g          fBAedc
1070  *                                           |
1071  *                                           +--> dequeue for IO
1072  */
1073 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1074 {
1075 	int moved;
1076 
1077 	assert_spin_locked(&wb->list_lock);
1078 	list_splice_init(&wb->b_more_io, &wb->b_io);
1079 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1080 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1081 				     EXPIRE_DIRTY_ATIME, work);
1082 	if (moved)
1083 		wb_io_lists_populated(wb);
1084 	trace_writeback_queue_io(wb, work, moved);
1085 }
1086 
1087 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1088 {
1089 	int ret;
1090 
1091 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1092 		trace_writeback_write_inode_start(inode, wbc);
1093 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1094 		trace_writeback_write_inode(inode, wbc);
1095 		return ret;
1096 	}
1097 	return 0;
1098 }
1099 
1100 /*
1101  * Wait for writeback on an inode to complete. Called with i_lock held.
1102  * Caller must make sure inode cannot go away when we drop i_lock.
1103  */
1104 static void __inode_wait_for_writeback(struct inode *inode)
1105 	__releases(inode->i_lock)
1106 	__acquires(inode->i_lock)
1107 {
1108 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1109 	wait_queue_head_t *wqh;
1110 
1111 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1112 	while (inode->i_state & I_SYNC) {
1113 		spin_unlock(&inode->i_lock);
1114 		__wait_on_bit(wqh, &wq, bit_wait,
1115 			      TASK_UNINTERRUPTIBLE);
1116 		spin_lock(&inode->i_lock);
1117 	}
1118 }
1119 
1120 /*
1121  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1122  */
1123 void inode_wait_for_writeback(struct inode *inode)
1124 {
1125 	spin_lock(&inode->i_lock);
1126 	__inode_wait_for_writeback(inode);
1127 	spin_unlock(&inode->i_lock);
1128 }
1129 
1130 /*
1131  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1132  * held and drops it. It is aimed for callers not holding any inode reference
1133  * so once i_lock is dropped, inode can go away.
1134  */
1135 static void inode_sleep_on_writeback(struct inode *inode)
1136 	__releases(inode->i_lock)
1137 {
1138 	DEFINE_WAIT(wait);
1139 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1140 	int sleep;
1141 
1142 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1143 	sleep = inode->i_state & I_SYNC;
1144 	spin_unlock(&inode->i_lock);
1145 	if (sleep)
1146 		schedule();
1147 	finish_wait(wqh, &wait);
1148 }
1149 
1150 /*
1151  * Find proper writeback list for the inode depending on its current state and
1152  * possibly also change of its state while we were doing writeback.  Here we
1153  * handle things such as livelock prevention or fairness of writeback among
1154  * inodes. This function can be called only by flusher thread - noone else
1155  * processes all inodes in writeback lists and requeueing inodes behind flusher
1156  * thread's back can have unexpected consequences.
1157  */
1158 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1159 			  struct writeback_control *wbc)
1160 {
1161 	if (inode->i_state & I_FREEING)
1162 		return;
1163 
1164 	/*
1165 	 * Sync livelock prevention. Each inode is tagged and synced in one
1166 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1167 	 * the dirty time to prevent enqueue and sync it again.
1168 	 */
1169 	if ((inode->i_state & I_DIRTY) &&
1170 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1171 		inode->dirtied_when = jiffies;
1172 
1173 	if (wbc->pages_skipped) {
1174 		/*
1175 		 * writeback is not making progress due to locked
1176 		 * buffers. Skip this inode for now.
1177 		 */
1178 		redirty_tail(inode, wb);
1179 		return;
1180 	}
1181 
1182 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1183 		/*
1184 		 * We didn't write back all the pages.  nfs_writepages()
1185 		 * sometimes bales out without doing anything.
1186 		 */
1187 		if (wbc->nr_to_write <= 0) {
1188 			/* Slice used up. Queue for next turn. */
1189 			requeue_io(inode, wb);
1190 		} else {
1191 			/*
1192 			 * Writeback blocked by something other than
1193 			 * congestion. Delay the inode for some time to
1194 			 * avoid spinning on the CPU (100% iowait)
1195 			 * retrying writeback of the dirty page/inode
1196 			 * that cannot be performed immediately.
1197 			 */
1198 			redirty_tail(inode, wb);
1199 		}
1200 	} else if (inode->i_state & I_DIRTY) {
1201 		/*
1202 		 * Filesystems can dirty the inode during writeback operations,
1203 		 * such as delayed allocation during submission or metadata
1204 		 * updates after data IO completion.
1205 		 */
1206 		redirty_tail(inode, wb);
1207 	} else if (inode->i_state & I_DIRTY_TIME) {
1208 		inode->dirtied_when = jiffies;
1209 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1210 	} else {
1211 		/* The inode is clean. Remove from writeback lists. */
1212 		inode_io_list_del_locked(inode, wb);
1213 	}
1214 }
1215 
1216 /*
1217  * Write out an inode and its dirty pages. Do not update the writeback list
1218  * linkage. That is left to the caller. The caller is also responsible for
1219  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1220  */
1221 static int
1222 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1223 {
1224 	struct address_space *mapping = inode->i_mapping;
1225 	long nr_to_write = wbc->nr_to_write;
1226 	unsigned dirty;
1227 	int ret;
1228 
1229 	WARN_ON(!(inode->i_state & I_SYNC));
1230 
1231 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1232 
1233 	ret = do_writepages(mapping, wbc);
1234 
1235 	/*
1236 	 * Make sure to wait on the data before writing out the metadata.
