1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 unsigned long *older_than_this; 46 enum writeback_sync_modes sync_mode; 47 unsigned int tagged_writepages:1; 48 unsigned int for_kupdate:1; 49 unsigned int range_cyclic:1; 50 unsigned int for_background:1; 51 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 52 unsigned int auto_free:1; /* free on completion */ 53 enum wb_reason reason; /* why was writeback initiated? */ 54 55 struct list_head list; /* pending work list */ 56 struct wb_completion *done; /* set if the caller waits */ 57 }; 58 59 /* 60 * If an inode is constantly having its pages dirtied, but then the 61 * updates stop dirtytime_expire_interval seconds in the past, it's 62 * possible for the worst case time between when an inode has its 63 * timestamps updated and when they finally get written out to be two 64 * dirtytime_expire_intervals. We set the default to 12 hours (in 65 * seconds), which means most of the time inodes will have their 66 * timestamps written to disk after 12 hours, but in the worst case a 67 * few inodes might not their timestamps updated for 24 hours. 68 */ 69 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 70 71 static inline struct inode *wb_inode(struct list_head *head) 72 { 73 return list_entry(head, struct inode, i_io_list); 74 } 75 76 /* 77 * Include the creation of the trace points after defining the 78 * wb_writeback_work structure and inline functions so that the definition 79 * remains local to this file. 80 */ 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/writeback.h> 83 84 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 85 86 static bool wb_io_lists_populated(struct bdi_writeback *wb) 87 { 88 if (wb_has_dirty_io(wb)) { 89 return false; 90 } else { 91 set_bit(WB_has_dirty_io, &wb->state); 92 WARN_ON_ONCE(!wb->avg_write_bandwidth); 93 atomic_long_add(wb->avg_write_bandwidth, 94 &wb->bdi->tot_write_bandwidth); 95 return true; 96 } 97 } 98 99 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 100 { 101 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 102 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 103 clear_bit(WB_has_dirty_io, &wb->state); 104 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 105 &wb->bdi->tot_write_bandwidth) < 0); 106 } 107 } 108 109 /** 110 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 111 * @inode: inode to be moved 112 * @wb: target bdi_writeback 113 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 114 * 115 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 116 * Returns %true if @inode is the first occupant of the !dirty_time IO 117 * lists; otherwise, %false. 118 */ 119 static bool inode_io_list_move_locked(struct inode *inode, 120 struct bdi_writeback *wb, 121 struct list_head *head) 122 { 123 assert_spin_locked(&wb->list_lock); 124 125 list_move(&inode->i_io_list, head); 126 127 /* dirty_time doesn't count as dirty_io until expiration */ 128 if (head != &wb->b_dirty_time) 129 return wb_io_lists_populated(wb); 130 131 wb_io_lists_depopulated(wb); 132 return false; 133 } 134 135 /** 136 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 137 * @inode: inode to be removed 138 * @wb: bdi_writeback @inode is being removed from 139 * 140 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 141 * clear %WB_has_dirty_io if all are empty afterwards. 142 */ 143 static void inode_io_list_del_locked(struct inode *inode, 144 struct bdi_writeback *wb) 145 { 146 assert_spin_locked(&wb->list_lock); 147 148 list_del_init(&inode->i_io_list); 149 wb_io_lists_depopulated(wb); 150 } 151 152 static void wb_wakeup(struct bdi_writeback *wb) 153 { 154 spin_lock_bh(&wb->work_lock); 155 if (test_bit(WB_registered, &wb->state)) 156 mod_delayed_work(bdi_wq, &wb->dwork, 0); 157 spin_unlock_bh(&wb->work_lock); 158 } 159 160 static void finish_writeback_work(struct bdi_writeback *wb, 161 struct wb_writeback_work *work) 162 { 163 struct wb_completion *done = work->done; 164 165 if (work->auto_free) 166 kfree(work); 167 if (done && atomic_dec_and_test(&done->cnt)) 168 wake_up_all(done->waitq); 169 } 170 171 static void wb_queue_work(struct bdi_writeback *wb, 172 struct wb_writeback_work *work) 173 { 174 trace_writeback_queue(wb, work); 175 176 if (work->done) 177 atomic_inc(&work->done->cnt); 178 179 spin_lock_bh(&wb->work_lock); 180 181 if (test_bit(WB_registered, &wb->state)) { 182 list_add_tail(&work->list, &wb->work_list); 183 mod_delayed_work(bdi_wq, &wb->dwork, 0); 184 } else 185 finish_writeback_work(wb, work); 186 187 spin_unlock_bh(&wb->work_lock); 188 } 189 190 /** 191 * wb_wait_for_completion - wait for completion of bdi_writeback_works 192 * @done: target wb_completion 193 * 194 * Wait for one or more work items issued to @bdi with their ->done field 195 * set to @done, which should have been initialized with 196 * DEFINE_WB_COMPLETION(). This function returns after all such work items 197 * are completed. Work items which are waited upon aren't freed 198 * automatically on completion. 199 */ 200 void wb_wait_for_completion(struct wb_completion *done) 201 { 202 atomic_dec(&done->cnt); /* put down the initial count */ 203 wait_event(*done->waitq, !atomic_read(&done->cnt)); 204 } 205 206 #ifdef CONFIG_CGROUP_WRITEBACK 207 208 /* 209 * Parameters for foreign inode detection, see wbc_detach_inode() to see 210 * how they're used. 211 * 212 * These paramters are inherently heuristical as the detection target 213 * itself is fuzzy. All we want to do is detaching an inode from the 214 * current owner if it's being written to by some other cgroups too much. 215 * 216 * The current cgroup writeback is built on the assumption that multiple 217 * cgroups writing to the same inode concurrently is very rare and a mode 218 * of operation which isn't well supported. As such, the goal is not 219 * taking too long when a different cgroup takes over an inode while 220 * avoiding too aggressive flip-flops from occasional foreign writes. 221 * 222 * We record, very roughly, 2s worth of IO time history and if more than 223 * half of that is foreign, trigger the switch. The recording is quantized 224 * to 16 slots. To avoid tiny writes from swinging the decision too much, 225 * writes smaller than 1/8 of avg size are ignored. 226 */ 227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 229 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 231 232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 234 /* each slot's duration is 2s / 16 */ 235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 236 /* if foreign slots >= 8, switch */ 237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 238 /* one round can affect upto 5 slots */ 239 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 240 241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 242 static struct workqueue_struct *isw_wq; 243 244 void __inode_attach_wb(struct inode *inode, struct page *page) 245 { 246 struct backing_dev_info *bdi = inode_to_bdi(inode); 247 struct bdi_writeback *wb = NULL; 248 249 if (inode_cgwb_enabled(inode)) { 250 struct cgroup_subsys_state *memcg_css; 251 252 if (page) { 253 memcg_css = mem_cgroup_css_from_page(page); 254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 255 } else { 256 /* must pin memcg_css, see wb_get_create() */ 257 memcg_css = task_get_css(current, memory_cgrp_id); 258 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 259 css_put(memcg_css); 260 } 261 } 262 263 if (!wb) 264 wb = &bdi->wb; 265 266 /* 267 * There may be multiple instances of this function racing to 268 * update the same inode. Use cmpxchg() to tell the winner. 269 */ 270 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 271 wb_put(wb); 272 } 273 EXPORT_SYMBOL_GPL(__inode_attach_wb); 274 275 /** 276 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 277 * @inode: inode of interest with i_lock held 278 * 279 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 280 * held on entry and is released on return. The returned wb is guaranteed 281 * to stay @inode's associated wb until its list_lock is released. 282 */ 283 static struct bdi_writeback * 284 locked_inode_to_wb_and_lock_list(struct inode *inode) 285 __releases(&inode->i_lock) 286 __acquires(&wb->list_lock) 287 { 288 while (true) { 289 struct bdi_writeback *wb = inode_to_wb(inode); 290 291 /* 292 * inode_to_wb() association is protected by both 293 * @inode->i_lock and @wb->list_lock but list_lock nests 294 * outside i_lock. Drop i_lock and verify that the 295 * association hasn't changed after acquiring list_lock. 296 */ 297 wb_get(wb); 298 spin_unlock(&inode->i_lock); 299 spin_lock(&wb->list_lock); 300 301 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 302 if (likely(wb == inode->i_wb)) { 303 wb_put(wb); /* @inode already has ref */ 304 return wb; 305 } 306 307 spin_unlock(&wb->list_lock); 308 wb_put(wb); 309 cpu_relax(); 310 spin_lock(&inode->i_lock); 311 } 312 } 313 314 /** 315 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 316 * @inode: inode of interest 317 * 318 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 319 * on entry. 320 */ 321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 322 __acquires(&wb->list_lock) 323 { 324 spin_lock(&inode->i_lock); 325 return locked_inode_to_wb_and_lock_list(inode); 326 } 327 328 struct inode_switch_wbs_context { 329 struct inode *inode; 330 struct bdi_writeback *new_wb; 331 332 struct rcu_head rcu_head; 333 struct work_struct work; 334 }; 335 336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 337 { 338 down_write(&bdi->wb_switch_rwsem); 339 } 340 341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 342 { 343 up_write(&bdi->wb_switch_rwsem); 344 } 345 346 static void inode_switch_wbs_work_fn(struct work_struct *work) 347 { 348 struct inode_switch_wbs_context *isw = 349 container_of(work, struct inode_switch_wbs_context, work); 350 struct inode *inode = isw->inode; 351 struct backing_dev_info *bdi = inode_to_bdi(inode); 352 struct address_space *mapping = inode->i_mapping; 353 struct bdi_writeback *old_wb = inode->i_wb; 354 struct bdi_writeback *new_wb = isw->new_wb; 355 XA_STATE(xas, &mapping->i_pages, 0); 356 struct page *page; 357 bool switched = false; 358 359 /* 360 * If @inode switches cgwb membership while sync_inodes_sb() is 361 * being issued, sync_inodes_sb() might miss it. Synchronize. 