xref: /openbmc/linux/fs/fs-writeback.c (revision 227a0655)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 
124 	list_move(&inode->i_io_list, head);
125 
126 	/* dirty_time doesn't count as dirty_io until expiration */
127 	if (head != &wb->b_dirty_time)
128 		return wb_io_lists_populated(wb);
129 
130 	wb_io_lists_depopulated(wb);
131 	return false;
132 }
133 
134 static void wb_wakeup(struct bdi_writeback *wb)
135 {
136 	spin_lock_bh(&wb->work_lock);
137 	if (test_bit(WB_registered, &wb->state))
138 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
139 	spin_unlock_bh(&wb->work_lock);
140 }
141 
142 static void finish_writeback_work(struct bdi_writeback *wb,
143 				  struct wb_writeback_work *work)
144 {
145 	struct wb_completion *done = work->done;
146 
147 	if (work->auto_free)
148 		kfree(work);
149 	if (done) {
150 		wait_queue_head_t *waitq = done->waitq;
151 
152 		/* @done can't be accessed after the following dec */
153 		if (atomic_dec_and_test(&done->cnt))
154 			wake_up_all(waitq);
155 	}
156 }
157 
158 static void wb_queue_work(struct bdi_writeback *wb,
159 			  struct wb_writeback_work *work)
160 {
161 	trace_writeback_queue(wb, work);
162 
163 	if (work->done)
164 		atomic_inc(&work->done->cnt);
165 
166 	spin_lock_bh(&wb->work_lock);
167 
168 	if (test_bit(WB_registered, &wb->state)) {
169 		list_add_tail(&work->list, &wb->work_list);
170 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
171 	} else
172 		finish_writeback_work(wb, work);
173 
174 	spin_unlock_bh(&wb->work_lock);
175 }
176 
177 /**
178  * wb_wait_for_completion - wait for completion of bdi_writeback_works
179  * @done: target wb_completion
180  *
181  * Wait for one or more work items issued to @bdi with their ->done field
182  * set to @done, which should have been initialized with
183  * DEFINE_WB_COMPLETION().  This function returns after all such work items
184  * are completed.  Work items which are waited upon aren't freed
185  * automatically on completion.
186  */
187 void wb_wait_for_completion(struct wb_completion *done)
188 {
189 	atomic_dec(&done->cnt);		/* put down the initial count */
190 	wait_event(*done->waitq, !atomic_read(&done->cnt));
191 }
192 
193 #ifdef CONFIG_CGROUP_WRITEBACK
194 
195 /*
196  * Parameters for foreign inode detection, see wbc_detach_inode() to see
197  * how they're used.
198  *
199  * These paramters are inherently heuristical as the detection target
200  * itself is fuzzy.  All we want to do is detaching an inode from the
201  * current owner if it's being written to by some other cgroups too much.
202  *
203  * The current cgroup writeback is built on the assumption that multiple
204  * cgroups writing to the same inode concurrently is very rare and a mode
205  * of operation which isn't well supported.  As such, the goal is not
206  * taking too long when a different cgroup takes over an inode while
207  * avoiding too aggressive flip-flops from occasional foreign writes.
208  *
209  * We record, very roughly, 2s worth of IO time history and if more than
210  * half of that is foreign, trigger the switch.  The recording is quantized
211  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
212  * writes smaller than 1/8 of avg size are ignored.
213  */
214 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
215 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
216 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
217 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
218 
219 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
220 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221 					/* each slot's duration is 2s / 16 */
222 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
223 					/* if foreign slots >= 8, switch */
224 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
225 					/* one round can affect upto 5 slots */
226 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
227 
228 /*
229  * Maximum inodes per isw.  A specific value has been chosen to make
230  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
231  */
232 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233                                 / sizeof(struct inode *))
234 
235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236 static struct workqueue_struct *isw_wq;
237 
238 void __inode_attach_wb(struct inode *inode, struct page *page)
239 {
240 	struct backing_dev_info *bdi = inode_to_bdi(inode);
241 	struct bdi_writeback *wb = NULL;
242 
243 	if (inode_cgwb_enabled(inode)) {
244 		struct cgroup_subsys_state *memcg_css;
245 
246 		if (page) {
247 			memcg_css = mem_cgroup_css_from_page(page);
248 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
249 		} else {
250 			/* must pin memcg_css, see wb_get_create() */
251 			memcg_css = task_get_css(current, memory_cgrp_id);
252 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
253 			css_put(memcg_css);
254 		}
255 	}
256 
257 	if (!wb)
258 		wb = &bdi->wb;
259 
260 	/*
261 	 * There may be multiple instances of this function racing to
262 	 * update the same inode.  Use cmpxchg() to tell the winner.
263 	 */
264 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
265 		wb_put(wb);
266 }
267 EXPORT_SYMBOL_GPL(__inode_attach_wb);
268 
269 /**
270  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271  * @inode: inode of interest with i_lock held
272  * @wb: target bdi_writeback
273  *
274  * Remove the inode from wb's io lists and if necessarily put onto b_attached
275  * list.  Only inodes attached to cgwb's are kept on this list.
276  */
277 static void inode_cgwb_move_to_attached(struct inode *inode,
278 					struct bdi_writeback *wb)
279 {
280 	assert_spin_locked(&wb->list_lock);
281 	assert_spin_locked(&inode->i_lock);
282 
283 	inode->i_state &= ~I_SYNC_QUEUED;
284 	if (wb != &wb->bdi->wb)
285 		list_move(&inode->i_io_list, &wb->b_attached);
286 	else
287 		list_del_init(&inode->i_io_list);
288 	wb_io_lists_depopulated(wb);
289 }
290 
291 /**
292  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293  * @inode: inode of interest with i_lock held
294  *
295  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
296  * held on entry and is released on return.  The returned wb is guaranteed
297  * to stay @inode's associated wb until its list_lock is released.
298  */
299 static struct bdi_writeback *
300 locked_inode_to_wb_and_lock_list(struct inode *inode)
301 	__releases(&inode->i_lock)
302 	__acquires(&wb->list_lock)
303 {
304 	while (true) {
305 		struct bdi_writeback *wb = inode_to_wb(inode);
306 
307 		/*
308 		 * inode_to_wb() association is protected by both
309 		 * @inode->i_lock and @wb->list_lock but list_lock nests
310 		 * outside i_lock.  Drop i_lock and verify that the
311 		 * association hasn't changed after acquiring list_lock.
312 		 */
313 		wb_get(wb);
314 		spin_unlock(&inode->i_lock);
315 		spin_lock(&wb->list_lock);
316 
317 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
318 		if (likely(wb == inode->i_wb)) {
319 			wb_put(wb);	/* @inode already has ref */
320 			return wb;
321 		}
322 
323 		spin_unlock(&wb->list_lock);
324 		wb_put(wb);
325 		cpu_relax();
326 		spin_lock(&inode->i_lock);
327 	}
328 }
329 
330 /**
331  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332  * @inode: inode of interest
333  *
334  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
335  * on entry.
336  */
337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338 	__acquires(&wb->list_lock)
339 {
340 	spin_lock(&inode->i_lock);
341 	return locked_inode_to_wb_and_lock_list(inode);
342 }
343 
344 struct inode_switch_wbs_context {
345 	struct rcu_work		work;
346 
347 	/*
348 	 * Multiple inodes can be switched at once.  The switching procedure
349 	 * consists of two parts, separated by a RCU grace period.  To make
350 	 * sure that the second part is executed for each inode gone through
351 	 * the first part, all inode pointers are placed into a NULL-terminated
352 	 * array embedded into struct inode_switch_wbs_context.  Otherwise
353 	 * an inode could be left in a non-consistent state.
354 	 */
355 	struct bdi_writeback	*new_wb;
356 	struct inode		*inodes[];
357 };
358 
359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360 {
361 	down_write(&bdi->wb_switch_rwsem);
362 }
363 
364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
365 {
366 	up_write(&bdi->wb_switch_rwsem);
367 }
368 
369 static bool inode_do_switch_wbs(struct inode *inode,
370 				struct bdi_writeback *old_wb,
371 				struct bdi_writeback *new_wb)
372 {
373 	struct address_space *mapping = inode->i_mapping;
374 	XA_STATE(xas, &mapping->i_pages, 0);
375 	struct folio *folio;
376 	bool switched = false;
377 
378 	spin_lock(&inode->i_lock);
379 	xa_lock_irq(&mapping->i_pages);
380 
381 	/*
382 	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383 	 * path owns the inode and we shouldn't modify ->i_io_list.
384 	 */
385 	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
386 		goto skip_switch;
387 
388 	trace_inode_switch_wbs(inode, old_wb, new_wb);
389 
390 	/*
391 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392 	 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to
393 	 * folios actually under writeback.
394 	 */
395 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396 		if (folio_test_dirty(folio)) {
397 			long nr = folio_nr_pages(folio);
398 			wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr);
399 			wb_stat_mod(new_wb, WB_RECLAIMABLE, nr);
400 		}
401 	}
402 
403 	xas_set(&xas, 0);
404 	xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405 		long nr = folio_nr_pages(folio);
406 		WARN_ON_ONCE(!folio_test_writeback(folio));
407 		wb_stat_mod(old_wb, WB_WRITEBACK, -nr);
408 		wb_stat_mod(new_wb, WB_WRITEBACK, nr);
409 	}
410 
411 	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
412 		atomic_dec(&old_wb->writeback_inodes);
413 		atomic_inc(&new_wb->writeback_inodes);
414 	}
415 
416 	wb_get(new_wb);
417 
418 	/*
419 	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
420 	 * the specific list @inode was on is ignored and the @inode is put on
421 	 * ->b_dirty which is always correct including from ->b_dirty_time.
422 	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
423 	 * was clean, it means it was on the b_attached list, so move it onto
424 	 * the b_attached list of @new_wb.
425 	 */
426 	if (!list_empty(&inode->i_io_list)) {
427 		inode->i_wb = new_wb;
428 
429 		if (inode->i_state & I_DIRTY_ALL) {
430 			struct inode *pos;
431 
432 			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
433 				if (time_after_eq(inode->dirtied_when,
434 						  pos->dirtied_when))
435 					break;
436 			inode_io_list_move_locked(inode, new_wb,
437 						  pos->i_io_list.prev);
438 		} else {
439 			inode_cgwb_move_to_attached(inode, new_wb);
440 		}
441 	} else {
442 		inode->i_wb = new_wb;
443 	}
444 
445 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
446 	inode->i_wb_frn_winner = 0;
447 	inode->i_wb_frn_avg_time = 0;
448 	inode->i_wb_frn_history = 0;
449 	switched = true;
450 skip_switch:
451 	/*
452 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
453 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
454 	 */
455 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
456 
457 	xa_unlock_irq(&mapping->i_pages);
458 	spin_unlock(&inode->i_lock);
459 
460 	return switched;
461 }
462 
463 static void inode_switch_wbs_work_fn(struct work_struct *work)
464 {
465 	struct inode_switch_wbs_context *isw =
466 		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
467 	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
468 	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
469 	struct bdi_writeback *new_wb = isw->new_wb;
470 	unsigned long nr_switched = 0;
471 	struct inode **inodep;
472 
473 	/*
474 	 * If @inode switches cgwb membership while sync_inodes_sb() is
475 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
476 	 */
477 	down_read(&bdi->wb_switch_rwsem);
478 
479 	/*
480 	 * By the time control reaches here, RCU grace period has passed
481 	 * since I_WB_SWITCH assertion and all wb stat update transactions
482 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
483 	 * synchronizing against the i_pages lock.