1237 	 * This is important for filesystems that modify metadata on data
1238 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1239 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1240 	 * inode metadata is written back correctly.
1241 	 */
1242 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1243 		int err = filemap_fdatawait(mapping);
1244 		if (ret == 0)
1245 			ret = err;
1246 	}
1247 
1248 	/*
1249 	 * Some filesystems may redirty the inode during the writeback
1250 	 * due to delalloc, clear dirty metadata flags right before
1251 	 * write_inode()
1252 	 */
1253 	spin_lock(&inode->i_lock);
1254 
1255 	dirty = inode->i_state & I_DIRTY;
1256 	if (inode->i_state & I_DIRTY_TIME) {
1257 		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1258 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1259 		    unlikely(time_after(jiffies,
1260 					(inode->dirtied_time_when +
1261 					 dirtytime_expire_interval * HZ)))) {
1262 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1263 			trace_writeback_lazytime(inode);
1264 		}
1265 	} else
1266 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1267 	inode->i_state &= ~dirty;
1268 
1269 	/*
1270 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1271 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1272 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1273 	 * inode.
1274 	 *
1275 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1276 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1277 	 * necessary.  This guarantees that either __mark_inode_dirty()
1278 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1279 	 */
1280 	smp_mb();
1281 
1282 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1283 		inode->i_state |= I_DIRTY_PAGES;
1284 
1285 	spin_unlock(&inode->i_lock);
1286 
1287 	if (dirty & I_DIRTY_TIME)
1288 		mark_inode_dirty_sync(inode);
1289 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1290 	if (dirty & ~I_DIRTY_PAGES) {
1291 		int err = write_inode(inode, wbc);
1292 		if (ret == 0)
1293 			ret = err;
1294 	}
1295 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1296 	return ret;
1297 }
1298 
1299 /*
1300  * Write out an inode's dirty pages. Either the caller has an active reference
1301  * on the inode or the inode has I_WILL_FREE set.
1302  *
1303  * This function is designed to be called for writing back one inode which
1304  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1305  * and does more profound writeback list handling in writeback_sb_inodes().
1306  */
1307 static int
1308 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1309 		       struct writeback_control *wbc)
1310 {
1311 	int ret = 0;
1312 
1313 	spin_lock(&inode->i_lock);
1314 	if (!atomic_read(&inode->i_count))
1315 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1316 	else
1317 		WARN_ON(inode->i_state & I_WILL_FREE);
1318 
1319 	if (inode->i_state & I_SYNC) {
1320 		if (wbc->sync_mode != WB_SYNC_ALL)
1321 			goto out;
1322 		/*
1323 		 * It's a data-integrity sync. We must wait. Since callers hold
1324 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1325 		 * away under us.
1326 		 */
1327 		__inode_wait_for_writeback(inode);
1328 	}
1329 	WARN_ON(inode->i_state & I_SYNC);
1330 	/*
1331 	 * Skip inode if it is clean and we have no outstanding writeback in
1332 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1333 	 * function since flusher thread may be doing for example sync in
1334 	 * parallel and if we move the inode, it could get skipped. So here we
1335 	 * make sure inode is on some writeback list and leave it there unless
1336 	 * we have completely cleaned the inode.
1337 	 */
1338 	if (!(inode->i_state & I_DIRTY_ALL) &&
1339 	    (wbc->sync_mode != WB_SYNC_ALL ||
1340 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1341 		goto out;
1342 	inode->i_state |= I_SYNC;
1343 	wbc_attach_and_unlock_inode(wbc, inode);
1344 
1345 	ret = __writeback_single_inode(inode, wbc);
1346 
1347 	wbc_detach_inode(wbc);
1348 	spin_lock(&wb->list_lock);
1349 	spin_lock(&inode->i_lock);
1350 	/*
1351 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1352 	 * touch it. See comment above for explanation.
1353 	 */
1354 	if (!(inode->i_state & I_DIRTY_ALL))
1355 		inode_io_list_del_locked(inode, wb);
1356 	spin_unlock(&wb->list_lock);
1357 	inode_sync_complete(inode);
1358 out:
1359 	spin_unlock(&inode->i_lock);
1360 	return ret;
1361 }
1362 
1363 static long writeback_chunk_size(struct bdi_writeback *wb,
1364 				 struct wb_writeback_work *work)
1365 {
1366 	long pages;
1367 
1368 	/*
1369 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1370 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1371 	 * here avoids calling into writeback_inodes_wb() more than once.
1372 	 *
1373 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1374 	 *
1375 	 *      wb_writeback()
1376 	 *          writeback_sb_inodes()       <== called only once
1377 	 *              write_cache_pages()     <== called once for each inode
1378 	 *                   (quickly) tag currently dirty pages
1379 	 *                   (maybe slowly) sync all tagged pages
1380 	 */
1381 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1382 		pages = LONG_MAX;
1383 	else {
1384 		pages = min(wb->avg_write_bandwidth / 2,
1385 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1386 		pages = min(pages, work->nr_pages);
1387 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1388 				   MIN_WRITEBACK_PAGES);
1389 	}
1390 
1391 	return pages;
1392 }
1393 
1394 /*
1395  * Write a portion of b_io inodes which belong to @sb.
1396  *
1397  * Return the number of pages and/or inodes written.
1398  *
1399  * NOTE! This is called with wb->list_lock held, and will
1400  * unlock and relock that for each inode it ends up doing
1401  * IO for.