362 */ 363 down_read(&bdi->wb_switch_rwsem); 364 365 /* 366 * By the time control reaches here, RCU grace period has passed 367 * since I_WB_SWITCH assertion and all wb stat update transactions 368 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 369 * synchronizing against the i_pages lock. 370 * 371 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 372 * gives us exclusion against all wb related operations on @inode 373 * including IO list manipulations and stat updates. 374 */ 375 if (old_wb < new_wb) { 376 spin_lock(&old_wb->list_lock); 377 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 378 } else { 379 spin_lock(&new_wb->list_lock); 380 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 381 } 382 spin_lock(&inode->i_lock); 383 xa_lock_irq(&mapping->i_pages); 384 385 /* 386 * Once I_FREEING is visible under i_lock, the eviction path owns 387 * the inode and we shouldn't modify ->i_io_list. 388 */ 389 if (unlikely(inode->i_state & I_FREEING)) 390 goto skip_switch; 391 392 trace_inode_switch_wbs(inode, old_wb, new_wb); 393 394 /* 395 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 396 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 397 * pages actually under writeback. 398 */ 399 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 400 if (PageDirty(page)) { 401 dec_wb_stat(old_wb, WB_RECLAIMABLE); 402 inc_wb_stat(new_wb, WB_RECLAIMABLE); 403 } 404 } 405 406 xas_set(&xas, 0); 407 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 408 WARN_ON_ONCE(!PageWriteback(page)); 409 dec_wb_stat(old_wb, WB_WRITEBACK); 410 inc_wb_stat(new_wb, WB_WRITEBACK); 411 } 412 413 wb_get(new_wb); 414 415 /* 416 * Transfer to @new_wb's IO list if necessary. The specific list 417 * @inode was on is ignored and the inode is put on ->b_dirty which 418 * is always correct including from ->b_dirty_time. The transfer 419 * preserves @inode->dirtied_when ordering. 420 */ 421 if (!list_empty(&inode->i_io_list)) { 422 struct inode *pos; 423 424 inode_io_list_del_locked(inode, old_wb); 425 inode->i_wb = new_wb; 426 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 427 if (time_after_eq(inode->dirtied_when, 428 pos->dirtied_when)) 429 break; 430 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 431 } else { 432 inode->i_wb = new_wb; 433 } 434 435 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 436 inode->i_wb_frn_winner = 0; 437 inode->i_wb_frn_avg_time = 0; 438 inode->i_wb_frn_history = 0; 439 switched = true; 440 skip_switch: 441 /* 442 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 443 * ensures that the new wb is visible if they see !I_WB_SWITCH. 444 */ 445 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 446 447 xa_unlock_irq(&mapping->i_pages); 448 spin_unlock(&inode->i_lock); 449 spin_unlock(&new_wb->list_lock); 450 spin_unlock(&old_wb->list_lock); 451 452 up_read(&bdi->wb_switch_rwsem); 453 454 if (switched) { 455 wb_wakeup(new_wb); 456 wb_put(old_wb); 457 } 458 wb_put(new_wb); 459 460 iput(inode); 461 kfree(isw); 462 463 atomic_dec(&isw_nr_in_flight); 464 } 465 466 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 467 { 468 struct inode_switch_wbs_context *isw = container_of(rcu_head, 469 struct inode_switch_wbs_context, rcu_head); 470 471 /* needs to grab bh-unsafe locks, bounce to work item */ 472 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 473 queue_work(isw_wq, &isw->work); 474 } 475 476 /** 477 * inode_switch_wbs - change the wb association of an inode 478 * @inode: target inode 479 * @new_wb_id: ID of the new wb 480 * 481 * Switch @inode's wb association to the wb identified by @new_wb_id. The 482 * switching is performed asynchronously and may fail silently. 483 */ 484 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 485 { 486 struct backing_dev_info *bdi = inode_to_bdi(inode); 487 struct cgroup_subsys_state *memcg_css; 488 struct inode_switch_wbs_context *isw; 489 490 /* noop if seems to be already in progress */ 491 if (inode->i_state & I_WB_SWITCH) 492 return; 493 494 /* avoid queueing a new switch if too many are already in flight */ 495 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 496 return; 497 498 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 499 if (!isw) 500 return; 501 502 /* find and pin the new wb */ 503 rcu_read_lock(); 504 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 505 if (memcg_css) 506 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 507 rcu_read_unlock(); 508 if (!isw->new_wb) 509 goto out_free; 510 511 /* while holding I_WB_SWITCH, no one else can update the association */ 512 spin_lock(&inode->i_lock); 513 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 514 inode->i_state & (I_WB_SWITCH | I_FREEING) || 515 inode_to_wb(inode) == isw->new_wb) { 516 spin_unlock(&inode->i_lock); 517 goto out_free; 518 } 519 inode->i_state |= I_WB_SWITCH; 520 __iget(inode); 521 spin_unlock(&inode->i_lock); 522 523 isw->inode = inode; 524 525 /* 526 * In addition to synchronizing among switchers, I_WB_SWITCH tells 527 * the RCU protected stat update paths to grab the i_page 528 * lock so that stat transfer can synchronize against them. 529 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 530 */ 531 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 532 533 atomic_inc(&isw_nr_in_flight); 534 return; 535 536 out_free: 537 if (isw->new_wb) 538 wb_put(isw->new_wb); 539 kfree(isw); 540 } 541 542 /** 543 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 544 * @wbc: writeback_control of interest 545 * @inode: target inode 546 * 547 * @inode is locked and about to be written back under the control of @wbc. 548 * Record @inode's writeback context into @wbc and unlock the i_lock. On 549 * writeback completion, wbc_detach_inode() should be called. This is used 550 * to track the cgroup writeback context. 551 */ 552 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 553 struct inode *inode) 554 { 555 if (!inode_cgwb_enabled(inode)) { 556 spin_unlock(&inode->i_lock); 557 return; 558 } 559 560 wbc->wb = inode_to_wb(inode); 561 wbc->inode = inode; 562 563 wbc->wb_id = wbc->wb->memcg_css->id; 564 wbc->wb_lcand_id = inode->i_wb_frn_winner; 565 wbc->wb_tcand_id = 0; 566 wbc->wb_bytes = 0; 567 wbc->wb_lcand_bytes = 0; 568 wbc->wb_tcand_bytes = 0; 569 570 wb_get(wbc->wb); 571 spin_unlock(&inode->i_lock); 572 573 /* 574 * A dying wb indicates that the memcg-blkcg mapping has changed 575 * and a new wb is already serving the memcg. Switch immediately. 576 */ 577 if (unlikely(wb_dying(wbc->wb))) 578 inode_switch_wbs(inode, wbc->wb_id); 579 } 580 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 581 582 /** 583 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 584 * @wbc: writeback_control of the just finished writeback 585 * 586 * To be called after a writeback attempt of an inode finishes and undoes 587 * wbc_attach_and_unlock_inode(). Can be called under any context. 588 * 589 * As concurrent write sharing of an inode is expected to be very rare and 590 * memcg only tracks page ownership on first-use basis severely confining 591 * the usefulness of such sharing, cgroup writeback tracks ownership 592 * per-inode. While the support for concurrent write sharing of an inode 593 * is deemed unnecessary, an inode being written to by different cgroups at 594 * different points in time is a lot more common, and, more importantly, 595 * charging only by first-use can too readily lead to grossly incorrect 596 * behaviors (single foreign page can lead to gigabytes of writeback to be 597 * incorrectly attributed). 598 * 599 * To resolve this issue, cgroup writeback detects the majority dirtier of 600 * an inode and transfers the ownership to it. To avoid unnnecessary 601 * oscillation, the detection mechanism keeps track of history and gives 602 * out the switch verdict only if the foreign usage pattern is stable over 603 * a certain amount of time and/or writeback attempts. 604 * 605 * On each writeback attempt, @wbc tries to detect the majority writer 606 * using Boyer-Moore majority vote algorithm. In addition to the byte 607 * count from the majority voting, it also counts the bytes written for the 608 * current wb and the last round's winner wb (max of last round's current 609 * wb, the winner from two rounds ago, and the last round's majority 610 * candidate). Keeping track of the historical winner helps the algorithm 611 * to semi-reliably detect the most active writer even when it's not the 612 * absolute majority. 613 * 614 * Once the winner of the round is determined, whether the winner is 615 * foreign or not and how much IO time the round consumed is recorded in 616 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 617 * over a certain threshold, the switch verdict is given. 618 */ 619 void wbc_detach_inode(struct writeback_control *wbc) 620 { 621 struct bdi_writeback *wb = wbc->wb; 622 struct inode *inode = wbc->inode; 623 unsigned long avg_time, max_bytes, max_time; 624 u16 history; 625 int max_id; 626 627 if (!wb) 628 return; 629 630 history = inode->i_wb_frn_history; 631 avg_time = inode->i_wb_frn_avg_time; 632 633 /* pick the winner of this round */ 634 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 635 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 636 max_id = wbc->wb_id; 637 max_bytes = wbc->wb_bytes; 638 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 639 max_id = wbc->wb_lcand_id; 640 max_bytes = wbc->wb_lcand_bytes; 641 } else { 642 max_id = wbc->wb_tcand_id; 643 max_bytes = wbc->wb_tcand_bytes; 644 } 645 646 /* 647 * Calculate the amount of IO time the winner consumed and fold it 648 * into the running average kept per inode. If the consumed IO 649 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 650 * deciding whether to switch or not. This is to prevent one-off 651 * small dirtiers from skewing the verdict. 