484 	 *
485 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
486 	 * gives us exclusion against all wb related operations on @inode
487 	 * including IO list manipulations and stat updates.
488 	 */
489 	if (old_wb < new_wb) {
490 		spin_lock(&old_wb->list_lock);
491 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
492 	} else {
493 		spin_lock(&new_wb->list_lock);
494 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
495 	}
496 
497 	for (inodep = isw->inodes; *inodep; inodep++) {
498 		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
499 		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
500 			nr_switched++;
501 	}
502 
503 	spin_unlock(&new_wb->list_lock);
504 	spin_unlock(&old_wb->list_lock);
505 
506 	up_read(&bdi->wb_switch_rwsem);
507 
508 	if (nr_switched) {
509 		wb_wakeup(new_wb);
510 		wb_put_many(old_wb, nr_switched);
511 	}
512 
513 	for (inodep = isw->inodes; *inodep; inodep++)
514 		iput(*inodep);
515 	wb_put(new_wb);
516 	kfree(isw);
517 	atomic_dec(&isw_nr_in_flight);
518 }
519 
520 static bool inode_prepare_wbs_switch(struct inode *inode,
521 				     struct bdi_writeback *new_wb)
522 {
523 	/*
524 	 * Paired with smp_mb() in cgroup_writeback_umount().
525 	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
526 	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
527 	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
528 	 */
529 	smp_mb();
530 
531 	if (IS_DAX(inode))
532 		return false;
533 
534 	/* while holding I_WB_SWITCH, no one else can update the association */
535 	spin_lock(&inode->i_lock);
536 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
537 	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
538 	    inode_to_wb(inode) == new_wb) {
539 		spin_unlock(&inode->i_lock);
540 		return false;
541 	}
542 	inode->i_state |= I_WB_SWITCH;
543 	__iget(inode);
544 	spin_unlock(&inode->i_lock);
545 
546 	return true;
547 }
548 
549 /**
550  * inode_switch_wbs - change the wb association of an inode
551  * @inode: target inode
552  * @new_wb_id: ID of the new wb
553  *
554  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
555  * switching is performed asynchronously and may fail silently.
556  */
557 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
558 {
559 	struct backing_dev_info *bdi = inode_to_bdi(inode);
560 	struct cgroup_subsys_state *memcg_css;
561 	struct inode_switch_wbs_context *isw;
562 
563 	/* noop if seems to be already in progress */
564 	if (inode->i_state & I_WB_SWITCH)
565 		return;
566 
567 	/* avoid queueing a new switch if too many are already in flight */
568 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
569 		return;
570 
571 	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
572 	if (!isw)
573 		return;
574 
575 	atomic_inc(&isw_nr_in_flight);
576 
577 	/* find and pin the new wb */
578 	rcu_read_lock();
579 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
580 	if (memcg_css && !css_tryget(memcg_css))
581 		memcg_css = NULL;
582 	rcu_read_unlock();
583 	if (!memcg_css)
584 		goto out_free;
585 
586 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
587 	css_put(memcg_css);
588 	if (!isw->new_wb)
589 		goto out_free;
590 
591 	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
592 		goto out_free;
593 
594 	isw->inodes[0] = inode;
595 
596 	/*
597 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
598 	 * the RCU protected stat update paths to grab the i_page
599 	 * lock so that stat transfer can synchronize against them.
600 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
601 	 */
602 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
603 	queue_rcu_work(isw_wq, &isw->work);
604 	return;
605 
606 out_free:
607 	atomic_dec(&isw_nr_in_flight);
608 	if (isw->new_wb)
609 		wb_put(isw->new_wb);
610 	kfree(isw);
611 }
612 
613 /**
614  * cleanup_offline_cgwb - detach associated inodes
615  * @wb: target wb
616  *
617  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
618  * to eventually release the dying @wb.  Returns %true if not all inodes were
619  * switched and the function has to be restarted.
620  */
621 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
622 {
623 	struct cgroup_subsys_state *memcg_css;
624 	struct inode_switch_wbs_context *isw;
625 	struct inode *inode;
626 	int nr;
627 	bool restart = false;
628 
629 	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
630 		      GFP_KERNEL);
631 	if (!isw)
632 		return restart;
633 
634 	atomic_inc(&isw_nr_in_flight);
635 
636 	for (memcg_css = wb->memcg_css->parent; memcg_css;
637 	     memcg_css = memcg_css->parent) {
638 		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
639 		if (isw->new_wb)
640 			break;
641 	}
642 	if (unlikely(!isw->new_wb))
643 		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
644 
645 	nr = 0;
646 	spin_lock(&wb->list_lock);
647 	list_for_each_entry(inode, &wb->b_attached, i_io_list) {
648 		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
649 			continue;
650 
651 		isw->inodes[nr++] = inode;
652 
653 		if (nr >= WB_MAX_INODES_PER_ISW - 1) {
654 			restart = true;
655 			break;
656 		}
657 	}
658 	spin_unlock(&wb->list_lock);
659 
660 	/* no attached inodes? bail out */
661 	if (nr == 0) {
662 		atomic_dec(&isw_nr_in_flight);
663 		wb_put(isw->new_wb);
664 		kfree(isw);
665 		return restart;
666 	}
667 
668 	/*
669 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
670 	 * the RCU protected stat update paths to grab the i_page
671 	 * lock so that stat transfer can synchronize against them.
672 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
673 	 */
674 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
675 	queue_rcu_work(isw_wq, &isw->work);
676 
677 	return restart;
678 }
679 
680 /**
681  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
682  * @wbc: writeback_control of interest
683  * @inode: target inode
684  *
685  * @inode is locked and about to be written back under the control of @wbc.
686  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
687  * writeback completion, wbc_detach_inode() should be called.  This is used
688  * to track the cgroup writeback context.
689  */
690 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
691 				 struct inode *inode)
692 {
693 	if (!inode_cgwb_enabled(inode)) {
694 		spin_unlock(&inode->i_lock);
695 		return;
696 	}
697 
698 	wbc->wb = inode_to_wb(inode);
699 	wbc->inode = inode;
700 
701 	wbc->wb_id = wbc->wb->memcg_css->id;
702 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
703 	wbc->wb_tcand_id = 0;
704 	wbc->wb_bytes = 0;
705 	wbc->wb_lcand_bytes = 0;
706 	wbc->wb_tcand_bytes = 0;
707 
708 	wb_get(wbc->wb);
709 	spin_unlock(&inode->i_lock);
710 
711 	/*
712 	 * A dying wb indicates that either the blkcg associated with the
713 	 * memcg changed or the associated memcg is dying.  In the first
714 	 * case, a replacement wb should already be available and we should
715 	 * refresh the wb immediately.  In the second case, trying to
716 	 * refresh will keep failing.
717 	 */
718 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
719 		inode_switch_wbs(inode, wbc->wb_id);
720 }
721 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
722 
723 /**
724  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
725  * @wbc: writeback_control of the just finished writeback
726  *
727  * To be called after a writeback attempt of an inode finishes and undoes
728  * wbc_attach_and_unlock_inode().  Can be called under any context.
729  *
730  * As concurrent write sharing of an inode is expected to be very rare and
731  * memcg only tracks page ownership on first-use basis severely confining
732  * the usefulness of such sharing, cgroup writeback tracks ownership
733  * per-inode.  While the support for concurrent write sharing of an inode
734  * is deemed unnecessary, an inode being written to by different cgroups at
735  * different points in time is a lot more common, and, more importantly,
736  * charging only by first-use can too readily lead to grossly incorrect
737  * behaviors (single foreign page can lead to gigabytes of writeback to be
738  * incorrectly attributed).
739  *
740  * To resolve this issue, cgroup writeback detects the majority dirtier of
741  * an inode and transfers the ownership to it.  To avoid unnnecessary
742  * oscillation, the detection mechanism keeps track of history and gives
743  * out the switch verdict only if the foreign usage pattern is stable over
744  * a certain amount of time and/or writeback attempts.
745  *
746  * On each writeback attempt, @wbc tries to detect the majority writer
747  * using Boyer-Moore majority vote algorithm.  In addition to the byte
748  * count from the majority voting, it also counts the bytes written for the
749  * current wb and the last round's winner wb (max of last round's current
750  * wb, the winner from two rounds ago, and the last round's majority
751  * candidate).  Keeping track of the historical winner helps the algorithm
752  * to semi-reliably detect the most active writer even when it's not the
753  * absolute majority.
754  *
755  * Once the winner of the round is determined, whether the winner is
756  * foreign or not and how much IO time the round consumed is recorded in
757  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
758  * over a certain threshold, the switch verdict is given.
759  */
760 void wbc_detach_inode(struct writeback_control *wbc)
761 {
762 	struct bdi_writeback *wb = wbc->wb;
763 	struct inode *inode = wbc->inode;
764 	unsigned long avg_time, max_bytes, max_time;
765 	u16 history;
766 	int max_id;
767 
768 	if (!wb)
769 		return;
770 
771 	history = inode->i_wb_frn_history;
772 	avg_time = inode->i_wb_frn_avg_time;
773 
774 	/* pick the winner of this round */
775 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
776 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
777 		max_id = wbc->wb_id;
778 		max_bytes = wbc->wb_bytes;
779 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
780 		max_id = wbc->wb_lcand_id;
781 		max_bytes = wbc->wb_lcand_bytes;
782 	} else {
783 		max_id = wbc->wb_tcand_id;
784 		max_bytes = wbc->wb_tcand_bytes;
785 	}
786 
787 	/*
788 	 * Calculate the amount of IO time the winner consumed and fold it
789 	 * into the running average kept per inode.  If the consumed IO
790 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
791 	 * deciding whether to switch or not.  This is to prevent one-off
792 	 * small dirtiers from skewing the verdict.
793 	 */
794 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
795 				wb->avg_write_bandwidth);
796 	if (avg_time)
797 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
798 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
799 	else
800 		avg_time = max_time;	/* immediate catch up on first run */
801 
802 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
803 		int slots;
804 
805 		/*
806 		 * The switch verdict is reached if foreign wb's consume
807 		 * more than a certain proportion of IO time in a
808 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
809 		 * history mask where each bit represents one sixteenth of
810 		 * the period.  Determine the number of slots to shift into
811 		 * history from @max_time.