1402  */
1403 static long writeback_sb_inodes(struct super_block *sb,
1404 				struct bdi_writeback *wb,
1405 				struct wb_writeback_work *work)
1406 {
1407 	struct writeback_control wbc = {
1408 		.sync_mode		= work->sync_mode,
1409 		.tagged_writepages	= work->tagged_writepages,
1410 		.for_kupdate		= work->for_kupdate,
1411 		.for_background		= work->for_background,
1412 		.for_sync		= work->for_sync,
1413 		.range_cyclic		= work->range_cyclic,
1414 		.range_start		= 0,
1415 		.range_end		= LLONG_MAX,
1416 	};
1417 	unsigned long start_time = jiffies;
1418 	long write_chunk;
1419 	long wrote = 0;  /* count both pages and inodes */
1420 
1421 	while (!list_empty(&wb->b_io)) {
1422 		struct inode *inode = wb_inode(wb->b_io.prev);
1423 
1424 		if (inode->i_sb != sb) {
1425 			if (work->sb) {
1426 				/*
1427 				 * We only want to write back data for this
1428 				 * superblock, move all inodes not belonging
1429 				 * to it back onto the dirty list.
1430 				 */
1431 				redirty_tail(inode, wb);
1432 				continue;
1433 			}
1434 
1435 			/*
1436 			 * The inode belongs to a different superblock.
1437 			 * Bounce back to the caller to unpin this and
1438 			 * pin the next superblock.
1439 			 */
1440 			break;
1441 		}
1442 
1443 		/*
1444 		 * Don't bother with new inodes or inodes being freed, first
1445 		 * kind does not need periodic writeout yet, and for the latter
1446 		 * kind writeout is handled by the freer.
1447 		 */
1448 		spin_lock(&inode->i_lock);
1449 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1450 			spin_unlock(&inode->i_lock);
1451 			redirty_tail(inode, wb);
1452 			continue;
1453 		}
1454 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1455 			/*
1456 			 * If this inode is locked for writeback and we are not
1457 			 * doing writeback-for-data-integrity, move it to
1458 			 * b_more_io so that writeback can proceed with the
1459 			 * other inodes on s_io.
1460 			 *
1461 			 * We'll have another go at writing back this inode
1462 			 * when we completed a full scan of b_io.
1463 			 */
1464 			spin_unlock(&inode->i_lock);
1465 			requeue_io(inode, wb);
1466 			trace_writeback_sb_inodes_requeue(inode);
1467 			continue;
1468 		}
1469 		spin_unlock(&wb->list_lock);
1470 
1471 		/*
1472 		 * We already requeued the inode if it had I_SYNC set and we
1473 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1474 		 * WB_SYNC_ALL case.
1475 		 */
1476 		if (inode->i_state & I_SYNC) {
1477 			/* Wait for I_SYNC. This function drops i_lock... */
1478 			inode_sleep_on_writeback(inode);
1479 			/* Inode may be gone, start again */
1480 			spin_lock(&wb->list_lock);
1481 			continue;
1482 		}
1483 		inode->i_state |= I_SYNC;
1484 		wbc_attach_and_unlock_inode(&wbc, inode);
1485 
1486 		write_chunk = writeback_chunk_size(wb, work);
1487 		wbc.nr_to_write = write_chunk;
1488 		wbc.pages_skipped = 0;
1489 
1490 		/*
1491 		 * We use I_SYNC to pin the inode in memory. While it is set
1492 		 * evict_inode() will wait so the inode cannot be freed.
1493 		 */
1494 		__writeback_single_inode(inode, &wbc);
1495 
1496 		wbc_detach_inode(&wbc);
1497 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1498 		wrote += write_chunk - wbc.nr_to_write;
1499 
1500 		if (need_resched()) {
1501 			/*
1502 			 * We're trying to balance between building up a nice
1503 			 * long list of IOs to improve our merge rate, and
1504 			 * getting those IOs out quickly for anyone throttling
1505 			 * in balance_dirty_pages().  cond_resched() doesn't
1506 			 * unplug, so get our IOs out the door before we
1507 			 * give up the CPU.
1508 			 */
1509 			blk_flush_plug(current);
1510 			cond_resched();
1511 		}
1512 
1513 
1514 		spin_lock(&wb->list_lock);
1515 		spin_lock(&inode->i_lock);
1516 		if (!(inode->i_state & I_DIRTY_ALL))
1517 			wrote++;
1518 		requeue_inode(inode, wb, &wbc);
1519 		inode_sync_complete(inode);
1520 		spin_unlock(&inode->i_lock);
1521 
1522 		/*
1523 		 * bail out to wb_writeback() often enough to check
1524 		 * background threshold and other termination conditions.
1525 		 */
1526 		if (wrote) {
1527 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1528 				break;
1529 			if (work->nr_pages <= 0)
1530 				break;
1531 		}
1532 	}
1533 	return wrote;
1534 }
1535 
1536 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1537 				  struct wb_writeback_work *work)
1538 {
1539 	unsigned long start_time = jiffies;
1540 	long wrote = 0;
1541 
1542 	while (!list_empty(&wb->b_io)) {
1543 		struct inode *inode = wb_inode(wb->b_io.prev);
1544 		struct super_block *sb = inode->i_sb;
1545 
1546 		if (!trylock_super(sb)) {
1547 			/*
1548 			 * trylock_super() may fail consistently due to
1549 			 * s_umount being grabbed by someone else. Don't use
1550 			 * requeue_io() to avoid busy retrying the inode/sb.