652 */ 653 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 654 wb->avg_write_bandwidth); 655 if (avg_time) 656 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 657 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 658 else 659 avg_time = max_time; /* immediate catch up on first run */ 660 661 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 662 int slots; 663 664 /* 665 * The switch verdict is reached if foreign wb's consume 666 * more than a certain proportion of IO time in a 667 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 668 * history mask where each bit represents one sixteenth of 669 * the period. Determine the number of slots to shift into 670 * history from @max_time. 671 */ 672 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 673 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 674 history <<= slots; 675 if (wbc->wb_id != max_id) 676 history |= (1U << slots) - 1; 677 678 if (history) 679 trace_inode_foreign_history(inode, wbc, history); 680 681 /* 682 * Switch if the current wb isn't the consistent winner. 683 * If there are multiple closely competing dirtiers, the 684 * inode may switch across them repeatedly over time, which 685 * is okay. The main goal is avoiding keeping an inode on 686 * the wrong wb for an extended period of time. 687 */ 688 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 689 inode_switch_wbs(inode, max_id); 690 } 691 692 /* 693 * Multiple instances of this function may race to update the 694 * following fields but we don't mind occassional inaccuracies. 695 */ 696 inode->i_wb_frn_winner = max_id; 697 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 698 inode->i_wb_frn_history = history; 699 700 wb_put(wbc->wb); 701 wbc->wb = NULL; 702 } 703 EXPORT_SYMBOL_GPL(wbc_detach_inode); 704 705 /** 706 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 707 * @wbc: writeback_control of the writeback in progress 708 * @page: page being written out 709 * @bytes: number of bytes being written out 710 * 711 * @bytes from @page are about to written out during the writeback 712 * controlled by @wbc. Keep the book for foreign inode detection. See 713 * wbc_detach_inode(). 714 */ 715 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 716 size_t bytes) 717 { 718 struct cgroup_subsys_state *css; 719 int id; 720 721 /* 722 * pageout() path doesn't attach @wbc to the inode being written 723 * out. This is intentional as we don't want the function to block 724 * behind a slow cgroup. Ultimately, we want pageout() to kick off 725 * regular writeback instead of writing things out itself. 726 */ 727 if (!wbc->wb || wbc->no_cgroup_owner) 728 return; 729 730 css = mem_cgroup_css_from_page(page); 731 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 732 if (!(css->flags & CSS_ONLINE)) 733 return; 734 735 id = css->id; 736 737 if (id == wbc->wb_id) { 738 wbc->wb_bytes += bytes; 739 return; 740 } 741 742 if (id == wbc->wb_lcand_id) 743 wbc->wb_lcand_bytes += bytes; 744 745 /* Boyer-Moore majority vote algorithm */ 746 if (!wbc->wb_tcand_bytes) 747 wbc->wb_tcand_id = id; 748 if (id == wbc->wb_tcand_id) 749 wbc->wb_tcand_bytes += bytes; 750 else 751 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 752 } 753 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 754 755 /** 756 * inode_congested - test whether an inode is congested 757 * @inode: inode to test for congestion (may be NULL) 758 * @cong_bits: mask of WB_[a]sync_congested bits to test 759 * 760 * Tests whether @inode is congested. @cong_bits is the mask of congestion 761 * bits to test and the return value is the mask of set bits. 762 * 763 * If cgroup writeback is enabled for @inode, the congestion state is 764 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 765 * associated with @inode is congested; otherwise, the root wb's congestion 766 * state is used. 767 * 768 * @inode is allowed to be NULL as this function is often called on 769 * mapping->host which is NULL for the swapper space. 770 */ 771 int inode_congested(struct inode *inode, int cong_bits) 772 { 773 /* 774 * Once set, ->i_wb never becomes NULL while the inode is alive. 775 * Start transaction iff ->i_wb is visible. 776 */ 777 if (inode && inode_to_wb_is_valid(inode)) { 778 struct bdi_writeback *wb; 779 struct wb_lock_cookie lock_cookie = {}; 780 bool congested; 781 782 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 783 congested = wb_congested(wb, cong_bits); 784 unlocked_inode_to_wb_end(inode, &lock_cookie); 785 return congested; 786 } 787 788 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 789 } 790 EXPORT_SYMBOL_GPL(inode_congested); 791 792 /** 793 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 794 * @wb: target bdi_writeback to split @nr_pages to 795 * @nr_pages: number of pages to write for the whole bdi 796 * 797 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 798 * relation to the total write bandwidth of all wb's w/ dirty inodes on 799 * @wb->bdi. 800 */ 801 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 802 { 803 unsigned long this_bw = wb->avg_write_bandwidth; 804 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 805 806 if (nr_pages == LONG_MAX) 807 return LONG_MAX; 808 809 /* 810 * This may be called on clean wb's and proportional distribution 811 * may not make sense, just use the original @nr_pages in those 812 * cases. In general, we wanna err on the side of writing more. 813 */ 814 if (!tot_bw || this_bw >= tot_bw) 815 return nr_pages; 816 else 817 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 818 } 819 820 /** 821 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 822 * @bdi: target backing_dev_info 823 * @base_work: wb_writeback_work to issue 824 * @skip_if_busy: skip wb's which already have writeback in progress 825 * 826 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 827 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 828 * distributed to the busy wbs according to each wb's proportion in the 829 * total active write bandwidth of @bdi. 830 */ 831 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 832 struct wb_writeback_work *base_work, 833 bool skip_if_busy) 834 { 835 struct bdi_writeback *last_wb = NULL; 836 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 837 struct bdi_writeback, bdi_node); 838 839 might_sleep(); 840 restart: 841 rcu_read_lock(); 842 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 843 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 844 struct wb_writeback_work fallback_work; 845 struct wb_writeback_work *work; 846 long nr_pages; 847 848 if (last_wb) { 849 wb_put(last_wb); 850 last_wb = NULL; 851 } 852 853 /* SYNC_ALL writes out I_DIRTY_TIME too */ 854 if (!wb_has_dirty_io(wb) && 855 (base_work->sync_mode == WB_SYNC_NONE || 856 list_empty(&wb->b_dirty_time))) 857 continue; 858 if (skip_if_busy && writeback_in_progress(wb)) 859 continue; 860 861 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 862 863 work = kmalloc(sizeof(*work), GFP_ATOMIC); 864 if (work) { 865 *work = *base_work; 866 work->nr_pages = nr_pages; 867 work->auto_free = 1; 868 wb_queue_work(wb, work); 869 continue; 870 } 871 872 /* alloc failed, execute synchronously using on-stack fallback */ 873 work = &fallback_work; 874 *work = *base_work; 875 work->nr_pages = nr_pages; 876 work->auto_free = 0; 877 work->done = &fallback_work_done; 878 879 wb_queue_work(wb, work); 880 881 /* 882 * Pin @wb so that it stays on @bdi->wb_list. This allows 883 * continuing iteration from @wb after dropping and 884 * regrabbing rcu read lock. 885 */ 886 wb_get(wb); 887 last_wb = wb; 888 889 rcu_read_unlock(); 890 wb_wait_for_completion(&fallback_work_done); 891 goto restart; 892 } 893 rcu_read_unlock(); 894 895 if (last_wb) 896 wb_put(last_wb); 897 } 898 899 /** 900 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 901 * @bdi_id: target bdi id 902 * @memcg_id: target memcg css id 903 * @nr_pages: number of pages to write, 0 for best-effort dirty flushing 904 * @reason: reason why some writeback work initiated 905 * @done: target wb_completion 906 * 907 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 908 * with the specified parameters. 909 */ 910 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr, 911 enum wb_reason reason, struct wb_completion *done) 912 { 913 struct backing_dev_info *bdi; 914 struct cgroup_subsys_state *memcg_css; 915 struct bdi_writeback *wb; 916 struct wb_writeback_work *work; 917 int ret; 918 919 /* lookup bdi and memcg */ 920 bdi = bdi_get_by_id(bdi_id); 921 if (!bdi) 922 return -ENOENT; 923 924 rcu_read_lock(); 925 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 926 if (memcg_css && !css_tryget(memcg_css)) 927 memcg_css = NULL; 928 rcu_read_unlock(); 929 if (!memcg_css) { 930 ret = -ENOENT; 931 goto out_bdi_put; 932 } 933 934 /* 935 * And find the associated wb. If the wb isn't there already 936 * there's nothing to flush, don't create one. 937 */ 938 wb = wb_get_lookup(bdi, memcg_css); 939 if (!wb) { 940 ret = -ENOENT; 941 goto out_css_put; 942 } 943 944 /* 945 * If @nr is zero, the caller is attempting to write out most of 946 * the currently dirty pages. Let's take the current dirty page 947 * count and inflate it by 25% which should be large enough to 948 * flush out most dirty pages while avoiding getting livelocked by 949 * concurrent dirtiers. 950 */ 951 if (!nr) { 952 unsigned long filepages, headroom, dirty, writeback; 953 954 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty, 955 &writeback); 956 nr = dirty * 10 / 8; 957 } 958 959 /* issue the writeback work */ 960 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 961 if (work) { 962 work->nr_pages = nr; 963 work->sync_mode = WB_SYNC_NONE; 964 work->range_cyclic = 1; 965 work->reason = reason; 966 work->done = done; 967 work->auto_free = 1; 968 wb_queue_work(wb, work); 969 ret = 0; 970 } else { 971 ret = -ENOMEM; 972 } 973 974 wb_put(wb); 975 out_css_put: 976 css_put(memcg_css); 977 out_bdi_put: 978 bdi_put(bdi); 979 return ret; 980 } 981 982 /** 983 * cgroup_writeback_umount - flush inode wb switches for umount 984 * 985 * This function is called when a super_block is about to be destroyed and 986 * flushes in-flight inode wb switches. An inode wb switch goes through 987 * RCU and then workqueue, so the two need to be flushed in order to ensure 988 * that all previously scheduled switches are finished. As wb switches are 989 * rare occurrences and synchronize_rcu() can take a while, perform 990 * flushing iff wb switches are in flight. 