812 		 */
813 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
814 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
815 		history <<= slots;
816 		if (wbc->wb_id != max_id)
817 			history |= (1U << slots) - 1;
818 
819 		if (history)
820 			trace_inode_foreign_history(inode, wbc, history);
821 
822 		/*
823 		 * Switch if the current wb isn't the consistent winner.
824 		 * If there are multiple closely competing dirtiers, the
825 		 * inode may switch across them repeatedly over time, which
826 		 * is okay.  The main goal is avoiding keeping an inode on
827 		 * the wrong wb for an extended period of time.
828 		 */
829 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
830 			inode_switch_wbs(inode, max_id);
831 	}
832 
833 	/*
834 	 * Multiple instances of this function may race to update the
835 	 * following fields but we don't mind occassional inaccuracies.
836 	 */
837 	inode->i_wb_frn_winner = max_id;
838 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
839 	inode->i_wb_frn_history = history;
840 
841 	wb_put(wbc->wb);
842 	wbc->wb = NULL;
843 }
844 EXPORT_SYMBOL_GPL(wbc_detach_inode);
845 
846 /**
847  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
848  * @wbc: writeback_control of the writeback in progress
849  * @page: page being written out
850  * @bytes: number of bytes being written out
851  *
852  * @bytes from @page are about to written out during the writeback
853  * controlled by @wbc.  Keep the book for foreign inode detection.  See
854  * wbc_detach_inode().
855  */
856 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
857 			      size_t bytes)
858 {
859 	struct cgroup_subsys_state *css;
860 	int id;
861 
862 	/*
863 	 * pageout() path doesn't attach @wbc to the inode being written
864 	 * out.  This is intentional as we don't want the function to block
865 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
866 	 * regular writeback instead of writing things out itself.
867 	 */
868 	if (!wbc->wb || wbc->no_cgroup_owner)
869 		return;
870 
871 	css = mem_cgroup_css_from_page(page);
872 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
873 	if (!(css->flags & CSS_ONLINE))
874 		return;
875 
876 	id = css->id;
877 
878 	if (id == wbc->wb_id) {
879 		wbc->wb_bytes += bytes;
880 		return;
881 	}
882 
883 	if (id == wbc->wb_lcand_id)
884 		wbc->wb_lcand_bytes += bytes;
885 
886 	/* Boyer-Moore majority vote algorithm */
887 	if (!wbc->wb_tcand_bytes)
888 		wbc->wb_tcand_id = id;
889 	if (id == wbc->wb_tcand_id)
890 		wbc->wb_tcand_bytes += bytes;
891 	else
892 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
893 }
894 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
895 
896 /**
897  * inode_congested - test whether an inode is congested
898  * @inode: inode to test for congestion (may be NULL)
899  * @cong_bits: mask of WB_[a]sync_congested bits to test
900  *
901  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
902  * bits to test and the return value is the mask of set bits.
903  *
904  * If cgroup writeback is enabled for @inode, the congestion state is
905  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
906  * associated with @inode is congested; otherwise, the root wb's congestion
907  * state is used.
908  *
909  * @inode is allowed to be NULL as this function is often called on
910  * mapping->host which is NULL for the swapper space.
911  */
912 int inode_congested(struct inode *inode, int cong_bits)
913 {
914 	/*
915 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
916 	 * Start transaction iff ->i_wb is visible.
917 	 */
918 	if (inode && inode_to_wb_is_valid(inode)) {
919 		struct bdi_writeback *wb;
920 		struct wb_lock_cookie lock_cookie = {};
921 		bool congested;
922 
923 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
924 		congested = wb_congested(wb, cong_bits);
925 		unlocked_inode_to_wb_end(inode, &lock_cookie);
926 		return congested;
927 	}
928 
929 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
930 }
931 EXPORT_SYMBOL_GPL(inode_congested);
932 
933 /**
934  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
935  * @wb: target bdi_writeback to split @nr_pages to
936  * @nr_pages: number of pages to write for the whole bdi
937  *
938  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
939  * relation to the total write bandwidth of all wb's w/ dirty inodes on
940  * @wb->bdi.
941  */
942 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
943 {
944 	unsigned long this_bw = wb->avg_write_bandwidth;
945 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
946 
947 	if (nr_pages == LONG_MAX)
948 		return LONG_MAX;
949 
950 	/*
951 	 * This may be called on clean wb's and proportional distribution
952 	 * may not make sense, just use the original @nr_pages in those
953 	 * cases.  In general, we wanna err on the side of writing more.
954 	 */
955 	if (!tot_bw || this_bw >= tot_bw)
956 		return nr_pages;
957 	else
958 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
959 }
960 
961 /**
962  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
963  * @bdi: target backing_dev_info
964  * @base_work: wb_writeback_work to issue
965  * @skip_if_busy: skip wb's which already have writeback in progress
966  *
967  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
968  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
969  * distributed to the busy wbs according to each wb's proportion in the
970  * total active write bandwidth of @bdi.
971  */
972 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
973 				  struct wb_writeback_work *base_work,
974 				  bool skip_if_busy)
975 {
976 	struct bdi_writeback *last_wb = NULL;
977 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
978 					      struct bdi_writeback, bdi_node);
979 
980 	might_sleep();
981 restart:
982 	rcu_read_lock();
983 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
984 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
985 		struct wb_writeback_work fallback_work;
986 		struct wb_writeback_work *work;
987 		long nr_pages;
988 
989 		if (last_wb) {
990 			wb_put(last_wb);
991 			last_wb = NULL;
992 		}
993 
994 		/* SYNC_ALL writes out I_DIRTY_TIME too */
995 		if (!wb_has_dirty_io(wb) &&
996 		    (base_work->sync_mode == WB_SYNC_NONE ||
997 		     list_empty(&wb->b_dirty_time)))
998 			continue;
999 		if (skip_if_busy && writeback_in_progress(wb))
1000 			continue;
1001 
1002 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1003 
1004 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
1005 		if (work) {
1006 			*work = *base_work;
1007 			work->nr_pages = nr_pages;
1008 			work->auto_free = 1;
1009 			wb_queue_work(wb, work);
1010 			continue;
1011 		}
1012 
1013 		/* alloc failed, execute synchronously using on-stack fallback */
1014 		work = &fallback_work;
1015 		*work = *base_work;
1016 		work->nr_pages = nr_pages;
1017 		work->auto_free = 0;
1018 		work->done = &fallback_work_done;
1019 
1020 		wb_queue_work(wb, work);
1021 
1022 		/*
1023 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1024 		 * continuing iteration from @wb after dropping and
1025 		 * regrabbing rcu read lock.
1026 		 */
1027 		wb_get(wb);
1028 		last_wb = wb;
1029 
1030 		rcu_read_unlock();
1031 		wb_wait_for_completion(&fallback_work_done);
1032 		goto restart;
1033 	}
1034 	rcu_read_unlock();
1035 
1036 	if (last_wb)
1037 		wb_put(last_wb);
1038 }
1039 
1040 /**
1041  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1042  * @bdi_id: target bdi id
1043  * @memcg_id: target memcg css id
1044  * @reason: reason why some writeback work initiated
1045  * @done: target wb_completion
1046  *
1047  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1048  * with the specified parameters.
1049  */
1050 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1051 			   enum wb_reason reason, struct wb_completion *done)
1052 {
1053 	struct backing_dev_info *bdi;
1054 	struct cgroup_subsys_state *memcg_css;
1055 	struct bdi_writeback *wb;
1056 	struct wb_writeback_work *work;
1057 	unsigned long dirty;
1058 	int ret;
1059 
1060 	/* lookup bdi and memcg */
1061 	bdi = bdi_get_by_id(bdi_id);
1062 	if (!bdi)
1063 		return -ENOENT;
1064 
1065 	rcu_read_lock();
1066 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1067 	if (memcg_css && !css_tryget(memcg_css))
1068 		memcg_css = NULL;
1069 	rcu_read_unlock();
1070 	if (!memcg_css) {
1071 		ret = -ENOENT;
1072 		goto out_bdi_put;
1073 	}
1074 
1075 	/*
1076 	 * And find the associated wb.  If the wb isn't there already
1077 	 * there's nothing to flush, don't create one.
1078 	 */
1079 	wb = wb_get_lookup(bdi, memcg_css);
1080 	if (!wb) {
1081 		ret = -ENOENT;
1082 		goto out_css_put;
1083 	}
1084 
1085 	/*
1086 	 * The caller is attempting to write out most of
1087 	 * the currently dirty pages.  Let's take the current dirty page
1088 	 * count and inflate it by 25% which should be large enough to
1089 	 * flush out most dirty pages while avoiding getting livelocked by
1090 	 * concurrent dirtiers.
1091 	 *
1092 	 * BTW the memcg stats are flushed periodically and this is best-effort
1093 	 * estimation, so some potential error is ok.
1094 	 */
1095 	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1096 	dirty = dirty * 10 / 8;
1097 
1098 	/* issue the writeback work */
1099 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1100 	if (work) {
1101 		work->nr_pages = dirty;
1102 		work->sync_mode = WB_SYNC_NONE;
1103 		work->range_cyclic = 1;
1104 		work->reason = reason;
1105 		work->done = done;
1106 		work->auto_free = 1;
1107 		wb_queue_work(wb, work);
1108 		ret = 0;
1109 	} else {
1110 		ret = -ENOMEM;
1111 	}
1112 
1113 	wb_put(wb);
1114 out_css_put:
1115 	css_put(memcg_css);
1116 out_bdi_put:
1117 	bdi_put(bdi);
1118 	return ret;
1119 }
1120 
1121 /**
1122  * cgroup_writeback_umount - flush inode wb switches for umount
1123  *
1124  * This function is called when a super_block is about to be destroyed and
1125  * flushes in-flight inode wb switches.  An inode wb switch goes through
1126  * RCU and then workqueue, so the two need to be flushed in order to ensure
1127  * that all previously scheduled switches are finished.  As wb switches are
1128  * rare occurrences and synchronize_rcu() can take a while, perform
1129  * flushing iff wb switches are in flight.
1130  */
1131 void cgroup_writeback_umount(void)
1132 {
1133 	/*
1134 	 * SB_ACTIVE should be reliably cleared before checking
1135 	 * isw_nr_in_flight, see generic_shutdown_super().
1136 	 */
1137 	smp_mb();
1138 
1139 	if (atomic_read(&isw_nr_in_flight)) {
1140 		/*
1141 		 * Use rcu_barrier() to wait for all pending callbacks to
1142 		 * ensure that all in-flight wb switches are in the workqueue.
