xref: /openbmc/linux/fs/fs-writeback.c (revision 2022ca0a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	unsigned long *older_than_this;
46 	enum writeback_sync_modes sync_mode;
47 	unsigned int tagged_writepages:1;
48 	unsigned int for_kupdate:1;
49 	unsigned int range_cyclic:1;
50 	unsigned int for_background:1;
51 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
52 	unsigned int auto_free:1;	/* free on completion */
53 	enum wb_reason reason;		/* why was writeback initiated? */
54 
55 	struct list_head list;		/* pending work list */
56 	struct wb_completion *done;	/* set if the caller waits */
57 };
58 
59 /*
60  * If an inode is constantly having its pages dirtied, but then the
61  * updates stop dirtytime_expire_interval seconds in the past, it's
62  * possible for the worst case time between when an inode has its
63  * timestamps updated and when they finally get written out to be two
64  * dirtytime_expire_intervals.  We set the default to 12 hours (in
65  * seconds), which means most of the time inodes will have their
66  * timestamps written to disk after 12 hours, but in the worst case a
67  * few inodes might not their timestamps updated for 24 hours.
68  */
69 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70 
71 static inline struct inode *wb_inode(struct list_head *head)
72 {
73 	return list_entry(head, struct inode, i_io_list);
74 }
75 
76 /*
77  * Include the creation of the trace points after defining the
78  * wb_writeback_work structure and inline functions so that the definition
79  * remains local to this file.
80  */
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/writeback.h>
83 
84 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85 
86 static bool wb_io_lists_populated(struct bdi_writeback *wb)
87 {
88 	if (wb_has_dirty_io(wb)) {
89 		return false;
90 	} else {
91 		set_bit(WB_has_dirty_io, &wb->state);
92 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
93 		atomic_long_add(wb->avg_write_bandwidth,
94 				&wb->bdi->tot_write_bandwidth);
95 		return true;
96 	}
97 }
98 
99 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100 {
101 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
102 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
103 		clear_bit(WB_has_dirty_io, &wb->state);
104 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
105 					&wb->bdi->tot_write_bandwidth) < 0);
106 	}
107 }
108 
109 /**
110  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
111  * @inode: inode to be moved
112  * @wb: target bdi_writeback
113  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
114  *
115  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
116  * Returns %true if @inode is the first occupant of the !dirty_time IO
117  * lists; otherwise, %false.
118  */
119 static bool inode_io_list_move_locked(struct inode *inode,
120 				      struct bdi_writeback *wb,
121 				      struct list_head *head)
122 {
123 	assert_spin_locked(&wb->list_lock);
124 
125 	list_move(&inode->i_io_list, head);
126 
127 	/* dirty_time doesn't count as dirty_io until expiration */
128 	if (head != &wb->b_dirty_time)
129 		return wb_io_lists_populated(wb);
130 
131 	wb_io_lists_depopulated(wb);
132 	return false;
133 }
134 
135 /**
136  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
137  * @inode: inode to be removed
138  * @wb: bdi_writeback @inode is being removed from
139  *
140  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
141  * clear %WB_has_dirty_io if all are empty afterwards.
142  */
143 static void inode_io_list_del_locked(struct inode *inode,
144 				     struct bdi_writeback *wb)
145 {
146 	assert_spin_locked(&wb->list_lock);
147 
148 	list_del_init(&inode->i_io_list);
149 	wb_io_lists_depopulated(wb);
150 }
151 
152 static void wb_wakeup(struct bdi_writeback *wb)
153 {
154 	spin_lock_bh(&wb->work_lock);
155 	if (test_bit(WB_registered, &wb->state))
156 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
157 	spin_unlock_bh(&wb->work_lock);
158 }
159 
160 static void finish_writeback_work(struct bdi_writeback *wb,
161 				  struct wb_writeback_work *work)
162 {
163 	struct wb_completion *done = work->done;
164 
165 	if (work->auto_free)
166 		kfree(work);
167 	if (done && atomic_dec_and_test(&done->cnt))
168 		wake_up_all(done->waitq);
169 }
170 
171 static void wb_queue_work(struct bdi_writeback *wb,
172 			  struct wb_writeback_work *work)
173 {
174 	trace_writeback_queue(wb, work);
175 
176 	if (work->done)
177 		atomic_inc(&work->done->cnt);
178 
179 	spin_lock_bh(&wb->work_lock);
180 
181 	if (test_bit(WB_registered, &wb->state)) {
182 		list_add_tail(&work->list, &wb->work_list);
183 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
184 	} else
185 		finish_writeback_work(wb, work);
186 
187 	spin_unlock_bh(&wb->work_lock);
188 }
189 
190 /**
191  * wb_wait_for_completion - wait for completion of bdi_writeback_works
192  * @done: target wb_completion
193  *
194  * Wait for one or more work items issued to @bdi with their ->done field
195  * set to @done, which should have been initialized with
196  * DEFINE_WB_COMPLETION().  This function returns after all such work items
197  * are completed.  Work items which are waited upon aren't freed
198  * automatically on completion.
199  */
200 void wb_wait_for_completion(struct wb_completion *done)
201 {
202 	atomic_dec(&done->cnt);		/* put down the initial count */
203 	wait_event(*done->waitq, !atomic_read(&done->cnt));
204 }
205 
206 #ifdef CONFIG_CGROUP_WRITEBACK
207 
208 /*
209  * Parameters for foreign inode detection, see wbc_detach_inode() to see
210  * how they're used.
211  *
212  * These paramters are inherently heuristical as the detection target
213  * itself is fuzzy.  All we want to do is detaching an inode from the
214  * current owner if it's being written to by some other cgroups too much.
215  *
216  * The current cgroup writeback is built on the assumption that multiple
217  * cgroups writing to the same inode concurrently is very rare and a mode
218  * of operation which isn't well supported.  As such, the goal is not
219  * taking too long when a different cgroup takes over an inode while
220  * avoiding too aggressive flip-flops from occasional foreign writes.
221  *
222  * We record, very roughly, 2s worth of IO time history and if more than
223  * half of that is foreign, trigger the switch.  The recording is quantized
224  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
225  * writes smaller than 1/8 of avg size are ignored.
226  */
227 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
230 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
231 
232 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 					/* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
236 					/* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 					/* one round can affect upto 5 slots */
239 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
240 
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243 
244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246 	struct backing_dev_info *bdi = inode_to_bdi(inode);
247 	struct bdi_writeback *wb = NULL;
248 
249 	if (inode_cgwb_enabled(inode)) {
250 		struct cgroup_subsys_state *memcg_css;
251 
252 		if (page) {
253 			memcg_css = mem_cgroup_css_from_page(page);
254 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 		} else {
256 			/* must pin memcg_css, see wb_get_create() */
257 			memcg_css = task_get_css(current, memory_cgrp_id);
258 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 			css_put(memcg_css);
260 		}
261 	}
262 
263 	if (!wb)
264 		wb = &bdi->wb;
265 
266 	/*
267 	 * There may be multiple instances of this function racing to
268 	 * update the same inode.  Use cmpxchg() to tell the winner.
269 	 */
270 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 		wb_put(wb);
272 }
273 EXPORT_SYMBOL_GPL(__inode_attach_wb);
274 
275 /**
276  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277  * @inode: inode of interest with i_lock held
278  *
279  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
280  * held on entry and is released on return.  The returned wb is guaranteed
281  * to stay @inode's associated wb until its list_lock is released.
282  */
283 static struct bdi_writeback *
284 locked_inode_to_wb_and_lock_list(struct inode *inode)
285 	__releases(&inode->i_lock)
286 	__acquires(&wb->list_lock)
287 {
288 	while (true) {
289 		struct bdi_writeback *wb = inode_to_wb(inode);
290 
291 		/*
292 		 * inode_to_wb() association is protected by both
293 		 * @inode->i_lock and @wb->list_lock but list_lock nests
294 		 * outside i_lock.  Drop i_lock and verify that the
295 		 * association hasn't changed after acquiring list_lock.
296 		 */
297 		wb_get(wb);
298 		spin_unlock(&inode->i_lock);
299 		spin_lock(&wb->list_lock);
300 
301 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
302 		if (likely(wb == inode->i_wb)) {
303 			wb_put(wb);	/* @inode already has ref */
304 			return wb;
305 		}
306 
307 		spin_unlock(&wb->list_lock);
308 		wb_put(wb);
309 		cpu_relax();
310 		spin_lock(&inode->i_lock);
311 	}
312 }
313 
314 /**
315  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316  * @inode: inode of interest
317  *
318  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319  * on entry.
320  */
321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
322 	__acquires(&wb->list_lock)
323 {
324 	spin_lock(&inode->i_lock);
325 	return locked_inode_to_wb_and_lock_list(inode);
326 }
327 
328 struct inode_switch_wbs_context {
329 	struct inode		*inode;
330 	struct bdi_writeback	*new_wb;
331 
332 	struct rcu_head		rcu_head;
333 	struct work_struct	work;
334 };
335 
336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
337 {
338 	down_write(&bdi->wb_switch_rwsem);
339 }
340 
341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343 	up_write(&bdi->wb_switch_rwsem);
344 }
345 
346 static void inode_switch_wbs_work_fn(struct work_struct *work)
347 {
348 	struct inode_switch_wbs_context *isw =
349 		container_of(work, struct inode_switch_wbs_context, work);
350 	struct inode *inode = isw->inode;
351 	struct backing_dev_info *bdi = inode_to_bdi(inode);
352 	struct address_space *mapping = inode->i_mapping;
353 	struct bdi_writeback *old_wb = inode->i_wb;
354 	struct bdi_writeback *new_wb = isw->new_wb;
355 	XA_STATE(xas, &mapping->i_pages, 0);
356 	struct page *page;
357 	bool switched = false;
358 
359 	/*
360 	 * If @inode switches cgwb membership while sync_inodes_sb() is
361 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
362 	 */
363 	down_read(&bdi->wb_switch_rwsem);
364 
365 	/*
366 	 * By the time control reaches here, RCU grace period has passed
367 	 * since I_WB_SWITCH assertion and all wb stat update transactions
368 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369 	 * synchronizing against the i_pages lock.
370 	 *
371 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
372 	 * gives us exclusion against all wb related operations on @inode
373 	 * including IO list manipulations and stat updates.