991 */ 992 void cgroup_writeback_umount(void) 993 { 994 if (atomic_read(&isw_nr_in_flight)) { 995 /* 996 * Use rcu_barrier() to wait for all pending callbacks to 997 * ensure that all in-flight wb switches are in the workqueue. 998 */ 999 rcu_barrier(); 1000 flush_workqueue(isw_wq); 1001 } 1002 } 1003 1004 static int __init cgroup_writeback_init(void) 1005 { 1006 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1007 if (!isw_wq) 1008 return -ENOMEM; 1009 return 0; 1010 } 1011 fs_initcall(cgroup_writeback_init); 1012 1013 #else /* CONFIG_CGROUP_WRITEBACK */ 1014 1015 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1016 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1017 1018 static struct bdi_writeback * 1019 locked_inode_to_wb_and_lock_list(struct inode *inode) 1020 __releases(&inode->i_lock) 1021 __acquires(&wb->list_lock) 1022 { 1023 struct bdi_writeback *wb = inode_to_wb(inode); 1024 1025 spin_unlock(&inode->i_lock); 1026 spin_lock(&wb->list_lock); 1027 return wb; 1028 } 1029 1030 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1031 __acquires(&wb->list_lock) 1032 { 1033 struct bdi_writeback *wb = inode_to_wb(inode); 1034 1035 spin_lock(&wb->list_lock); 1036 return wb; 1037 } 1038 1039 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1040 { 1041 return nr_pages; 1042 } 1043 1044 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1045 struct wb_writeback_work *base_work, 1046 bool skip_if_busy) 1047 { 1048 might_sleep(); 1049 1050 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1051 base_work->auto_free = 0; 1052 wb_queue_work(&bdi->wb, base_work); 1053 } 1054 } 1055 1056 #endif /* CONFIG_CGROUP_WRITEBACK */ 1057 1058 /* 1059 * Add in the number of potentially dirty inodes, because each inode 1060 * write can dirty pagecache in the underlying blockdev. 1061 */ 1062 static unsigned long get_nr_dirty_pages(void) 1063 { 1064 return global_node_page_state(NR_FILE_DIRTY) + 1065 global_node_page_state(NR_UNSTABLE_NFS) + 1066 get_nr_dirty_inodes(); 1067 } 1068 1069 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1070 { 1071 if (!wb_has_dirty_io(wb)) 1072 return; 1073 1074 /* 1075 * All callers of this function want to start writeback of all 1076 * dirty pages. Places like vmscan can call this at a very 1077 * high frequency, causing pointless allocations of tons of 1078 * work items and keeping the flusher threads busy retrieving 1079 * that work. Ensure that we only allow one of them pending and 1080 * inflight at the time. 1081 */ 1082 if (test_bit(WB_start_all, &wb->state) || 1083 test_and_set_bit(WB_start_all, &wb->state)) 1084 return; 1085 1086 wb->start_all_reason = reason; 1087 wb_wakeup(wb); 1088 } 1089 1090 /** 1091 * wb_start_background_writeback - start background writeback 1092 * @wb: bdi_writback to write from 1093 * 1094 * Description: 1095 * This makes sure WB_SYNC_NONE background writeback happens. When 1096 * this function returns, it is only guaranteed that for given wb 1097 * some IO is happening if we are over background dirty threshold. 1098 * Caller need not hold sb s_umount semaphore. 1099 */ 1100 void wb_start_background_writeback(struct bdi_writeback *wb) 1101 { 1102 /* 1103 * We just wake up the flusher thread. It will perform background 1104 * writeback as soon as there is no other work to do. 1105 */ 1106 trace_writeback_wake_background(wb); 1107 wb_wakeup(wb); 1108 } 1109 1110 /* 1111 * Remove the inode from the writeback list it is on. 1112 */ 1113 void inode_io_list_del(struct inode *inode) 1114 { 1115 struct bdi_writeback *wb; 1116 1117 wb = inode_to_wb_and_lock_list(inode); 1118 inode_io_list_del_locked(inode, wb); 1119 spin_unlock(&wb->list_lock); 1120 } 1121 1122 /* 1123 * mark an inode as under writeback on the sb 1124 */ 1125 void sb_mark_inode_writeback(struct inode *inode) 1126 { 1127 struct super_block *sb = inode->i_sb; 1128 unsigned long flags; 1129 1130 if (list_empty(&inode->i_wb_list)) { 1131 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1132 if (list_empty(&inode->i_wb_list)) { 1133 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1134 trace_sb_mark_inode_writeback(inode); 1135 } 1136 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1137 } 1138 } 1139 1140 /* 1141 * clear an inode as under writeback on the sb 1142 */ 1143 void sb_clear_inode_writeback(struct inode *inode) 1144 { 1145 struct super_block *sb = inode->i_sb; 1146 unsigned long flags; 1147 1148 if (!list_empty(&inode->i_wb_list)) { 1149 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1150 if (!list_empty(&inode->i_wb_list)) { 1151 list_del_init(&inode->i_wb_list); 1152 trace_sb_clear_inode_writeback(inode); 1153 } 1154 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1155 } 1156 } 1157 1158 /* 1159 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1160 * furthest end of its superblock's dirty-inode list. 1161 * 1162 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1163 * already the most-recently-dirtied inode on the b_dirty list. If that is 1164 * the case then the inode must have been redirtied while it was being written 1165 * out and we don't reset its dirtied_when. 1166 */ 1167 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1168 { 1169 if (!list_empty(&wb->b_dirty)) { 1170 struct inode *tail; 1171 1172 tail = wb_inode(wb->b_dirty.next); 1173 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1174 inode->dirtied_when = jiffies; 1175 } 1176 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1177 } 1178 1179 /* 1180 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1181 */ 1182 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1183 { 1184 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1185 } 1186 1187 static void inode_sync_complete(struct inode *inode) 1188 { 1189 inode->i_state &= ~I_SYNC; 1190 /* If inode is clean an unused, put it into LRU now... */ 1191 inode_add_lru(inode); 1192 /* Waiters must see I_SYNC cleared before being woken up */ 1193 smp_mb(); 1194 wake_up_bit(&inode->i_state, __I_SYNC); 1195 } 1196 1197 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1198 { 1199 bool ret = time_after(inode->dirtied_when, t); 1200 #ifndef CONFIG_64BIT 1201 /* 1202 * For inodes being constantly redirtied, dirtied_when can get stuck. 1203 * It _appears_ to be in the future, but is actually in distant past. 1204 * This test is necessary to prevent such wrapped-around relative times 1205 * from permanently stopping the whole bdi writeback. 1206 */ 1207 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1208 #endif 1209 return ret; 1210 } 1211 1212 #define EXPIRE_DIRTY_ATIME 0x0001 1213 1214 /* 1215 * Move expired (dirtied before work->older_than_this) dirty inodes from 1216 * @delaying_queue to @dispatch_queue. 1217 */ 1218 static int move_expired_inodes(struct list_head *delaying_queue, 1219 struct list_head *dispatch_queue, 1220 int flags, 1221 struct wb_writeback_work *work) 1222 { 1223 unsigned long *older_than_this = NULL; 1224 unsigned long expire_time; 1225 LIST_HEAD(tmp); 1226 struct list_head *pos, *node; 1227 struct super_block *sb = NULL; 1228 struct inode *inode; 1229 int do_sb_sort = 0; 1230 int moved = 0; 1231 1232 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 1233 older_than_this = work->older_than_this; 1234 else if (!work->for_sync) { 1235 expire_time = jiffies - (dirtytime_expire_interval * HZ); 1236 older_than_this = &expire_time; 1237 } 1238 while (!list_empty(delaying_queue)) { 1239 inode = wb_inode(delaying_queue->prev); 1240 if (older_than_this && 1241 inode_dirtied_after(inode, *older_than_this)) 1242 break; 1243 list_move(&inode->i_io_list, &tmp); 1244 moved++; 1245 if (flags & EXPIRE_DIRTY_ATIME) 1246 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 1247 if (sb_is_blkdev_sb(inode->i_sb)) 1248 continue; 1249 if (sb && sb != inode->i_sb) 1250 do_sb_sort = 1; 1251 sb = inode->i_sb; 1252 } 1253 1254 /* just one sb in list, splice to dispatch_queue and we're done */ 1255 if (!do_sb_sort) { 1256 list_splice(&tmp, dispatch_queue); 1257 goto out; 1258 } 1259 1260 /* Move inodes from one superblock together */ 1261 while (!list_empty(&tmp)) { 1262 sb = wb_inode(tmp.prev)->i_sb; 1263 list_for_each_prev_safe(pos, node, &tmp) { 1264 inode = wb_inode(pos); 1265 if (inode->i_sb == sb) 1266 list_move(&inode->i_io_list, dispatch_queue); 1267 } 1268 } 1269 out: 1270 return moved; 1271 } 1272 1273 /* 1274 * Queue all expired dirty inodes for io, eldest first. 