xref: /openbmc/linux/fs/fs-writeback.c (revision 1fd01aa2)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	unsigned long *older_than_this;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int tagged_writepages:1;
46 	unsigned int for_kupdate:1;
47 	unsigned int range_cyclic:1;
48 	unsigned int for_background:1;
49 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
50 	enum wb_reason reason;		/* why was writeback initiated? */
51 
52 	struct list_head list;		/* pending work list */
53 	struct completion *done;	/* set if the caller waits */
54 };
55 
56 /**
57  * writeback_in_progress - determine whether there is writeback in progress
58  * @bdi: the device's backing_dev_info structure.
59  *
60  * Determine whether there is writeback waiting to be handled against a
61  * backing device.
62  */
63 int writeback_in_progress(struct backing_dev_info *bdi)
64 {
65 	return test_bit(BDI_writeback_running, &bdi->state);
66 }
67 EXPORT_SYMBOL(writeback_in_progress);
68 
69 struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 {
71 	struct super_block *sb;
72 
73 	if (!inode)
74 		return &noop_backing_dev_info;
75 
76 	sb = inode->i_sb;
77 #ifdef CONFIG_BLOCK
78 	if (sb_is_blkdev_sb(sb))
79 		return blk_get_backing_dev_info(I_BDEV(inode));
80 #endif
81 	return sb->s_bdi;
82 }
83 EXPORT_SYMBOL_GPL(inode_to_bdi);
84 
85 static inline struct inode *wb_inode(struct list_head *head)
86 {
87 	return list_entry(head, struct inode, i_wb_list);
88 }
89 
90 /*
91  * Include the creation of the trace points after defining the
92  * wb_writeback_work structure and inline functions so that the definition
93  * remains local to this file.
94  */
95 #define CREATE_TRACE_POINTS
96 #include <trace/events/writeback.h>
97 
98 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
99 
100 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
101 {
102 	spin_lock_bh(&bdi->wb_lock);
103 	if (test_bit(BDI_registered, &bdi->state))
104 		mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
105 	spin_unlock_bh(&bdi->wb_lock);
106 }
107 
108 static void bdi_queue_work(struct backing_dev_info *bdi,
109 			   struct wb_writeback_work *work)
110 {
111 	trace_writeback_queue(bdi, work);
112 
113 	spin_lock_bh(&bdi->wb_lock);
114 	if (!test_bit(BDI_registered, &bdi->state)) {
115 		if (work->done)
116 			complete(work->done);
117 		goto out_unlock;
118 	}
119 	list_add_tail(&work->list, &bdi->work_list);
120 	mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
121 out_unlock:
122 	spin_unlock_bh(&bdi->wb_lock);
123 }
124 
125 static void
126 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
127 		      bool range_cyclic, enum wb_reason reason)
128 {
129 	struct wb_writeback_work *work;
130 
131 	/*
132 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
133 	 * wakeup the thread for old dirty data writeback
134 	 */
135 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
136 	if (!work) {
137 		trace_writeback_nowork(bdi);
138 		bdi_wakeup_thread(bdi);
139 		return;
140 	}
141 
142 	work->sync_mode	= WB_SYNC_NONE;
143 	work->nr_pages	= nr_pages;
144 	work->range_cyclic = range_cyclic;
145 	work->reason	= reason;
146 
147 	bdi_queue_work(bdi, work);
148 }
149 
150 /**
151  * bdi_start_writeback - start writeback
152  * @bdi: the backing device to write from
153  * @nr_pages: the number of pages to write
154  * @reason: reason why some writeback work was initiated
155  *
156  * Description:
157  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
158  *   started when this function returns, we make no guarantees on
159  *   completion. Caller need not hold sb s_umount semaphore.
160  *
161  */
162 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
163 			enum wb_reason reason)
164 {
165 	__bdi_start_writeback(bdi, nr_pages, true, reason);
166 }
167 
168 /**
169  * bdi_start_background_writeback - start background writeback
170  * @bdi: the backing device to write from
171  *
172  * Description:
173  *   This makes sure WB_SYNC_NONE background writeback happens. When
174  *   this function returns, it is only guaranteed that for given BDI
175  *   some IO is happening if we are over background dirty threshold.
176  *   Caller need not hold sb s_umount semaphore.
177  */
178 void bdi_start_background_writeback(struct backing_dev_info *bdi)
179 {
180 	/*
181 	 * We just wake up the flusher thread. It will perform background
182 	 * writeback as soon as there is no other work to do.
183 	 */
184 	trace_writeback_wake_background(bdi);
185 	bdi_wakeup_thread(bdi);
186 }
187 
188 /*
189  * Remove the inode from the writeback list it is on.
190  */
191 void inode_wb_list_del(struct inode *inode)
192 {
193 	struct backing_dev_info *bdi = inode_to_bdi(inode);
194 
195 	spin_lock(&bdi->wb.list_lock);
196 	list_del_init(&inode->i_wb_list);
197 	spin_unlock(&bdi->wb.list_lock);
198 }
199 
200 /*
201  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
202  * furthest end of its superblock's dirty-inode list.
203  *
204  * Before stamping the inode's ->dirtied_when, we check to see whether it is
205  * already the most-recently-dirtied inode on the b_dirty list.  If that is
206  * the case then the inode must have been redirtied while it was being written
207  * out and we don't reset its dirtied_when.
208  */
209 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
210 {
211 	assert_spin_locked(&wb->list_lock);
212 	if (!list_empty(&wb->b_dirty)) {
213 		struct inode *tail;
214 
215 		tail = wb_inode(wb->b_dirty.next);
216 		if (time_before(inode->dirtied_when, tail->dirtied_when))
217 			inode->dirtied_when = jiffies;
218 	}
219 	list_move(&inode->i_wb_list, &wb->b_dirty);
220 }
221 
222 /*
223  * requeue inode for re-scanning after bdi->b_io list is exhausted.