374 	 */
375 	if (old_wb < new_wb) {
376 		spin_lock(&old_wb->list_lock);
377 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
378 	} else {
379 		spin_lock(&new_wb->list_lock);
380 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
381 	}
382 	spin_lock(&inode->i_lock);
383 	xa_lock_irq(&mapping->i_pages);
384 
385 	/*
386 	 * Once I_FREEING is visible under i_lock, the eviction path owns
387 	 * the inode and we shouldn't modify ->i_io_list.
388 	 */
389 	if (unlikely(inode->i_state & I_FREEING))
390 		goto skip_switch;
391 
392 	trace_inode_switch_wbs(inode, old_wb, new_wb);
393 
394 	/*
395 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
396 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
397 	 * pages actually under writeback.
398 	 */
399 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
400 		if (PageDirty(page)) {
401 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
402 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
403 		}
404 	}
405 
406 	xas_set(&xas, 0);
407 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
408 		WARN_ON_ONCE(!PageWriteback(page));
409 		dec_wb_stat(old_wb, WB_WRITEBACK);
410 		inc_wb_stat(new_wb, WB_WRITEBACK);
411 	}
412 
413 	wb_get(new_wb);
414 
415 	/*
416 	 * Transfer to @new_wb's IO list if necessary.  The specific list
417 	 * @inode was on is ignored and the inode is put on ->b_dirty which
418 	 * is always correct including from ->b_dirty_time.  The transfer
419 	 * preserves @inode->dirtied_when ordering.
420 	 */
421 	if (!list_empty(&inode->i_io_list)) {
422 		struct inode *pos;
423 
424 		inode_io_list_del_locked(inode, old_wb);
425 		inode->i_wb = new_wb;
426 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
427 			if (time_after_eq(inode->dirtied_when,
428 					  pos->dirtied_when))
429 				break;
430 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
431 	} else {
432 		inode->i_wb = new_wb;
433 	}
434 
435 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
436 	inode->i_wb_frn_winner = 0;
437 	inode->i_wb_frn_avg_time = 0;
438 	inode->i_wb_frn_history = 0;
439 	switched = true;
440 skip_switch:
441 	/*
442 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
443 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
444 	 */
445 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
446 
447 	xa_unlock_irq(&mapping->i_pages);
448 	spin_unlock(&inode->i_lock);
449 	spin_unlock(&new_wb->list_lock);
450 	spin_unlock(&old_wb->list_lock);
451 
452 	up_read(&bdi->wb_switch_rwsem);
453 
454 	if (switched) {
455 		wb_wakeup(new_wb);
456 		wb_put(old_wb);
457 	}
458 	wb_put(new_wb);
459 
460 	iput(inode);
461 	kfree(isw);
462 
463 	atomic_dec(&isw_nr_in_flight);
464 }
465 
466 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
467 {
468 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
469 				struct inode_switch_wbs_context, rcu_head);
470 
471 	/* needs to grab bh-unsafe locks, bounce to work item */
472 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
473 	queue_work(isw_wq, &isw->work);
474 }
475 
476 /**
477  * inode_switch_wbs - change the wb association of an inode
478  * @inode: target inode
479  * @new_wb_id: ID of the new wb
480  *
481  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
482  * switching is performed asynchronously and may fail silently.
483  */
484 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
485 {
486 	struct backing_dev_info *bdi = inode_to_bdi(inode);
487 	struct cgroup_subsys_state *memcg_css;
488 	struct inode_switch_wbs_context *isw;
489 
490 	/* noop if seems to be already in progress */
491 	if (inode->i_state & I_WB_SWITCH)
492 		return;
493 
494 	/* avoid queueing a new switch if too many are already in flight */
495 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
496 		return;
497 
498 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
499 	if (!isw)
500 		return;
501 
502 	/* find and pin the new wb */
503 	rcu_read_lock();
504 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
505 	if (memcg_css)
506 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
507 	rcu_read_unlock();
508 	if (!isw->new_wb)
509 		goto out_free;
510 
511 	/* while holding I_WB_SWITCH, no one else can update the association */
512 	spin_lock(&inode->i_lock);
513 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
514 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
515 	    inode_to_wb(inode) == isw->new_wb) {
516 		spin_unlock(&inode->i_lock);
517 		goto out_free;
518 	}
519 	inode->i_state |= I_WB_SWITCH;
520 	__iget(inode);
521 	spin_unlock(&inode->i_lock);
522 
523 	isw->inode = inode;
524 
525 	/*
526 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
527 	 * the RCU protected stat update paths to grab the i_page
528 	 * lock so that stat transfer can synchronize against them.
529 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
530 	 */
531 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
532 
533 	atomic_inc(&isw_nr_in_flight);
534 	return;
535 
536 out_free:
537 	if (isw->new_wb)
538 		wb_put(isw->new_wb);
539 	kfree(isw);
540 }
541 
542 /**
543  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
544  * @wbc: writeback_control of interest
545  * @inode: target inode
546  *
547  * @inode is locked and about to be written back under the control of @wbc.
548  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
549  * writeback completion, wbc_detach_inode() should be called.  This is used
550  * to track the cgroup writeback context.
551  */
552 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
553 				 struct inode *inode)
554 {
555 	if (!inode_cgwb_enabled(inode)) {
556 		spin_unlock(&inode->i_lock);
557 		return;
558 	}
559 
560 	wbc->wb = inode_to_wb(inode);
561 	wbc->inode = inode;
562 
563 	wbc->wb_id = wbc->wb->memcg_css->id;
564 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
565 	wbc->wb_tcand_id = 0;
566 	wbc->wb_bytes = 0;
567 	wbc->wb_lcand_bytes = 0;
568 	wbc->wb_tcand_bytes = 0;
569 
570 	wb_get(wbc->wb);
571 	spin_unlock(&inode->i_lock);
572 
573 	/*
574 	 * A dying wb indicates that the memcg-blkcg mapping has changed
575 	 * and a new wb is already serving the memcg.  Switch immediately.
576 	 */
577 	if (unlikely(wb_dying(wbc->wb)))
578 		inode_switch_wbs(inode, wbc->wb_id);
579 }
580 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
581 
582 /**
583  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
584  * @wbc: writeback_control of the just finished writeback
585  *
586  * To be called after a writeback attempt of an inode finishes and undoes
587  * wbc_attach_and_unlock_inode().  Can be called under any context.
588  *
589  * As concurrent write sharing of an inode is expected to be very rare and
590  * memcg only tracks page ownership on first-use basis severely confining
591  * the usefulness of such sharing, cgroup writeback tracks ownership
592  * per-inode.  While the support for concurrent write sharing of an inode
593  * is deemed unnecessary, an inode being written to by different cgroups at
594  * different points in time is a lot more common, and, more importantly,
595  * charging only by first-use can too readily lead to grossly incorrect
596  * behaviors (single foreign page can lead to gigabytes of writeback to be
597  * incorrectly attributed).
598  *
599  * To resolve this issue, cgroup writeback detects the majority dirtier of
600  * an inode and transfers the ownership to it.  To avoid unnnecessary
601  * oscillation, the detection mechanism keeps track of history and gives
602  * out the switch verdict only if the foreign usage pattern is stable over
603  * a certain amount of time and/or writeback attempts.
604  *
605  * On each writeback attempt, @wbc tries to detect the majority writer
606  * using Boyer-Moore majority vote algorithm.  In addition to the byte
607  * count from the majority voting, it also counts the bytes written for the
608  * current wb and the last round's winner wb (max of last round's current
609  * wb, the winner from two rounds ago, and the last round's majority
610  * candidate).  Keeping track of the historical winner helps the algorithm
611  * to semi-reliably detect the most active writer even when it's not the
612  * absolute majority.
613  *
614  * Once the winner of the round is determined, whether the winner is
615  * foreign or not and how much IO time the round consumed is recorded in
616  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
617  * over a certain threshold, the switch verdict is given.
618  */
619 void wbc_detach_inode(struct writeback_control *wbc)
620 {
621 	struct bdi_writeback *wb = wbc->wb;
622 	struct inode *inode = wbc->inode;
623 	unsigned long avg_time, max_bytes, max_time;
624 	u16 history;
625 	int max_id;
626 
627 	if (!wb)
628 		return;
629 
630 	history = inode->i_wb_frn_history;
631 	avg_time = inode->i_wb_frn_avg_time;
632 
633 	/* pick the winner of this round */
634 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
635 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
636 		max_id = wbc->wb_id;
637 		max_bytes = wbc->wb_bytes;
638 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
639 		max_id = wbc->wb_lcand_id;
640 		max_bytes = wbc->wb_lcand_bytes;
641 	} else {
642 		max_id = wbc->wb_tcand_id;
643 		max_bytes = wbc->wb_tcand_bytes;
644 	}
645 
646 	/*
647 	 * Calculate the amount of IO time the winner consumed and fold it
648 	 * into the running average kept per inode.  If the consumed IO
649 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
650 	 * deciding whether to switch or not.  This is to prevent one-off
651 	 * small dirtiers from skewing the verdict.
652 	 */
653 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
654 				wb->avg_write_bandwidth);
655 	if (avg_time)
656 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
657 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
658 	else
659 		avg_time = max_time;	/* immediate catch up on first run */
660 
661 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
662 		int slots;
663 
664 		/*
665 		 * The switch verdict is reached if foreign wb's consume
666 		 * more than a certain proportion of IO time in a
667 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
668 		 * history mask where each bit represents one sixteenth of
669 		 * the period.  Determine the number of slots to shift into
670 		 * history from @max_time.
671 		 */
672 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
673 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
674 		history <<= slots;
675 		if (wbc->wb_id != max_id)
676 			history |= (1U << slots) - 1;
677 
678 		if (history)
679 			trace_inode_foreign_history(inode, wbc, history);
680 
681 		/*
682 		 * Switch if the current wb isn't the consistent winner.
683 		 * If there are multiple closely competing dirtiers, the
684 		 * inode may switch across them repeatedly over time, which
685 		 * is okay.  The main goal is avoiding keeping an inode on
686 		 * the wrong wb for an extended period of time.
687 		 */
688 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
689 			inode_switch_wbs(inode, max_id);
690 	}
691 
692 	/*
693 	 * Multiple instances of this function may race to update the
694 	 * following fields but we don't mind occassional inaccuracies.
695 	 */
696 	inode->i_wb_frn_winner = max_id;
697 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
698 	inode->i_wb_frn_history = history;
699 
700 	wb_put(wbc->wb);
701 	wbc->wb = NULL;
702 }
703 EXPORT_SYMBOL_GPL(wbc_detach_inode);
704 
705 /**
706  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
707  * @wbc: writeback_control of the writeback in progress
708  * @page: page being written out
709  * @bytes: number of bytes being written out
710  *
711  * @bytes from @page are about to written out during the writeback
712  * controlled by @wbc.  Keep the book for foreign inode detection.  See
713  * wbc_detach_inode().