1275 * Before 1276 * newly dirtied b_dirty b_io b_more_io 1277 * =============> gf edc BA 1278 * After 1279 * newly dirtied b_dirty b_io b_more_io 1280 * =============> g fBAedc 1281 * | 1282 * +--> dequeue for IO 1283 */ 1284 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 1285 { 1286 int moved; 1287 1288 assert_spin_locked(&wb->list_lock); 1289 list_splice_init(&wb->b_more_io, &wb->b_io); 1290 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 1291 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1292 EXPIRE_DIRTY_ATIME, work); 1293 if (moved) 1294 wb_io_lists_populated(wb); 1295 trace_writeback_queue_io(wb, work, moved); 1296 } 1297 1298 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1299 { 1300 int ret; 1301 1302 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1303 trace_writeback_write_inode_start(inode, wbc); 1304 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1305 trace_writeback_write_inode(inode, wbc); 1306 return ret; 1307 } 1308 return 0; 1309 } 1310 1311 /* 1312 * Wait for writeback on an inode to complete. Called with i_lock held. 1313 * Caller must make sure inode cannot go away when we drop i_lock. 1314 */ 1315 static void __inode_wait_for_writeback(struct inode *inode) 1316 __releases(inode->i_lock) 1317 __acquires(inode->i_lock) 1318 { 1319 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1320 wait_queue_head_t *wqh; 1321 1322 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1323 while (inode->i_state & I_SYNC) { 1324 spin_unlock(&inode->i_lock); 1325 __wait_on_bit(wqh, &wq, bit_wait, 1326 TASK_UNINTERRUPTIBLE); 1327 spin_lock(&inode->i_lock); 1328 } 1329 } 1330 1331 /* 1332 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1333 */ 1334 void inode_wait_for_writeback(struct inode *inode) 1335 { 1336 spin_lock(&inode->i_lock); 1337 __inode_wait_for_writeback(inode); 1338 spin_unlock(&inode->i_lock); 1339 } 1340 1341 /* 1342 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1343 * held and drops it. It is aimed for callers not holding any inode reference 1344 * so once i_lock is dropped, inode can go away. 1345 */ 1346 static void inode_sleep_on_writeback(struct inode *inode) 1347 __releases(inode->i_lock) 1348 { 1349 DEFINE_WAIT(wait); 1350 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1351 int sleep; 1352 1353 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1354 sleep = inode->i_state & I_SYNC; 1355 spin_unlock(&inode->i_lock); 1356 if (sleep) 1357 schedule(); 1358 finish_wait(wqh, &wait); 1359 } 1360 1361 /* 1362 * Find proper writeback list for the inode depending on its current state and 1363 * possibly also change of its state while we were doing writeback. Here we 1364 * handle things such as livelock prevention or fairness of writeback among 1365 * inodes. This function can be called only by flusher thread - noone else 1366 * processes all inodes in writeback lists and requeueing inodes behind flusher 1367 * thread's back can have unexpected consequences. 1368 */ 1369 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1370 struct writeback_control *wbc) 1371 { 1372 if (inode->i_state & I_FREEING) 1373 return; 1374 1375 /* 1376 * Sync livelock prevention. Each inode is tagged and synced in one 1377 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1378 * the dirty time to prevent enqueue and sync it again. 1379 */ 1380 if ((inode->i_state & I_DIRTY) && 1381 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1382 inode->dirtied_when = jiffies; 1383 1384 if (wbc->pages_skipped) { 1385 /* 1386 * writeback is not making progress due to locked 1387 * buffers. Skip this inode for now. 1388 */ 1389 redirty_tail(inode, wb); 1390 return; 1391 } 1392 1393 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1394 /* 1395 * We didn't write back all the pages. nfs_writepages() 1396 * sometimes bales out without doing anything. 1397 */ 1398 if (wbc->nr_to_write <= 0) { 1399 /* Slice used up. Queue for next turn. */ 1400 requeue_io(inode, wb); 1401 } else { 1402 /* 1403 * Writeback blocked by something other than 1404 * congestion. Delay the inode for some time to 1405 * avoid spinning on the CPU (100% iowait) 1406 * retrying writeback of the dirty page/inode 1407 * that cannot be performed immediately. 1408 */ 1409 redirty_tail(inode, wb); 1410 } 1411 } else if (inode->i_state & I_DIRTY) { 1412 /* 1413 * Filesystems can dirty the inode during writeback operations, 1414 * such as delayed allocation during submission or metadata 1415 * updates after data IO completion. 1416 */ 1417 redirty_tail(inode, wb); 1418 } else if (inode->i_state & I_DIRTY_TIME) { 1419 inode->dirtied_when = jiffies; 1420 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1421 } else { 1422 /* The inode is clean. Remove from writeback lists. */ 1423 inode_io_list_del_locked(inode, wb); 1424 } 1425 } 1426 1427 /* 1428 * Write out an inode and its dirty pages. Do not update the writeback list 1429 * linkage. That is left to the caller. The caller is also responsible for 1430 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1431 */ 1432 static int 1433 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1434 { 1435 struct address_space *mapping = inode->i_mapping; 1436 long nr_to_write = wbc->nr_to_write; 1437 unsigned dirty; 1438 int ret; 1439 1440 WARN_ON(!(inode->i_state & I_SYNC)); 1441 1442 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1443 1444 ret = do_writepages(mapping, wbc); 1445 1446 /* 1447 * Make sure to wait on the data before writing out the metadata. 1448 * This is important for filesystems that modify metadata on data 1449 * I/O completion. We don't do it for sync(2) writeback because it has a 1450 * separate, external IO completion path and ->sync_fs for guaranteeing 1451 * inode metadata is written back correctly. 1452 */ 1453 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1454 int err = filemap_fdatawait(mapping); 1455 if (ret == 0) 1456 ret = err; 1457 } 1458 1459 /* 1460 * Some filesystems may redirty the inode during the writeback 1461 * due to delalloc, clear dirty metadata flags right before 1462 * write_inode() 1463 */ 1464 spin_lock(&inode->i_lock); 1465 1466 dirty = inode->i_state & I_DIRTY; 1467 if (inode->i_state & I_DIRTY_TIME) { 1468 if ((dirty & I_DIRTY_INODE) || 1469 wbc->sync_mode == WB_SYNC_ALL || 1470 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1471 unlikely(time_after(jiffies, 1472 (inode->dirtied_time_when + 1473 dirtytime_expire_interval * HZ)))) { 1474 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1475 trace_writeback_lazytime(inode); 1476 } 1477 } else 1478 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1479 inode->i_state &= ~dirty; 1480 1481 /* 1482 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1483 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1484 * either they see the I_DIRTY bits cleared or we see the dirtied 1485 * inode. 1486 * 1487 * I_DIRTY_PAGES is always cleared together above even if @mapping 1488 * still has dirty pages. The flag is reinstated after smp_mb() if 1489 * necessary. This guarantees that either __mark_inode_dirty() 1490 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1491 */ 1492 smp_mb(); 1493 1494 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1495 inode->i_state |= I_DIRTY_PAGES; 1496 1497 spin_unlock(&inode->i_lock); 1498 1499 if (dirty & I_DIRTY_TIME) 1500 mark_inode_dirty_sync(inode); 1501 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1502 if (dirty & ~I_DIRTY_PAGES) { 1503 int err = write_inode(inode, wbc); 1504 if (ret == 0) 1505 ret = err; 1506 } 1507 trace_writeback_single_inode(inode, wbc, nr_to_write); 1508 return ret; 1509 } 1510 1511 /* 1512 * Write out an inode's dirty pages. Either the caller has an active reference 1513 * on the inode or the inode has I_WILL_FREE set. 1514 * 1515 * This function is designed to be called for writing back one inode which 1516 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1517 * and does more profound writeback list handling in writeback_sb_inodes(). 1518 */ 1519 static int writeback_single_inode(struct inode *inode, 1520 struct writeback_control *wbc) 1521 { 1522 struct bdi_writeback *wb; 1523 int ret = 0; 1524 1525 spin_lock(&inode->i_lock); 1526 if (!atomic_read(&inode->i_count)) 1527 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1528 else 1529 WARN_ON(inode->i_state & I_WILL_FREE); 1530 1531 if (inode->i_state & I_SYNC) { 1532 if (wbc->sync_mode != WB_SYNC_ALL) 1533 goto out; 1534 /* 1535 * It's a data-integrity sync. We must wait. Since callers hold 1536 * inode reference or inode has I_WILL_FREE set, it cannot go 1537 * away under us. 1538 */ 1539 __inode_wait_for_writeback(inode); 1540 } 1541 WARN_ON(inode->i_state & I_SYNC); 1542 /* 1543 * Skip inode if it is clean and we have no outstanding writeback in 1544 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1545 * function since flusher thread may be doing for example sync in 1546 * parallel and if we move the inode, it could get skipped. So here we 1547 * make sure inode is on some writeback list and leave it there unless 1548 * we have completely cleaned the inode. 1549 */ 1550 if (!(inode->i_state & I_DIRTY_ALL) && 1551 (wbc->sync_mode != WB_SYNC_ALL || 1552 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1553 goto out; 1554 inode->i_state |= I_SYNC; 1555 wbc_attach_and_unlock_inode(wbc, inode); 1556 1557 ret = __writeback_single_inode(inode, wbc); 1558 1559 wbc_detach_inode(wbc); 1560 1561 wb = inode_to_wb_and_lock_list(inode); 1562 spin_lock(&inode->i_lock); 1563 /* 1564 * If inode is clean, remove it from writeback lists. Otherwise don't 1565 * touch it. See comment above for explanation. 1566 */ 1567 if (!(inode->i_state & I_DIRTY_ALL)) 1568 inode_io_list_del_locked(inode, wb); 1569 spin_unlock(&wb->list_lock); 1570 inode_sync_complete(inode); 1571 out: 1572 spin_unlock(&inode->i_lock); 1573 return ret; 1574 } 1575 1576 static long writeback_chunk_size(struct bdi_writeback *wb, 1577 struct wb_writeback_work *work) 1578 { 1579 long pages; 1580 1581 /* 1582 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1583 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1584 * here avoids calling into writeback_inodes_wb() more than once. 1585 * 1586 * The intended call sequence for WB_SYNC_ALL writeback is: 1587 * 1588 * wb_writeback() 1589 * writeback_sb_inodes() <== called only once 1590 * write_cache_pages() <== called once for each inode 1591 * (quickly) tag currently dirty pages 1592 * (maybe slowly) sync all tagged pages 1593 */ 1594 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1595 pages = LONG_MAX; 1596 else { 1597 pages = min(wb->avg_write_bandwidth / 2, 1598 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1599 pages = min(pages, work->nr_pages); 1600 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1601 MIN_WRITEBACK_PAGES); 1602 } 1603 1604 return pages; 1605 } 1606 1607 /* 1608 * Write a portion of b_io inodes which belong to @sb. 1609 * 1610 * Return the number of pages and/or inodes written. 