224  */
225 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
226 {
227 	assert_spin_locked(&wb->list_lock);
228 	list_move(&inode->i_wb_list, &wb->b_more_io);
229 }
230 
231 static void inode_sync_complete(struct inode *inode)
232 {
233 	inode->i_state &= ~I_SYNC;
234 	/* If inode is clean an unused, put it into LRU now... */
235 	inode_add_lru(inode);
236 	/* Waiters must see I_SYNC cleared before being woken up */
237 	smp_mb();
238 	wake_up_bit(&inode->i_state, __I_SYNC);
239 }
240 
241 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
242 {
243 	bool ret = time_after(inode->dirtied_when, t);
244 #ifndef CONFIG_64BIT
245 	/*
246 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
247 	 * It _appears_ to be in the future, but is actually in distant past.
248 	 * This test is necessary to prevent such wrapped-around relative times
249 	 * from permanently stopping the whole bdi writeback.
250 	 */
251 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
252 #endif
253 	return ret;
254 }
255 
256 /*
257  * Move expired (dirtied before work->older_than_this) dirty inodes from
258  * @delaying_queue to @dispatch_queue.
259  */
260 static int move_expired_inodes(struct list_head *delaying_queue,
261 			       struct list_head *dispatch_queue,
262 			       struct wb_writeback_work *work)
263 {
264 	LIST_HEAD(tmp);
265 	struct list_head *pos, *node;
266 	struct super_block *sb = NULL;
267 	struct inode *inode;
268 	int do_sb_sort = 0;
269 	int moved = 0;
270 
271 	while (!list_empty(delaying_queue)) {
272 		inode = wb_inode(delaying_queue->prev);
273 		if (work->older_than_this &&
274 		    inode_dirtied_after(inode, *work->older_than_this))
275 			break;
276 		list_move(&inode->i_wb_list, &tmp);
277 		moved++;
278 		if (sb_is_blkdev_sb(inode->i_sb))
279 			continue;
280 		if (sb && sb != inode->i_sb)
281 			do_sb_sort = 1;
282 		sb = inode->i_sb;
283 	}
284 
285 	/* just one sb in list, splice to dispatch_queue and we're done */
286 	if (!do_sb_sort) {
287 		list_splice(&tmp, dispatch_queue);
288 		goto out;
289 	}
290 
291 	/* Move inodes from one superblock together */
292 	while (!list_empty(&tmp)) {
293 		sb = wb_inode(tmp.prev)->i_sb;
294 		list_for_each_prev_safe(pos, node, &tmp) {
295 			inode = wb_inode(pos);
296 			if (inode->i_sb == sb)
297 				list_move(&inode->i_wb_list, dispatch_queue);
298 		}
299 	}
300 out:
301 	return moved;
302 }
303 
304 /*
305  * Queue all expired dirty inodes for io, eldest first.
306  * Before
307  *         newly dirtied     b_dirty    b_io    b_more_io
308  *         =============>    gf         edc     BA
309  * After
310  *         newly dirtied     b_dirty    b_io    b_more_io
311  *         =============>    g          fBAedc
312  *                                           |
313  *                                           +--> dequeue for IO
314  */
315 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
316 {
317 	int moved;
318 	assert_spin_locked(&wb->list_lock);
319 	list_splice_init(&wb->b_more_io, &wb->b_io);
320 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
321 	trace_writeback_queue_io(wb, work, moved);
322 }
323 
324 static int write_inode(struct inode *inode, struct writeback_control *wbc)
325 {
326 	int ret;
327 
328 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
329 		trace_writeback_write_inode_start(inode, wbc);
330 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
331 		trace_writeback_write_inode(inode, wbc);
332 		return ret;
333 	}
334 	return 0;
335 }
336 
337 /*
338  * Wait for writeback on an inode to complete. Called with i_lock held.
339  * Caller must make sure inode cannot go away when we drop i_lock.
340  */
341 static void __inode_wait_for_writeback(struct inode *inode)
342 	__releases(inode->i_lock)
343 	__acquires(inode->i_lock)
344 {
345 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
346 	wait_queue_head_t *wqh;
347 
348 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
349 	while (inode->i_state & I_SYNC) {
350 		spin_unlock(&inode->i_lock);
351 		__wait_on_bit(wqh, &wq, bit_wait,
352 			      TASK_UNINTERRUPTIBLE);
353 		spin_lock(&inode->i_lock);
354 	}
355 }
356 
357 /*
358  * Wait for writeback on an inode to complete. Caller must have inode pinned.
359  */
360 void inode_wait_for_writeback(struct inode *inode)
361 {
362 	spin_lock(&inode->i_lock);
363 	__inode_wait_for_writeback(inode);
364 	spin_unlock(&inode->i_lock);
365 }
366 
367 /*
368  * Sleep until I_SYNC is cleared. This function must be called with i_lock
369  * held and drops it. It is aimed for callers not holding any inode reference
370  * so once i_lock is dropped, inode can go away.
371  */
372 static void inode_sleep_on_writeback(struct inode *inode)
373 	__releases(inode->i_lock)
374 {
375 	DEFINE_WAIT(wait);
376 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
377 	int sleep;
378 
379 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
380 	sleep = inode->i_state & I_SYNC;
381 	spin_unlock(&inode->i_lock);
382 	if (sleep)
383 		schedule();
384 	finish_wait(wqh, &wait);
385 }
386 
387 /*
388  * Find proper writeback list for the inode depending on its current state and
389  * possibly also change of its state while we were doing writeback.  Here we
390  * handle things such as livelock prevention or fairness of writeback among
391  * inodes. This function can be called only by flusher thread - noone else
392  * processes all inodes in writeback lists and requeueing inodes behind flusher
393  * thread's back can have unexpected consequences.
394  */
395 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
396 			  struct writeback_control *wbc)
397 {
398 	if (inode->i_state & I_FREEING)
399 		return;
400 
401 	/*
402 	 * Sync livelock prevention. Each inode is tagged and synced in one
403 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
404 	 * the dirty time to prevent enqueue and sync it again.