714  */
715 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
716 			      size_t bytes)
717 {
718 	struct cgroup_subsys_state *css;
719 	int id;
720 
721 	/*
722 	 * pageout() path doesn't attach @wbc to the inode being written
723 	 * out.  This is intentional as we don't want the function to block
724 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
725 	 * regular writeback instead of writing things out itself.
726 	 */
727 	if (!wbc->wb || wbc->no_cgroup_owner)
728 		return;
729 
730 	css = mem_cgroup_css_from_page(page);
731 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
732 	if (!(css->flags & CSS_ONLINE))
733 		return;
734 
735 	id = css->id;
736 
737 	if (id == wbc->wb_id) {
738 		wbc->wb_bytes += bytes;
739 		return;
740 	}
741 
742 	if (id == wbc->wb_lcand_id)
743 		wbc->wb_lcand_bytes += bytes;
744 
745 	/* Boyer-Moore majority vote algorithm */
746 	if (!wbc->wb_tcand_bytes)
747 		wbc->wb_tcand_id = id;
748 	if (id == wbc->wb_tcand_id)
749 		wbc->wb_tcand_bytes += bytes;
750 	else
751 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
752 }
753 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
754 
755 /**
756  * inode_congested - test whether an inode is congested
757  * @inode: inode to test for congestion (may be NULL)
758  * @cong_bits: mask of WB_[a]sync_congested bits to test
759  *
760  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
761  * bits to test and the return value is the mask of set bits.
762  *
763  * If cgroup writeback is enabled for @inode, the congestion state is
764  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
765  * associated with @inode is congested; otherwise, the root wb's congestion
766  * state is used.
767  *
768  * @inode is allowed to be NULL as this function is often called on
769  * mapping->host which is NULL for the swapper space.
770  */
771 int inode_congested(struct inode *inode, int cong_bits)
772 {
773 	/*
774 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
775 	 * Start transaction iff ->i_wb is visible.
776 	 */
777 	if (inode && inode_to_wb_is_valid(inode)) {
778 		struct bdi_writeback *wb;
779 		struct wb_lock_cookie lock_cookie = {};
780 		bool congested;
781 
782 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
783 		congested = wb_congested(wb, cong_bits);
784 		unlocked_inode_to_wb_end(inode, &lock_cookie);
785 		return congested;
786 	}
787 
788 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
789 }
790 EXPORT_SYMBOL_GPL(inode_congested);
791 
792 /**
793  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
794  * @wb: target bdi_writeback to split @nr_pages to
795  * @nr_pages: number of pages to write for the whole bdi
796  *
797  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
798  * relation to the total write bandwidth of all wb's w/ dirty inodes on
799  * @wb->bdi.
800  */
801 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
802 {
803 	unsigned long this_bw = wb->avg_write_bandwidth;
804 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
805 
806 	if (nr_pages == LONG_MAX)
807 		return LONG_MAX;
808 
809 	/*
810 	 * This may be called on clean wb's and proportional distribution
811 	 * may not make sense, just use the original @nr_pages in those
812 	 * cases.  In general, we wanna err on the side of writing more.
813 	 */
814 	if (!tot_bw || this_bw >= tot_bw)
815 		return nr_pages;
816 	else
817 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
818 }
819 
820 /**
821  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
822  * @bdi: target backing_dev_info
823  * @base_work: wb_writeback_work to issue
824  * @skip_if_busy: skip wb's which already have writeback in progress
825  *
826  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
827  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
828  * distributed to the busy wbs according to each wb's proportion in the
829  * total active write bandwidth of @bdi.
830  */
831 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
832 				  struct wb_writeback_work *base_work,
833 				  bool skip_if_busy)
834 {
835 	struct bdi_writeback *last_wb = NULL;
836 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
837 					      struct bdi_writeback, bdi_node);
838 
839 	might_sleep();
840 restart:
841 	rcu_read_lock();
842 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
843 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
844 		struct wb_writeback_work fallback_work;
845 		struct wb_writeback_work *work;
846 		long nr_pages;
847 
848 		if (last_wb) {
849 			wb_put(last_wb);
850 			last_wb = NULL;
851 		}
852 
853 		/* SYNC_ALL writes out I_DIRTY_TIME too */
854 		if (!wb_has_dirty_io(wb) &&
855 		    (base_work->sync_mode == WB_SYNC_NONE ||
856 		     list_empty(&wb->b_dirty_time)))
857 			continue;
858 		if (skip_if_busy && writeback_in_progress(wb))
859 			continue;
860 
861 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
862 
863 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
864 		if (work) {
865 			*work = *base_work;
866 			work->nr_pages = nr_pages;
867 			work->auto_free = 1;
868 			wb_queue_work(wb, work);
869 			continue;
870 		}
871 
872 		/* alloc failed, execute synchronously using on-stack fallback */
873 		work = &fallback_work;
874 		*work = *base_work;
875 		work->nr_pages = nr_pages;
876 		work->auto_free = 0;
877 		work->done = &fallback_work_done;
878 
879 		wb_queue_work(wb, work);
880 
881 		/*
882 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
883 		 * continuing iteration from @wb after dropping and
884 		 * regrabbing rcu read lock.
885 		 */
886 		wb_get(wb);
887 		last_wb = wb;
888 
889 		rcu_read_unlock();
890 		wb_wait_for_completion(&fallback_work_done);
891 		goto restart;
892 	}
893 	rcu_read_unlock();
894 
895 	if (last_wb)
896 		wb_put(last_wb);
897 }
898 
899 /**
900  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
901  * @bdi_id: target bdi id
902  * @memcg_id: target memcg css id
903  * @nr_pages: number of pages to write, 0 for best-effort dirty flushing
904  * @reason: reason why some writeback work initiated
905  * @done: target wb_completion
906  *
907  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
908  * with the specified parameters.
909  */
910 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
911 			   enum wb_reason reason, struct wb_completion *done)
912 {
913 	struct backing_dev_info *bdi;
914 	struct cgroup_subsys_state *memcg_css;
915 	struct bdi_writeback *wb;
916 	struct wb_writeback_work *work;
917 	int ret;
918 
919 	/* lookup bdi and memcg */
920 	bdi = bdi_get_by_id(bdi_id);
921 	if (!bdi)
922 		return -ENOENT;
923 
924 	rcu_read_lock();
925 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
926 	if (memcg_css && !css_tryget(memcg_css))
927 		memcg_css = NULL;
928 	rcu_read_unlock();
929 	if (!memcg_css) {
930 		ret = -ENOENT;
931 		goto out_bdi_put;
932 	}
933 
934 	/*
935 	 * And find the associated wb.  If the wb isn't there already
936 	 * there's nothing to flush, don't create one.
937 	 */
938 	wb = wb_get_lookup(bdi, memcg_css);
939 	if (!wb) {
940 		ret = -ENOENT;
941 		goto out_css_put;
942 	}
943 
944 	/*
945 	 * If @nr is zero, the caller is attempting to write out most of
946 	 * the currently dirty pages.  Let's take the current dirty page
947 	 * count and inflate it by 25% which should be large enough to
948 	 * flush out most dirty pages while avoiding getting livelocked by
949 	 * concurrent dirtiers.
950 	 */
951 	if (!nr) {
952 		unsigned long filepages, headroom, dirty, writeback;
953 
954 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
955 				      &writeback);
956 		nr = dirty * 10 / 8;
957 	}
958 
959 	/* issue the writeback work */
960 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
961 	if (work) {
962 		work->nr_pages = nr;
963 		work->sync_mode = WB_SYNC_NONE;
964 		work->range_cyclic = 1;
965 		work->reason = reason;
966 		work->done = done;
967 		work->auto_free = 1;
968 		wb_queue_work(wb, work);
969 		ret = 0;
970 	} else {
971 		ret = -ENOMEM;
972 	}
973 
974 	wb_put(wb);
975 out_css_put:
976 	css_put(memcg_css);
977 out_bdi_put:
978 	bdi_put(bdi);
979 	return ret;
980 }
981 
982 /**
983  * cgroup_writeback_umount - flush inode wb switches for umount
984  *
985  * This function is called when a super_block is about to be destroyed and
986  * flushes in-flight inode wb switches.  An inode wb switch goes through
987  * RCU and then workqueue, so the two need to be flushed in order to ensure
988  * that all previously scheduled switches are finished.  As wb switches are
989  * rare occurrences and synchronize_rcu() can take a while, perform
990  * flushing iff wb switches are in flight.
991  */
992 void cgroup_writeback_umount(void)
993 {
994 	if (atomic_read(&isw_nr_in_flight)) {
995 		/*
996 		 * Use rcu_barrier() to wait for all pending callbacks to
997 		 * ensure that all in-flight wb switches are in the workqueue.
998 		 */
999 		rcu_barrier();
1000 		flush_workqueue(isw_wq);
1001 	}
1002 }
1003 
1004 static int __init cgroup_writeback_init(void)
1005 {
1006 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1007 	if (!isw_wq)
1008 		return -ENOMEM;
1009 	return 0;
1010 }
1011 fs_initcall(cgroup_writeback_init);
1012 
1013 #else	/* CONFIG_CGROUP_WRITEBACK */
1014 
1015 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1016 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1017 
1018 static struct bdi_writeback *
1019 locked_inode_to_wb_and_lock_list(struct inode *inode)
1020 	__releases(&inode->i_lock)
1021 	__acquires(&wb->list_lock)
1022 {
1023 	struct bdi_writeback *wb = inode_to_wb(inode);
1024 
1025 	spin_unlock(&inode->i_lock);
1026 	spin_lock(&wb->list_lock);
1027 	return wb;
1028 }
1029 
1030 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1031 	__acquires(&wb->list_lock)
1032 {
1033 	struct bdi_writeback *wb = inode_to_wb(inode);
1034 
1035 	spin_lock(&wb->list_lock);
1036 	return wb;
1037 }
1038 
1039 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1040 {
1041 	return nr_pages;
1042 }
1043 
1044 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1045 				  struct wb_writeback_work *base_work,
1046 				  bool skip_if_busy)
1047 {
1048 	might_sleep();
1049 
1050 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1051 		base_work->auto_free = 0;
1052 		wb_queue_work(&bdi->wb, base_work);
1053 	}
1054 }
1055 
1056 #endif	/* CONFIG_CGROUP_WRITEBACK */
1057 
1058 /*
1059  * Add in the number of potentially dirty inodes, because each inode
1060  * write can dirty pagecache in the underlying blockdev.
