1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 assert_spin_locked(&inode->i_lock); 124 WARN_ON_ONCE(inode->i_state & I_FREEING); 125 126 list_move(&inode->i_io_list, head); 127 128 /* dirty_time doesn't count as dirty_io until expiration */ 129 if (head != &wb->b_dirty_time) 130 return wb_io_lists_populated(wb); 131 132 wb_io_lists_depopulated(wb); 133 return false; 134 } 135 136 static void wb_wakeup(struct bdi_writeback *wb) 137 { 138 spin_lock_irq(&wb->work_lock); 139 if (test_bit(WB_registered, &wb->state)) 140 mod_delayed_work(bdi_wq, &wb->dwork, 0); 141 spin_unlock_irq(&wb->work_lock); 142 } 143 144 static void finish_writeback_work(struct bdi_writeback *wb, 145 struct wb_writeback_work *work) 146 { 147 struct wb_completion *done = work->done; 148 149 if (work->auto_free) 150 kfree(work); 151 if (done) { 152 wait_queue_head_t *waitq = done->waitq; 153 154 /* @done can't be accessed after the following dec */ 155 if (atomic_dec_and_test(&done->cnt)) 156 wake_up_all(waitq); 157 } 158 } 159 160 static void wb_queue_work(struct bdi_writeback *wb, 161 struct wb_writeback_work *work) 162 { 163 trace_writeback_queue(wb, work); 164 165 if (work->done) 166 atomic_inc(&work->done->cnt); 167 168 spin_lock_irq(&wb->work_lock); 169 170 if (test_bit(WB_registered, &wb->state)) { 171 list_add_tail(&work->list, &wb->work_list); 172 mod_delayed_work(bdi_wq, &wb->dwork, 0); 173 } else 174 finish_writeback_work(wb, work); 175 176 spin_unlock_irq(&wb->work_lock); 177 } 178 179 /** 180 * wb_wait_for_completion - wait for completion of bdi_writeback_works 181 * @done: target wb_completion 182 * 183 * Wait for one or more work items issued to @bdi with their ->done field 184 * set to @done, which should have been initialized with 185 * DEFINE_WB_COMPLETION(). This function returns after all such work items 186 * are completed. Work items which are waited upon aren't freed 187 * automatically on completion. 188 */ 189 void wb_wait_for_completion(struct wb_completion *done) 190 { 191 atomic_dec(&done->cnt); /* put down the initial count */ 192 wait_event(*done->waitq, !atomic_read(&done->cnt)); 193 } 194 195 #ifdef CONFIG_CGROUP_WRITEBACK 196 197 /* 198 * Parameters for foreign inode detection, see wbc_detach_inode() to see 199 * how they're used. 200 * 201 * These paramters are inherently heuristical as the detection target 202 * itself is fuzzy. All we want to do is detaching an inode from the 203 * current owner if it's being written to by some other cgroups too much. 204 * 205 * The current cgroup writeback is built on the assumption that multiple 206 * cgroups writing to the same inode concurrently is very rare and a mode 207 * of operation which isn't well supported. As such, the goal is not 208 * taking too long when a different cgroup takes over an inode while 209 * avoiding too aggressive flip-flops from occasional foreign writes. 210 * 211 * We record, very roughly, 2s worth of IO time history and if more than 212 * half of that is foreign, trigger the switch. The recording is quantized 213 * to 16 slots. To avoid tiny writes from swinging the decision too much, 214 * writes smaller than 1/8 of avg size are ignored. 215 */ 216 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 217 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 218 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 219 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 220 221 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 222 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 223 /* each slot's duration is 2s / 16 */ 224 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 225 /* if foreign slots >= 8, switch */ 226 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 227 /* one round can affect upto 5 slots */ 228 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 229 230 /* 231 * Maximum inodes per isw. A specific value has been chosen to make 232 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 233 */ 234 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 235 / sizeof(struct inode *)) 236 237 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 238 static struct workqueue_struct *isw_wq; 239 240 void __inode_attach_wb(struct inode *inode, struct folio *folio) 241 { 242 struct backing_dev_info *bdi = inode_to_bdi(inode); 243 struct bdi_writeback *wb = NULL; 244 245 if (inode_cgwb_enabled(inode)) { 246 struct cgroup_subsys_state *memcg_css; 247 248 if (folio) { 249 memcg_css = mem_cgroup_css_from_folio(folio); 250 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 251 } else { 252 /* must pin memcg_css, see wb_get_create() */ 253 memcg_css = task_get_css(current, memory_cgrp_id); 254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 255 css_put(memcg_css); 256 } 257 } 258 259 if (!wb) 260 wb = &bdi->wb; 261 262 /* 263 * There may be multiple instances of this function racing to 264 * update the same inode. Use cmpxchg() to tell the winner. 