1551 			 */
1552 			redirty_tail(inode, wb);
1553 			continue;
1554 		}
1555 		wrote += writeback_sb_inodes(sb, wb, work);
1556 		up_read(&sb->s_umount);
1557 
1558 		/* refer to the same tests at the end of writeback_sb_inodes */
1559 		if (wrote) {
1560 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1561 				break;
1562 			if (work->nr_pages <= 0)
1563 				break;
1564 		}
1565 	}
1566 	/* Leave any unwritten inodes on b_io */
1567 	return wrote;
1568 }
1569 
1570 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1571 				enum wb_reason reason)
1572 {
1573 	struct wb_writeback_work work = {
1574 		.nr_pages	= nr_pages,
1575 		.sync_mode	= WB_SYNC_NONE,
1576 		.range_cyclic	= 1,
1577 		.reason		= reason,
1578 	};
1579 	struct blk_plug plug;
1580 
1581 	blk_start_plug(&plug);
1582 	spin_lock(&wb->list_lock);
1583 	if (list_empty(&wb->b_io))
1584 		queue_io(wb, &work);
1585 	__writeback_inodes_wb(wb, &work);
1586 	spin_unlock(&wb->list_lock);
1587 	blk_finish_plug(&plug);
1588 
1589 	return nr_pages - work.nr_pages;
1590 }
1591 
1592 /*
1593  * Explicit flushing or periodic writeback of "old" data.
1594  *
1595  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1596  * dirtying-time in the inode's address_space.  So this periodic writeback code
1597  * just walks the superblock inode list, writing back any inodes which are
1598  * older than a specific point in time.
1599  *
1600  * Try to run once per dirty_writeback_interval.  But if a writeback event
1601  * takes longer than a dirty_writeback_interval interval, then leave a
1602  * one-second gap.
1603  *
1604  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1605  * all dirty pages if they are all attached to "old" mappings.
1606  */
1607 static long wb_writeback(struct bdi_writeback *wb,
1608 			 struct wb_writeback_work *work)
1609 {
1610 	unsigned long wb_start = jiffies;
1611 	long nr_pages = work->nr_pages;
1612 	unsigned long oldest_jif;
1613 	struct inode *inode;
1614 	long progress;
1615 	struct blk_plug plug;
1616 
1617 	oldest_jif = jiffies;
1618 	work->older_than_this = &oldest_jif;
1619 
1620 	blk_start_plug(&plug);
1621 	spin_lock(&wb->list_lock);
1622 	for (;;) {
1623 		/*
1624 		 * Stop writeback when nr_pages has been consumed
1625 		 */
1626 		if (work->nr_pages <= 0)
1627 			break;
1628 
1629 		/*
1630 		 * Background writeout and kupdate-style writeback may
1631 		 * run forever. Stop them if there is other work to do
1632 		 * so that e.g. sync can proceed. They'll be restarted
1633 		 * after the other works are all done.
1634 		 */
1635 		if ((work->for_background || work->for_kupdate) &&
1636 		    !list_empty(&wb->work_list))
1637 			break;
1638 
1639 		/*
1640 		 * For background writeout, stop when we are below the
1641 		 * background dirty threshold
1642 		 */
1643 		if (work->for_background && !wb_over_bg_thresh(wb))
1644 			break;
1645 
1646 		/*
1647 		 * Kupdate and background works are special and we want to
1648 		 * include all inodes that need writing. Livelock avoidance is
1649 		 * handled by these works yielding to any other work so we are
1650 		 * safe.
1651 		 */
1652 		if (work->for_kupdate) {
1653 			oldest_jif = jiffies -
1654 				msecs_to_jiffies(dirty_expire_interval * 10);
1655 		} else if (work->for_background)
1656 			oldest_jif = jiffies;
1657 
1658 		trace_writeback_start(wb, work);
1659 		if (list_empty(&wb->b_io))
1660 			queue_io(wb, work);
1661 		if (work->sb)
1662 			progress = writeback_sb_inodes(work->sb, wb, work);
1663 		else
1664 			progress = __writeback_inodes_wb(wb, work);
1665 		trace_writeback_written(wb, work);
1666 
1667 		wb_update_bandwidth(wb, wb_start);
1668 
1669 		/*
1670 		 * Did we write something? Try for more
1671 		 *
1672 		 * Dirty inodes are moved to b_io for writeback in batches.
1673 		 * The completion of the current batch does not necessarily
1674 		 * mean the overall work is done. So we keep looping as long
1675 		 * as made some progress on cleaning pages or inodes.
1676 		 */
1677 		if (progress)
1678 			continue;
1679 		/*
1680 		 * No more inodes for IO, bail
1681 		 */
1682 		if (list_empty(&wb->b_more_io))
1683 			break;
1684 		/*
1685 		 * Nothing written. Wait for some inode to
1686 		 * become available for writeback. Otherwise
1687 		 * we'll just busyloop.
1688 		 */
1689 		if (!list_empty(&wb->b_more_io))  {
1690 			trace_writeback_wait(wb, work);
1691 			inode = wb_inode(wb->b_more_io.prev);
1692 			spin_lock(&inode->i_lock);
1693 			spin_unlock(&wb->list_lock);
1694 			/* This function drops i_lock... */
1695 			inode_sleep_on_writeback(inode);
1696 			spin_lock(&wb->list_lock);
1697 		}
1698 	}
1699 	spin_unlock(&wb->list_lock);
1700 	blk_finish_plug(&plug);
1701 
1702 	return nr_pages - work->nr_pages;
1703 }
1704 
1705 /*
1706  * Return the next wb_writeback_work struct that hasn't been processed yet.