1061  */
1062 static unsigned long get_nr_dirty_pages(void)
1063 {
1064 	return global_node_page_state(NR_FILE_DIRTY) +
1065 		global_node_page_state(NR_UNSTABLE_NFS) +
1066 		get_nr_dirty_inodes();
1067 }
1068 
1069 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1070 {
1071 	if (!wb_has_dirty_io(wb))
1072 		return;
1073 
1074 	/*
1075 	 * All callers of this function want to start writeback of all
1076 	 * dirty pages. Places like vmscan can call this at a very
1077 	 * high frequency, causing pointless allocations of tons of
1078 	 * work items and keeping the flusher threads busy retrieving
1079 	 * that work. Ensure that we only allow one of them pending and
1080 	 * inflight at the time.
1081 	 */
1082 	if (test_bit(WB_start_all, &wb->state) ||
1083 	    test_and_set_bit(WB_start_all, &wb->state))
1084 		return;
1085 
1086 	wb->start_all_reason = reason;
1087 	wb_wakeup(wb);
1088 }
1089 
1090 /**
1091  * wb_start_background_writeback - start background writeback
1092  * @wb: bdi_writback to write from
1093  *
1094  * Description:
1095  *   This makes sure WB_SYNC_NONE background writeback happens. When
1096  *   this function returns, it is only guaranteed that for given wb
1097  *   some IO is happening if we are over background dirty threshold.
1098  *   Caller need not hold sb s_umount semaphore.
1099  */
1100 void wb_start_background_writeback(struct bdi_writeback *wb)
1101 {
1102 	/*
1103 	 * We just wake up the flusher thread. It will perform background
1104 	 * writeback as soon as there is no other work to do.
1105 	 */
1106 	trace_writeback_wake_background(wb);
1107 	wb_wakeup(wb);
1108 }
1109 
1110 /*
1111  * Remove the inode from the writeback list it is on.
1112  */
1113 void inode_io_list_del(struct inode *inode)
1114 {
1115 	struct bdi_writeback *wb;
1116 
1117 	wb = inode_to_wb_and_lock_list(inode);
1118 	inode_io_list_del_locked(inode, wb);
1119 	spin_unlock(&wb->list_lock);
1120 }
1121 
1122 /*
1123  * mark an inode as under writeback on the sb
1124  */
1125 void sb_mark_inode_writeback(struct inode *inode)
1126 {
1127 	struct super_block *sb = inode->i_sb;
1128 	unsigned long flags;
1129 
1130 	if (list_empty(&inode->i_wb_list)) {
1131 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1132 		if (list_empty(&inode->i_wb_list)) {
1133 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1134 			trace_sb_mark_inode_writeback(inode);
1135 		}
1136 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1137 	}
1138 }
1139 
1140 /*
1141  * clear an inode as under writeback on the sb
1142  */
1143 void sb_clear_inode_writeback(struct inode *inode)
1144 {
1145 	struct super_block *sb = inode->i_sb;
1146 	unsigned long flags;
1147 
1148 	if (!list_empty(&inode->i_wb_list)) {
1149 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1150 		if (!list_empty(&inode->i_wb_list)) {
1151 			list_del_init(&inode->i_wb_list);
1152 			trace_sb_clear_inode_writeback(inode);
1153 		}
1154 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1155 	}
1156 }
1157 
1158 /*
1159  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1160  * furthest end of its superblock's dirty-inode list.
1161  *
1162  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1163  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1164  * the case then the inode must have been redirtied while it was being written
1165  * out and we don't reset its dirtied_when.
1166  */
1167 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1168 {
1169 	if (!list_empty(&wb->b_dirty)) {
1170 		struct inode *tail;
1171 
1172 		tail = wb_inode(wb->b_dirty.next);
1173 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1174 			inode->dirtied_when = jiffies;
1175 	}
1176 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1177 }
1178 
1179 /*
1180  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1181  */
1182 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1183 {
1184 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1185 }
1186 
1187 static void inode_sync_complete(struct inode *inode)
1188 {
1189 	inode->i_state &= ~I_SYNC;
1190 	/* If inode is clean an unused, put it into LRU now... */
1191 	inode_add_lru(inode);
1192 	/* Waiters must see I_SYNC cleared before being woken up */
1193 	smp_mb();
1194 	wake_up_bit(&inode->i_state, __I_SYNC);
1195 }
1196 
1197 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1198 {
1199 	bool ret = time_after(inode->dirtied_when, t);
1200 #ifndef CONFIG_64BIT
1201 	/*
1202 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1203 	 * It _appears_ to be in the future, but is actually in distant past.
1204 	 * This test is necessary to prevent such wrapped-around relative times
1205 	 * from permanently stopping the whole bdi writeback.
1206 	 */
1207 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1208 #endif
1209 	return ret;
1210 }
1211 
1212 #define EXPIRE_DIRTY_ATIME 0x0001
1213 
1214 /*
1215  * Move expired (dirtied before work->older_than_this) dirty inodes from
1216  * @delaying_queue to @dispatch_queue.
1217  */
1218 static int move_expired_inodes(struct list_head *delaying_queue,
1219 			       struct list_head *dispatch_queue,
1220 			       int flags,
1221 			       struct wb_writeback_work *work)
1222 {
1223 	unsigned long *older_than_this = NULL;
1224 	unsigned long expire_time;
1225 	LIST_HEAD(tmp);
1226 	struct list_head *pos, *node;
1227 	struct super_block *sb = NULL;
1228 	struct inode *inode;
1229 	int do_sb_sort = 0;
1230 	int moved = 0;
1231 
1232 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1233 		older_than_this = work->older_than_this;
1234 	else if (!work->for_sync) {
1235 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1236 		older_than_this = &expire_time;
1237 	}
1238 	while (!list_empty(delaying_queue)) {
1239 		inode = wb_inode(delaying_queue->prev);
1240 		if (older_than_this &&
1241 		    inode_dirtied_after(inode, *older_than_this))
1242 			break;
1243 		list_move(&inode->i_io_list, &tmp);
1244 		moved++;
1245 		if (flags & EXPIRE_DIRTY_ATIME)
1246 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1247 		if (sb_is_blkdev_sb(inode->i_sb))
1248 			continue;
1249 		if (sb && sb != inode->i_sb)
1250 			do_sb_sort = 1;
1251 		sb = inode->i_sb;
1252 	}
1253 
1254 	/* just one sb in list, splice to dispatch_queue and we're done */
1255 	if (!do_sb_sort) {
1256 		list_splice(&tmp, dispatch_queue);
1257 		goto out;
1258 	}
1259 
1260 	/* Move inodes from one superblock together */
1261 	while (!list_empty(&tmp)) {
1262 		sb = wb_inode(tmp.prev)->i_sb;
1263 		list_for_each_prev_safe(pos, node, &tmp) {
1264 			inode = wb_inode(pos);
1265 			if (inode->i_sb == sb)
1266 				list_move(&inode->i_io_list, dispatch_queue);
1267 		}
1268 	}
1269 out:
1270 	return moved;
1271 }
1272 
1273 /*
1274  * Queue all expired dirty inodes for io, eldest first.
1275  * Before
1276  *         newly dirtied     b_dirty    b_io    b_more_io
1277  *         =============>    gf         edc     BA
1278  * After
1279  *         newly dirtied     b_dirty    b_io    b_more_io
1280  *         =============>    g          fBAedc
1281  *                                           |
1282  *                                           +--> dequeue for IO
1283  */
1284 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1285 {
1286 	int moved;
1287 
1288 	assert_spin_locked(&wb->list_lock);
1289 	list_splice_init(&wb->b_more_io, &wb->b_io);
1290 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1291 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1292 				     EXPIRE_DIRTY_ATIME, work);
1293 	if (moved)
1294 		wb_io_lists_populated(wb);
1295 	trace_writeback_queue_io(wb, work, moved);
1296 }
1297 
1298 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1299 {
1300 	int ret;
1301 
1302 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1303 		trace_writeback_write_inode_start(inode, wbc);
1304 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1305 		trace_writeback_write_inode(inode, wbc);
1306 		return ret;
1307 	}
1308 	return 0;
1309 }
1310 
1311 /*
1312  * Wait for writeback on an inode to complete. Called with i_lock held.
1313  * Caller must make sure inode cannot go away when we drop i_lock.
1314  */
1315 static void __inode_wait_for_writeback(struct inode *inode)
1316 	__releases(inode->i_lock)
1317 	__acquires(inode->i_lock)
1318 {
1319 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1320 	wait_queue_head_t *wqh;
1321 
1322 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1323 	while (inode->i_state & I_SYNC) {
1324 		spin_unlock(&inode->i_lock);
1325 		__wait_on_bit(wqh, &wq, bit_wait,
1326 			      TASK_UNINTERRUPTIBLE);
1327 		spin_lock(&inode->i_lock);
1328 	}
1329 }
1330 
1331 /*
1332  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1333  */
1334 void inode_wait_for_writeback(struct inode *inode)
1335 {
1336 	spin_lock(&inode->i_lock);
1337 	__inode_wait_for_writeback(inode);
1338 	spin_unlock(&inode->i_lock);
1339 }
1340 
1341 /*
1342  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1343  * held and drops it. It is aimed for callers not holding any inode reference
1344  * so once i_lock is dropped, inode can go away.
1345  */
1346 static void inode_sleep_on_writeback(struct inode *inode)
1347 	__releases(inode->i_lock)
1348 {
1349 	DEFINE_WAIT(wait);
1350 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1351 	int sleep;
1352 
1353 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1354 	sleep = inode->i_state & I_SYNC;
1355 	spin_unlock(&inode->i_lock);
1356 	if (sleep)
1357 		schedule();
1358 	finish_wait(wqh, &wait);
1359 }
1360 
1361 /*
1362  * Find proper writeback list for the inode depending on its current state and
1363  * possibly also change of its state while we were doing writeback.  Here we
1364  * handle things such as livelock prevention or fairness of writeback among
1365  * inodes. This function can be called only by flusher thread - noone else
1366  * processes all inodes in writeback lists and requeueing inodes behind flusher
1367  * thread's back can have unexpected consequences.