265 */ 266 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 267 wb_put(wb); 268 } 269 EXPORT_SYMBOL_GPL(__inode_attach_wb); 270 271 /** 272 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 273 * @inode: inode of interest with i_lock held 274 * @wb: target bdi_writeback 275 * 276 * Remove the inode from wb's io lists and if necessarily put onto b_attached 277 * list. Only inodes attached to cgwb's are kept on this list. 278 */ 279 static void inode_cgwb_move_to_attached(struct inode *inode, 280 struct bdi_writeback *wb) 281 { 282 assert_spin_locked(&wb->list_lock); 283 assert_spin_locked(&inode->i_lock); 284 WARN_ON_ONCE(inode->i_state & I_FREEING); 285 286 inode->i_state &= ~I_SYNC_QUEUED; 287 if (wb != &wb->bdi->wb) 288 list_move(&inode->i_io_list, &wb->b_attached); 289 else 290 list_del_init(&inode->i_io_list); 291 wb_io_lists_depopulated(wb); 292 } 293 294 /** 295 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 296 * @inode: inode of interest with i_lock held 297 * 298 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 299 * held on entry and is released on return. The returned wb is guaranteed 300 * to stay @inode's associated wb until its list_lock is released. 301 */ 302 static struct bdi_writeback * 303 locked_inode_to_wb_and_lock_list(struct inode *inode) 304 __releases(&inode->i_lock) 305 __acquires(&wb->list_lock) 306 { 307 while (true) { 308 struct bdi_writeback *wb = inode_to_wb(inode); 309 310 /* 311 * inode_to_wb() association is protected by both 312 * @inode->i_lock and @wb->list_lock but list_lock nests 313 * outside i_lock. Drop i_lock and verify that the 314 * association hasn't changed after acquiring list_lock. 315 */ 316 wb_get(wb); 317 spin_unlock(&inode->i_lock); 318 spin_lock(&wb->list_lock); 319 320 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 321 if (likely(wb == inode->i_wb)) { 322 wb_put(wb); /* @inode already has ref */ 323 return wb; 324 } 325 326 spin_unlock(&wb->list_lock); 327 wb_put(wb); 328 cpu_relax(); 329 spin_lock(&inode->i_lock); 330 } 331 } 332 333 /** 334 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 335 * @inode: inode of interest 336 * 337 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 338 * on entry. 339 */ 340 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 341 __acquires(&wb->list_lock) 342 { 343 spin_lock(&inode->i_lock); 344 return locked_inode_to_wb_and_lock_list(inode); 345 } 346 347 struct inode_switch_wbs_context { 348 struct rcu_work work; 349 350 /* 351 * Multiple inodes can be switched at once. The switching procedure 352 * consists of two parts, separated by a RCU grace period. To make 353 * sure that the second part is executed for each inode gone through 354 * the first part, all inode pointers are placed into a NULL-terminated 355 * array embedded into struct inode_switch_wbs_context. Otherwise 356 * an inode could be left in a non-consistent state. 357 */ 358 struct bdi_writeback *new_wb; 359 struct inode *inodes[]; 360 }; 361 362 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 363 { 364 down_write(&bdi->wb_switch_rwsem); 365 } 366 367 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 368 { 369 up_write(&bdi->wb_switch_rwsem); 370 } 371 372 static bool inode_do_switch_wbs(struct inode *inode, 373 struct bdi_writeback *old_wb, 374 struct bdi_writeback *new_wb) 375 { 376 struct address_space *mapping = inode->i_mapping; 377 XA_STATE(xas, &mapping->i_pages, 0); 378 struct folio *folio; 379 bool switched = false; 380 381 spin_lock(&inode->i_lock); 382 xa_lock_irq(&mapping->i_pages); 383 384 /* 385 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 386 * path owns the inode and we shouldn't modify ->i_io_list. 387 */ 388 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 389 goto skip_switch; 390 391 trace_inode_switch_wbs(inode, old_wb, new_wb); 392 393 /* 394 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 395 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to 396 * folios actually under writeback. 