1707  */
1708 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1709 {
1710 	struct wb_writeback_work *work = NULL;
1711 
1712 	spin_lock_bh(&wb->work_lock);
1713 	if (!list_empty(&wb->work_list)) {
1714 		work = list_entry(wb->work_list.next,
1715 				  struct wb_writeback_work, list);
1716 		list_del_init(&work->list);
1717 	}
1718 	spin_unlock_bh(&wb->work_lock);
1719 	return work;
1720 }
1721 
1722 /*
1723  * Add in the number of potentially dirty inodes, because each inode
1724  * write can dirty pagecache in the underlying blockdev.
1725  */
1726 static unsigned long get_nr_dirty_pages(void)
1727 {
1728 	return global_page_state(NR_FILE_DIRTY) +
1729 		global_page_state(NR_UNSTABLE_NFS) +
1730 		get_nr_dirty_inodes();
1731 }
1732 
1733 static long wb_check_background_flush(struct bdi_writeback *wb)
1734 {
1735 	if (wb_over_bg_thresh(wb)) {
1736 
1737 		struct wb_writeback_work work = {
1738 			.nr_pages	= LONG_MAX,
1739 			.sync_mode	= WB_SYNC_NONE,
1740 			.for_background	= 1,
1741 			.range_cyclic	= 1,
1742 			.reason		= WB_REASON_BACKGROUND,
1743 		};
1744 
1745 		return wb_writeback(wb, &work);
1746 	}
1747 
1748 	return 0;
1749 }
1750 
1751 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1752 {
1753 	unsigned long expired;
1754 	long nr_pages;
1755 
1756 	/*
1757 	 * When set to zero, disable periodic writeback
1758 	 */
1759 	if (!dirty_writeback_interval)
1760 		return 0;
1761 
1762 	expired = wb->last_old_flush +
1763 			msecs_to_jiffies(dirty_writeback_interval * 10);
1764 	if (time_before(jiffies, expired))
1765 		return 0;
1766 
1767 	wb->last_old_flush = jiffies;
1768 	nr_pages = get_nr_dirty_pages();
1769 
1770 	if (nr_pages) {
1771 		struct wb_writeback_work work = {
1772 			.nr_pages	= nr_pages,
1773 			.sync_mode	= WB_SYNC_NONE,
1774 			.for_kupdate	= 1,
1775 			.range_cyclic	= 1,
1776 			.reason		= WB_REASON_PERIODIC,
1777 		};
1778 
1779 		return wb_writeback(wb, &work);
1780 	}
1781 
1782 	return 0;
1783 }
1784 
1785 /*
1786  * Retrieve work items and do the writeback they describe
1787  */
1788 static long wb_do_writeback(struct bdi_writeback *wb)
1789 {
1790 	struct wb_writeback_work *work;
1791 	long wrote = 0;
1792 
1793 	set_bit(WB_writeback_running, &wb->state);
1794 	while ((work = get_next_work_item(wb)) != NULL) {
1795 		struct wb_completion *done = work->done;
1796 
1797 		trace_writeback_exec(wb, work);
1798 
1799 		wrote += wb_writeback(wb, work);
1800 
1801 		if (work->auto_free)
1802 			kfree(work);
1803 		if (done && atomic_dec_and_test(&done->cnt))
1804 			wake_up_all(&wb->bdi->wb_waitq);
1805 	}
1806 
1807 	/*
1808 	 * Check for periodic writeback, kupdated() style
1809 	 */
1810 	wrote += wb_check_old_data_flush(wb);
1811 	wrote += wb_check_background_flush(wb);
1812 	clear_bit(WB_writeback_running, &wb->state);
1813 
1814 	return wrote;
1815 }
1816 
1817 /*
1818  * Handle writeback of dirty data for the device backed by this bdi. Also
1819  * reschedules periodically and does kupdated style flushing.
1820  */
1821 void wb_workfn(struct work_struct *work)
1822 {
1823 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1824 						struct bdi_writeback, dwork);
1825 	long pages_written;
1826 
1827 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1828 	current->flags |= PF_SWAPWRITE;
1829 
1830 	if (likely(!current_is_workqueue_rescuer() ||
1831 		   !test_bit(WB_registered, &wb->state))) {
1832 		/*
1833 		 * The normal path.  Keep writing back @wb until its
1834 		 * work_list is empty.  Note that this path is also taken
1835 		 * if @wb is shutting down even when we're running off the
1836 		 * rescuer as work_list needs to be drained.
1837 		 */
1838 		do {
1839 			pages_written = wb_do_writeback(wb);
1840 			trace_writeback_pages_written(pages_written);
1841 		} while (!list_empty(&wb->work_list));
1842 	} else {
1843 		/*
1844 		 * bdi_wq can't get enough workers and we're running off
1845 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1846 		 * enough for efficient IO.
1847 		 */
1848 		pages_written = writeback_inodes_wb(wb, 1024,
1849 						    WB_REASON_FORKER_THREAD);
1850 		trace_writeback_pages_written(pages_written);
1851 	}
1852 
1853 	if (!list_empty(&wb->work_list))
1854 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1855 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1856 		wb_wakeup_delayed(wb);
1857 
1858 	current->flags &= ~PF_SWAPWRITE;
1859 }
1860 
1861 /*
1862  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1863  * the whole world.