1143 		 */
1144 		rcu_barrier();
1145 		flush_workqueue(isw_wq);
1146 	}
1147 }
1148 
1149 static int __init cgroup_writeback_init(void)
1150 {
1151 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1152 	if (!isw_wq)
1153 		return -ENOMEM;
1154 	return 0;
1155 }
1156 fs_initcall(cgroup_writeback_init);
1157 
1158 #else	/* CONFIG_CGROUP_WRITEBACK */
1159 
1160 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1161 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1162 
1163 static void inode_cgwb_move_to_attached(struct inode *inode,
1164 					struct bdi_writeback *wb)
1165 {
1166 	assert_spin_locked(&wb->list_lock);
1167 	assert_spin_locked(&inode->i_lock);
1168 
1169 	inode->i_state &= ~I_SYNC_QUEUED;
1170 	list_del_init(&inode->i_io_list);
1171 	wb_io_lists_depopulated(wb);
1172 }
1173 
1174 static struct bdi_writeback *
1175 locked_inode_to_wb_and_lock_list(struct inode *inode)
1176 	__releases(&inode->i_lock)
1177 	__acquires(&wb->list_lock)
1178 {
1179 	struct bdi_writeback *wb = inode_to_wb(inode);
1180 
1181 	spin_unlock(&inode->i_lock);
1182 	spin_lock(&wb->list_lock);
1183 	return wb;
1184 }
1185 
1186 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1187 	__acquires(&wb->list_lock)
1188 {
1189 	struct bdi_writeback *wb = inode_to_wb(inode);
1190 
1191 	spin_lock(&wb->list_lock);
1192 	return wb;
1193 }
1194 
1195 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1196 {
1197 	return nr_pages;
1198 }
1199 
1200 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1201 				  struct wb_writeback_work *base_work,
1202 				  bool skip_if_busy)
1203 {
1204 	might_sleep();
1205 
1206 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1207 		base_work->auto_free = 0;
1208 		wb_queue_work(&bdi->wb, base_work);
1209 	}
1210 }
1211 
1212 #endif	/* CONFIG_CGROUP_WRITEBACK */
1213 
1214 /*
1215  * Add in the number of potentially dirty inodes, because each inode
1216  * write can dirty pagecache in the underlying blockdev.
1217  */
1218 static unsigned long get_nr_dirty_pages(void)
1219 {
1220 	return global_node_page_state(NR_FILE_DIRTY) +
1221 		get_nr_dirty_inodes();
1222 }
1223 
1224 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1225 {
1226 	if (!wb_has_dirty_io(wb))
1227 		return;
1228 
1229 	/*
1230 	 * All callers of this function want to start writeback of all
1231 	 * dirty pages. Places like vmscan can call this at a very
1232 	 * high frequency, causing pointless allocations of tons of
1233 	 * work items and keeping the flusher threads busy retrieving
1234 	 * that work. Ensure that we only allow one of them pending and
1235 	 * inflight at the time.
1236 	 */
1237 	if (test_bit(WB_start_all, &wb->state) ||
1238 	    test_and_set_bit(WB_start_all, &wb->state))
1239 		return;
1240 
1241 	wb->start_all_reason = reason;
1242 	wb_wakeup(wb);
1243 }
1244 
1245 /**
1246  * wb_start_background_writeback - start background writeback
1247  * @wb: bdi_writback to write from
1248  *
1249  * Description:
1250  *   This makes sure WB_SYNC_NONE background writeback happens. When
1251  *   this function returns, it is only guaranteed that for given wb
1252  *   some IO is happening if we are over background dirty threshold.
1253  *   Caller need not hold sb s_umount semaphore.
1254  */
1255 void wb_start_background_writeback(struct bdi_writeback *wb)
1256 {
1257 	/*
1258 	 * We just wake up the flusher thread. It will perform background
1259 	 * writeback as soon as there is no other work to do.
1260 	 */
1261 	trace_writeback_wake_background(wb);
1262 	wb_wakeup(wb);
1263 }
1264 
1265 /*
1266  * Remove the inode from the writeback list it is on.
1267  */
1268 void inode_io_list_del(struct inode *inode)
1269 {
1270 	struct bdi_writeback *wb;
1271 
1272 	wb = inode_to_wb_and_lock_list(inode);
1273 	spin_lock(&inode->i_lock);
1274 
1275 	inode->i_state &= ~I_SYNC_QUEUED;
1276 	list_del_init(&inode->i_io_list);
1277 	wb_io_lists_depopulated(wb);
1278 
1279 	spin_unlock(&inode->i_lock);
1280 	spin_unlock(&wb->list_lock);
1281 }
1282 EXPORT_SYMBOL(inode_io_list_del);
1283 
1284 /*
1285  * mark an inode as under writeback on the sb
1286  */
1287 void sb_mark_inode_writeback(struct inode *inode)
1288 {
1289 	struct super_block *sb = inode->i_sb;
1290 	unsigned long flags;
1291 
1292 	if (list_empty(&inode->i_wb_list)) {
1293 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1294 		if (list_empty(&inode->i_wb_list)) {
1295 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1296 			trace_sb_mark_inode_writeback(inode);
1297 		}
1298 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1299 	}
1300 }
1301 
1302 /*
1303  * clear an inode as under writeback on the sb
1304  */
1305 void sb_clear_inode_writeback(struct inode *inode)
1306 {
1307 	struct super_block *sb = inode->i_sb;
1308 	unsigned long flags;
1309 
1310 	if (!list_empty(&inode->i_wb_list)) {
1311 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1312 		if (!list_empty(&inode->i_wb_list)) {
1313 			list_del_init(&inode->i_wb_list);
1314 			trace_sb_clear_inode_writeback(inode);
1315 		}
1316 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1317 	}
1318 }
1319 
1320 /*
1321  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1322  * furthest end of its superblock's dirty-inode list.
1323  *
1324  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1325  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1326  * the case then the inode must have been redirtied while it was being written
1327  * out and we don't reset its dirtied_when.
1328  */
1329 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1330 {
1331 	assert_spin_locked(&inode->i_lock);
1332 
1333 	if (!list_empty(&wb->b_dirty)) {
1334 		struct inode *tail;
1335 
1336 		tail = wb_inode(wb->b_dirty.next);
1337 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1338 			inode->dirtied_when = jiffies;
1339 	}
1340 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1341 	inode->i_state &= ~I_SYNC_QUEUED;
1342 }
1343 
1344 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1345 {
1346 	spin_lock(&inode->i_lock);
1347 	redirty_tail_locked(inode, wb);
1348 	spin_unlock(&inode->i_lock);
1349 }
1350 
1351 /*
1352  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1353  */
1354 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1355 {
1356 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1357 }
1358 
1359 static void inode_sync_complete(struct inode *inode)
1360 {
1361 	inode->i_state &= ~I_SYNC;
1362 	/* If inode is clean an unused, put it into LRU now... */
1363 	inode_add_lru(inode);
1364 	/* Waiters must see I_SYNC cleared before being woken up */
1365 	smp_mb();
1366 	wake_up_bit(&inode->i_state, __I_SYNC);
1367 }
1368 
1369 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1370 {
1371 	bool ret = time_after(inode->dirtied_when, t);
1372 #ifndef CONFIG_64BIT
1373 	/*
1374 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1375 	 * It _appears_ to be in the future, but is actually in distant past.
1376 	 * This test is necessary to prevent such wrapped-around relative times
1377 	 * from permanently stopping the whole bdi writeback.
1378 	 */
1379 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1380 #endif
1381 	return ret;
1382 }
1383 
1384 #define EXPIRE_DIRTY_ATIME 0x0001
1385 
1386 /*
1387  * Move expired (dirtied before dirtied_before) dirty inodes from
1388  * @delaying_queue to @dispatch_queue.
1389  */
1390 static int move_expired_inodes(struct list_head *delaying_queue,
1391 			       struct list_head *dispatch_queue,
1392 			       unsigned long dirtied_before)
1393 {
1394 	LIST_HEAD(tmp);
1395 	struct list_head *pos, *node;
1396 	struct super_block *sb = NULL;
1397 	struct inode *inode;
1398 	int do_sb_sort = 0;
1399 	int moved = 0;
1400 
1401 	while (!list_empty(delaying_queue)) {
1402 		inode = wb_inode(delaying_queue->prev);
1403 		if (inode_dirtied_after(inode, dirtied_before))
1404 			break;
1405 		list_move(&inode->i_io_list, &tmp);
1406 		moved++;
1407 		spin_lock(&inode->i_lock);
1408 		inode->i_state |= I_SYNC_QUEUED;
1409 		spin_unlock(&inode->i_lock);
1410 		if (sb_is_blkdev_sb(inode->i_sb))
1411 			continue;
1412 		if (sb && sb != inode->i_sb)
1413 			do_sb_sort = 1;
1414 		sb = inode->i_sb;
1415 	}
1416 
1417 	/* just one sb in list, splice to dispatch_queue and we're done */
1418 	if (!do_sb_sort) {
1419 		list_splice(&tmp, dispatch_queue);
1420 		goto out;
1421 	}
1422 
1423 	/* Move inodes from one superblock together */
1424 	while (!list_empty(&tmp)) {
1425 		sb = wb_inode(tmp.prev)->i_sb;
1426 		list_for_each_prev_safe(pos, node, &tmp) {
1427 			inode = wb_inode(pos);
1428 			if (inode->i_sb == sb)
1429 				list_move(&inode->i_io_list, dispatch_queue);
1430 		}
1431 	}
1432 out:
1433 	return moved;
1434 }
1435 
1436 /*
1437  * Queue all expired dirty inodes for io, eldest first.
1438  * Before
1439  *         newly dirtied     b_dirty    b_io    b_more_io
1440  *         =============>    gf         edc     BA
1441  * After
1442  *         newly dirtied     b_dirty    b_io    b_more_io
1443  *         =============>    g          fBAedc
1444  *                                           |
1445  *                                           +--> dequeue for IO
1446  */
1447 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1448 		     unsigned long dirtied_before)
1449 {
1450 	int moved;
1451 	unsigned long time_expire_jif = dirtied_before;
1452 
1453 	assert_spin_locked(&wb->list_lock);
1454 	list_splice_init(&wb->b_more_io, &wb->b_io);
1455 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1456 	if (!work->for_sync)
1457 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1458 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1459 				     time_expire_jif);
1460 	if (moved)
1461 		wb_io_lists_populated(wb);
1462 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1463 }
1464 
1465 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1466 {
1467 	int ret;
1468 
1469 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1470 		trace_writeback_write_inode_start(inode, wbc);
1471 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1472 		trace_writeback_write_inode(inode, wbc);
1473 		return ret;
1474 	}
1475 	return 0;
1476 }
1477 
1478 /*
1479  * Wait for writeback on an inode to complete. Called with i_lock held.