397 */ 398 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 399 if (folio_test_dirty(folio)) { 400 long nr = folio_nr_pages(folio); 401 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr); 402 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr); 403 } 404 } 405 406 xas_set(&xas, 0); 407 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 408 long nr = folio_nr_pages(folio); 409 WARN_ON_ONCE(!folio_test_writeback(folio)); 410 wb_stat_mod(old_wb, WB_WRITEBACK, -nr); 411 wb_stat_mod(new_wb, WB_WRITEBACK, nr); 412 } 413 414 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { 415 atomic_dec(&old_wb->writeback_inodes); 416 atomic_inc(&new_wb->writeback_inodes); 417 } 418 419 wb_get(new_wb); 420 421 /* 422 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 423 * the specific list @inode was on is ignored and the @inode is put on 424 * ->b_dirty which is always correct including from ->b_dirty_time. 425 * The transfer preserves @inode->dirtied_when ordering. If the @inode 426 * was clean, it means it was on the b_attached list, so move it onto 427 * the b_attached list of @new_wb. 428 */ 429 if (!list_empty(&inode->i_io_list)) { 430 inode->i_wb = new_wb; 431 432 if (inode->i_state & I_DIRTY_ALL) { 433 struct inode *pos; 434 435 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 436 if (time_after_eq(inode->dirtied_when, 437 pos->dirtied_when)) 438 break; 439 inode_io_list_move_locked(inode, new_wb, 440 pos->i_io_list.prev); 441 } else { 442 inode_cgwb_move_to_attached(inode, new_wb); 443 } 444 } else { 445 inode->i_wb = new_wb; 446 } 447 448 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 449 inode->i_wb_frn_winner = 0; 450 inode->i_wb_frn_avg_time = 0; 451 inode->i_wb_frn_history = 0; 452 switched = true; 453 skip_switch: 454 /* 455 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 456 * ensures that the new wb is visible if they see !I_WB_SWITCH. 457 */ 458 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 459 460 xa_unlock_irq(&mapping->i_pages); 461 spin_unlock(&inode->i_lock); 462 463 return switched; 464 } 465 466 static void inode_switch_wbs_work_fn(struct work_struct *work) 467 { 468 struct inode_switch_wbs_context *isw = 469 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); 470 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 471 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 472 struct bdi_writeback *new_wb = isw->new_wb; 473 unsigned long nr_switched = 0; 474 struct inode **inodep; 475 476 /* 477 * If @inode switches cgwb membership while sync_inodes_sb() is 478 * being issued, sync_inodes_sb() might miss it. Synchronize. 479 */ 480 down_read(&bdi->wb_switch_rwsem); 481 482 /* 483 * By the time control reaches here, RCU grace period has passed 484 * since I_WB_SWITCH assertion and all wb stat update transactions 485 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 486 * synchronizing against the i_pages lock. 487 * 488 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 489 * gives us exclusion against all wb related operations on @inode 490 * including IO list manipulations and stat updates. 491 */ 492 if (old_wb < new_wb) { 493 spin_lock(&old_wb->list_lock); 494 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 495 } else { 496 spin_lock(&new_wb->list_lock); 497 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 498 } 499 500 for (inodep = isw->inodes; *inodep; inodep++) { 501 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 502 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 503 nr_switched++; 504 } 505 506 spin_unlock(&new_wb->list_lock); 507 spin_unlock(&old_wb->list_lock); 508 509 up_read(&bdi->wb_switch_rwsem); 510 511 if (nr_switched) { 512 wb_wakeup(new_wb); 513 wb_put_many(old_wb, nr_switched); 514 } 515 516 for (inodep = isw->inodes; *inodep; inodep++) 517 iput(*inodep); 518 wb_put(new_wb); 519 kfree(isw); 520 atomic_dec(&isw_nr_in_flight); 521 } 522 523 static bool inode_prepare_wbs_switch(struct inode *inode, 524 struct bdi_writeback *new_wb) 525 { 526 /* 527 * Paired with smp_mb() in cgroup_writeback_umount(). 528 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 529 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 530 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 531 */ 532 smp_mb(); 533 534 if (IS_DAX(inode)) 535 return false; 536 537 /* while holding I_WB_SWITCH, no one else can update the association */ 538 spin_lock(&inode->i_lock); 539 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 540 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 541 inode_to_wb(inode) == new_wb) { 542 spin_unlock(&inode->i_lock); 543 return false; 544 } 545 inode->i_state |= I_WB_SWITCH; 546 __iget(inode); 547 spin_unlock(&inode->i_lock); 548 549 return true; 550 } 551 552 /** 553 * inode_switch_wbs - change the wb association of an inode 554 * @inode: target inode 555 * @new_wb_id: ID of the new wb 556 * 557 * Switch @inode's wb association to the wb identified by @new_wb_id. The 558 * switching is performed asynchronously and may fail silently. 