1368  */
1369 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1370 			  struct writeback_control *wbc)
1371 {
1372 	if (inode->i_state & I_FREEING)
1373 		return;
1374 
1375 	/*
1376 	 * Sync livelock prevention. Each inode is tagged and synced in one
1377 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1378 	 * the dirty time to prevent enqueue and sync it again.
1379 	 */
1380 	if ((inode->i_state & I_DIRTY) &&
1381 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1382 		inode->dirtied_when = jiffies;
1383 
1384 	if (wbc->pages_skipped) {
1385 		/*
1386 		 * writeback is not making progress due to locked
1387 		 * buffers. Skip this inode for now.
1388 		 */
1389 		redirty_tail(inode, wb);
1390 		return;
1391 	}
1392 
1393 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1394 		/*
1395 		 * We didn't write back all the pages.  nfs_writepages()
1396 		 * sometimes bales out without doing anything.
1397 		 */
1398 		if (wbc->nr_to_write <= 0) {
1399 			/* Slice used up. Queue for next turn. */
1400 			requeue_io(inode, wb);
1401 		} else {
1402 			/*
1403 			 * Writeback blocked by something other than
1404 			 * congestion. Delay the inode for some time to
1405 			 * avoid spinning on the CPU (100% iowait)
1406 			 * retrying writeback of the dirty page/inode
1407 			 * that cannot be performed immediately.
1408 			 */
1409 			redirty_tail(inode, wb);
1410 		}
1411 	} else if (inode->i_state & I_DIRTY) {
1412 		/*
1413 		 * Filesystems can dirty the inode during writeback operations,
1414 		 * such as delayed allocation during submission or metadata
1415 		 * updates after data IO completion.
1416 		 */
1417 		redirty_tail(inode, wb);
1418 	} else if (inode->i_state & I_DIRTY_TIME) {
1419 		inode->dirtied_when = jiffies;
1420 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1421 	} else {
1422 		/* The inode is clean. Remove from writeback lists. */
1423 		inode_io_list_del_locked(inode, wb);
1424 	}
1425 }
1426 
1427 /*
1428  * Write out an inode and its dirty pages. Do not update the writeback list
1429  * linkage. That is left to the caller. The caller is also responsible for
1430  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1431  */
1432 static int
1433 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1434 {
1435 	struct address_space *mapping = inode->i_mapping;
1436 	long nr_to_write = wbc->nr_to_write;
1437 	unsigned dirty;
1438 	int ret;
1439 
1440 	WARN_ON(!(inode->i_state & I_SYNC));
1441 
1442 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1443 
1444 	ret = do_writepages(mapping, wbc);
1445 
1446 	/*
1447 	 * Make sure to wait on the data before writing out the metadata.
1448 	 * This is important for filesystems that modify metadata on data
1449 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1450 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1451 	 * inode metadata is written back correctly.
1452 	 */
1453 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1454 		int err = filemap_fdatawait(mapping);
1455 		if (ret == 0)
1456 			ret = err;
1457 	}
1458 
1459 	/*
1460 	 * Some filesystems may redirty the inode during the writeback
1461 	 * due to delalloc, clear dirty metadata flags right before
1462 	 * write_inode()
1463 	 */
1464 	spin_lock(&inode->i_lock);
1465 
1466 	dirty = inode->i_state & I_DIRTY;
1467 	if (inode->i_state & I_DIRTY_TIME) {
1468 		if ((dirty & I_DIRTY_INODE) ||
1469 		    wbc->sync_mode == WB_SYNC_ALL ||
1470 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1471 		    unlikely(time_after(jiffies,
1472 					(inode->dirtied_time_when +
1473 					 dirtytime_expire_interval * HZ)))) {
1474 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1475 			trace_writeback_lazytime(inode);
1476 		}
1477 	} else
1478 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1479 	inode->i_state &= ~dirty;
1480 
1481 	/*
1482 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1483 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1484 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1485 	 * inode.
1486 	 *
1487 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1488 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1489 	 * necessary.  This guarantees that either __mark_inode_dirty()
1490 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1491 	 */
1492 	smp_mb();
1493 
1494 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1495 		inode->i_state |= I_DIRTY_PAGES;
1496 
1497 	spin_unlock(&inode->i_lock);
1498 
1499 	if (dirty & I_DIRTY_TIME)
1500 		mark_inode_dirty_sync(inode);
1501 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1502 	if (dirty & ~I_DIRTY_PAGES) {
1503 		int err = write_inode(inode, wbc);
1504 		if (ret == 0)
1505 			ret = err;
1506 	}
1507 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1508 	return ret;
1509 }
1510 
1511 /*
1512  * Write out an inode's dirty pages. Either the caller has an active reference
1513  * on the inode or the inode has I_WILL_FREE set.
1514  *
1515  * This function is designed to be called for writing back one inode which
1516  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1517  * and does more profound writeback list handling in writeback_sb_inodes().
1518  */
1519 static int writeback_single_inode(struct inode *inode,
1520 				  struct writeback_control *wbc)
1521 {
1522 	struct bdi_writeback *wb;
1523 	int ret = 0;
1524 
1525 	spin_lock(&inode->i_lock);
1526 	if (!atomic_read(&inode->i_count))
1527 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1528 	else
1529 		WARN_ON(inode->i_state & I_WILL_FREE);
1530 
1531 	if (inode->i_state & I_SYNC) {
1532 		if (wbc->sync_mode != WB_SYNC_ALL)
1533 			goto out;
1534 		/*
1535 		 * It's a data-integrity sync. We must wait. Since callers hold
1536 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1537 		 * away under us.
1538 		 */
1539 		__inode_wait_for_writeback(inode);
1540 	}
1541 	WARN_ON(inode->i_state & I_SYNC);
1542 	/*
1543 	 * Skip inode if it is clean and we have no outstanding writeback in
1544 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1545 	 * function since flusher thread may be doing for example sync in
1546 	 * parallel and if we move the inode, it could get skipped. So here we
1547 	 * make sure inode is on some writeback list and leave it there unless
1548 	 * we have completely cleaned the inode.
1549 	 */
1550 	if (!(inode->i_state & I_DIRTY_ALL) &&
1551 	    (wbc->sync_mode != WB_SYNC_ALL ||
1552 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1553 		goto out;
1554 	inode->i_state |= I_SYNC;
1555 	wbc_attach_and_unlock_inode(wbc, inode);
1556 
1557 	ret = __writeback_single_inode(inode, wbc);
1558 
1559 	wbc_detach_inode(wbc);
1560 
1561 	wb = inode_to_wb_and_lock_list(inode);
1562 	spin_lock(&inode->i_lock);
1563 	/*
1564 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1565 	 * touch it. See comment above for explanation.
1566 	 */
1567 	if (!(inode->i_state & I_DIRTY_ALL))
1568 		inode_io_list_del_locked(inode, wb);
1569 	spin_unlock(&wb->list_lock);
1570 	inode_sync_complete(inode);
1571 out:
1572 	spin_unlock(&inode->i_lock);
1573 	return ret;
1574 }
1575 
1576 static long writeback_chunk_size(struct bdi_writeback *wb,
1577 				 struct wb_writeback_work *work)
1578 {
1579 	long pages;
1580 
1581 	/*
1582 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1583 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1584 	 * here avoids calling into writeback_inodes_wb() more than once.
1585 	 *
1586 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1587 	 *
1588 	 *      wb_writeback()
1589 	 *          writeback_sb_inodes()       <== called only once
1590 	 *              write_cache_pages()     <== called once for each inode
1591 	 *                   (quickly) tag currently dirty pages
1592 	 *                   (maybe slowly) sync all tagged pages
1593 	 */
1594 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1595 		pages = LONG_MAX;
1596 	else {
1597 		pages = min(wb->avg_write_bandwidth / 2,
1598 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1599 		pages = min(pages, work->nr_pages);
1600 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1601 				   MIN_WRITEBACK_PAGES);
1602 	}
1603 
1604 	return pages;
1605 }
1606 
1607 /*
1608  * Write a portion of b_io inodes which belong to @sb.
1609  *
1610  * Return the number of pages and/or inodes written.
1611  *
1612  * NOTE! This is called with wb->list_lock held, and will
1613  * unlock and relock that for each inode it ends up doing
1614  * IO for.
1615  */
1616 static long writeback_sb_inodes(struct super_block *sb,
1617 				struct bdi_writeback *wb,
1618 				struct wb_writeback_work *work)
1619 {
1620 	struct writeback_control wbc = {
1621 		.sync_mode		= work->sync_mode,
1622 		.tagged_writepages	= work->tagged_writepages,
1623 		.for_kupdate		= work->for_kupdate,
1624 		.for_background		= work->for_background,
1625 		.for_sync		= work->for_sync,
1626 		.range_cyclic		= work->range_cyclic,
1627 		.range_start		= 0,
1628 		.range_end		= LLONG_MAX,
1629 	};
1630 	unsigned long start_time = jiffies;
1631 	long write_chunk;
1632 	long wrote = 0;  /* count both pages and inodes */
1633 
1634 	while (!list_empty(&wb->b_io)) {
1635 		struct inode *inode = wb_inode(wb->b_io.prev);
1636 		struct bdi_writeback *tmp_wb;
1637 
1638 		if (inode->i_sb != sb) {
1639 			if (work->sb) {
1640 				/*
1641 				 * We only want to write back data for this
1642 				 * superblock, move all inodes not belonging
1643 				 * to it back onto the dirty list.
1644 				 */
1645 				redirty_tail(inode, wb);
1646 				continue;
1647 			}
1648 
1649 			/*
1650 			 * The inode belongs to a different superblock.
1651 			 * Bounce back to the caller to unpin this and
1652 			 * pin the next superblock.
1653 			 */
1654 			break;
1655 		}
1656 
1657 		/*
1658 		 * Don't bother with new inodes or inodes being freed, first
1659 		 * kind does not need periodic writeout yet, and for the latter
1660 		 * kind writeout is handled by the freer.
1661 		 */
1662 		spin_lock(&inode->i_lock);
1663 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1664 			spin_unlock(&inode->i_lock);
1665 			redirty_tail(inode, wb);
1666 			continue;
1667 		}
1668 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1669 			/*
1670 			 * If this inode is locked for writeback and we are not
1671 			 * doing writeback-for-data-integrity, move it to
1672 			 * b_more_io so that writeback can proceed with the
1673 			 * other inodes on s_io.
1674 			 *
1675 			 * We'll have another go at writing back this inode
1676 			 * when we completed a full scan of b_io.