1480  * Caller must make sure inode cannot go away when we drop i_lock.
1481  */
1482 static void __inode_wait_for_writeback(struct inode *inode)
1483 	__releases(inode->i_lock)
1484 	__acquires(inode->i_lock)
1485 {
1486 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1487 	wait_queue_head_t *wqh;
1488 
1489 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1490 	while (inode->i_state & I_SYNC) {
1491 		spin_unlock(&inode->i_lock);
1492 		__wait_on_bit(wqh, &wq, bit_wait,
1493 			      TASK_UNINTERRUPTIBLE);
1494 		spin_lock(&inode->i_lock);
1495 	}
1496 }
1497 
1498 /*
1499  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1500  */
1501 void inode_wait_for_writeback(struct inode *inode)
1502 {
1503 	spin_lock(&inode->i_lock);
1504 	__inode_wait_for_writeback(inode);
1505 	spin_unlock(&inode->i_lock);
1506 }
1507 
1508 /*
1509  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1510  * held and drops it. It is aimed for callers not holding any inode reference
1511  * so once i_lock is dropped, inode can go away.
1512  */
1513 static void inode_sleep_on_writeback(struct inode *inode)
1514 	__releases(inode->i_lock)
1515 {
1516 	DEFINE_WAIT(wait);
1517 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1518 	int sleep;
1519 
1520 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1521 	sleep = inode->i_state & I_SYNC;
1522 	spin_unlock(&inode->i_lock);
1523 	if (sleep)
1524 		schedule();
1525 	finish_wait(wqh, &wait);
1526 }
1527 
1528 /*
1529  * Find proper writeback list for the inode depending on its current state and
1530  * possibly also change of its state while we were doing writeback.  Here we
1531  * handle things such as livelock prevention or fairness of writeback among
1532  * inodes. This function can be called only by flusher thread - noone else
1533  * processes all inodes in writeback lists and requeueing inodes behind flusher
1534  * thread's back can have unexpected consequences.
1535  */
1536 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1537 			  struct writeback_control *wbc)
1538 {
1539 	if (inode->i_state & I_FREEING)
1540 		return;
1541 
1542 	/*
1543 	 * Sync livelock prevention. Each inode is tagged and synced in one
1544 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1545 	 * the dirty time to prevent enqueue and sync it again.
1546 	 */
1547 	if ((inode->i_state & I_DIRTY) &&
1548 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1549 		inode->dirtied_when = jiffies;
1550 
1551 	if (wbc->pages_skipped) {
1552 		/*
1553 		 * writeback is not making progress due to locked
1554 		 * buffers. Skip this inode for now.
1555 		 */
1556 		redirty_tail_locked(inode, wb);
1557 		return;
1558 	}
1559 
1560 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1561 		/*
1562 		 * We didn't write back all the pages.  nfs_writepages()
1563 		 * sometimes bales out without doing anything.
1564 		 */
1565 		if (wbc->nr_to_write <= 0) {
1566 			/* Slice used up. Queue for next turn. */
1567 			requeue_io(inode, wb);
1568 		} else {
1569 			/*
1570 			 * Writeback blocked by something other than
1571 			 * congestion. Delay the inode for some time to
1572 			 * avoid spinning on the CPU (100% iowait)
1573 			 * retrying writeback of the dirty page/inode
1574 			 * that cannot be performed immediately.
1575 			 */
1576 			redirty_tail_locked(inode, wb);
1577 		}
1578 	} else if (inode->i_state & I_DIRTY) {
1579 		/*
1580 		 * Filesystems can dirty the inode during writeback operations,
1581 		 * such as delayed allocation during submission or metadata
1582 		 * updates after data IO completion.
1583 		 */
1584 		redirty_tail_locked(inode, wb);
1585 	} else if (inode->i_state & I_DIRTY_TIME) {
1586 		inode->dirtied_when = jiffies;
1587 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1588 		inode->i_state &= ~I_SYNC_QUEUED;
1589 	} else {
1590 		/* The inode is clean. Remove from writeback lists. */
1591 		inode_cgwb_move_to_attached(inode, wb);
1592 	}
1593 }
1594 
1595 /*
1596  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1597  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1598  *
1599  * This doesn't remove the inode from the writeback list it is on, except
1600  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1601  * expiration.  The caller is otherwise responsible for writeback list handling.
1602  *
1603  * The caller is also responsible for setting the I_SYNC flag beforehand and
1604  * calling inode_sync_complete() to clear it afterwards.
1605  */
1606 static int
1607 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1608 {
1609 	struct address_space *mapping = inode->i_mapping;
1610 	long nr_to_write = wbc->nr_to_write;
1611 	unsigned dirty;
1612 	int ret;
1613 
1614 	WARN_ON(!(inode->i_state & I_SYNC));
1615 
1616 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1617 
1618 	ret = do_writepages(mapping, wbc);
1619 
1620 	/*
1621 	 * Make sure to wait on the data before writing out the metadata.
1622 	 * This is important for filesystems that modify metadata on data
1623 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1624 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1625 	 * inode metadata is written back correctly.
1626 	 */
1627 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1628 		int err = filemap_fdatawait(mapping);
1629 		if (ret == 0)
1630 			ret = err;
1631 	}
1632 
1633 	/*
1634 	 * If the inode has dirty timestamps and we need to write them, call
1635 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1636 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1637 	 */
1638 	if ((inode->i_state & I_DIRTY_TIME) &&
1639 	    (wbc->sync_mode == WB_SYNC_ALL ||
1640 	     time_after(jiffies, inode->dirtied_time_when +
1641 			dirtytime_expire_interval * HZ))) {
1642 		trace_writeback_lazytime(inode);
1643 		mark_inode_dirty_sync(inode);
1644 	}
1645 
1646 	/*
1647 	 * Get and clear the dirty flags from i_state.  This needs to be done
1648 	 * after calling writepages because some filesystems may redirty the
1649 	 * inode during writepages due to delalloc.  It also needs to be done
1650 	 * after handling timestamp expiration, as that may dirty the inode too.
1651 	 */
1652 	spin_lock(&inode->i_lock);
1653 	dirty = inode->i_state & I_DIRTY;
1654 	inode->i_state &= ~dirty;
1655 
1656 	/*
1657 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1658 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1659 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1660 	 * inode.
1661 	 *
1662 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1663 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1664 	 * necessary.  This guarantees that either __mark_inode_dirty()
1665 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1666 	 */
1667 	smp_mb();
1668 
1669 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1670 		inode->i_state |= I_DIRTY_PAGES;
1671 	else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) {
1672 		if (!(inode->i_state & I_DIRTY_PAGES)) {
1673 			inode->i_state &= ~I_PINNING_FSCACHE_WB;
1674 			wbc->unpinned_fscache_wb = true;
1675 			dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */
1676 		}
1677 	}
1678 
1679 	spin_unlock(&inode->i_lock);
1680 
1681 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1682 	if (dirty & ~I_DIRTY_PAGES) {
1683 		int err = write_inode(inode, wbc);
1684 		if (ret == 0)
1685 			ret = err;
1686 	}
1687 	wbc->unpinned_fscache_wb = false;
1688 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1689 	return ret;
1690 }
1691 
1692 /*
1693  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1694  * the regular batched writeback done by the flusher threads in
1695  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1696  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1697  *
1698  * To prevent the inode from going away, either the caller must have a reference
1699  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1700  */
1701 static int writeback_single_inode(struct inode *inode,
1702 				  struct writeback_control *wbc)
1703 {
1704 	struct bdi_writeback *wb;
1705 	int ret = 0;
1706 
1707 	spin_lock(&inode->i_lock);
1708 	if (!atomic_read(&inode->i_count))
1709 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1710 	else
1711 		WARN_ON(inode->i_state & I_WILL_FREE);
1712 
1713 	if (inode->i_state & I_SYNC) {
1714 		/*
1715 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1716 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1717 		 * must wait for the existing writeback to complete, then do
1718 		 * writeback again if there's anything left.
1719 		 */
1720 		if (wbc->sync_mode != WB_SYNC_ALL)
1721 			goto out;
1722 		__inode_wait_for_writeback(inode);
1723 	}
1724 	WARN_ON(inode->i_state & I_SYNC);
1725 	/*
1726 	 * If the inode is already fully clean, then there's nothing to do.
1727 	 *
1728 	 * For data-integrity syncs we also need to check whether any pages are
1729 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1730 	 * there are any such pages, we'll need to wait for them.
1731 	 */
1732 	if (!(inode->i_state & I_DIRTY_ALL) &&
1733 	    (wbc->sync_mode != WB_SYNC_ALL ||
1734 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1735 		goto out;
1736 	inode->i_state |= I_SYNC;
1737 	wbc_attach_and_unlock_inode(wbc, inode);
1738 
1739 	ret = __writeback_single_inode(inode, wbc);
1740 
1741 	wbc_detach_inode(wbc);
1742 
1743 	wb = inode_to_wb_and_lock_list(inode);
1744 	spin_lock(&inode->i_lock);
1745 	/*
1746 	 * If the inode is now fully clean, then it can be safely removed from
1747 	 * its writeback list (if any).  Otherwise the flusher threads are
1748 	 * responsible for the writeback lists.
1749 	 */
1750 	if (!(inode->i_state & I_DIRTY_ALL))
1751 		inode_cgwb_move_to_attached(inode, wb);
1752 	spin_unlock(&wb->list_lock);
1753 	inode_sync_complete(inode);
1754 out:
1755 	spin_unlock(&inode->i_lock);
1756 	return ret;
1757 }
1758 
1759 static long writeback_chunk_size(struct bdi_writeback *wb,
1760 				 struct wb_writeback_work *work)
1761 {
1762 	long pages;
1763 
1764 	/*
1765 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1766 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1767 	 * here avoids calling into writeback_inodes_wb() more than once.
1768 	 *
1769 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1770 	 *
1771 	 *      wb_writeback()
1772 	 *          writeback_sb_inodes()       <== called only once
1773 	 *              write_cache_pages()     <== called once for each inode
1774 	 *                   (quickly) tag currently dirty pages
1775 	 *                   (maybe slowly) sync all tagged pages
1776 	 */
1777 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1778 		pages = LONG_MAX;
1779 	else {
1780 		pages = min(wb->avg_write_bandwidth / 2,
1781 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1782 		pages = min(pages, work->nr_pages);
1783 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1784 				   MIN_WRITEBACK_PAGES);
1785 	}
1786 
1787 	return pages;
1788 }
1789 
1790 /*
1791  * Write a portion of b_io inodes which belong to @sb.
1792  *
1793  * Return the number of pages and/or inodes written.
1794  *
1795  * NOTE! This is called with wb->list_lock held, and will
1796  * unlock and relock that for each inode it ends up doing
1797  * IO for.