1611 * 1612 * NOTE! This is called with wb->list_lock held, and will 1613 * unlock and relock that for each inode it ends up doing 1614 * IO for. 1615 */ 1616 static long writeback_sb_inodes(struct super_block *sb, 1617 struct bdi_writeback *wb, 1618 struct wb_writeback_work *work) 1619 { 1620 struct writeback_control wbc = { 1621 .sync_mode = work->sync_mode, 1622 .tagged_writepages = work->tagged_writepages, 1623 .for_kupdate = work->for_kupdate, 1624 .for_background = work->for_background, 1625 .for_sync = work->for_sync, 1626 .range_cyclic = work->range_cyclic, 1627 .range_start = 0, 1628 .range_end = LLONG_MAX, 1629 }; 1630 unsigned long start_time = jiffies; 1631 long write_chunk; 1632 long wrote = 0; /* count both pages and inodes */ 1633 1634 while (!list_empty(&wb->b_io)) { 1635 struct inode *inode = wb_inode(wb->b_io.prev); 1636 struct bdi_writeback *tmp_wb; 1637 1638 if (inode->i_sb != sb) { 1639 if (work->sb) { 1640 /* 1641 * We only want to write back data for this 1642 * superblock, move all inodes not belonging 1643 * to it back onto the dirty list. 1644 */ 1645 redirty_tail(inode, wb); 1646 continue; 1647 } 1648 1649 /* 1650 * The inode belongs to a different superblock. 1651 * Bounce back to the caller to unpin this and 1652 * pin the next superblock. 1653 */ 1654 break; 1655 } 1656 1657 /* 1658 * Don't bother with new inodes or inodes being freed, first 1659 * kind does not need periodic writeout yet, and for the latter 1660 * kind writeout is handled by the freer. 1661 */ 1662 spin_lock(&inode->i_lock); 1663 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1664 spin_unlock(&inode->i_lock); 1665 redirty_tail(inode, wb); 1666 continue; 1667 } 1668 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1669 /* 1670 * If this inode is locked for writeback and we are not 1671 * doing writeback-for-data-integrity, move it to 1672 * b_more_io so that writeback can proceed with the 1673 * other inodes on s_io. 1674 * 1675 * We'll have another go at writing back this inode 1676 * when we completed a full scan of b_io. 1677 */ 1678 spin_unlock(&inode->i_lock); 1679 requeue_io(inode, wb); 1680 trace_writeback_sb_inodes_requeue(inode); 1681 continue; 1682 } 1683 spin_unlock(&wb->list_lock); 1684 1685 /* 1686 * We already requeued the inode if it had I_SYNC set and we 1687 * are doing WB_SYNC_NONE writeback. So this catches only the 1688 * WB_SYNC_ALL case. 1689 */ 1690 if (inode->i_state & I_SYNC) { 1691 /* Wait for I_SYNC. This function drops i_lock... */ 1692 inode_sleep_on_writeback(inode); 1693 /* Inode may be gone, start again */ 1694 spin_lock(&wb->list_lock); 1695 continue; 1696 } 1697 inode->i_state |= I_SYNC; 1698 wbc_attach_and_unlock_inode(&wbc, inode); 1699 1700 write_chunk = writeback_chunk_size(wb, work); 1701 wbc.nr_to_write = write_chunk; 1702 wbc.pages_skipped = 0; 1703 1704 /* 1705 * We use I_SYNC to pin the inode in memory. While it is set 1706 * evict_inode() will wait so the inode cannot be freed. 1707 */ 1708 __writeback_single_inode(inode, &wbc); 1709 1710 wbc_detach_inode(&wbc); 1711 work->nr_pages -= write_chunk - wbc.nr_to_write; 1712 wrote += write_chunk - wbc.nr_to_write; 1713 1714 if (need_resched()) { 1715 /* 1716 * We're trying to balance between building up a nice 1717 * long list of IOs to improve our merge rate, and 1718 * getting those IOs out quickly for anyone throttling 1719 * in balance_dirty_pages(). cond_resched() doesn't 1720 * unplug, so get our IOs out the door before we 1721 * give up the CPU. 1722 */ 1723 blk_flush_plug(current); 1724 cond_resched(); 1725 } 1726 1727 /* 1728 * Requeue @inode if still dirty. Be careful as @inode may 1729 * have been switched to another wb in the meantime. 1730 */ 1731 tmp_wb = inode_to_wb_and_lock_list(inode); 1732 spin_lock(&inode->i_lock); 1733 if (!(inode->i_state & I_DIRTY_ALL)) 1734 wrote++; 1735 requeue_inode(inode, tmp_wb, &wbc); 1736 inode_sync_complete(inode); 1737 spin_unlock(&inode->i_lock); 1738 1739 if (unlikely(tmp_wb != wb)) { 1740 spin_unlock(&tmp_wb->list_lock); 1741 spin_lock(&wb->list_lock); 1742 } 1743 1744 /* 1745 * bail out to wb_writeback() often enough to check 1746 * background threshold and other termination conditions. 1747 */ 1748 if (wrote) { 1749 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1750 break; 1751 if (work->nr_pages <= 0) 1752 break; 1753 } 1754 } 1755 return wrote; 1756 } 1757 1758 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1759 struct wb_writeback_work *work) 1760 { 1761 unsigned long start_time = jiffies; 1762 long wrote = 0; 1763 1764 while (!list_empty(&wb->b_io)) { 1765 struct inode *inode = wb_inode(wb->b_io.prev); 1766 struct super_block *sb = inode->i_sb; 1767 1768 if (!trylock_super(sb)) { 1769 /* 1770 * trylock_super() may fail consistently due to 1771 * s_umount being grabbed by someone else. Don't use 1772 * requeue_io() to avoid busy retrying the inode/sb. 1773 */ 1774 redirty_tail(inode, wb); 1775 continue; 1776 } 1777 wrote += writeback_sb_inodes(sb, wb, work); 1778 up_read(&sb->s_umount); 1779 1780 /* refer to the same tests at the end of writeback_sb_inodes */ 1781 if (wrote) { 1782 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1783 break; 1784 if (work->nr_pages <= 0) 1785 break; 1786 } 1787 } 1788 /* Leave any unwritten inodes on b_io */ 1789 return wrote; 1790 } 1791 1792 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1793 enum wb_reason reason) 1794 { 1795 struct wb_writeback_work work = { 1796 .nr_pages = nr_pages, 1797 .sync_mode = WB_SYNC_NONE, 1798 .range_cyclic = 1, 1799 .reason = reason, 1800 }; 1801 struct blk_plug plug; 1802 1803 blk_start_plug(&plug); 1804 spin_lock(&wb->list_lock); 1805 if (list_empty(&wb->b_io)) 1806 queue_io(wb, &work); 1807 __writeback_inodes_wb(wb, &work); 1808 spin_unlock(&wb->list_lock); 1809 blk_finish_plug(&plug); 1810 1811 return nr_pages - work.nr_pages; 1812 } 1813 1814 /* 1815 * Explicit flushing or periodic writeback of "old" data. 1816 * 1817 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1818 * dirtying-time in the inode's address_space. So this periodic writeback code 1819 * just walks the superblock inode list, writing back any inodes which are 1820 * older than a specific point in time. 1821 * 1822 * Try to run once per dirty_writeback_interval. But if a writeback event 1823 * takes longer than a dirty_writeback_interval interval, then leave a 1824 * one-second gap. 1825 * 1826 * older_than_this takes precedence over nr_to_write. So we'll only write back 1827 * all dirty pages if they are all attached to "old" mappings. 1828 */ 1829 static long wb_writeback(struct bdi_writeback *wb, 1830 struct wb_writeback_work *work) 1831 { 1832 unsigned long wb_start = jiffies; 1833 long nr_pages = work->nr_pages; 1834 unsigned long oldest_jif; 1835 struct inode *inode; 1836 long progress; 1837 struct blk_plug plug; 1838 1839 oldest_jif = jiffies; 1840 work->older_than_this = &oldest_jif; 1841 1842 blk_start_plug(&plug); 1843 spin_lock(&wb->list_lock); 1844 for (;;) { 1845 /* 1846 * Stop writeback when nr_pages has been consumed 1847 */ 1848 if (work->nr_pages <= 0) 1849 break; 1850 1851 /* 1852 * Background writeout and kupdate-style writeback may 1853 * run forever. Stop them if there is other work to do 1854 * so that e.g. sync can proceed. They'll be restarted 1855 * after the other works are all done. 1856 */ 1857 if ((work->for_background || work->for_kupdate) && 1858 !list_empty(&wb->work_list)) 1859 break; 1860 1861 /* 1862 * For background writeout, stop when we are below the 1863 * background dirty threshold 1864 */ 1865 if (work->for_background && !wb_over_bg_thresh(wb)) 1866 break; 1867 1868 /* 1869 * Kupdate and background works are special and we want to 1870 * include all inodes that need writing. Livelock avoidance is 1871 * handled by these works yielding to any other work so we are 1872 * safe. 1873 */ 1874 if (work->for_kupdate) { 1875 oldest_jif = jiffies - 1876 msecs_to_jiffies(dirty_expire_interval * 10); 1877 } else if (work->for_background) 1878 oldest_jif = jiffies; 1879 1880 trace_writeback_start(wb, work); 1881 if (list_empty(&wb->b_io)) 1882 queue_io(wb, work); 1883 if (work->sb) 1884 progress = writeback_sb_inodes(work->sb, wb, work); 1885 else 1886 progress = __writeback_inodes_wb(wb, work); 1887 trace_writeback_written(wb, work); 1888 1889 wb_update_bandwidth(wb, wb_start); 1890 1891 /* 1892 * Did we write something? Try for more 1893 * 1894 * Dirty inodes are moved to b_io for writeback in batches. 1895 * The completion of the current batch does not necessarily 1896 * mean the overall work is done. So we keep looping as long 1897 * as made some progress on cleaning pages or inodes. 1898 */ 1899 if (progress) 1900 continue; 1901 /* 1902 * No more inodes for IO, bail 1903 */ 1904 if (list_empty(&wb->b_more_io)) 1905 break; 1906 /* 1907 * Nothing written. Wait for some inode to 1908 * become available for writeback. Otherwise 1909 * we'll just busyloop. 