405 	 */
406 	if ((inode->i_state & I_DIRTY) &&
407 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
408 		inode->dirtied_when = jiffies;
409 
410 	if (wbc->pages_skipped) {
411 		/*
412 		 * writeback is not making progress due to locked
413 		 * buffers. Skip this inode for now.
414 		 */
415 		redirty_tail(inode, wb);
416 		return;
417 	}
418 
419 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
420 		/*
421 		 * We didn't write back all the pages.  nfs_writepages()
422 		 * sometimes bales out without doing anything.
423 		 */
424 		if (wbc->nr_to_write <= 0) {
425 			/* Slice used up. Queue for next turn. */
426 			requeue_io(inode, wb);
427 		} else {
428 			/*
429 			 * Writeback blocked by something other than
430 			 * congestion. Delay the inode for some time to
431 			 * avoid spinning on the CPU (100% iowait)
432 			 * retrying writeback of the dirty page/inode
433 			 * that cannot be performed immediately.
434 			 */
435 			redirty_tail(inode, wb);
436 		}
437 	} else if (inode->i_state & I_DIRTY) {
438 		/*
439 		 * Filesystems can dirty the inode during writeback operations,
440 		 * such as delayed allocation during submission or metadata
441 		 * updates after data IO completion.
442 		 */
443 		redirty_tail(inode, wb);
444 	} else {
445 		/* The inode is clean. Remove from writeback lists. */
446 		list_del_init(&inode->i_wb_list);
447 	}
448 }
449 
450 /*
451  * Write out an inode and its dirty pages. Do not update the writeback list
452  * linkage. That is left to the caller. The caller is also responsible for
453  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
454  */
455 static int
456 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
457 {
458 	struct address_space *mapping = inode->i_mapping;
459 	long nr_to_write = wbc->nr_to_write;
460 	unsigned dirty;
461 	int ret;
462 
463 	WARN_ON(!(inode->i_state & I_SYNC));
464 
465 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
466 
467 	ret = do_writepages(mapping, wbc);
468 
469 	/*
470 	 * Make sure to wait on the data before writing out the metadata.
471 	 * This is important for filesystems that modify metadata on data
472 	 * I/O completion. We don't do it for sync(2) writeback because it has a
473 	 * separate, external IO completion path and ->sync_fs for guaranteeing
474 	 * inode metadata is written back correctly.
475 	 */
476 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
477 		int err = filemap_fdatawait(mapping);
478 		if (ret == 0)
479 			ret = err;
480 	}
481 
482 	/*
483 	 * Some filesystems may redirty the inode during the writeback
484 	 * due to delalloc, clear dirty metadata flags right before
485 	 * write_inode()
486 	 */
487 	spin_lock(&inode->i_lock);
488 
489 	dirty = inode->i_state & I_DIRTY;
490 	inode->i_state &= ~I_DIRTY;
491 
492 	/*
493 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
494 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
495 	 * either they see the I_DIRTY bits cleared or we see the dirtied
496 	 * inode.
497 	 *
498 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
499 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
500 	 * necessary.  This guarantees that either __mark_inode_dirty()
501 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
502 	 */
503 	smp_mb();
504 
505 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
506 		inode->i_state |= I_DIRTY_PAGES;
507 
508 	spin_unlock(&inode->i_lock);
509 
510 	/* Don't write the inode if only I_DIRTY_PAGES was set */
511 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
512 		int err = write_inode(inode, wbc);
513 		if (ret == 0)
514 			ret = err;
515 	}
516 	trace_writeback_single_inode(inode, wbc, nr_to_write);
517 	return ret;
518 }
519 
520 /*
521  * Write out an inode's dirty pages. Either the caller has an active reference
522  * on the inode or the inode has I_WILL_FREE set.
523  *
524  * This function is designed to be called for writing back one inode which
525  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
526  * and does more profound writeback list handling in writeback_sb_inodes().
527  */
528 static int
529 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
530 		       struct writeback_control *wbc)
531 {
532 	int ret = 0;
533 
534 	spin_lock(&inode->i_lock);
535 	if (!atomic_read(&inode->i_count))
536 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
537 	else
538 		WARN_ON(inode->i_state & I_WILL_FREE);
539 
540 	if (inode->i_state & I_SYNC) {
541 		if (wbc->sync_mode != WB_SYNC_ALL)
542 			goto out;
543 		/*
544 		 * It's a data-integrity sync. We must wait. Since callers hold
545 		 * inode reference or inode has I_WILL_FREE set, it cannot go
546 		 * away under us.
547 		 */
548 		__inode_wait_for_writeback(inode);
549 	}
550 	WARN_ON(inode->i_state & I_SYNC);
551 	/*
552 	 * Skip inode if it is clean and we have no outstanding writeback in
553 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
554 	 * function since flusher thread may be doing for example sync in
555 	 * parallel and if we move the inode, it could get skipped. So here we
556 	 * make sure inode is on some writeback list and leave it there unless
557 	 * we have completely cleaned the inode.
558 	 */
559 	if (!(inode->i_state & I_DIRTY) &&
560 	    (wbc->sync_mode != WB_SYNC_ALL ||
561 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
562 		goto out;
563 	inode->i_state |= I_SYNC;
564 	spin_unlock(&inode->i_lock);
565 
566 	ret = __writeback_single_inode(inode, wbc);
567 
568 	spin_lock(&wb->list_lock);
569 	spin_lock(&inode->i_lock);
570 	/*
571 	 * If inode is clean, remove it from writeback lists. Otherwise don't
572 	 * touch it. See comment above for explanation.
573 	 */
574 	if (!(inode->i_state & I_DIRTY))
575 		list_del_init(&inode->i_wb_list);
576 	spin_unlock(&wb->list_lock);
577 	inode_sync_complete(inode);
578 out:
579 	spin_unlock(&inode->i_lock);
580 	return ret;
581 }
582 
583 static long writeback_chunk_size(struct backing_dev_info *bdi,
584 				 struct wb_writeback_work *work)
585 {
586 	long pages;
587 
588 	/*
589 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
590 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
591 	 * here avoids calling into writeback_inodes_wb() more than once.