1798  */
1799 static long writeback_sb_inodes(struct super_block *sb,
1800 				struct bdi_writeback *wb,
1801 				struct wb_writeback_work *work)
1802 {
1803 	struct writeback_control wbc = {
1804 		.sync_mode		= work->sync_mode,
1805 		.tagged_writepages	= work->tagged_writepages,
1806 		.for_kupdate		= work->for_kupdate,
1807 		.for_background		= work->for_background,
1808 		.for_sync		= work->for_sync,
1809 		.range_cyclic		= work->range_cyclic,
1810 		.range_start		= 0,
1811 		.range_end		= LLONG_MAX,
1812 	};
1813 	unsigned long start_time = jiffies;
1814 	long write_chunk;
1815 	long wrote = 0;  /* count both pages and inodes */
1816 
1817 	while (!list_empty(&wb->b_io)) {
1818 		struct inode *inode = wb_inode(wb->b_io.prev);
1819 		struct bdi_writeback *tmp_wb;
1820 
1821 		if (inode->i_sb != sb) {
1822 			if (work->sb) {
1823 				/*
1824 				 * We only want to write back data for this
1825 				 * superblock, move all inodes not belonging
1826 				 * to it back onto the dirty list.
1827 				 */
1828 				redirty_tail(inode, wb);
1829 				continue;
1830 			}
1831 
1832 			/*
1833 			 * The inode belongs to a different superblock.
1834 			 * Bounce back to the caller to unpin this and
1835 			 * pin the next superblock.
1836 			 */
1837 			break;
1838 		}
1839 
1840 		/*
1841 		 * Don't bother with new inodes or inodes being freed, first
1842 		 * kind does not need periodic writeout yet, and for the latter
1843 		 * kind writeout is handled by the freer.
1844 		 */
1845 		spin_lock(&inode->i_lock);
1846 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1847 			redirty_tail_locked(inode, wb);
1848 			spin_unlock(&inode->i_lock);
1849 			continue;
1850 		}
1851 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1852 			/*
1853 			 * If this inode is locked for writeback and we are not
1854 			 * doing writeback-for-data-integrity, move it to
1855 			 * b_more_io so that writeback can proceed with the
1856 			 * other inodes on s_io.
1857 			 *
1858 			 * We'll have another go at writing back this inode
1859 			 * when we completed a full scan of b_io.
1860 			 */
1861 			spin_unlock(&inode->i_lock);
1862 			requeue_io(inode, wb);
1863 			trace_writeback_sb_inodes_requeue(inode);
1864 			continue;
1865 		}
1866 		spin_unlock(&wb->list_lock);
1867 
1868 		/*
1869 		 * We already requeued the inode if it had I_SYNC set and we
1870 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1871 		 * WB_SYNC_ALL case.
1872 		 */
1873 		if (inode->i_state & I_SYNC) {
1874 			/* Wait for I_SYNC. This function drops i_lock... */
1875 			inode_sleep_on_writeback(inode);
1876 			/* Inode may be gone, start again */
1877 			spin_lock(&wb->list_lock);
1878 			continue;
1879 		}
1880 		inode->i_state |= I_SYNC;
1881 		wbc_attach_and_unlock_inode(&wbc, inode);
1882 
1883 		write_chunk = writeback_chunk_size(wb, work);
1884 		wbc.nr_to_write = write_chunk;
1885 		wbc.pages_skipped = 0;
1886 
1887 		/*
1888 		 * We use I_SYNC to pin the inode in memory. While it is set
1889 		 * evict_inode() will wait so the inode cannot be freed.
1890 		 */
1891 		__writeback_single_inode(inode, &wbc);
1892 
1893 		wbc_detach_inode(&wbc);
1894 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1895 		wrote += write_chunk - wbc.nr_to_write;
1896 
1897 		if (need_resched()) {
1898 			/*
1899 			 * We're trying to balance between building up a nice
1900 			 * long list of IOs to improve our merge rate, and
1901 			 * getting those IOs out quickly for anyone throttling
1902 			 * in balance_dirty_pages().  cond_resched() doesn't
1903 			 * unplug, so get our IOs out the door before we
1904 			 * give up the CPU.
1905 			 */
1906 			if (current->plug)
1907 				blk_flush_plug(current->plug, false);
1908 			cond_resched();
1909 		}
1910 
1911 		/*
1912 		 * Requeue @inode if still dirty.  Be careful as @inode may
1913 		 * have been switched to another wb in the meantime.
1914 		 */
1915 		tmp_wb = inode_to_wb_and_lock_list(inode);
1916 		spin_lock(&inode->i_lock);
1917 		if (!(inode->i_state & I_DIRTY_ALL))
1918 			wrote++;
1919 		requeue_inode(inode, tmp_wb, &wbc);
1920 		inode_sync_complete(inode);
1921 		spin_unlock(&inode->i_lock);
1922 
1923 		if (unlikely(tmp_wb != wb)) {
1924 			spin_unlock(&tmp_wb->list_lock);
1925 			spin_lock(&wb->list_lock);
1926 		}
1927 
1928 		/*
1929 		 * bail out to wb_writeback() often enough to check
1930 		 * background threshold and other termination conditions.
1931 		 */
1932 		if (wrote) {
1933 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1934 				break;
1935 			if (work->nr_pages <= 0)
1936 				break;
1937 		}
1938 	}
1939 	return wrote;
1940 }
1941 
1942 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1943 				  struct wb_writeback_work *work)
1944 {
1945 	unsigned long start_time = jiffies;
1946 	long wrote = 0;
1947 
1948 	while (!list_empty(&wb->b_io)) {
1949 		struct inode *inode = wb_inode(wb->b_io.prev);
1950 		struct super_block *sb = inode->i_sb;
1951 
1952 		if (!trylock_super(sb)) {
1953 			/*
1954 			 * trylock_super() may fail consistently due to
1955 			 * s_umount being grabbed by someone else. Don't use
1956 			 * requeue_io() to avoid busy retrying the inode/sb.
1957 			 */
1958 			redirty_tail(inode, wb);
1959 			continue;
1960 		}
1961 		wrote += writeback_sb_inodes(sb, wb, work);
1962 		up_read(&sb->s_umount);
1963 
1964 		/* refer to the same tests at the end of writeback_sb_inodes */
1965 		if (wrote) {
1966 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1967 				break;
1968 			if (work->nr_pages <= 0)
1969 				break;
1970 		}
1971 	}
1972 	/* Leave any unwritten inodes on b_io */
1973 	return wrote;
1974 }
1975 
1976 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1977 				enum wb_reason reason)
1978 {
1979 	struct wb_writeback_work work = {
1980 		.nr_pages	= nr_pages,
1981 		.sync_mode	= WB_SYNC_NONE,
1982 		.range_cyclic	= 1,
1983 		.reason		= reason,
1984 	};
1985 	struct blk_plug plug;
1986 
1987 	blk_start_plug(&plug);
1988 	spin_lock(&wb->list_lock);
1989 	if (list_empty(&wb->b_io))
1990 		queue_io(wb, &work, jiffies);
1991 	__writeback_inodes_wb(wb, &work);
1992 	spin_unlock(&wb->list_lock);
1993 	blk_finish_plug(&plug);
1994 
1995 	return nr_pages - work.nr_pages;
1996 }
1997 
1998 /*
1999  * Explicit flushing or periodic writeback of "old" data.
2000  *
2001  * Define "old": the first time one of an inode's pages is dirtied, we mark the
2002  * dirtying-time in the inode's address_space.  So this periodic writeback code
2003  * just walks the superblock inode list, writing back any inodes which are
2004  * older than a specific point in time.
2005  *
2006  * Try to run once per dirty_writeback_interval.  But if a writeback event
2007  * takes longer than a dirty_writeback_interval interval, then leave a
2008  * one-second gap.
2009  *
2010  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2011  * all dirty pages if they are all attached to "old" mappings.
2012  */
2013 static long wb_writeback(struct bdi_writeback *wb,
2014 			 struct wb_writeback_work *work)
2015 {
2016 	long nr_pages = work->nr_pages;
2017 	unsigned long dirtied_before = jiffies;
2018 	struct inode *inode;
2019 	long progress;
2020 	struct blk_plug plug;
2021 
2022 	blk_start_plug(&plug);
2023 	spin_lock(&wb->list_lock);
2024 	for (;;) {
2025 		/*
2026 		 * Stop writeback when nr_pages has been consumed
2027 		 */
2028 		if (work->nr_pages <= 0)
2029 			break;
2030 
2031 		/*
2032 		 * Background writeout and kupdate-style writeback may
2033 		 * run forever. Stop them if there is other work to do
2034 		 * so that e.g. sync can proceed. They'll be restarted
2035 		 * after the other works are all done.
2036 		 */
2037 		if ((work->for_background || work->for_kupdate) &&
2038 		    !list_empty(&wb->work_list))
2039 			break;
2040 
2041 		/*
2042 		 * For background writeout, stop when we are below the
2043 		 * background dirty threshold
2044 		 */
2045 		if (work->for_background && !wb_over_bg_thresh(wb))
2046 			break;
2047 
2048 		/*
2049 		 * Kupdate and background works are special and we want to
2050 		 * include all inodes that need writing. Livelock avoidance is
2051 		 * handled by these works yielding to any other work so we are
2052 		 * safe.
2053 		 */
2054 		if (work->for_kupdate) {
2055 			dirtied_before = jiffies -
2056 				msecs_to_jiffies(dirty_expire_interval * 10);
2057 		} else if (work->for_background)
2058 			dirtied_before = jiffies;
2059 
2060 		trace_writeback_start(wb, work);
2061 		if (list_empty(&wb->b_io))
2062 			queue_io(wb, work, dirtied_before);
2063 		if (work->sb)
2064 			progress = writeback_sb_inodes(work->sb, wb, work);
2065 		else
2066 			progress = __writeback_inodes_wb(wb, work);
2067 		trace_writeback_written(wb, work);
2068 
2069 		/*
2070 		 * Did we write something? Try for more
2071 		 *
2072 		 * Dirty inodes are moved to b_io for writeback in batches.
2073 		 * The completion of the current batch does not necessarily
2074 		 * mean the overall work is done. So we keep looping as long
2075 		 * as made some progress on cleaning pages or inodes.
2076 		 */
2077 		if (progress)
2078 			continue;
2079 		/*
2080 		 * No more inodes for IO, bail
2081 		 */
2082 		if (list_empty(&wb->b_more_io))
2083 			break;
2084 		/*
2085 		 * Nothing written. Wait for some inode to
2086 		 * become available for writeback. Otherwise
2087 		 * we'll just busyloop.