1677 			 */
1678 			spin_unlock(&inode->i_lock);
1679 			requeue_io(inode, wb);
1680 			trace_writeback_sb_inodes_requeue(inode);
1681 			continue;
1682 		}
1683 		spin_unlock(&wb->list_lock);
1684 
1685 		/*
1686 		 * We already requeued the inode if it had I_SYNC set and we
1687 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1688 		 * WB_SYNC_ALL case.
1689 		 */
1690 		if (inode->i_state & I_SYNC) {
1691 			/* Wait for I_SYNC. This function drops i_lock... */
1692 			inode_sleep_on_writeback(inode);
1693 			/* Inode may be gone, start again */
1694 			spin_lock(&wb->list_lock);
1695 			continue;
1696 		}
1697 		inode->i_state |= I_SYNC;
1698 		wbc_attach_and_unlock_inode(&wbc, inode);
1699 
1700 		write_chunk = writeback_chunk_size(wb, work);
1701 		wbc.nr_to_write = write_chunk;
1702 		wbc.pages_skipped = 0;
1703 
1704 		/*
1705 		 * We use I_SYNC to pin the inode in memory. While it is set
1706 		 * evict_inode() will wait so the inode cannot be freed.
1707 		 */
1708 		__writeback_single_inode(inode, &wbc);
1709 
1710 		wbc_detach_inode(&wbc);
1711 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1712 		wrote += write_chunk - wbc.nr_to_write;
1713 
1714 		if (need_resched()) {
1715 			/*
1716 			 * We're trying to balance between building up a nice
1717 			 * long list of IOs to improve our merge rate, and
1718 			 * getting those IOs out quickly for anyone throttling
1719 			 * in balance_dirty_pages().  cond_resched() doesn't
1720 			 * unplug, so get our IOs out the door before we
1721 			 * give up the CPU.
1722 			 */
1723 			blk_flush_plug(current);
1724 			cond_resched();
1725 		}
1726 
1727 		/*
1728 		 * Requeue @inode if still dirty.  Be careful as @inode may
1729 		 * have been switched to another wb in the meantime.
1730 		 */
1731 		tmp_wb = inode_to_wb_and_lock_list(inode);
1732 		spin_lock(&inode->i_lock);
1733 		if (!(inode->i_state & I_DIRTY_ALL))
1734 			wrote++;
1735 		requeue_inode(inode, tmp_wb, &wbc);
1736 		inode_sync_complete(inode);
1737 		spin_unlock(&inode->i_lock);
1738 
1739 		if (unlikely(tmp_wb != wb)) {
1740 			spin_unlock(&tmp_wb->list_lock);
1741 			spin_lock(&wb->list_lock);
1742 		}
1743 
1744 		/*
1745 		 * bail out to wb_writeback() often enough to check
1746 		 * background threshold and other termination conditions.
1747 		 */
1748 		if (wrote) {
1749 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1750 				break;
1751 			if (work->nr_pages <= 0)
1752 				break;
1753 		}
1754 	}
1755 	return wrote;
1756 }
1757 
1758 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1759 				  struct wb_writeback_work *work)
1760 {
1761 	unsigned long start_time = jiffies;
1762 	long wrote = 0;
1763 
1764 	while (!list_empty(&wb->b_io)) {
1765 		struct inode *inode = wb_inode(wb->b_io.prev);
1766 		struct super_block *sb = inode->i_sb;
1767 
1768 		if (!trylock_super(sb)) {
1769 			/*
1770 			 * trylock_super() may fail consistently due to
1771 			 * s_umount being grabbed by someone else. Don't use
1772 			 * requeue_io() to avoid busy retrying the inode/sb.
1773 			 */
1774 			redirty_tail(inode, wb);
1775 			continue;
1776 		}
1777 		wrote += writeback_sb_inodes(sb, wb, work);
1778 		up_read(&sb->s_umount);
1779 
1780 		/* refer to the same tests at the end of writeback_sb_inodes */
1781 		if (wrote) {
1782 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1783 				break;
1784 			if (work->nr_pages <= 0)
1785 				break;
1786 		}
1787 	}
1788 	/* Leave any unwritten inodes on b_io */
1789 	return wrote;
1790 }
1791 
1792 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1793 				enum wb_reason reason)
1794 {
1795 	struct wb_writeback_work work = {
1796 		.nr_pages	= nr_pages,
1797 		.sync_mode	= WB_SYNC_NONE,
1798 		.range_cyclic	= 1,
1799 		.reason		= reason,
1800 	};
1801 	struct blk_plug plug;
1802 
1803 	blk_start_plug(&plug);
1804 	spin_lock(&wb->list_lock);
1805 	if (list_empty(&wb->b_io))
1806 		queue_io(wb, &work);
1807 	__writeback_inodes_wb(wb, &work);
1808 	spin_unlock(&wb->list_lock);
1809 	blk_finish_plug(&plug);
1810 
1811 	return nr_pages - work.nr_pages;
1812 }
1813 
1814 /*
1815  * Explicit flushing or periodic writeback of "old" data.
1816  *
1817  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1818  * dirtying-time in the inode's address_space.  So this periodic writeback code
1819  * just walks the superblock inode list, writing back any inodes which are
1820  * older than a specific point in time.
1821  *
1822  * Try to run once per dirty_writeback_interval.  But if a writeback event
1823  * takes longer than a dirty_writeback_interval interval, then leave a
1824  * one-second gap.
1825  *
1826  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1827  * all dirty pages if they are all attached to "old" mappings.
1828  */
1829 static long wb_writeback(struct bdi_writeback *wb,
1830 			 struct wb_writeback_work *work)
1831 {
1832 	unsigned long wb_start = jiffies;
1833 	long nr_pages = work->nr_pages;
1834 	unsigned long oldest_jif;
1835 	struct inode *inode;
1836 	long progress;
1837 	struct blk_plug plug;
1838 
1839 	oldest_jif = jiffies;
1840 	work->older_than_this = &oldest_jif;
1841 
1842 	blk_start_plug(&plug);
1843 	spin_lock(&wb->list_lock);
1844 	for (;;) {
1845 		/*
1846 		 * Stop writeback when nr_pages has been consumed
1847 		 */
1848 		if (work->nr_pages <= 0)
1849 			break;
1850 
1851 		/*
1852 		 * Background writeout and kupdate-style writeback may
1853 		 * run forever. Stop them if there is other work to do
1854 		 * so that e.g. sync can proceed. They'll be restarted
1855 		 * after the other works are all done.
1856 		 */
1857 		if ((work->for_background || work->for_kupdate) &&
1858 		    !list_empty(&wb->work_list))
1859 			break;
1860 
1861 		/*
1862 		 * For background writeout, stop when we are below the
1863 		 * background dirty threshold
1864 		 */
1865 		if (work->for_background && !wb_over_bg_thresh(wb))
1866 			break;
1867 
1868 		/*
1869 		 * Kupdate and background works are special and we want to
1870 		 * include all inodes that need writing. Livelock avoidance is
1871 		 * handled by these works yielding to any other work so we are
1872 		 * safe.
1873 		 */
1874 		if (work->for_kupdate) {
1875 			oldest_jif = jiffies -
1876 				msecs_to_jiffies(dirty_expire_interval * 10);
1877 		} else if (work->for_background)
1878 			oldest_jif = jiffies;
1879 
1880 		trace_writeback_start(wb, work);
1881 		if (list_empty(&wb->b_io))
1882 			queue_io(wb, work);
1883 		if (work->sb)
1884 			progress = writeback_sb_inodes(work->sb, wb, work);
1885 		else
1886 			progress = __writeback_inodes_wb(wb, work);
1887 		trace_writeback_written(wb, work);
1888 
1889 		wb_update_bandwidth(wb, wb_start);
1890 
1891 		/*
1892 		 * Did we write something? Try for more
1893 		 *
1894 		 * Dirty inodes are moved to b_io for writeback in batches.
1895 		 * The completion of the current batch does not necessarily
1896 		 * mean the overall work is done. So we keep looping as long
1897 		 * as made some progress on cleaning pages or inodes.
1898 		 */
1899 		if (progress)
1900 			continue;
1901 		/*
1902 		 * No more inodes for IO, bail
1903 		 */
1904 		if (list_empty(&wb->b_more_io))
1905 			break;
1906 		/*
1907 		 * Nothing written. Wait for some inode to
1908 		 * become available for writeback. Otherwise
1909 		 * we'll just busyloop.
1910 		 */
1911 		trace_writeback_wait(wb, work);
1912 		inode = wb_inode(wb->b_more_io.prev);
1913 		spin_lock(&inode->i_lock);
1914 		spin_unlock(&wb->list_lock);
1915 		/* This function drops i_lock... */
1916 		inode_sleep_on_writeback(inode);
1917 		spin_lock(&wb->list_lock);
1918 	}
1919 	spin_unlock(&wb->list_lock);
1920 	blk_finish_plug(&plug);
1921 
1922 	return nr_pages - work->nr_pages;
1923 }
1924 
1925 /*
1926  * Return the next wb_writeback_work struct that hasn't been processed yet.