559 */ 560 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 561 { 562 struct backing_dev_info *bdi = inode_to_bdi(inode); 563 struct cgroup_subsys_state *memcg_css; 564 struct inode_switch_wbs_context *isw; 565 566 /* noop if seems to be already in progress */ 567 if (inode->i_state & I_WB_SWITCH) 568 return; 569 570 /* avoid queueing a new switch if too many are already in flight */ 571 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 572 return; 573 574 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); 575 if (!isw) 576 return; 577 578 atomic_inc(&isw_nr_in_flight); 579 580 /* find and pin the new wb */ 581 rcu_read_lock(); 582 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 583 if (memcg_css && !css_tryget(memcg_css)) 584 memcg_css = NULL; 585 rcu_read_unlock(); 586 if (!memcg_css) 587 goto out_free; 588 589 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 590 css_put(memcg_css); 591 if (!isw->new_wb) 592 goto out_free; 593 594 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 595 goto out_free; 596 597 isw->inodes[0] = inode; 598 599 /* 600 * In addition to synchronizing among switchers, I_WB_SWITCH tells 601 * the RCU protected stat update paths to grab the i_page 602 * lock so that stat transfer can synchronize against them. 603 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 604 */ 605 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 606 queue_rcu_work(isw_wq, &isw->work); 607 return; 608 609 out_free: 610 atomic_dec(&isw_nr_in_flight); 611 if (isw->new_wb) 612 wb_put(isw->new_wb); 613 kfree(isw); 614 } 615 616 /** 617 * cleanup_offline_cgwb - detach associated inodes 618 * @wb: target wb 619 * 620 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 621 * to eventually release the dying @wb. Returns %true if not all inodes were 622 * switched and the function has to be restarted. 623 */ 624 bool cleanup_offline_cgwb(struct bdi_writeback *wb) 625 { 626 struct cgroup_subsys_state *memcg_css; 627 struct inode_switch_wbs_context *isw; 628 struct inode *inode; 629 int nr; 630 bool restart = false; 631 632 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), 633 GFP_KERNEL); 634 if (!isw) 635 return restart; 636 637 atomic_inc(&isw_nr_in_flight); 638 639 for (memcg_css = wb->memcg_css->parent; memcg_css; 640 memcg_css = memcg_css->parent) { 641 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 642 if (isw->new_wb) 643 break; 644 } 645 if (unlikely(!isw->new_wb)) 646 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 647 648 nr = 0; 649 spin_lock(&wb->list_lock); 650 list_for_each_entry(inode, &wb->b_attached, i_io_list) { 651 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 652 continue; 653 654 isw->inodes[nr++] = inode; 655 656 if (nr >= WB_MAX_INODES_PER_ISW - 1) { 657 restart = true; 658 break; 659 } 660 } 661 spin_unlock(&wb->list_lock); 662 663 /* no attached inodes? bail out */ 664 if (nr == 0) { 665 atomic_dec(&isw_nr_in_flight); 666 wb_put(isw->new_wb); 667 kfree(isw); 668 return restart; 669 } 670 671 /* 672 * In addition to synchronizing among switchers, I_WB_SWITCH tells 673 * the RCU protected stat update paths to grab the i_page 674 * lock so that stat transfer can synchronize against them. 675 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 676 */ 677 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 678 queue_rcu_work(isw_wq, &isw->work); 679 680 return restart; 681 } 682 683 /** 684 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 685 * @wbc: writeback_control of interest 686 * @inode: target inode 687 * 688 * @inode is locked and about to be written back under the control of @wbc. 689 * Record @inode's writeback context into @wbc and unlock the i_lock. On 690 * writeback completion, wbc_detach_inode() should be called. This is used 691 * to track the cgroup writeback context. 692 */ 693 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 694 struct inode *inode) 695 { 696 if (!inode_cgwb_enabled(inode)) { 697 spin_unlock(&inode->i_lock); 698 return; 699 } 700 701 wbc->wb = inode_to_wb(inode); 702 wbc->inode = inode; 703 704 wbc->wb_id = wbc->wb->memcg_css->id; 705 wbc->wb_lcand_id = inode->i_wb_frn_winner; 706 wbc->wb_tcand_id = 0; 707 wbc->wb_bytes = 0; 708 wbc->wb_lcand_bytes = 0; 709 wbc->wb_tcand_bytes = 0; 710 711 wb_get(wbc->wb); 712 spin_unlock(&inode->i_lock); 713 714 /* 715 * A dying wb indicates that either the blkcg associated with the 716 * memcg changed or the associated memcg is dying. In the first 717 * case, a replacement wb should already be available and we should 718 * refresh the wb immediately. In the second case, trying to 719 * refresh will keep failing. 