1910 */ 1911 trace_writeback_wait(wb, work); 1912 inode = wb_inode(wb->b_more_io.prev); 1913 spin_lock(&inode->i_lock); 1914 spin_unlock(&wb->list_lock); 1915 /* This function drops i_lock... */ 1916 inode_sleep_on_writeback(inode); 1917 spin_lock(&wb->list_lock); 1918 } 1919 spin_unlock(&wb->list_lock); 1920 blk_finish_plug(&plug); 1921 1922 return nr_pages - work->nr_pages; 1923 } 1924 1925 /* 1926 * Return the next wb_writeback_work struct that hasn't been processed yet. 1927 */ 1928 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1929 { 1930 struct wb_writeback_work *work = NULL; 1931 1932 spin_lock_bh(&wb->work_lock); 1933 if (!list_empty(&wb->work_list)) { 1934 work = list_entry(wb->work_list.next, 1935 struct wb_writeback_work, list); 1936 list_del_init(&work->list); 1937 } 1938 spin_unlock_bh(&wb->work_lock); 1939 return work; 1940 } 1941 1942 static long wb_check_background_flush(struct bdi_writeback *wb) 1943 { 1944 if (wb_over_bg_thresh(wb)) { 1945 1946 struct wb_writeback_work work = { 1947 .nr_pages = LONG_MAX, 1948 .sync_mode = WB_SYNC_NONE, 1949 .for_background = 1, 1950 .range_cyclic = 1, 1951 .reason = WB_REASON_BACKGROUND, 1952 }; 1953 1954 return wb_writeback(wb, &work); 1955 } 1956 1957 return 0; 1958 } 1959 1960 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1961 { 1962 unsigned long expired; 1963 long nr_pages; 1964 1965 /* 1966 * When set to zero, disable periodic writeback 1967 */ 1968 if (!dirty_writeback_interval) 1969 return 0; 1970 1971 expired = wb->last_old_flush + 1972 msecs_to_jiffies(dirty_writeback_interval * 10); 1973 if (time_before(jiffies, expired)) 1974 return 0; 1975 1976 wb->last_old_flush = jiffies; 1977 nr_pages = get_nr_dirty_pages(); 1978 1979 if (nr_pages) { 1980 struct wb_writeback_work work = { 1981 .nr_pages = nr_pages, 1982 .sync_mode = WB_SYNC_NONE, 1983 .for_kupdate = 1, 1984 .range_cyclic = 1, 1985 .reason = WB_REASON_PERIODIC, 1986 }; 1987 1988 return wb_writeback(wb, &work); 1989 } 1990 1991 return 0; 1992 } 1993 1994 static long wb_check_start_all(struct bdi_writeback *wb) 1995 { 1996 long nr_pages; 1997 1998 if (!test_bit(WB_start_all, &wb->state)) 1999 return 0; 2000 2001 nr_pages = get_nr_dirty_pages(); 2002 if (nr_pages) { 2003 struct wb_writeback_work work = { 2004 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2005 .sync_mode = WB_SYNC_NONE, 2006 .range_cyclic = 1, 2007 .reason = wb->start_all_reason, 2008 }; 2009 2010 nr_pages = wb_writeback(wb, &work); 2011 } 2012 2013 clear_bit(WB_start_all, &wb->state); 2014 return nr_pages; 2015 } 2016 2017 2018 /* 2019 * Retrieve work items and do the writeback they describe 2020 */ 2021 static long wb_do_writeback(struct bdi_writeback *wb) 2022 { 2023 struct wb_writeback_work *work; 2024 long wrote = 0; 2025 2026 set_bit(WB_writeback_running, &wb->state); 2027 while ((work = get_next_work_item(wb)) != NULL) { 2028 trace_writeback_exec(wb, work); 2029 wrote += wb_writeback(wb, work); 2030 finish_writeback_work(wb, work); 2031 } 2032 2033 /* 2034 * Check for a flush-everything request 2035 */ 2036 wrote += wb_check_start_all(wb); 2037 2038 /* 2039 * Check for periodic writeback, kupdated() style 2040 */ 2041 wrote += wb_check_old_data_flush(wb); 2042 wrote += wb_check_background_flush(wb); 2043 clear_bit(WB_writeback_running, &wb->state); 2044 2045 return wrote; 2046 } 2047 2048 /* 2049 * Handle writeback of dirty data for the device backed by this bdi. Also 2050 * reschedules periodically and does kupdated style flushing. 2051 */ 2052 void wb_workfn(struct work_struct *work) 2053 { 2054 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2055 struct bdi_writeback, dwork); 2056 long pages_written; 2057 2058 set_worker_desc("flush-%s", dev_name(wb->bdi->dev)); 2059 current->flags |= PF_SWAPWRITE; 2060 2061 if (likely(!current_is_workqueue_rescuer() || 2062 !test_bit(WB_registered, &wb->state))) { 2063 /* 2064 * The normal path. Keep writing back @wb until its 2065 * work_list is empty. Note that this path is also taken 2066 * if @wb is shutting down even when we're running off the 2067 * rescuer as work_list needs to be drained. 2068 */ 2069 do { 2070 pages_written = wb_do_writeback(wb); 2071 trace_writeback_pages_written(pages_written); 2072 } while (!list_empty(&wb->work_list)); 2073 } else { 2074 /* 2075 * bdi_wq can't get enough workers and we're running off 2076 * the emergency worker. Don't hog it. Hopefully, 1024 is 2077 * enough for efficient IO. 2078 */ 2079 pages_written = writeback_inodes_wb(wb, 1024, 2080 WB_REASON_FORKER_THREAD); 2081 trace_writeback_pages_written(pages_written); 2082 } 2083 2084 if (!list_empty(&wb->work_list)) 2085 wb_wakeup(wb); 2086 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2087 wb_wakeup_delayed(wb); 2088 2089 current->flags &= ~PF_SWAPWRITE; 2090 } 2091 2092 /* 2093 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2094 * write back the whole world. 2095 */ 2096 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2097 enum wb_reason reason) 2098 { 2099 struct bdi_writeback *wb; 2100 2101 if (!bdi_has_dirty_io(bdi)) 2102 return; 2103 2104 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2105 wb_start_writeback(wb, reason); 2106 } 2107 2108 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2109 enum wb_reason reason) 2110 { 2111 rcu_read_lock(); 2112 __wakeup_flusher_threads_bdi(bdi, reason); 2113 rcu_read_unlock(); 2114 } 2115 2116 /* 2117 * Wakeup the flusher threads to start writeback of all currently dirty pages 2118 */ 2119 void wakeup_flusher_threads(enum wb_reason reason) 2120 { 2121 struct backing_dev_info *bdi; 2122 2123 /* 2124 * If we are expecting writeback progress we must submit plugged IO. 2125 */ 2126 if (blk_needs_flush_plug(current)) 2127 blk_schedule_flush_plug(current); 2128 2129 rcu_read_lock(); 2130 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2131 __wakeup_flusher_threads_bdi(bdi, reason); 2132 rcu_read_unlock(); 2133 } 2134 2135 /* 2136 * Wake up bdi's periodically to make sure dirtytime inodes gets 2137 * written back periodically. We deliberately do *not* check the 2138 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2139 * kernel to be constantly waking up once there are any dirtytime 2140 * inodes on the system. So instead we define a separate delayed work 2141 * function which gets called much more rarely. (By default, only 2142 * once every 12 hours.) 2143 * 2144 * If there is any other write activity going on in the file system, 2145 * this function won't be necessary. But if the only thing that has 2146 * happened on the file system is a dirtytime inode caused by an atime 2147 * update, we need this infrastructure below to make sure that inode 2148 * eventually gets pushed out to disk. 2149 */ 2150 static void wakeup_dirtytime_writeback(struct work_struct *w); 2151 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2152 2153 static void wakeup_dirtytime_writeback(struct work_struct *w) 2154 { 2155 struct backing_dev_info *bdi; 2156 2157 rcu_read_lock(); 2158 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2159 struct bdi_writeback *wb; 2160 2161 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2162 if (!list_empty(&wb->b_dirty_time)) 2163 wb_wakeup(wb); 2164 } 2165 rcu_read_unlock(); 2166 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2167 } 2168 2169 static int __init start_dirtytime_writeback(void) 2170 { 2171 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2172 return 0; 2173 } 2174 __initcall(start_dirtytime_writeback); 2175 2176 int dirtytime_interval_handler(struct ctl_table *table, int write, 2177 void __user *buffer, size_t *lenp, loff_t *ppos) 2178 { 2179 int ret; 2180 2181 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2182 if (ret == 0 && write) 2183 mod_delayed_work(system_wq, &dirtytime_work, 0); 2184 return ret; 2185 } 2186 2187 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 2188 { 2189 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 2190 struct dentry *dentry; 2191 const char *name = "?"; 2192 2193 dentry = d_find_alias(inode); 2194 if (dentry) { 2195 spin_lock(&dentry->d_lock); 2196 name = (const char *) dentry->d_name.name; 2197 } 2198 printk(KERN_DEBUG 2199 "%s(%d): dirtied inode %lu (%s) on %s\n", 2200 current->comm, task_pid_nr(current), inode->i_ino, 2201 name, inode->i_sb->s_id); 2202 if (dentry) { 2203 spin_unlock(&dentry->d_lock); 2204 dput(dentry); 2205 } 2206 } 2207 } 2208 2209 /** 2210 * __mark_inode_dirty - internal function 2211 * 2212 * @inode: inode to mark 2213 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 2214 * 2215 * Mark an inode as dirty. Callers should use mark_inode_dirty or 2216 * mark_inode_dirty_sync. 2217 * 2218 * Put the inode on the super block's dirty list. 2219 * 2220 * CAREFUL! We mark it dirty unconditionally, but move it onto the 2221 * dirty list only if it is hashed or if it refers to a blockdev. 2222 * If it was not hashed, it will never be added to the dirty list 2223 * even if it is later hashed, as it will have been marked dirty already. 2224 * 2225 * In short, make sure you hash any inodes _before_ you start marking 2226 * them dirty. 2227 * 2228 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2229 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2230 * the kernel-internal blockdev inode represents the dirtying time of the 2231 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2232 * page->mapping->host, so the page-dirtying time is recorded in the internal 2233 * blockdev inode. 2234 */ 2235 void __mark_inode_dirty(struct inode *inode, int flags) 2236 { 2237 struct super_block *sb = inode->i_sb; 2238 int dirtytime; 2239 2240 trace_writeback_mark_inode_dirty(inode, flags); 2241 2242 /* 2243 * Don't do this for I_DIRTY_PAGES - that doesn't actually 2244 * dirty the inode itself 2245 */ 2246 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) { 2247 trace_writeback_dirty_inode_start(inode, flags); 2248 2249 if (sb->s_op->dirty_inode) 2250 sb->s_op->dirty_inode(inode, flags); 2251 2252 trace_writeback_dirty_inode(inode, flags); 2253 } 2254 if (flags & I_DIRTY_INODE) 2255 flags &= ~I_DIRTY_TIME; 2256 dirtytime = flags & I_DIRTY_TIME; 2257 2258 /* 2259 * Paired with smp_mb() in __writeback_single_inode() for the 2260 * following lockless i_state test. See there for details. 2261 */ 2262 smp_mb(); 2263 2264 if (((inode->i_state & flags) == flags) || 2265 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2266 return; 2267 2268 if (unlikely(block_dump)) 2269 block_dump___mark_inode_dirty(inode); 2270 2271 spin_lock(&inode->i_lock); 2272 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2273 goto out_unlock_inode; 2274 if ((inode->i_state & flags) != flags) { 2275 const int was_dirty = inode->i_state & I_DIRTY; 2276 2277 inode_attach_wb(inode, NULL); 2278 2279 if (flags & I_DIRTY_INODE) 2280 inode->i_state &= ~I_DIRTY_TIME; 2281 inode->i_state |= flags; 2282 2283 /* 2284 * If the inode is being synced, just update its dirty state. 2285 * The unlocker will place the inode on the appropriate 2286 * superblock list, based upon its state. 2287 */ 2288 if (inode->i_state & I_SYNC) 2289 goto out_unlock_inode; 2290 2291 /* 2292 * Only add valid (hashed) inodes to the superblock's 2293 * dirty list. Add blockdev inodes as well. 2294 */ 2295 if (!S_ISBLK(inode->i_mode)) { 2296 if (inode_unhashed(inode)) 2297 goto out_unlock_inode; 2298 } 2299 if (inode->i_state & I_FREEING) 2300 goto out_unlock_inode; 2301 2302 /* 2303 * If the inode was already on b_dirty/b_io/b_more_io, don't 2304 * reposition it (that would break b_dirty time-ordering). 