1864  */
1865 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1866 {
1867 	struct backing_dev_info *bdi;
1868 
1869 	if (!nr_pages)
1870 		nr_pages = get_nr_dirty_pages();
1871 
1872 	rcu_read_lock();
1873 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1874 		struct bdi_writeback *wb;
1875 
1876 		if (!bdi_has_dirty_io(bdi))
1877 			continue;
1878 
1879 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1880 			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1881 					   false, reason);
1882 	}
1883 	rcu_read_unlock();
1884 }
1885 
1886 /*
1887  * Wake up bdi's periodically to make sure dirtytime inodes gets
1888  * written back periodically.  We deliberately do *not* check the
1889  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1890  * kernel to be constantly waking up once there are any dirtytime
1891  * inodes on the system.  So instead we define a separate delayed work
1892  * function which gets called much more rarely.  (By default, only
1893  * once every 12 hours.)
1894  *
1895  * If there is any other write activity going on in the file system,
1896  * this function won't be necessary.  But if the only thing that has
1897  * happened on the file system is a dirtytime inode caused by an atime
1898  * update, we need this infrastructure below to make sure that inode
1899  * eventually gets pushed out to disk.
1900  */
1901 static void wakeup_dirtytime_writeback(struct work_struct *w);
1902 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1903 
1904 static void wakeup_dirtytime_writeback(struct work_struct *w)
1905 {
1906 	struct backing_dev_info *bdi;
1907 
1908 	rcu_read_lock();
1909 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1910 		struct bdi_writeback *wb;
1911 
1912 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1913 			if (!list_empty(&wb->b_dirty_time))
1914 				wb_wakeup(wb);
1915 	}
1916 	rcu_read_unlock();
1917 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1918 }
1919 
1920 static int __init start_dirtytime_writeback(void)
1921 {
1922 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1923 	return 0;
1924 }
1925 __initcall(start_dirtytime_writeback);
1926 
1927 int dirtytime_interval_handler(struct ctl_table *table, int write,
1928 			       void __user *buffer, size_t *lenp, loff_t *ppos)
1929 {
1930 	int ret;
1931 
1932 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1933 	if (ret == 0 && write)
1934 		mod_delayed_work(system_wq, &dirtytime_work, 0);
1935 	return ret;
1936 }
1937 
1938 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1939 {
1940 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1941 		struct dentry *dentry;
1942 		const char *name = "?";
1943 
1944 		dentry = d_find_alias(inode);
1945 		if (dentry) {
1946 			spin_lock(&dentry->d_lock);
1947 			name = (const char *) dentry->d_name.name;
1948 		}
1949 		printk(KERN_DEBUG
1950 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1951 		       current->comm, task_pid_nr(current), inode->i_ino,
1952 		       name, inode->i_sb->s_id);
1953 		if (dentry) {
1954 			spin_unlock(&dentry->d_lock);
1955 			dput(dentry);
1956 		}
1957 	}
1958 }
1959 
1960 /**
1961  *	__mark_inode_dirty -	internal function
1962  *	@inode: inode to mark
1963  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1964  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1965  *  	mark_inode_dirty_sync.
1966  *
1967  * Put the inode on the super block's dirty list.
1968  *
1969  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1970  * dirty list only if it is hashed or if it refers to a blockdev.
1971  * If it was not hashed, it will never be added to the dirty list
1972  * even if it is later hashed, as it will have been marked dirty already.
1973  *
1974  * In short, make sure you hash any inodes _before_ you start marking
1975  * them dirty.
1976  *
1977  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1978  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1979  * the kernel-internal blockdev inode represents the dirtying time of the
1980  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1981  * page->mapping->host, so the page-dirtying time is recorded in the internal
1982  * blockdev inode.
1983  */
1984 void __mark_inode_dirty(struct inode *inode, int flags)
1985 {
1986 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1987 	struct super_block *sb = inode->i_sb;
1988 	int dirtytime;
1989 
1990 	trace_writeback_mark_inode_dirty(inode, flags);
1991 
1992 	/*
1993 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1994 	 * dirty the inode itself
1995 	 */
1996 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1997 		trace_writeback_dirty_inode_start(inode, flags);
1998 
1999 		if (sb->s_op->dirty_inode)
2000 			sb->s_op->dirty_inode(inode, flags);
2001 
2002 		trace_writeback_dirty_inode(inode, flags);
2003 	}
2004 	if (flags & I_DIRTY_INODE)
2005 		flags &= ~I_DIRTY_TIME;
2006 	dirtytime = flags & I_DIRTY_TIME;
2007 
2008 	/*
2009 	 * Paired with smp_mb() in __writeback_single_inode() for the
2010 	 * following lockless i_state test.  See there for details.
2011 	 */
2012 	smp_mb();
2013 
2014 	if (((inode->i_state & flags) == flags) ||
2015 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2016 		return;
2017 
2018 	if (unlikely(block_dump))
2019 		block_dump___mark_inode_dirty(inode);
2020 
2021 	spin_lock(&inode->i_lock);
2022 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2023 		goto out_unlock_inode;
2024 	if ((inode->i_state & flags) != flags) {
2025 		const int was_dirty = inode->i_state & I_DIRTY;
2026 
2027 		inode_attach_wb(inode, NULL);
2028 
2029 		if (flags & I_DIRTY_INODE)
2030 			inode->i_state &= ~I_DIRTY_TIME;
2031 		inode->i_state |= flags;
2032 
2033 		/*
2034 		 * If the inode is being synced, just update its dirty state.