720 */ 721 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 722 inode_switch_wbs(inode, wbc->wb_id); 723 } 724 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 725 726 /** 727 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 728 * @wbc: writeback_control of the just finished writeback 729 * 730 * To be called after a writeback attempt of an inode finishes and undoes 731 * wbc_attach_and_unlock_inode(). Can be called under any context. 732 * 733 * As concurrent write sharing of an inode is expected to be very rare and 734 * memcg only tracks page ownership on first-use basis severely confining 735 * the usefulness of such sharing, cgroup writeback tracks ownership 736 * per-inode. While the support for concurrent write sharing of an inode 737 * is deemed unnecessary, an inode being written to by different cgroups at 738 * different points in time is a lot more common, and, more importantly, 739 * charging only by first-use can too readily lead to grossly incorrect 740 * behaviors (single foreign page can lead to gigabytes of writeback to be 741 * incorrectly attributed). 742 * 743 * To resolve this issue, cgroup writeback detects the majority dirtier of 744 * an inode and transfers the ownership to it. To avoid unnecessary 745 * oscillation, the detection mechanism keeps track of history and gives 746 * out the switch verdict only if the foreign usage pattern is stable over 747 * a certain amount of time and/or writeback attempts. 748 * 749 * On each writeback attempt, @wbc tries to detect the majority writer 750 * using Boyer-Moore majority vote algorithm. In addition to the byte 751 * count from the majority voting, it also counts the bytes written for the 752 * current wb and the last round's winner wb (max of last round's current 753 * wb, the winner from two rounds ago, and the last round's majority 754 * candidate). Keeping track of the historical winner helps the algorithm 755 * to semi-reliably detect the most active writer even when it's not the 756 * absolute majority. 757 * 758 * Once the winner of the round is determined, whether the winner is 759 * foreign or not and how much IO time the round consumed is recorded in 760 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 761 * over a certain threshold, the switch verdict is given. 762 */ 763 void wbc_detach_inode(struct writeback_control *wbc) 764 { 765 struct bdi_writeback *wb = wbc->wb; 766 struct inode *inode = wbc->inode; 767 unsigned long avg_time, max_bytes, max_time; 768 u16 history; 769 int max_id; 770 771 if (!wb) 772 return; 773 774 history = inode->i_wb_frn_history; 775 avg_time = inode->i_wb_frn_avg_time; 776 777 /* pick the winner of this round */ 778 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 779 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 780 max_id = wbc->wb_id; 781 max_bytes = wbc->wb_bytes; 782 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 783 max_id = wbc->wb_lcand_id; 784 max_bytes = wbc->wb_lcand_bytes; 785 } else { 786 max_id = wbc->wb_tcand_id; 787 max_bytes = wbc->wb_tcand_bytes; 788 } 789 790 /* 791 * Calculate the amount of IO time the winner consumed and fold it 792 * into the running average kept per inode. If the consumed IO 793 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 794 * deciding whether to switch or not. This is to prevent one-off 795 * small dirtiers from skewing the verdict. 796 */ 797 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 798 wb->avg_write_bandwidth); 799 if (avg_time) 800 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 801 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 802 else 803 avg_time = max_time; /* immediate catch up on first run */ 804 805 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 806 int slots; 807 808 /* 809 * The switch verdict is reached if foreign wb's consume 810 * more than a certain proportion of IO time in a 811 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 812 * history mask where each bit represents one sixteenth of 813 * the period. Determine the number of slots to shift into 814 * history from @max_time. 815 */ 816 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 817 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 818 history <<= slots; 819 if (wbc->wb_id != max_id) 820 history |= (1U << slots) - 1; 821 822 if (history) 823 trace_inode_foreign_history(inode, wbc, history); 824 825 /* 826 * Switch if the current wb isn't the consistent winner. 