2088 		 */
2089 		trace_writeback_wait(wb, work);
2090 		inode = wb_inode(wb->b_more_io.prev);
2091 		spin_lock(&inode->i_lock);
2092 		spin_unlock(&wb->list_lock);
2093 		/* This function drops i_lock... */
2094 		inode_sleep_on_writeback(inode);
2095 		spin_lock(&wb->list_lock);
2096 	}
2097 	spin_unlock(&wb->list_lock);
2098 	blk_finish_plug(&plug);
2099 
2100 	return nr_pages - work->nr_pages;
2101 }
2102 
2103 /*
2104  * Return the next wb_writeback_work struct that hasn't been processed yet.
2105  */
2106 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2107 {
2108 	struct wb_writeback_work *work = NULL;
2109 
2110 	spin_lock_bh(&wb->work_lock);
2111 	if (!list_empty(&wb->work_list)) {
2112 		work = list_entry(wb->work_list.next,
2113 				  struct wb_writeback_work, list);
2114 		list_del_init(&work->list);
2115 	}
2116 	spin_unlock_bh(&wb->work_lock);
2117 	return work;
2118 }
2119 
2120 static long wb_check_background_flush(struct bdi_writeback *wb)
2121 {
2122 	if (wb_over_bg_thresh(wb)) {
2123 
2124 		struct wb_writeback_work work = {
2125 			.nr_pages	= LONG_MAX,
2126 			.sync_mode	= WB_SYNC_NONE,
2127 			.for_background	= 1,
2128 			.range_cyclic	= 1,
2129 			.reason		= WB_REASON_BACKGROUND,
2130 		};
2131 
2132 		return wb_writeback(wb, &work);
2133 	}
2134 
2135 	return 0;
2136 }
2137 
2138 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2139 {
2140 	unsigned long expired;
2141 	long nr_pages;
2142 
2143 	/*
2144 	 * When set to zero, disable periodic writeback
2145 	 */
2146 	if (!dirty_writeback_interval)
2147 		return 0;
2148 
2149 	expired = wb->last_old_flush +
2150 			msecs_to_jiffies(dirty_writeback_interval * 10);
2151 	if (time_before(jiffies, expired))
2152 		return 0;
2153 
2154 	wb->last_old_flush = jiffies;
2155 	nr_pages = get_nr_dirty_pages();
2156 
2157 	if (nr_pages) {
2158 		struct wb_writeback_work work = {
2159 			.nr_pages	= nr_pages,
2160 			.sync_mode	= WB_SYNC_NONE,
2161 			.for_kupdate	= 1,
2162 			.range_cyclic	= 1,
2163 			.reason		= WB_REASON_PERIODIC,
2164 		};
2165 
2166 		return wb_writeback(wb, &work);
2167 	}
2168 
2169 	return 0;
2170 }
2171 
2172 static long wb_check_start_all(struct bdi_writeback *wb)
2173 {
2174 	long nr_pages;
2175 
2176 	if (!test_bit(WB_start_all, &wb->state))
2177 		return 0;
2178 
2179 	nr_pages = get_nr_dirty_pages();
2180 	if (nr_pages) {
2181 		struct wb_writeback_work work = {
2182 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2183 			.sync_mode	= WB_SYNC_NONE,
2184 			.range_cyclic	= 1,
2185 			.reason		= wb->start_all_reason,
2186 		};
2187 
2188 		nr_pages = wb_writeback(wb, &work);
2189 	}
2190 
2191 	clear_bit(WB_start_all, &wb->state);
2192 	return nr_pages;
2193 }
2194 
2195 
2196 /*
2197  * Retrieve work items and do the writeback they describe
2198  */
2199 static long wb_do_writeback(struct bdi_writeback *wb)
2200 {
2201 	struct wb_writeback_work *work;
2202 	long wrote = 0;
2203 
2204 	set_bit(WB_writeback_running, &wb->state);
2205 	while ((work = get_next_work_item(wb)) != NULL) {
2206 		trace_writeback_exec(wb, work);
2207 		wrote += wb_writeback(wb, work);
2208 		finish_writeback_work(wb, work);
2209 	}
2210 
2211 	/*
2212 	 * Check for a flush-everything request
2213 	 */
2214 	wrote += wb_check_start_all(wb);
2215 
2216 	/*
2217 	 * Check for periodic writeback, kupdated() style
2218 	 */
2219 	wrote += wb_check_old_data_flush(wb);
2220 	wrote += wb_check_background_flush(wb);
2221 	clear_bit(WB_writeback_running, &wb->state);
2222 
2223 	return wrote;
2224 }
2225 
2226 /*
2227  * Handle writeback of dirty data for the device backed by this bdi. Also
2228  * reschedules periodically and does kupdated style flushing.
2229  */
2230 void wb_workfn(struct work_struct *work)
2231 {
2232 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2233 						struct bdi_writeback, dwork);
2234 	long pages_written;
2235 
2236 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2237 	current->flags |= PF_SWAPWRITE;
2238 
2239 	if (likely(!current_is_workqueue_rescuer() ||
2240 		   !test_bit(WB_registered, &wb->state))) {
2241 		/*
2242 		 * The normal path.  Keep writing back @wb until its
2243 		 * work_list is empty.  Note that this path is also taken
2244 		 * if @wb is shutting down even when we're running off the
2245 		 * rescuer as work_list needs to be drained.
2246 		 */
2247 		do {
2248 			pages_written = wb_do_writeback(wb);
2249 			trace_writeback_pages_written(pages_written);
2250 		} while (!list_empty(&wb->work_list));
2251 	} else {
2252 		/*
2253 		 * bdi_wq can't get enough workers and we're running off
2254 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2255 		 * enough for efficient IO.
2256 		 */
2257 		pages_written = writeback_inodes_wb(wb, 1024,
2258 						    WB_REASON_FORKER_THREAD);
2259 		trace_writeback_pages_written(pages_written);
2260 	}
2261 
2262 	if (!list_empty(&wb->work_list))
2263 		wb_wakeup(wb);
2264 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2265 		wb_wakeup_delayed(wb);
2266 
2267 	current->flags &= ~PF_SWAPWRITE;
2268 }
2269 
2270 /*
2271  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2272  * write back the whole world.
2273  */
2274 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2275 					 enum wb_reason reason)
2276 {
2277 	struct bdi_writeback *wb;
2278 
2279 	if (!bdi_has_dirty_io(bdi))
2280 		return;
2281 
2282 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2283 		wb_start_writeback(wb, reason);
2284 }
2285 
2286 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2287 				enum wb_reason reason)
2288 {
2289 	rcu_read_lock();
2290 	__wakeup_flusher_threads_bdi(bdi, reason);
2291 	rcu_read_unlock();
2292 }
2293 
2294 /*
2295  * Wakeup the flusher threads to start writeback of all currently dirty pages
2296  */
2297 void wakeup_flusher_threads(enum wb_reason reason)
2298 {
2299 	struct backing_dev_info *bdi;
2300 
2301 	/*
2302 	 * If we are expecting writeback progress we must submit plugged IO.
2303 	 */
2304 	if (blk_needs_flush_plug(current))
2305 		blk_flush_plug(current->plug, true);
2306 
2307 	rcu_read_lock();
2308 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2309 		__wakeup_flusher_threads_bdi(bdi, reason);
2310 	rcu_read_unlock();
2311 }
2312 
2313 /*
2314  * Wake up bdi's periodically to make sure dirtytime inodes gets
2315  * written back periodically.  We deliberately do *not* check the
2316  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2317  * kernel to be constantly waking up once there are any dirtytime
2318  * inodes on the system.  So instead we define a separate delayed work
2319  * function which gets called much more rarely.  (By default, only
2320  * once every 12 hours.)
2321  *
2322  * If there is any other write activity going on in the file system,
2323  * this function won't be necessary.  But if the only thing that has
2324  * happened on the file system is a dirtytime inode caused by an atime
2325  * update, we need this infrastructure below to make sure that inode
2326  * eventually gets pushed out to disk.
2327  */
2328 static void wakeup_dirtytime_writeback(struct work_struct *w);
2329 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2330 
2331 static void wakeup_dirtytime_writeback(struct work_struct *w)
2332 {
2333 	struct backing_dev_info *bdi;
2334 
2335 	rcu_read_lock();
2336 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2337 		struct bdi_writeback *wb;
2338 
2339 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2340 			if (!list_empty(&wb->b_dirty_time))
2341 				wb_wakeup(wb);
2342 	}
2343 	rcu_read_unlock();
2344 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2345 }
2346 
2347 static int __init start_dirtytime_writeback(void)
2348 {
2349 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2350 	return 0;
2351 }
2352 __initcall(start_dirtytime_writeback);
2353 
2354 int dirtytime_interval_handler(struct ctl_table *table, int write,
2355 			       void *buffer, size_t *lenp, loff_t *ppos)
2356 {
2357 	int ret;
2358 
2359 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2360 	if (ret == 0 && write)
2361 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2362 	return ret;
2363 }
2364 
2365 /**
2366  * __mark_inode_dirty -	internal function to mark an inode dirty
2367  *
2368  * @inode: inode to mark
2369  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2370  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2371  *	   with I_DIRTY_PAGES.
2372  *
2373  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2374  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2375  *
2376  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2377  * instead of calling this directly.
2378  *
2379  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2380  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2381  * even if they are later hashed, as they will have been marked dirty already.
2382  *
2383  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2384  *
2385  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2386  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2387  * the kernel-internal blockdev inode represents the dirtying time of the
2388  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2389  * page->mapping->host, so the page-dirtying time is recorded in the internal
2390  * blockdev inode.
2391  */
2392 void __mark_inode_dirty(struct inode *inode, int flags)
2393 {
2394 	struct super_block *sb = inode->i_sb;
2395 	int dirtytime = 0;
2396 
2397 	trace_writeback_mark_inode_dirty(inode, flags);
2398 
2399 	if (flags & I_DIRTY_INODE) {
2400 		/*
2401 		 * Notify the filesystem about the inode being dirtied, so that
2402 		 * (if needed) it can update on-disk fields and journal the
2403 		 * inode.  This is only needed when the inode itself is being
2404 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2405 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2406 		 */
2407 		trace_writeback_dirty_inode_start(inode, flags);
2408 		if (sb->s_op->dirty_inode)
2409 			sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2410 		trace_writeback_dirty_inode(inode, flags);
2411 
2412 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2413 		flags &= ~I_DIRTY_TIME;
2414 	} else {
2415 		/*
2416 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2417 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2418 		 * in one call to __mark_inode_dirty().)
2419 		 */
2420 		dirtytime = flags & I_DIRTY_TIME;
2421 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2422 	}
2423 
2424 	/*
2425 	 * Paired with smp_mb() in __writeback_single_inode() for the
2426 	 * following lockless i_state test.  See there for details.