1927  */
1928 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1929 {
1930 	struct wb_writeback_work *work = NULL;
1931 
1932 	spin_lock_bh(&wb->work_lock);
1933 	if (!list_empty(&wb->work_list)) {
1934 		work = list_entry(wb->work_list.next,
1935 				  struct wb_writeback_work, list);
1936 		list_del_init(&work->list);
1937 	}
1938 	spin_unlock_bh(&wb->work_lock);
1939 	return work;
1940 }
1941 
1942 static long wb_check_background_flush(struct bdi_writeback *wb)
1943 {
1944 	if (wb_over_bg_thresh(wb)) {
1945 
1946 		struct wb_writeback_work work = {
1947 			.nr_pages	= LONG_MAX,
1948 			.sync_mode	= WB_SYNC_NONE,
1949 			.for_background	= 1,
1950 			.range_cyclic	= 1,
1951 			.reason		= WB_REASON_BACKGROUND,
1952 		};
1953 
1954 		return wb_writeback(wb, &work);
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1961 {
1962 	unsigned long expired;
1963 	long nr_pages;
1964 
1965 	/*
1966 	 * When set to zero, disable periodic writeback
1967 	 */
1968 	if (!dirty_writeback_interval)
1969 		return 0;
1970 
1971 	expired = wb->last_old_flush +
1972 			msecs_to_jiffies(dirty_writeback_interval * 10);
1973 	if (time_before(jiffies, expired))
1974 		return 0;
1975 
1976 	wb->last_old_flush = jiffies;
1977 	nr_pages = get_nr_dirty_pages();
1978 
1979 	if (nr_pages) {
1980 		struct wb_writeback_work work = {
1981 			.nr_pages	= nr_pages,
1982 			.sync_mode	= WB_SYNC_NONE,
1983 			.for_kupdate	= 1,
1984 			.range_cyclic	= 1,
1985 			.reason		= WB_REASON_PERIODIC,
1986 		};
1987 
1988 		return wb_writeback(wb, &work);
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 static long wb_check_start_all(struct bdi_writeback *wb)
1995 {
1996 	long nr_pages;
1997 
1998 	if (!test_bit(WB_start_all, &wb->state))
1999 		return 0;
2000 
2001 	nr_pages = get_nr_dirty_pages();
2002 	if (nr_pages) {
2003 		struct wb_writeback_work work = {
2004 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2005 			.sync_mode	= WB_SYNC_NONE,
2006 			.range_cyclic	= 1,
2007 			.reason		= wb->start_all_reason,
2008 		};
2009 
2010 		nr_pages = wb_writeback(wb, &work);
2011 	}
2012 
2013 	clear_bit(WB_start_all, &wb->state);
2014 	return nr_pages;
2015 }
2016 
2017 
2018 /*
2019  * Retrieve work items and do the writeback they describe
2020  */
2021 static long wb_do_writeback(struct bdi_writeback *wb)
2022 {
2023 	struct wb_writeback_work *work;
2024 	long wrote = 0;
2025 
2026 	set_bit(WB_writeback_running, &wb->state);
2027 	while ((work = get_next_work_item(wb)) != NULL) {
2028 		trace_writeback_exec(wb, work);
2029 		wrote += wb_writeback(wb, work);
2030 		finish_writeback_work(wb, work);
2031 	}
2032 
2033 	/*
2034 	 * Check for a flush-everything request
2035 	 */
2036 	wrote += wb_check_start_all(wb);
2037 
2038 	/*
2039 	 * Check for periodic writeback, kupdated() style
2040 	 */
2041 	wrote += wb_check_old_data_flush(wb);
2042 	wrote += wb_check_background_flush(wb);
2043 	clear_bit(WB_writeback_running, &wb->state);
2044 
2045 	return wrote;
2046 }
2047 
2048 /*
2049  * Handle writeback of dirty data for the device backed by this bdi. Also
2050  * reschedules periodically and does kupdated style flushing.
2051  */
2052 void wb_workfn(struct work_struct *work)
2053 {
2054 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2055 						struct bdi_writeback, dwork);
2056 	long pages_written;
2057 
2058 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
2059 	current->flags |= PF_SWAPWRITE;
2060 
2061 	if (likely(!current_is_workqueue_rescuer() ||
2062 		   !test_bit(WB_registered, &wb->state))) {
2063 		/*
2064 		 * The normal path.  Keep writing back @wb until its
2065 		 * work_list is empty.  Note that this path is also taken
2066 		 * if @wb is shutting down even when we're running off the
2067 		 * rescuer as work_list needs to be drained.
2068 		 */
2069 		do {
2070 			pages_written = wb_do_writeback(wb);
2071 			trace_writeback_pages_written(pages_written);
2072 		} while (!list_empty(&wb->work_list));
2073 	} else {
2074 		/*
2075 		 * bdi_wq can't get enough workers and we're running off
2076 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2077 		 * enough for efficient IO.
2078 		 */
2079 		pages_written = writeback_inodes_wb(wb, 1024,
2080 						    WB_REASON_FORKER_THREAD);
2081 		trace_writeback_pages_written(pages_written);
2082 	}
2083 
2084 	if (!list_empty(&wb->work_list))
2085 		wb_wakeup(wb);
2086 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2087 		wb_wakeup_delayed(wb);
2088 
2089 	current->flags &= ~PF_SWAPWRITE;
2090 }
2091 
2092 /*
2093  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2094  * write back the whole world.
2095  */
2096 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2097 					 enum wb_reason reason)
2098 {
2099 	struct bdi_writeback *wb;
2100 
2101 	if (!bdi_has_dirty_io(bdi))
2102 		return;
2103 
2104 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2105 		wb_start_writeback(wb, reason);
2106 }
2107 
2108 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2109 				enum wb_reason reason)
2110 {
2111 	rcu_read_lock();
2112 	__wakeup_flusher_threads_bdi(bdi, reason);
2113 	rcu_read_unlock();
2114 }
2115 
2116 /*
2117  * Wakeup the flusher threads to start writeback of all currently dirty pages
2118  */
2119 void wakeup_flusher_threads(enum wb_reason reason)
2120 {
2121 	struct backing_dev_info *bdi;
2122 
2123 	/*
2124 	 * If we are expecting writeback progress we must submit plugged IO.
2125 	 */
2126 	if (blk_needs_flush_plug(current))
2127 		blk_schedule_flush_plug(current);
2128 
2129 	rcu_read_lock();
2130 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2131 		__wakeup_flusher_threads_bdi(bdi, reason);
2132 	rcu_read_unlock();
2133 }
2134 
2135 /*
2136  * Wake up bdi's periodically to make sure dirtytime inodes gets
2137  * written back periodically.  We deliberately do *not* check the
2138  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2139  * kernel to be constantly waking up once there are any dirtytime
2140  * inodes on the system.  So instead we define a separate delayed work
2141  * function which gets called much more rarely.  (By default, only
2142  * once every 12 hours.)
2143  *
2144  * If there is any other write activity going on in the file system,
2145  * this function won't be necessary.  But if the only thing that has
2146  * happened on the file system is a dirtytime inode caused by an atime
2147  * update, we need this infrastructure below to make sure that inode
2148  * eventually gets pushed out to disk.
2149  */
2150 static void wakeup_dirtytime_writeback(struct work_struct *w);
2151 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2152 
2153 static void wakeup_dirtytime_writeback(struct work_struct *w)
2154 {
2155 	struct backing_dev_info *bdi;
2156 
2157 	rcu_read_lock();
2158 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2159 		struct bdi_writeback *wb;
2160 
2161 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2162 			if (!list_empty(&wb->b_dirty_time))
2163 				wb_wakeup(wb);
2164 	}
2165 	rcu_read_unlock();
2166 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2167 }
2168 
2169 static int __init start_dirtytime_writeback(void)
2170 {
2171 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2172 	return 0;
2173 }
2174 __initcall(start_dirtytime_writeback);
2175 
2176 int dirtytime_interval_handler(struct ctl_table *table, int write,
2177 			       void __user *buffer, size_t *lenp, loff_t *ppos)
2178 {
2179 	int ret;
2180 
2181 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2182 	if (ret == 0 && write)
2183 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2184 	return ret;
2185 }
2186 
2187 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2188 {
2189 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2190 		struct dentry *dentry;
2191 		const char *name = "?";
2192 
2193 		dentry = d_find_alias(inode);
2194 		if (dentry) {
2195 			spin_lock(&dentry->d_lock);
2196 			name = (const char *) dentry->d_name.name;
2197 		}
2198 		printk(KERN_DEBUG
2199 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2200 		       current->comm, task_pid_nr(current), inode->i_ino,
2201 		       name, inode->i_sb->s_id);
2202 		if (dentry) {
2203 			spin_unlock(&dentry->d_lock);
2204 			dput(dentry);
2205 		}
2206 	}
2207 }
2208 
2209 /**
2210  * __mark_inode_dirty -	internal function
2211  *
2212  * @inode: inode to mark
2213  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2214  *
2215  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2216  * mark_inode_dirty_sync.
2217  *
2218  * Put the inode on the super block's dirty list.
2219  *
2220  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2221  * dirty list only if it is hashed or if it refers to a blockdev.
2222  * If it was not hashed, it will never be added to the dirty list
2223  * even if it is later hashed, as it will have been marked dirty already.
2224  *
2225  * In short, make sure you hash any inodes _before_ you start marking
2226  * them dirty.
2227  *
2228  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2229  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2230  * the kernel-internal blockdev inode represents the dirtying time of the
2231  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2232  * page->mapping->host, so the page-dirtying time is recorded in the internal
2233  * blockdev inode.
2234  */
2235 void __mark_inode_dirty(struct inode *inode, int flags)
2236 {
2237 	struct super_block *sb = inode->i_sb;
2238 	int dirtytime;
2239 
2240 	trace_writeback_mark_inode_dirty(inode, flags);
2241 
2242 	/*
2243 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2244 	 * dirty the inode itself
2245 	 */
2246 	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2247 		trace_writeback_dirty_inode_start(inode, flags);
2248 
2249 		if (sb->s_op->dirty_inode)
2250 			sb->s_op->dirty_inode(inode, flags);
2251 
2252 		trace_writeback_dirty_inode(inode, flags);
2253 	}
2254 	if (flags & I_DIRTY_INODE)
2255 		flags &= ~I_DIRTY_TIME;
2256 	dirtytime = flags & I_DIRTY_TIME;
2257 
2258 	/*
2259 	 * Paired with smp_mb() in __writeback_single_inode() for the
2260 	 * following lockless i_state test.  See there for details.
2261 	 */
2262 	smp_mb();
2263 
2264 	if (((inode->i_state & flags) == flags) ||
2265 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2266 		return;
2267 
2268 	if (unlikely(block_dump))
2269 		block_dump___mark_inode_dirty(inode);
2270 
2271 	spin_lock(&inode->i_lock);
2272 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2273 		goto out_unlock_inode;
2274 	if ((inode->i_state & flags) != flags) {
2275 		const int was_dirty = inode->i_state & I_DIRTY;
2276 
2277 		inode_attach_wb(inode, NULL);
2278 
2279 		if (flags & I_DIRTY_INODE)
2280 			inode->i_state &= ~I_DIRTY_TIME;
2281 		inode->i_state |= flags;
2282 
2283 		/*
2284 		 * If the inode is being synced, just update its dirty state.
2285 		 * The unlocker will place the inode on the appropriate
2286 		 * superblock list, based upon its state.
2287 		 */
2288 		if (inode->i_state & I_SYNC)
2289 			goto out_unlock_inode;
2290 
2291 		/*
2292 		 * Only add valid (hashed) inodes to the superblock's
2293 		 * dirty list.  Add blockdev inodes as well.