592 	 *
593 	 * The intended call sequence for WB_SYNC_ALL writeback is:
594 	 *
595 	 *      wb_writeback()
596 	 *          writeback_sb_inodes()       <== called only once
597 	 *              write_cache_pages()     <== called once for each inode
598 	 *                   (quickly) tag currently dirty pages
599 	 *                   (maybe slowly) sync all tagged pages
600 	 */
601 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
602 		pages = LONG_MAX;
603 	else {
604 		pages = min(bdi->avg_write_bandwidth / 2,
605 			    global_dirty_limit / DIRTY_SCOPE);
606 		pages = min(pages, work->nr_pages);
607 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
608 				   MIN_WRITEBACK_PAGES);
609 	}
610 
611 	return pages;
612 }
613 
614 /*
615  * Write a portion of b_io inodes which belong to @sb.
616  *
617  * Return the number of pages and/or inodes written.
618  */
619 static long writeback_sb_inodes(struct super_block *sb,
620 				struct bdi_writeback *wb,
621 				struct wb_writeback_work *work)
622 {
623 	struct writeback_control wbc = {
624 		.sync_mode		= work->sync_mode,
625 		.tagged_writepages	= work->tagged_writepages,
626 		.for_kupdate		= work->for_kupdate,
627 		.for_background		= work->for_background,
628 		.for_sync		= work->for_sync,
629 		.range_cyclic		= work->range_cyclic,
630 		.range_start		= 0,
631 		.range_end		= LLONG_MAX,
632 	};
633 	unsigned long start_time = jiffies;
634 	long write_chunk;
635 	long wrote = 0;  /* count both pages and inodes */
636 
637 	while (!list_empty(&wb->b_io)) {
638 		struct inode *inode = wb_inode(wb->b_io.prev);
639 
640 		if (inode->i_sb != sb) {
641 			if (work->sb) {
642 				/*
643 				 * We only want to write back data for this
644 				 * superblock, move all inodes not belonging
645 				 * to it back onto the dirty list.
646 				 */
647 				redirty_tail(inode, wb);
648 				continue;
649 			}
650 
651 			/*
652 			 * The inode belongs to a different superblock.
653 			 * Bounce back to the caller to unpin this and
654 			 * pin the next superblock.
655 			 */
656 			break;
657 		}
658 
659 		/*
660 		 * Don't bother with new inodes or inodes being freed, first
661 		 * kind does not need periodic writeout yet, and for the latter
662 		 * kind writeout is handled by the freer.
663 		 */
664 		spin_lock(&inode->i_lock);
665 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
666 			spin_unlock(&inode->i_lock);
667 			redirty_tail(inode, wb);
668 			continue;
669 		}
670 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
671 			/*
672 			 * If this inode is locked for writeback and we are not
673 			 * doing writeback-for-data-integrity, move it to
674 			 * b_more_io so that writeback can proceed with the
675 			 * other inodes on s_io.
676 			 *
677 			 * We'll have another go at writing back this inode
678 			 * when we completed a full scan of b_io.
679 			 */
680 			spin_unlock(&inode->i_lock);
681 			requeue_io(inode, wb);
682 			trace_writeback_sb_inodes_requeue(inode);
683 			continue;
684 		}
685 		spin_unlock(&wb->list_lock);
686 
687 		/*
688 		 * We already requeued the inode if it had I_SYNC set and we
689 		 * are doing WB_SYNC_NONE writeback. So this catches only the
690 		 * WB_SYNC_ALL case.
691 		 */
692 		if (inode->i_state & I_SYNC) {
693 			/* Wait for I_SYNC. This function drops i_lock... */
694 			inode_sleep_on_writeback(inode);
695 			/* Inode may be gone, start again */
696 			spin_lock(&wb->list_lock);
697 			continue;
698 		}
699 		inode->i_state |= I_SYNC;
700 		spin_unlock(&inode->i_lock);
701 
702 		write_chunk = writeback_chunk_size(wb->bdi, work);
703 		wbc.nr_to_write = write_chunk;
704 		wbc.pages_skipped = 0;
705 
706 		/*
707 		 * We use I_SYNC to pin the inode in memory. While it is set
708 		 * evict_inode() will wait so the inode cannot be freed.
709 		 */
710 		__writeback_single_inode(inode, &wbc);
711 
712 		work->nr_pages -= write_chunk - wbc.nr_to_write;
713 		wrote += write_chunk - wbc.nr_to_write;
714 		spin_lock(&wb->list_lock);
715 		spin_lock(&inode->i_lock);
716 		if (!(inode->i_state & I_DIRTY))
717 			wrote++;
718 		requeue_inode(inode, wb, &wbc);
719 		inode_sync_complete(inode);
720 		spin_unlock(&inode->i_lock);
721 		cond_resched_lock(&wb->list_lock);
722 		/*
723 		 * bail out to wb_writeback() often enough to check
724 		 * background threshold and other termination conditions.
725 		 */
726 		if (wrote) {
727 			if (time_is_before_jiffies(start_time + HZ / 10UL))
728 				break;
729 			if (work->nr_pages <= 0)
730 				break;
731 		}
732 	}
733 	return wrote;
734 }
735 
736 static long __writeback_inodes_wb(struct bdi_writeback *wb,
737 				  struct wb_writeback_work *work)
738 {
739 	unsigned long start_time = jiffies;
740 	long wrote = 0;
741 
742 	while (!list_empty(&wb->b_io)) {
743 		struct inode *inode = wb_inode(wb->b_io.prev);
744 		struct super_block *sb = inode->i_sb;
745 
746 		if (!grab_super_passive(sb)) {
747 			/*
748 			 * grab_super_passive() may fail consistently due to
749 			 * s_umount being grabbed by someone else. Don't use
750 			 * requeue_io() to avoid busy retrying the inode/sb.