2035 		 * The unlocker will place the inode on the appropriate
2036 		 * superblock list, based upon its state.
2037 		 */
2038 		if (inode->i_state & I_SYNC)
2039 			goto out_unlock_inode;
2040 
2041 		/*
2042 		 * Only add valid (hashed) inodes to the superblock's
2043 		 * dirty list.  Add blockdev inodes as well.
2044 		 */
2045 		if (!S_ISBLK(inode->i_mode)) {
2046 			if (inode_unhashed(inode))
2047 				goto out_unlock_inode;
2048 		}
2049 		if (inode->i_state & I_FREEING)
2050 			goto out_unlock_inode;
2051 
2052 		/*
2053 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2054 		 * reposition it (that would break b_dirty time-ordering).
2055 		 */
2056 		if (!was_dirty) {
2057 			struct bdi_writeback *wb;
2058 			struct list_head *dirty_list;
2059 			bool wakeup_bdi = false;
2060 
2061 			wb = locked_inode_to_wb_and_lock_list(inode);
2062 
2063 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2064 			     !test_bit(WB_registered, &wb->state),
2065 			     "bdi-%s not registered\n", wb->bdi->name);
2066 
2067 			inode->dirtied_when = jiffies;
2068 			if (dirtytime)
2069 				inode->dirtied_time_when = jiffies;
2070 
2071 			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2072 				dirty_list = &wb->b_dirty;
2073 			else
2074 				dirty_list = &wb->b_dirty_time;
2075 
2076 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2077 							       dirty_list);
2078 
2079 			spin_unlock(&wb->list_lock);
2080 			trace_writeback_dirty_inode_enqueue(inode);
2081 
2082 			/*
2083 			 * If this is the first dirty inode for this bdi,
2084 			 * we have to wake-up the corresponding bdi thread
2085 			 * to make sure background write-back happens
2086 			 * later.
2087 			 */
2088 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2089 				wb_wakeup_delayed(wb);
2090 			return;
2091 		}
2092 	}
2093 out_unlock_inode:
2094 	spin_unlock(&inode->i_lock);
2095 
2096 #undef I_DIRTY_INODE
2097 }
2098 EXPORT_SYMBOL(__mark_inode_dirty);
2099 
2100 /*
2101  * The @s_sync_lock is used to serialise concurrent sync operations
2102  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2103  * Concurrent callers will block on the s_sync_lock rather than doing contending
2104  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2105  * has been issued up to the time this function is enter is guaranteed to be
2106  * completed by the time we have gained the lock and waited for all IO that is
2107  * in progress regardless of the order callers are granted the lock.
2108  */
2109 static void wait_sb_inodes(struct super_block *sb)
2110 {
2111 	struct inode *inode, *old_inode = NULL;
2112 
2113 	/*
2114 	 * We need to be protected against the filesystem going from
2115 	 * r/o to r/w or vice versa.
2116 	 */
2117 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2118 
2119 	mutex_lock(&sb->s_sync_lock);
2120 	spin_lock(&sb->s_inode_list_lock);
2121 
2122 	/*
2123 	 * Data integrity sync. Must wait for all pages under writeback,
2124 	 * because there may have been pages dirtied before our sync
2125 	 * call, but which had writeout started before we write it out.
2126 	 * In which case, the inode may not be on the dirty list, but
2127 	 * we still have to wait for that writeout.
2128 	 */
2129 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2130 		struct address_space *mapping = inode->i_mapping;
2131 
2132 		spin_lock(&inode->i_lock);
2133 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2134 		    (mapping->nrpages == 0)) {
2135 			spin_unlock(&inode->i_lock);
2136 			continue;
2137 		}
2138 		__iget(inode);
2139 		spin_unlock(&inode->i_lock);
2140 		spin_unlock(&sb->s_inode_list_lock);
2141 
2142 		/*
2143 		 * We hold a reference to 'inode' so it couldn't have been
2144 		 * removed from s_inodes list while we dropped the
2145 		 * s_inode_list_lock.  We cannot iput the inode now as we can
2146 		 * be holding the last reference and we cannot iput it under
2147 		 * s_inode_list_lock. So we keep the reference and iput it
2148 		 * later.
2149 		 */
2150 		iput(old_inode);
2151 		old_inode = inode;
2152 
2153 		/*
2154 		 * We keep the error status of individual mapping so that
2155 		 * applications can catch the writeback error using fsync(2).
2156 		 * See filemap_fdatawait_keep_errors() for details.
2157 		 */
2158 		filemap_fdatawait_keep_errors(mapping);
2159 
2160 		cond_resched();
2161 
2162 		spin_lock(&sb->s_inode_list_lock);
2163 	}
2164 	spin_unlock(&sb->s_inode_list_lock);
2165 	iput(old_inode);
2166 	mutex_unlock(&sb->s_sync_lock);
2167 }
2168 
2169 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2170 				     enum wb_reason reason, bool skip_if_busy)
2171 {
2172 	DEFINE_WB_COMPLETION_ONSTACK(done);
2173 	struct wb_writeback_work work = {
2174 		.sb			= sb,
2175 		.sync_mode		= WB_SYNC_NONE,
2176 		.tagged_writepages	= 1,
2177 		.done			= &done,
2178 		.nr_pages		= nr,
2179 		.reason			= reason,
2180 	};
2181 	struct backing_dev_info *bdi = sb->s_bdi;
2182 
2183 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2184 		return;
2185 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2186 
2187 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2188 	wb_wait_for_completion(bdi, &done);
2189 }
2190 
2191 /**
2192  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2193  * @sb: the superblock
2194  * @nr: the number of pages to write
2195  * @reason: reason why some writeback work initiated
2196  *
2197  * Start writeback on some inodes on this super_block. No guarantees are made
2198  * on how many (if any) will be written, and this function does not wait
2199  * for IO completion of submitted IO.