2305 */ 2306 if (!was_dirty) { 2307 struct bdi_writeback *wb; 2308 struct list_head *dirty_list; 2309 bool wakeup_bdi = false; 2310 2311 wb = locked_inode_to_wb_and_lock_list(inode); 2312 2313 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2314 !test_bit(WB_registered, &wb->state), 2315 "bdi-%s not registered\n", wb->bdi->name); 2316 2317 inode->dirtied_when = jiffies; 2318 if (dirtytime) 2319 inode->dirtied_time_when = jiffies; 2320 2321 if (inode->i_state & I_DIRTY) 2322 dirty_list = &wb->b_dirty; 2323 else 2324 dirty_list = &wb->b_dirty_time; 2325 2326 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2327 dirty_list); 2328 2329 spin_unlock(&wb->list_lock); 2330 trace_writeback_dirty_inode_enqueue(inode); 2331 2332 /* 2333 * If this is the first dirty inode for this bdi, 2334 * we have to wake-up the corresponding bdi thread 2335 * to make sure background write-back happens 2336 * later. 2337 */ 2338 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2339 wb_wakeup_delayed(wb); 2340 return; 2341 } 2342 } 2343 out_unlock_inode: 2344 spin_unlock(&inode->i_lock); 2345 } 2346 EXPORT_SYMBOL(__mark_inode_dirty); 2347 2348 /* 2349 * The @s_sync_lock is used to serialise concurrent sync operations 2350 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2351 * Concurrent callers will block on the s_sync_lock rather than doing contending 2352 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2353 * has been issued up to the time this function is enter is guaranteed to be 2354 * completed by the time we have gained the lock and waited for all IO that is 2355 * in progress regardless of the order callers are granted the lock. 2356 */ 2357 static void wait_sb_inodes(struct super_block *sb) 2358 { 2359 LIST_HEAD(sync_list); 2360 2361 /* 2362 * We need to be protected against the filesystem going from 2363 * r/o to r/w or vice versa. 2364 */ 2365 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2366 2367 mutex_lock(&sb->s_sync_lock); 2368 2369 /* 2370 * Splice the writeback list onto a temporary list to avoid waiting on 2371 * inodes that have started writeback after this point. 2372 * 2373 * Use rcu_read_lock() to keep the inodes around until we have a 2374 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2375 * the local list because inodes can be dropped from either by writeback 2376 * completion. 2377 */ 2378 rcu_read_lock(); 2379 spin_lock_irq(&sb->s_inode_wblist_lock); 2380 list_splice_init(&sb->s_inodes_wb, &sync_list); 2381 2382 /* 2383 * Data integrity sync. Must wait for all pages under writeback, because 2384 * there may have been pages dirtied before our sync call, but which had 2385 * writeout started before we write it out. In which case, the inode 2386 * may not be on the dirty list, but we still have to wait for that 2387 * writeout. 2388 */ 2389 while (!list_empty(&sync_list)) { 2390 struct inode *inode = list_first_entry(&sync_list, struct inode, 2391 i_wb_list); 2392 struct address_space *mapping = inode->i_mapping; 2393 2394 /* 2395 * Move each inode back to the wb list before we drop the lock 2396 * to preserve consistency between i_wb_list and the mapping 2397 * writeback tag. Writeback completion is responsible to remove 2398 * the inode from either list once the writeback tag is cleared. 2399 */ 2400 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2401 2402 /* 2403 * The mapping can appear untagged while still on-list since we 2404 * do not have the mapping lock. Skip it here, wb completion 2405 * will remove it. 2406 */ 2407 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2408 continue; 2409 2410 spin_unlock_irq(&sb->s_inode_wblist_lock); 2411 2412 spin_lock(&inode->i_lock); 2413 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2414 spin_unlock(&inode->i_lock); 2415 2416 spin_lock_irq(&sb->s_inode_wblist_lock); 2417 continue; 2418 } 2419 __iget(inode); 2420 spin_unlock(&inode->i_lock); 2421 rcu_read_unlock(); 2422 2423 /* 2424 * We keep the error status of individual mapping so that 2425 * applications can catch the writeback error using fsync(2). 2426 * See filemap_fdatawait_keep_errors() for details. 2427 */ 2428 filemap_fdatawait_keep_errors(mapping); 2429 2430 cond_resched(); 2431 2432 iput(inode); 2433 2434 rcu_read_lock(); 2435 spin_lock_irq(&sb->s_inode_wblist_lock); 2436 } 2437 spin_unlock_irq(&sb->s_inode_wblist_lock); 2438 rcu_read_unlock(); 2439 mutex_unlock(&sb->s_sync_lock); 2440 } 2441 2442 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2443 enum wb_reason reason, bool skip_if_busy) 2444 { 2445 struct backing_dev_info *bdi = sb->s_bdi; 2446 DEFINE_WB_COMPLETION(done, bdi); 2447 struct wb_writeback_work work = { 2448 .sb = sb, 2449 .sync_mode = WB_SYNC_NONE, 2450 .tagged_writepages = 1, 2451 .done = &done, 2452 .nr_pages = nr, 2453 .reason = reason, 2454 }; 2455 2456 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2457 return; 2458 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2459 2460 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2461 wb_wait_for_completion(&done); 2462 } 2463 2464 /** 2465 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2466 * @sb: the superblock 2467 * @nr: the number of pages to write 2468 * @reason: reason why some writeback work initiated 2469 * 2470 * Start writeback on some inodes on this super_block. No guarantees are made 2471 * on how many (if any) will be written, and this function does not wait 2472 * for IO completion of submitted IO. 2473 */ 2474 void writeback_inodes_sb_nr(struct super_block *sb, 2475 unsigned long nr, 2476 enum wb_reason reason) 2477 { 2478 __writeback_inodes_sb_nr(sb, nr, reason, false); 2479 } 2480 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2481 2482 /** 2483 * writeback_inodes_sb - writeback dirty inodes from given super_block 2484 * @sb: the superblock 2485 * @reason: reason why some writeback work was initiated 2486 * 2487 * Start writeback on some inodes on this super_block. No guarantees are made 2488 * on how many (if any) will be written, and this function does not wait 2489 * for IO completion of submitted IO. 2490 */ 2491 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2492 { 2493 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2494 } 2495 EXPORT_SYMBOL(writeback_inodes_sb); 2496 2497 /** 2498 * try_to_writeback_inodes_sb - try to start writeback if none underway 2499 * @sb: the superblock 2500 * @reason: reason why some writeback work was initiated 2501 * 2502 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2503 */ 2504 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2505 { 2506 if (!down_read_trylock(&sb->s_umount)) 2507 return; 2508 2509 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2510 up_read(&sb->s_umount); 2511 } 2512 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2513 2514 /** 2515 * sync_inodes_sb - sync sb inode pages 2516 * @sb: the superblock 2517 * 2518 * This function writes and waits on any dirty inode belonging to this 2519 * super_block. 2520 */ 2521 void sync_inodes_sb(struct super_block *sb) 2522 { 2523 struct backing_dev_info *bdi = sb->s_bdi; 2524 DEFINE_WB_COMPLETION(done, bdi); 2525 struct wb_writeback_work work = { 2526 .sb = sb, 2527 .sync_mode = WB_SYNC_ALL, 2528 .nr_pages = LONG_MAX, 2529 .range_cyclic = 0, 2530 .done = &done, 2531 .reason = WB_REASON_SYNC, 2532 .for_sync = 1, 2533 }; 2534 2535 /* 2536 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2537 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2538 * bdi_has_dirty() need to be written out too. 2539 */ 2540 if (bdi == &noop_backing_dev_info) 2541 return; 2542 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2543 2544 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2545 bdi_down_write_wb_switch_rwsem(bdi); 2546 bdi_split_work_to_wbs(bdi, &work, false); 2547 wb_wait_for_completion(&done); 2548 bdi_up_write_wb_switch_rwsem(bdi); 2549 2550 wait_sb_inodes(sb); 2551 } 2552 EXPORT_SYMBOL(sync_inodes_sb); 2553 2554 /** 2555 * write_inode_now - write an inode to disk 2556 * @inode: inode to write to disk 2557 * @sync: whether the write should be synchronous or not 2558 * 2559 * This function commits an inode to disk immediately if it is dirty. This is 2560 * primarily needed by knfsd. 2561 * 2562 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2563 */ 2564 int write_inode_now(struct inode *inode, int sync) 2565 { 2566 struct writeback_control wbc = { 2567 .nr_to_write = LONG_MAX, 2568 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2569 .range_start = 0, 2570 .range_end = LLONG_MAX, 2571 }; 2572 2573 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2574 wbc.nr_to_write = 0; 2575 2576 might_sleep(); 2577 return writeback_single_inode(inode, &wbc); 2578 } 2579 EXPORT_SYMBOL(write_inode_now); 2580 2581 /** 2582 * sync_inode - write an inode and its pages to disk. 2583 * @inode: the inode to sync 2584 * @wbc: controls the writeback mode 2585 * 2586 * sync_inode() will write an inode and its pages to disk. It will also 2587 * correctly update the inode on its superblock's dirty inode lists and will 2588 * update inode->i_state. 2589 * 2590 * The caller must have a ref on the inode. 2591 */ 2592 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2593 { 2594 return writeback_single_inode(inode, wbc); 2595 } 2596 EXPORT_SYMBOL(sync_inode); 2597 2598 /** 2599 * sync_inode_metadata - write an inode to disk 2600 * @inode: the inode to sync 2601 * @wait: wait for I/O to complete. 2602 * 2603 * Write an inode to disk and adjust its dirty state after completion. 2604 * 2605 * Note: only writes the actual inode, no associated data or other metadata. 2606 */ 2607 int sync_inode_metadata(struct inode *inode, int wait) 2608 { 2609 struct writeback_control wbc = { 2610 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2611 .nr_to_write = 0, /* metadata-only */ 2612 }; 2613 2614 return sync_inode(inode, &wbc); 2615 } 2616 EXPORT_SYMBOL(sync_inode_metadata); 2617