751 			 */
752 			redirty_tail(inode, wb);
753 			continue;
754 		}
755 		wrote += writeback_sb_inodes(sb, wb, work);
756 		drop_super(sb);
757 
758 		/* refer to the same tests at the end of writeback_sb_inodes */
759 		if (wrote) {
760 			if (time_is_before_jiffies(start_time + HZ / 10UL))
761 				break;
762 			if (work->nr_pages <= 0)
763 				break;
764 		}
765 	}
766 	/* Leave any unwritten inodes on b_io */
767 	return wrote;
768 }
769 
770 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
771 				enum wb_reason reason)
772 {
773 	struct wb_writeback_work work = {
774 		.nr_pages	= nr_pages,
775 		.sync_mode	= WB_SYNC_NONE,
776 		.range_cyclic	= 1,
777 		.reason		= reason,
778 	};
779 
780 	spin_lock(&wb->list_lock);
781 	if (list_empty(&wb->b_io))
782 		queue_io(wb, &work);
783 	__writeback_inodes_wb(wb, &work);
784 	spin_unlock(&wb->list_lock);
785 
786 	return nr_pages - work.nr_pages;
787 }
788 
789 static bool over_bground_thresh(struct backing_dev_info *bdi)
790 {
791 	unsigned long background_thresh, dirty_thresh;
792 
793 	global_dirty_limits(&background_thresh, &dirty_thresh);
794 
795 	if (global_page_state(NR_FILE_DIRTY) +
796 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
797 		return true;
798 
799 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
800 				bdi_dirty_limit(bdi, background_thresh))
801 		return true;
802 
803 	return false;
804 }
805 
806 /*
807  * Called under wb->list_lock. If there are multiple wb per bdi,
808  * only the flusher working on the first wb should do it.
809  */
810 static void wb_update_bandwidth(struct bdi_writeback *wb,
811 				unsigned long start_time)
812 {
813 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
814 }
815 
816 /*
817  * Explicit flushing or periodic writeback of "old" data.
818  *
819  * Define "old": the first time one of an inode's pages is dirtied, we mark the
820  * dirtying-time in the inode's address_space.  So this periodic writeback code
821  * just walks the superblock inode list, writing back any inodes which are
822  * older than a specific point in time.
823  *
824  * Try to run once per dirty_writeback_interval.  But if a writeback event
825  * takes longer than a dirty_writeback_interval interval, then leave a
826  * one-second gap.
827  *
828  * older_than_this takes precedence over nr_to_write.  So we'll only write back
829  * all dirty pages if they are all attached to "old" mappings.
830  */
831 static long wb_writeback(struct bdi_writeback *wb,
832 			 struct wb_writeback_work *work)
833 {
834 	unsigned long wb_start = jiffies;
835 	long nr_pages = work->nr_pages;
836 	unsigned long oldest_jif;
837 	struct inode *inode;
838 	long progress;
839 
840 	oldest_jif = jiffies;
841 	work->older_than_this = &oldest_jif;
842 
843 	spin_lock(&wb->list_lock);
844 	for (;;) {
845 		/*
846 		 * Stop writeback when nr_pages has been consumed
847 		 */
848 		if (work->nr_pages <= 0)
849 			break;
850 
851 		/*
852 		 * Background writeout and kupdate-style writeback may
853 		 * run forever. Stop them if there is other work to do
854 		 * so that e.g. sync can proceed. They'll be restarted
855 		 * after the other works are all done.
856 		 */
857 		if ((work->for_background || work->for_kupdate) &&
858 		    !list_empty(&wb->bdi->work_list))
859 			break;
860 
861 		/*
862 		 * For background writeout, stop when we are below the
863 		 * background dirty threshold
864 		 */
865 		if (work->for_background && !over_bground_thresh(wb->bdi))
866 			break;
867 
868 		/*
869 		 * Kupdate and background works are special and we want to
870 		 * include all inodes that need writing. Livelock avoidance is
871 		 * handled by these works yielding to any other work so we are
872 		 * safe.
873 		 */
874 		if (work->for_kupdate) {
875 			oldest_jif = jiffies -
876 				msecs_to_jiffies(dirty_expire_interval * 10);
877 		} else if (work->for_background)
878 			oldest_jif = jiffies;
879 
880 		trace_writeback_start(wb->bdi, work);
881 		if (list_empty(&wb->b_io))
882 			queue_io(wb, work);
883 		if (work->sb)
884 			progress = writeback_sb_inodes(work->sb, wb, work);
885 		else
886 			progress = __writeback_inodes_wb(wb, work);
887 		trace_writeback_written(wb->bdi, work);
888 
889 		wb_update_bandwidth(wb, wb_start);
890 
891 		/*
892 		 * Did we write something? Try for more
893 		 *
894 		 * Dirty inodes are moved to b_io for writeback in batches.
895 		 * The completion of the current batch does not necessarily
896 		 * mean the overall work is done. So we keep looping as long
897 		 * as made some progress on cleaning pages or inodes.
898 		 */
899 		if (progress)
900 			continue;
901 		/*
902 		 * No more inodes for IO, bail
903 		 */
904 		if (list_empty(&wb->b_more_io))
905 			break;
906 		/*
907 		 * Nothing written. Wait for some inode to
908 		 * become available for writeback. Otherwise
909 		 * we'll just busyloop.
910 		 */
911 		if (!list_empty(&wb->b_more_io))  {
912 			trace_writeback_wait(wb->bdi, work);
913 			inode = wb_inode(wb->b_more_io.prev);
914 			spin_lock(&inode->i_lock);
915 			spin_unlock(&wb->list_lock);
916 			/* This function drops i_lock... */
917 			inode_sleep_on_writeback(inode);
918 			spin_lock(&wb->list_lock);
919 		}
920 	}
921 	spin_unlock(&wb->list_lock);
922 
923 	return nr_pages - work->nr_pages;
924 }
925 
926 /*
927  * Return the next wb_writeback_work struct that hasn't been processed yet.