2427 	 */
2428 	smp_mb();
2429 
2430 	if (((inode->i_state & flags) == flags) ||
2431 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2432 		return;
2433 
2434 	spin_lock(&inode->i_lock);
2435 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2436 		goto out_unlock_inode;
2437 	if ((inode->i_state & flags) != flags) {
2438 		const int was_dirty = inode->i_state & I_DIRTY;
2439 
2440 		inode_attach_wb(inode, NULL);
2441 
2442 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2443 		if (flags & I_DIRTY_INODE)
2444 			inode->i_state &= ~I_DIRTY_TIME;
2445 		inode->i_state |= flags;
2446 
2447 		/*
2448 		 * If the inode is queued for writeback by flush worker, just
2449 		 * update its dirty state. Once the flush worker is done with
2450 		 * the inode it will place it on the appropriate superblock
2451 		 * list, based upon its state.
2452 		 */
2453 		if (inode->i_state & I_SYNC_QUEUED)
2454 			goto out_unlock_inode;
2455 
2456 		/*
2457 		 * Only add valid (hashed) inodes to the superblock's
2458 		 * dirty list.  Add blockdev inodes as well.
2459 		 */
2460 		if (!S_ISBLK(inode->i_mode)) {
2461 			if (inode_unhashed(inode))
2462 				goto out_unlock_inode;
2463 		}
2464 		if (inode->i_state & I_FREEING)
2465 			goto out_unlock_inode;
2466 
2467 		/*
2468 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2469 		 * reposition it (that would break b_dirty time-ordering).
2470 		 */
2471 		if (!was_dirty) {
2472 			struct bdi_writeback *wb;
2473 			struct list_head *dirty_list;
2474 			bool wakeup_bdi = false;
2475 
2476 			wb = locked_inode_to_wb_and_lock_list(inode);
2477 
2478 			inode->dirtied_when = jiffies;
2479 			if (dirtytime)
2480 				inode->dirtied_time_when = jiffies;
2481 
2482 			if (inode->i_state & I_DIRTY)
2483 				dirty_list = &wb->b_dirty;
2484 			else
2485 				dirty_list = &wb->b_dirty_time;
2486 
2487 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2488 							       dirty_list);
2489 
2490 			spin_unlock(&wb->list_lock);
2491 			trace_writeback_dirty_inode_enqueue(inode);
2492 
2493 			/*
2494 			 * If this is the first dirty inode for this bdi,
2495 			 * we have to wake-up the corresponding bdi thread
2496 			 * to make sure background write-back happens
2497 			 * later.
2498 			 */
2499 			if (wakeup_bdi &&
2500 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2501 				wb_wakeup_delayed(wb);
2502 			return;
2503 		}
2504 	}
2505 out_unlock_inode:
2506 	spin_unlock(&inode->i_lock);
2507 }
2508 EXPORT_SYMBOL(__mark_inode_dirty);
2509 
2510 /*
2511  * The @s_sync_lock is used to serialise concurrent sync operations
2512  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2513  * Concurrent callers will block on the s_sync_lock rather than doing contending
2514  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2515  * has been issued up to the time this function is enter is guaranteed to be
2516  * completed by the time we have gained the lock and waited for all IO that is
2517  * in progress regardless of the order callers are granted the lock.
2518  */
2519 static void wait_sb_inodes(struct super_block *sb)
2520 {
2521 	LIST_HEAD(sync_list);
2522 
2523 	/*
2524 	 * We need to be protected against the filesystem going from
2525 	 * r/o to r/w or vice versa.
2526 	 */
2527 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2528 
2529 	mutex_lock(&sb->s_sync_lock);
2530 
2531 	/*
2532 	 * Splice the writeback list onto a temporary list to avoid waiting on
2533 	 * inodes that have started writeback after this point.
2534 	 *
2535 	 * Use rcu_read_lock() to keep the inodes around until we have a
2536 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2537 	 * the local list because inodes can be dropped from either by writeback
2538 	 * completion.
2539 	 */
2540 	rcu_read_lock();
2541 	spin_lock_irq(&sb->s_inode_wblist_lock);
2542 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2543 
2544 	/*
2545 	 * Data integrity sync. Must wait for all pages under writeback, because
2546 	 * there may have been pages dirtied before our sync call, but which had
2547 	 * writeout started before we write it out.  In which case, the inode
2548 	 * may not be on the dirty list, but we still have to wait for that
2549 	 * writeout.
2550 	 */
2551 	while (!list_empty(&sync_list)) {
2552 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2553 						       i_wb_list);
2554 		struct address_space *mapping = inode->i_mapping;
2555 
2556 		/*
2557 		 * Move each inode back to the wb list before we drop the lock
2558 		 * to preserve consistency between i_wb_list and the mapping
2559 		 * writeback tag. Writeback completion is responsible to remove
2560 		 * the inode from either list once the writeback tag is cleared.
2561 		 */
2562 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2563 
2564 		/*
2565 		 * The mapping can appear untagged while still on-list since we
2566 		 * do not have the mapping lock. Skip it here, wb completion
2567 		 * will remove it.
2568 		 */
2569 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2570 			continue;
2571 
2572 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2573 
2574 		spin_lock(&inode->i_lock);
2575 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2576 			spin_unlock(&inode->i_lock);
2577 
2578 			spin_lock_irq(&sb->s_inode_wblist_lock);
2579 			continue;
2580 		}
2581 		__iget(inode);
2582 		spin_unlock(&inode->i_lock);
2583 		rcu_read_unlock();
2584 
2585 		/*
2586 		 * We keep the error status of individual mapping so that
2587 		 * applications can catch the writeback error using fsync(2).
2588 		 * See filemap_fdatawait_keep_errors() for details.
2589 		 */
2590 		filemap_fdatawait_keep_errors(mapping);
2591 
2592 		cond_resched();
2593 
2594 		iput(inode);
2595 
2596 		rcu_read_lock();
2597 		spin_lock_irq(&sb->s_inode_wblist_lock);
2598 	}
2599 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2600 	rcu_read_unlock();
2601 	mutex_unlock(&sb->s_sync_lock);
2602 }
2603 
2604 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2605 				     enum wb_reason reason, bool skip_if_busy)
2606 {
2607 	struct backing_dev_info *bdi = sb->s_bdi;
2608 	DEFINE_WB_COMPLETION(done, bdi);
2609 	struct wb_writeback_work work = {
2610 		.sb			= sb,
2611 		.sync_mode		= WB_SYNC_NONE,
2612 		.tagged_writepages	= 1,
2613 		.done			= &done,
2614 		.nr_pages		= nr,
2615 		.reason			= reason,
2616 	};
2617 
2618 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2619 		return;
2620 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2621 
2622 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2623 	wb_wait_for_completion(&done);
2624 }
2625 
2626 /**
2627  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2628  * @sb: the superblock
2629  * @nr: the number of pages to write
2630  * @reason: reason why some writeback work initiated
2631  *
2632  * Start writeback on some inodes on this super_block. No guarantees are made
2633  * on how many (if any) will be written, and this function does not wait
2634  * for IO completion of submitted IO.
2635  */
2636 void writeback_inodes_sb_nr(struct super_block *sb,
2637 			    unsigned long nr,
2638 			    enum wb_reason reason)
2639 {
2640 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2641 }
2642 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2643 
2644 /**
2645  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2646  * @sb: the superblock
2647  * @reason: reason why some writeback work was initiated
2648  *
2649  * Start writeback on some inodes on this super_block. No guarantees are made
2650  * on how many (if any) will be written, and this function does not wait
2651  * for IO completion of submitted IO.
2652  */
2653 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2654 {
2655 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2656 }
2657 EXPORT_SYMBOL(writeback_inodes_sb);
2658 
2659 /**
2660  * try_to_writeback_inodes_sb - try to start writeback if none underway
2661  * @sb: the superblock
2662  * @reason: reason why some writeback work was initiated
2663  *
2664  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2665  */
2666 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2667 {
2668 	if (!down_read_trylock(&sb->s_umount))
2669 		return;
2670 
2671 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2672 	up_read(&sb->s_umount);
2673 }
2674 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2675 
2676 /**
2677  * sync_inodes_sb	-	sync sb inode pages
2678  * @sb: the superblock
2679  *
2680  * This function writes and waits on any dirty inode belonging to this
2681  * super_block.
2682  */
2683 void sync_inodes_sb(struct super_block *sb)
2684 {
2685 	struct backing_dev_info *bdi = sb->s_bdi;
2686 	DEFINE_WB_COMPLETION(done, bdi);
2687 	struct wb_writeback_work work = {
2688 		.sb		= sb,
2689 		.sync_mode	= WB_SYNC_ALL,
2690 		.nr_pages	= LONG_MAX,
2691 		.range_cyclic	= 0,
2692 		.done		= &done,
2693 		.reason		= WB_REASON_SYNC,
2694 		.for_sync	= 1,
2695 	};
2696 
2697 	/*
2698 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2699 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2700 	 * bdi_has_dirty() need to be written out too.
2701 	 */
2702 	if (bdi == &noop_backing_dev_info)
2703 		return;
2704 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2705 
2706 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2707 	bdi_down_write_wb_switch_rwsem(bdi);
2708 	bdi_split_work_to_wbs(bdi, &work, false);
2709 	wb_wait_for_completion(&done);
2710 	bdi_up_write_wb_switch_rwsem(bdi);
2711 
2712 	wait_sb_inodes(sb);
2713 }
2714 EXPORT_SYMBOL(sync_inodes_sb);
2715 
2716 /**
2717  * write_inode_now	-	write an inode to disk
2718  * @inode: inode to write to disk
2719  * @sync: whether the write should be synchronous or not
2720  *
2721  * This function commits an inode to disk immediately if it is dirty. This is
2722  * primarily needed by knfsd.
2723  *
2724  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2725  */
2726 int write_inode_now(struct inode *inode, int sync)
2727 {
2728 	struct writeback_control wbc = {
2729 		.nr_to_write = LONG_MAX,
2730 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2731 		.range_start = 0,
2732 		.range_end = LLONG_MAX,
2733 	};
2734 
2735 	if (!mapping_can_writeback(inode->i_mapping))
2736 		wbc.nr_to_write = 0;
2737 
2738 	might_sleep();
2739 	return writeback_single_inode(inode, &wbc);
2740 }
2741 EXPORT_SYMBOL(write_inode_now);
2742 
2743 /**
2744  * sync_inode_metadata - write an inode to disk
2745  * @inode: the inode to sync
2746  * @wait: wait for I/O to complete.
2747  *
2748  * Write an inode to disk and adjust its dirty state after completion.
2749  *
2750  * Note: only writes the actual inode, no associated data or other metadata.
2751  */
2752 int sync_inode_metadata(struct inode *inode, int wait)
2753 {
2754 	struct writeback_control wbc = {
2755 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2756 		.nr_to_write = 0, /* metadata-only */
2757 	};
2758 
2759 	return writeback_single_inode(inode, &wbc);
2760 }
2761 EXPORT_SYMBOL(sync_inode_metadata);
2762