2294 		 */
2295 		if (!S_ISBLK(inode->i_mode)) {
2296 			if (inode_unhashed(inode))
2297 				goto out_unlock_inode;
2298 		}
2299 		if (inode->i_state & I_FREEING)
2300 			goto out_unlock_inode;
2301 
2302 		/*
2303 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2304 		 * reposition it (that would break b_dirty time-ordering).
2305 		 */
2306 		if (!was_dirty) {
2307 			struct bdi_writeback *wb;
2308 			struct list_head *dirty_list;
2309 			bool wakeup_bdi = false;
2310 
2311 			wb = locked_inode_to_wb_and_lock_list(inode);
2312 
2313 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2314 			     !test_bit(WB_registered, &wb->state),
2315 			     "bdi-%s not registered\n", wb->bdi->name);
2316 
2317 			inode->dirtied_when = jiffies;
2318 			if (dirtytime)
2319 				inode->dirtied_time_when = jiffies;
2320 
2321 			if (inode->i_state & I_DIRTY)
2322 				dirty_list = &wb->b_dirty;
2323 			else
2324 				dirty_list = &wb->b_dirty_time;
2325 
2326 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2327 							       dirty_list);
2328 
2329 			spin_unlock(&wb->list_lock);
2330 			trace_writeback_dirty_inode_enqueue(inode);
2331 
2332 			/*
2333 			 * If this is the first dirty inode for this bdi,
2334 			 * we have to wake-up the corresponding bdi thread
2335 			 * to make sure background write-back happens
2336 			 * later.
2337 			 */
2338 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2339 				wb_wakeup_delayed(wb);
2340 			return;
2341 		}
2342 	}
2343 out_unlock_inode:
2344 	spin_unlock(&inode->i_lock);
2345 }
2346 EXPORT_SYMBOL(__mark_inode_dirty);
2347 
2348 /*
2349  * The @s_sync_lock is used to serialise concurrent sync operations
2350  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2351  * Concurrent callers will block on the s_sync_lock rather than doing contending
2352  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2353  * has been issued up to the time this function is enter is guaranteed to be
2354  * completed by the time we have gained the lock and waited for all IO that is
2355  * in progress regardless of the order callers are granted the lock.
2356  */
2357 static void wait_sb_inodes(struct super_block *sb)
2358 {
2359 	LIST_HEAD(sync_list);
2360 
2361 	/*
2362 	 * We need to be protected against the filesystem going from
2363 	 * r/o to r/w or vice versa.
2364 	 */
2365 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2366 
2367 	mutex_lock(&sb->s_sync_lock);
2368 
2369 	/*
2370 	 * Splice the writeback list onto a temporary list to avoid waiting on
2371 	 * inodes that have started writeback after this point.
2372 	 *
2373 	 * Use rcu_read_lock() to keep the inodes around until we have a
2374 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2375 	 * the local list because inodes can be dropped from either by writeback
2376 	 * completion.
2377 	 */
2378 	rcu_read_lock();
2379 	spin_lock_irq(&sb->s_inode_wblist_lock);
2380 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2381 
2382 	/*
2383 	 * Data integrity sync. Must wait for all pages under writeback, because
2384 	 * there may have been pages dirtied before our sync call, but which had
2385 	 * writeout started before we write it out.  In which case, the inode
2386 	 * may not be on the dirty list, but we still have to wait for that
2387 	 * writeout.
2388 	 */
2389 	while (!list_empty(&sync_list)) {
2390 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2391 						       i_wb_list);
2392 		struct address_space *mapping = inode->i_mapping;
2393 
2394 		/*
2395 		 * Move each inode back to the wb list before we drop the lock
2396 		 * to preserve consistency between i_wb_list and the mapping
2397 		 * writeback tag. Writeback completion is responsible to remove
2398 		 * the inode from either list once the writeback tag is cleared.
2399 		 */
2400 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2401 
2402 		/*
2403 		 * The mapping can appear untagged while still on-list since we
2404 		 * do not have the mapping lock. Skip it here, wb completion
2405 		 * will remove it.
2406 		 */
2407 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2408 			continue;
2409 
2410 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2411 
2412 		spin_lock(&inode->i_lock);
2413 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2414 			spin_unlock(&inode->i_lock);
2415 
2416 			spin_lock_irq(&sb->s_inode_wblist_lock);
2417 			continue;
2418 		}
2419 		__iget(inode);
2420 		spin_unlock(&inode->i_lock);
2421 		rcu_read_unlock();
2422 
2423 		/*
2424 		 * We keep the error status of individual mapping so that
2425 		 * applications can catch the writeback error using fsync(2).
2426 		 * See filemap_fdatawait_keep_errors() for details.
2427 		 */
2428 		filemap_fdatawait_keep_errors(mapping);
2429 
2430 		cond_resched();
2431 
2432 		iput(inode);
2433 
2434 		rcu_read_lock();
2435 		spin_lock_irq(&sb->s_inode_wblist_lock);
2436 	}
2437 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2438 	rcu_read_unlock();
2439 	mutex_unlock(&sb->s_sync_lock);
2440 }
2441 
2442 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2443 				     enum wb_reason reason, bool skip_if_busy)
2444 {
2445 	struct backing_dev_info *bdi = sb->s_bdi;
2446 	DEFINE_WB_COMPLETION(done, bdi);
2447 	struct wb_writeback_work work = {
2448 		.sb			= sb,
2449 		.sync_mode		= WB_SYNC_NONE,
2450 		.tagged_writepages	= 1,
2451 		.done			= &done,
2452 		.nr_pages		= nr,
2453 		.reason			= reason,
2454 	};
2455 
2456 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2457 		return;
2458 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2459 
2460 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2461 	wb_wait_for_completion(&done);
2462 }
2463 
2464 /**
2465  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2466  * @sb: the superblock
2467  * @nr: the number of pages to write
2468  * @reason: reason why some writeback work initiated
2469  *
2470  * Start writeback on some inodes on this super_block. No guarantees are made
2471  * on how many (if any) will be written, and this function does not wait
2472  * for IO completion of submitted IO.
2473  */
2474 void writeback_inodes_sb_nr(struct super_block *sb,
2475 			    unsigned long nr,
2476 			    enum wb_reason reason)
2477 {
2478 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2479 }
2480 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2481 
2482 /**
2483  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2484  * @sb: the superblock
2485  * @reason: reason why some writeback work was initiated
2486  *
2487  * Start writeback on some inodes on this super_block. No guarantees are made
2488  * on how many (if any) will be written, and this function does not wait
2489  * for IO completion of submitted IO.
2490  */
2491 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2492 {
2493 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2494 }
2495 EXPORT_SYMBOL(writeback_inodes_sb);
2496 
2497 /**
2498  * try_to_writeback_inodes_sb - try to start writeback if none underway
2499  * @sb: the superblock
2500  * @reason: reason why some writeback work was initiated
2501  *
2502  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2503  */
2504 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2505 {
2506 	if (!down_read_trylock(&sb->s_umount))
2507 		return;
2508 
2509 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2510 	up_read(&sb->s_umount);
2511 }
2512 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2513 
2514 /**
2515  * sync_inodes_sb	-	sync sb inode pages
2516  * @sb: the superblock
2517  *
2518  * This function writes and waits on any dirty inode belonging to this
2519  * super_block.
2520  */
2521 void sync_inodes_sb(struct super_block *sb)
2522 {
2523 	struct backing_dev_info *bdi = sb->s_bdi;
2524 	DEFINE_WB_COMPLETION(done, bdi);
2525 	struct wb_writeback_work work = {
2526 		.sb		= sb,
2527 		.sync_mode	= WB_SYNC_ALL,
2528 		.nr_pages	= LONG_MAX,
2529 		.range_cyclic	= 0,
2530 		.done		= &done,
2531 		.reason		= WB_REASON_SYNC,
2532 		.for_sync	= 1,
2533 	};
2534 
2535 	/*
2536 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2537 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2538 	 * bdi_has_dirty() need to be written out too.
2539 	 */
2540 	if (bdi == &noop_backing_dev_info)
2541 		return;
2542 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2543 
2544 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2545 	bdi_down_write_wb_switch_rwsem(bdi);
2546 	bdi_split_work_to_wbs(bdi, &work, false);
2547 	wb_wait_for_completion(&done);
2548 	bdi_up_write_wb_switch_rwsem(bdi);
2549 
2550 	wait_sb_inodes(sb);
2551 }
2552 EXPORT_SYMBOL(sync_inodes_sb);
2553 
2554 /**
2555  * write_inode_now	-	write an inode to disk
2556  * @inode: inode to write to disk
2557  * @sync: whether the write should be synchronous or not
2558  *
2559  * This function commits an inode to disk immediately if it is dirty. This is
2560  * primarily needed by knfsd.
2561  *
2562  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2563  */
2564 int write_inode_now(struct inode *inode, int sync)
2565 {
2566 	struct writeback_control wbc = {
2567 		.nr_to_write = LONG_MAX,
2568 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2569 		.range_start = 0,
2570 		.range_end = LLONG_MAX,
2571 	};
2572 
2573 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2574 		wbc.nr_to_write = 0;
2575 
2576 	might_sleep();
2577 	return writeback_single_inode(inode, &wbc);
2578 }
2579 EXPORT_SYMBOL(write_inode_now);
2580 
2581 /**
2582  * sync_inode - write an inode and its pages to disk.
2583  * @inode: the inode to sync
2584  * @wbc: controls the writeback mode
2585  *
2586  * sync_inode() will write an inode and its pages to disk.  It will also
2587  * correctly update the inode on its superblock's dirty inode lists and will
2588  * update inode->i_state.
2589  *
2590  * The caller must have a ref on the inode.
2591  */
2592 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2593 {
2594 	return writeback_single_inode(inode, wbc);
2595 }
2596 EXPORT_SYMBOL(sync_inode);
2597 
2598 /**
2599  * sync_inode_metadata - write an inode to disk
2600  * @inode: the inode to sync
2601  * @wait: wait for I/O to complete.
2602  *
2603  * Write an inode to disk and adjust its dirty state after completion.
2604  *
2605  * Note: only writes the actual inode, no associated data or other metadata.
2606  */
2607 int sync_inode_metadata(struct inode *inode, int wait)
2608 {
2609 	struct writeback_control wbc = {
2610 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2611 		.nr_to_write = 0, /* metadata-only */
2612 	};
2613 
2614 	return sync_inode(inode, &wbc);
2615 }
2616 EXPORT_SYMBOL(sync_inode_metadata);
2617