928  */
929 static struct wb_writeback_work *
930 get_next_work_item(struct backing_dev_info *bdi)
931 {
932 	struct wb_writeback_work *work = NULL;
933 
934 	spin_lock_bh(&bdi->wb_lock);
935 	if (!list_empty(&bdi->work_list)) {
936 		work = list_entry(bdi->work_list.next,
937 				  struct wb_writeback_work, list);
938 		list_del_init(&work->list);
939 	}
940 	spin_unlock_bh(&bdi->wb_lock);
941 	return work;
942 }
943 
944 /*
945  * Add in the number of potentially dirty inodes, because each inode
946  * write can dirty pagecache in the underlying blockdev.
947  */
948 static unsigned long get_nr_dirty_pages(void)
949 {
950 	return global_page_state(NR_FILE_DIRTY) +
951 		global_page_state(NR_UNSTABLE_NFS) +
952 		get_nr_dirty_inodes();
953 }
954 
955 static long wb_check_background_flush(struct bdi_writeback *wb)
956 {
957 	if (over_bground_thresh(wb->bdi)) {
958 
959 		struct wb_writeback_work work = {
960 			.nr_pages	= LONG_MAX,
961 			.sync_mode	= WB_SYNC_NONE,
962 			.for_background	= 1,
963 			.range_cyclic	= 1,
964 			.reason		= WB_REASON_BACKGROUND,
965 		};
966 
967 		return wb_writeback(wb, &work);
968 	}
969 
970 	return 0;
971 }
972 
973 static long wb_check_old_data_flush(struct bdi_writeback *wb)
974 {
975 	unsigned long expired;
976 	long nr_pages;
977 
978 	/*
979 	 * When set to zero, disable periodic writeback
980 	 */
981 	if (!dirty_writeback_interval)
982 		return 0;
983 
984 	expired = wb->last_old_flush +
985 			msecs_to_jiffies(dirty_writeback_interval * 10);
986 	if (time_before(jiffies, expired))
987 		return 0;
988 
989 	wb->last_old_flush = jiffies;
990 	nr_pages = get_nr_dirty_pages();
991 
992 	if (nr_pages) {
993 		struct wb_writeback_work work = {
994 			.nr_pages	= nr_pages,
995 			.sync_mode	= WB_SYNC_NONE,
996 			.for_kupdate	= 1,
997 			.range_cyclic	= 1,
998 			.reason		= WB_REASON_PERIODIC,
999 		};
1000 
1001 		return wb_writeback(wb, &work);
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 /*
1008  * Retrieve work items and do the writeback they describe
1009  */
1010 static long wb_do_writeback(struct bdi_writeback *wb)
1011 {
1012 	struct backing_dev_info *bdi = wb->bdi;
1013 	struct wb_writeback_work *work;
1014 	long wrote = 0;
1015 
1016 	set_bit(BDI_writeback_running, &wb->bdi->state);
1017 	while ((work = get_next_work_item(bdi)) != NULL) {
1018 
1019 		trace_writeback_exec(bdi, work);
1020 
1021 		wrote += wb_writeback(wb, work);
1022 
1023 		/*
1024 		 * Notify the caller of completion if this is a synchronous
1025 		 * work item, otherwise just free it.
1026 		 */
1027 		if (work->done)
1028 			complete(work->done);
1029 		else
1030 			kfree(work);
1031 	}
1032 
1033 	/*
1034 	 * Check for periodic writeback, kupdated() style
1035 	 */
1036 	wrote += wb_check_old_data_flush(wb);
1037 	wrote += wb_check_background_flush(wb);
1038 	clear_bit(BDI_writeback_running, &wb->bdi->state);
1039 
1040 	return wrote;
1041 }
1042 
1043 /*
1044  * Handle writeback of dirty data for the device backed by this bdi. Also
1045  * reschedules periodically and does kupdated style flushing.
1046  */
1047 void bdi_writeback_workfn(struct work_struct *work)
1048 {
1049 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1050 						struct bdi_writeback, dwork);
1051 	struct backing_dev_info *bdi = wb->bdi;
1052 	long pages_written;
1053 
1054 	set_worker_desc("flush-%s", dev_name(bdi->dev));
1055 	current->flags |= PF_SWAPWRITE;
1056 
1057 	if (likely(!current_is_workqueue_rescuer() ||
1058 		   !test_bit(BDI_registered, &bdi->state))) {
1059 		/*
1060 		 * The normal path.  Keep writing back @bdi until its
1061 		 * work_list is empty.  Note that this path is also taken
1062 		 * if @bdi is shutting down even when we're running off the
1063 		 * rescuer as work_list needs to be drained.
1064 		 */
1065 		do {
1066 			pages_written = wb_do_writeback(wb);
1067 			trace_writeback_pages_written(pages_written);
1068 		} while (!list_empty(&bdi->work_list));
1069 	} else {
1070 		/*
1071 		 * bdi_wq can't get enough workers and we're running off
1072 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1073 		 * enough for efficient IO.
1074 		 */
1075 		pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1076 						    WB_REASON_FORKER_THREAD);
1077 		trace_writeback_pages_written(pages_written);
1078 	}
1079 
1080 	if (!list_empty(&bdi->work_list))
1081 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1082 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1083 		bdi_wakeup_thread_delayed(bdi);
1084 
1085 	current->flags &= ~PF_SWAPWRITE;
1086 }
1087 
1088 /*
1089  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1090  * the whole world.
1091  */
1092 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1093 {
1094 	struct backing_dev_info *bdi;
1095 
1096 	if (!nr_pages)
1097 		nr_pages = get_nr_dirty_pages();
1098 
1099 	rcu_read_lock();
1100 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1101 		if (!bdi_has_dirty_io(bdi))
1102 			continue;
1103 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1104 	}
1105 	rcu_read_unlock();
1106 }
1107 
1108 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1109 {
1110 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1111 		struct dentry *dentry;
1112 		const char *name = "?";
1113 
1114 		dentry = d_find_alias(inode);
1115 		if (dentry) {
1116 			spin_lock(&dentry->d_lock);
1117 			name = (const char *) dentry->d_name.name;
1118 		}
1119 		printk(KERN_DEBUG
1120 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1121 		       current->comm, task_pid_nr(current), inode->i_ino,
1122 		       name, inode->i_sb->s_id);
1123 		if (dentry) {
1124 			spin_unlock(&dentry->d_lock);
1125 			dput(dentry);
1126 		}
1127 	}
1128 }
1129 
1130 /**
1131  *	__mark_inode_dirty -	internal function
1132  *	@inode: inode to mark
1133  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1134  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1135  *  	mark_inode_dirty_sync.