2200  */
2201 void writeback_inodes_sb_nr(struct super_block *sb,
2202 			    unsigned long nr,
2203 			    enum wb_reason reason)
2204 {
2205 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2206 }
2207 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2208 
2209 /**
2210  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2211  * @sb: the superblock
2212  * @reason: reason why some writeback work was initiated
2213  *
2214  * Start writeback on some inodes on this super_block. No guarantees are made
2215  * on how many (if any) will be written, and this function does not wait
2216  * for IO completion of submitted IO.
2217  */
2218 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2219 {
2220 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2221 }
2222 EXPORT_SYMBOL(writeback_inodes_sb);
2223 
2224 /**
2225  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2226  * @sb: the superblock
2227  * @nr: the number of pages to write
2228  * @reason: the reason of writeback
2229  *
2230  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2231  * Returns 1 if writeback was started, 0 if not.
2232  */
2233 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2234 				   enum wb_reason reason)
2235 {
2236 	if (!down_read_trylock(&sb->s_umount))
2237 		return false;
2238 
2239 	__writeback_inodes_sb_nr(sb, nr, reason, true);
2240 	up_read(&sb->s_umount);
2241 	return true;
2242 }
2243 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2244 
2245 /**
2246  * try_to_writeback_inodes_sb - try to start writeback if none underway
2247  * @sb: the superblock
2248  * @reason: reason why some writeback work was initiated
2249  *
2250  * Implement by try_to_writeback_inodes_sb_nr()
2251  * Returns 1 if writeback was started, 0 if not.
2252  */
2253 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2254 {
2255 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2256 }
2257 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2258 
2259 /**
2260  * sync_inodes_sb	-	sync sb inode pages
2261  * @sb: the superblock
2262  *
2263  * This function writes and waits on any dirty inode belonging to this
2264  * super_block.
2265  */
2266 void sync_inodes_sb(struct super_block *sb)
2267 {
2268 	DEFINE_WB_COMPLETION_ONSTACK(done);
2269 	struct wb_writeback_work work = {
2270 		.sb		= sb,
2271 		.sync_mode	= WB_SYNC_ALL,
2272 		.nr_pages	= LONG_MAX,
2273 		.range_cyclic	= 0,
2274 		.done		= &done,
2275 		.reason		= WB_REASON_SYNC,
2276 		.for_sync	= 1,
2277 	};
2278 	struct backing_dev_info *bdi = sb->s_bdi;
2279 
2280 	/*
2281 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2282 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2283 	 * bdi_has_dirty() need to be written out too.
2284 	 */
2285 	if (bdi == &noop_backing_dev_info)
2286 		return;
2287 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2288 
2289 	bdi_split_work_to_wbs(bdi, &work, false);
2290 	wb_wait_for_completion(bdi, &done);
2291 
2292 	wait_sb_inodes(sb);
2293 }
2294 EXPORT_SYMBOL(sync_inodes_sb);
2295 
2296 /**
2297  * write_inode_now	-	write an inode to disk
2298  * @inode: inode to write to disk
2299  * @sync: whether the write should be synchronous or not
2300  *
2301  * This function commits an inode to disk immediately if it is dirty. This is
2302  * primarily needed by knfsd.
2303  *
2304  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2305  */
2306 int write_inode_now(struct inode *inode, int sync)
2307 {
2308 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2309 	struct writeback_control wbc = {
2310 		.nr_to_write = LONG_MAX,
2311 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2312 		.range_start = 0,
2313 		.range_end = LLONG_MAX,
2314 	};
2315 
2316 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2317 		wbc.nr_to_write = 0;
2318 
2319 	might_sleep();
2320 	return writeback_single_inode(inode, wb, &wbc);
2321 }
2322 EXPORT_SYMBOL(write_inode_now);
2323 
2324 /**
2325  * sync_inode - write an inode and its pages to disk.
2326  * @inode: the inode to sync
2327  * @wbc: controls the writeback mode
2328  *
2329  * sync_inode() will write an inode and its pages to disk.  It will also
2330  * correctly update the inode on its superblock's dirty inode lists and will
2331  * update inode->i_state.
2332  *
2333  * The caller must have a ref on the inode.
2334  */
2335 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2336 {
2337 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2338 }
2339 EXPORT_SYMBOL(sync_inode);
2340 
2341 /**
2342  * sync_inode_metadata - write an inode to disk
2343  * @inode: the inode to sync
2344  * @wait: wait for I/O to complete.
2345  *
2346  * Write an inode to disk and adjust its dirty state after completion.
2347  *
2348  * Note: only writes the actual inode, no associated data or other metadata.
2349  */
2350 int sync_inode_metadata(struct inode *inode, int wait)
2351 {
2352 	struct writeback_control wbc = {
2353 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2354 		.nr_to_write = 0, /* metadata-only */
2355 	};
2356 
2357 	return sync_inode(inode, &wbc);
2358 }
2359 EXPORT_SYMBOL(sync_inode_metadata);
2360