1136  *
1137  * Put the inode on the super block's dirty list.
1138  *
1139  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1140  * dirty list only if it is hashed or if it refers to a blockdev.
1141  * If it was not hashed, it will never be added to the dirty list
1142  * even if it is later hashed, as it will have been marked dirty already.
1143  *
1144  * In short, make sure you hash any inodes _before_ you start marking
1145  * them dirty.
1146  *
1147  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1148  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1149  * the kernel-internal blockdev inode represents the dirtying time of the
1150  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1151  * page->mapping->host, so the page-dirtying time is recorded in the internal
1152  * blockdev inode.
1153  */
1154 void __mark_inode_dirty(struct inode *inode, int flags)
1155 {
1156 	struct super_block *sb = inode->i_sb;
1157 	struct backing_dev_info *bdi = NULL;
1158 
1159 	/*
1160 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1161 	 * dirty the inode itself
1162 	 */
1163 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1164 		trace_writeback_dirty_inode_start(inode, flags);
1165 
1166 		if (sb->s_op->dirty_inode)
1167 			sb->s_op->dirty_inode(inode, flags);
1168 
1169 		trace_writeback_dirty_inode(inode, flags);
1170 	}
1171 
1172 	/*
1173 	 * Paired with smp_mb() in __writeback_single_inode() for the
1174 	 * following lockless i_state test.  See there for details.
1175 	 */
1176 	smp_mb();
1177 
1178 	if ((inode->i_state & flags) == flags)
1179 		return;
1180 
1181 	if (unlikely(block_dump))
1182 		block_dump___mark_inode_dirty(inode);
1183 
1184 	spin_lock(&inode->i_lock);
1185 	if ((inode->i_state & flags) != flags) {
1186 		const int was_dirty = inode->i_state & I_DIRTY;
1187 
1188 		inode->i_state |= flags;
1189 
1190 		/*
1191 		 * If the inode is being synced, just update its dirty state.
1192 		 * The unlocker will place the inode on the appropriate
1193 		 * superblock list, based upon its state.
1194 		 */
1195 		if (inode->i_state & I_SYNC)
1196 			goto out_unlock_inode;
1197 
1198 		/*
1199 		 * Only add valid (hashed) inodes to the superblock's
1200 		 * dirty list.  Add blockdev inodes as well.
1201 		 */
1202 		if (!S_ISBLK(inode->i_mode)) {
1203 			if (inode_unhashed(inode))
1204 				goto out_unlock_inode;
1205 		}
1206 		if (inode->i_state & I_FREEING)
1207 			goto out_unlock_inode;
1208 
1209 		/*
1210 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1211 		 * reposition it (that would break b_dirty time-ordering).
1212 		 */
1213 		if (!was_dirty) {
1214 			bool wakeup_bdi = false;
1215 			bdi = inode_to_bdi(inode);
1216 
1217 			spin_unlock(&inode->i_lock);
1218 			spin_lock(&bdi->wb.list_lock);
1219 			if (bdi_cap_writeback_dirty(bdi)) {
1220 				WARN(!test_bit(BDI_registered, &bdi->state),
1221 				     "bdi-%s not registered\n", bdi->name);
1222 
1223 				/*
1224 				 * If this is the first dirty inode for this
1225 				 * bdi, we have to wake-up the corresponding
1226 				 * bdi thread to make sure background
1227 				 * write-back happens later.
1228 				 */
1229 				if (!wb_has_dirty_io(&bdi->wb))
1230 					wakeup_bdi = true;
1231 			}
1232 
1233 			inode->dirtied_when = jiffies;
1234 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1235 			spin_unlock(&bdi->wb.list_lock);
1236 
1237 			if (wakeup_bdi)
1238 				bdi_wakeup_thread_delayed(bdi);
1239 			return;
1240 		}
1241 	}
1242 out_unlock_inode:
1243 	spin_unlock(&inode->i_lock);
1244 
1245 }
1246 EXPORT_SYMBOL(__mark_inode_dirty);
1247 
1248 static void wait_sb_inodes(struct super_block *sb)
1249 {
1250 	struct inode *inode, *old_inode = NULL;
1251 
1252 	/*
1253 	 * We need to be protected against the filesystem going from
1254 	 * r/o to r/w or vice versa.
1255 	 */
1256 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1257 
1258 	spin_lock(&inode_sb_list_lock);
1259 
1260 	/*
1261 	 * Data integrity sync. Must wait for all pages under writeback,
1262 	 * because there may have been pages dirtied before our sync
1263 	 * call, but which had writeout started before we write it out.
1264 	 * In which case, the inode may not be on the dirty list, but
1265 	 * we still have to wait for that writeout.
1266 	 */
1267 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1268 		struct address_space *mapping = inode->i_mapping;
1269 
1270 		spin_lock(&inode->i_lock);
1271 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1272 		    (mapping->nrpages == 0)) {
1273 			spin_unlock(&inode->i_lock);
1274 			continue;
1275 		}
1276 		__iget(inode);
1277 		spin_unlock(&inode->i_lock);
1278 		spin_unlock(&inode_sb_list_lock);
1279 
1280 		/*
1281 		 * We hold a reference to 'inode' so it couldn't have been
1282 		 * removed from s_inodes list while we dropped the
1283 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1284 		 * be holding the last reference and we cannot iput it under
1285 		 * inode_sb_list_lock. So we keep the reference and iput it
1286 		 * later.
1287 		 */
1288 		iput(old_inode);
1289 		old_inode = inode;
1290 
1291 		filemap_fdatawait(mapping);
1292 
1293 		cond_resched();
1294 
1295 		spin_lock(&inode_sb_list_lock);
1296 	}
1297 	spin_unlock(&inode_sb_list_lock);
1298 	iput(old_inode);
1299 }
1300 
1301 /**
1302  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1303  * @sb: the superblock
1304  * @nr: the number of pages to write
1305  * @reason: reason why some writeback work initiated
1306  *
1307  * Start writeback on some inodes on this super_block. No guarantees are made
1308  * on how many (if any) will be written, and this function does not wait
1309  * for IO completion of submitted IO.
1310  */
1311 void writeback_inodes_sb_nr(struct super_block *sb,
1312 			    unsigned long nr,
1313 			    enum wb_reason reason)
1314 {
1315 	DECLARE_COMPLETION_ONSTACK(done);
1316 	struct wb_writeback_work work = {
1317 		.sb			= sb,
1318 		.sync_mode		= WB_SYNC_NONE,
1319 		.tagged_writepages	= 1,
1320 		.done			= &done,
1321 		.nr_pages		= nr,
1322 		.reason			= reason,
1323 	};
1324 
1325 	if (sb->s_bdi == &noop_backing_dev_info)
1326 		return;
1327 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1328 	bdi_queue_work(sb->s_bdi, &work);
1329 	wait_for_completion(&done);
1330 }
1331 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1332 
1333 /**
1334  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1335  * @sb: the superblock
1336  * @reason: reason why some writeback work was initiated
1337  *
1338  * Start writeback on some inodes on this super_block. No guarantees are made
1339  * on how many (if any) will be written, and this function does not wait
1340  * for IO completion of submitted IO.
1341  */
1342 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1343 {
1344 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1345 }
1346 EXPORT_SYMBOL(writeback_inodes_sb);
1347 
1348 /**
1349  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1350  * @sb: the superblock
1351  * @nr: the number of pages to write
1352  * @reason: the reason of writeback
1353  *
1354  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1355  * Returns 1 if writeback was started, 0 if not.
1356  */
1357 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1358 				  unsigned long nr,
1359 				  enum wb_reason reason)
1360 {
1361 	if (writeback_in_progress(sb->s_bdi))
1362 		return 1;
1363 
1364 	if (!down_read_trylock(&sb->s_umount))
1365 		return 0;
1366 
1367 	writeback_inodes_sb_nr(sb, nr, reason);
1368 	up_read(&sb->s_umount);
1369 	return 1;
1370 }
1371 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1372 
1373 /**
1374  * try_to_writeback_inodes_sb - try to start writeback if none underway
1375  * @sb: the superblock
1376  * @reason: reason why some writeback work was initiated
1377  *
1378  * Implement by try_to_writeback_inodes_sb_nr()
1379  * Returns 1 if writeback was started, 0 if not.
1380  */
1381 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1382 {
1383 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1384 }
1385 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1386 
1387 /**
1388  * sync_inodes_sb	-	sync sb inode pages
1389  * @sb: the superblock
1390  *
1391  * This function writes and waits on any dirty inode belonging to this
1392  * super_block.
1393  */
1394 void sync_inodes_sb(struct super_block *sb)
1395 {
1396 	DECLARE_COMPLETION_ONSTACK(done);
1397 	struct wb_writeback_work work = {
1398 		.sb		= sb,
1399 		.sync_mode	= WB_SYNC_ALL,
1400 		.nr_pages	= LONG_MAX,
1401 		.range_cyclic	= 0,
1402 		.done		= &done,
1403 		.reason		= WB_REASON_SYNC,
1404 		.for_sync	= 1,
1405 	};
1406 
1407 	/* Nothing to do? */
1408 	if (sb->s_bdi == &noop_backing_dev_info)
1409 		return;
1410 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1411 
1412 	bdi_queue_work(sb->s_bdi, &work);
1413 	wait_for_completion(&done);
1414 
1415 	wait_sb_inodes(sb);
1416 }
1417 EXPORT_SYMBOL(sync_inodes_sb);
1418 
1419 /**
1420  * write_inode_now	-	write an inode to disk
1421  * @inode: inode to write to disk
1422  * @sync: whether the write should be synchronous or not
1423  *
1424  * This function commits an inode to disk immediately if it is dirty. This is
1425  * primarily needed by knfsd.
1426  *
1427  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1428  */
1429 int write_inode_now(struct inode *inode, int sync)
1430 {
1431 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1432 	struct writeback_control wbc = {
1433 		.nr_to_write = LONG_MAX,
1434 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1435 		.range_start = 0,
1436 		.range_end = LLONG_MAX,
1437 	};
1438 
1439 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1440 		wbc.nr_to_write = 0;
1441 
1442 	might_sleep();
1443 	return writeback_single_inode(inode, wb, &wbc);
1444 }
1445 EXPORT_SYMBOL(write_inode_now);
1446 
1447 /**
1448  * sync_inode - write an inode and its pages to disk.
1449  * @inode: the inode to sync
1450  * @wbc: controls the writeback mode
1451  *
1452  * sync_inode() will write an inode and its pages to disk.  It will also
1453  * correctly update the inode on its superblock's dirty inode lists and will
1454  * update inode->i_state.
1455  *
1456  * The caller must have a ref on the inode.
1457  */
1458 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1459 {
1460 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1461 }
1462 EXPORT_SYMBOL(sync_inode);
1463 
1464 /**
1465  * sync_inode_metadata - write an inode to disk
1466  * @inode: the inode to sync
1467  * @wait: wait for I/O to complete.
1468  *
1469  * Write an inode to disk and adjust its dirty state after completion.
1470  *
1471  * Note: only writes the actual inode, no associated data or other metadata.
1472  */
1473 int sync_inode_metadata(struct inode *inode, int wait)
1474 {
1475 	struct writeback_control wbc = {
1476 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1477 		.nr_to_write = 0, /* metadata-only */
1478 	};
1479 
1480 	return sync_inode(inode, &wbc);
1481 }
1482 EXPORT_SYMBOL(sync_inode_metadata);
1483