827 * If there are multiple closely competing dirtiers, the 828 * inode may switch across them repeatedly over time, which 829 * is okay. The main goal is avoiding keeping an inode on 830 * the wrong wb for an extended period of time. 831 */ 832 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 833 inode_switch_wbs(inode, max_id); 834 } 835 836 /* 837 * Multiple instances of this function may race to update the 838 * following fields but we don't mind occassional inaccuracies. 839 */ 840 inode->i_wb_frn_winner = max_id; 841 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 842 inode->i_wb_frn_history = history; 843 844 wb_put(wbc->wb); 845 wbc->wb = NULL; 846 } 847 EXPORT_SYMBOL_GPL(wbc_detach_inode); 848 849 /** 850 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 851 * @wbc: writeback_control of the writeback in progress 852 * @page: page being written out 853 * @bytes: number of bytes being written out 854 * 855 * @bytes from @page are about to written out during the writeback 856 * controlled by @wbc. Keep the book for foreign inode detection. See 857 * wbc_detach_inode(). 858 */ 859 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 860 size_t bytes) 861 { 862 struct folio *folio; 863 struct cgroup_subsys_state *css; 864 int id; 865 866 /* 867 * pageout() path doesn't attach @wbc to the inode being written 868 * out. This is intentional as we don't want the function to block 869 * behind a slow cgroup. Ultimately, we want pageout() to kick off 870 * regular writeback instead of writing things out itself. 871 */ 872 if (!wbc->wb || wbc->no_cgroup_owner) 873 return; 874 875 folio = page_folio(page); 876 css = mem_cgroup_css_from_folio(folio); 877 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 878 if (!(css->flags & CSS_ONLINE)) 879 return; 880 881 id = css->id; 882 883 if (id == wbc->wb_id) { 884 wbc->wb_bytes += bytes; 885 return; 886 } 887 888 if (id == wbc->wb_lcand_id) 889 wbc->wb_lcand_bytes += bytes; 890 891 /* Boyer-Moore majority vote algorithm */ 892 if (!wbc->wb_tcand_bytes) 893 wbc->wb_tcand_id = id; 894 if (id == wbc->wb_tcand_id) 895 wbc->wb_tcand_bytes += bytes; 896 else 897 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 898 } 899 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 900 901 /** 902 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 903 * @wb: target bdi_writeback to split @nr_pages to 904 * @nr_pages: number of pages to write for the whole bdi 905 * 906 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 907 * relation to the total write bandwidth of all wb's w/ dirty inodes on 908 * @wb->bdi. 909 */ 910 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 911 { 912 unsigned long this_bw = wb->avg_write_bandwidth; 913 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 914 915 if (nr_pages == LONG_MAX) 916 return LONG_MAX; 917 918 /* 919 * This may be called on clean wb's and proportional distribution 920 * may not make sense, just use the original @nr_pages in those 921 * cases. In general, we wanna err on the side of writing more. 922 */ 923 if (!tot_bw || this_bw >= tot_bw) 924 return nr_pages; 925 else 926 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 927 } 928 929 /** 930 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 931 * @bdi: target backing_dev_info 932 * @base_work: wb_writeback_work to issue 933 * @skip_if_busy: skip wb's which already have writeback in progress 934 * 935 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 936 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 937 * distributed to the busy wbs according to each wb's proportion in the 938 * total active write bandwidth of @bdi. 939 */ 940 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 941 struct wb_writeback_work *base_work, 942 bool skip_if_busy) 943 { 944 struct bdi_writeback *last_wb = NULL; 945 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 946 struct bdi_writeback, bdi_node); 947 948 might_sleep(); 949 restart: 950 rcu_read_lock(); 951 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 952 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 953 struct wb_writeback_work fallback_work; 954 struct wb_writeback_work *work; 955 long nr_pages; 956 957 if (last_wb) { 958 wb_put(last_wb); 959 last_wb = NULL; 960 } 961 962 /* SYNC_ALL writes out I_DIRTY_TIME too */ 963 if (!wb_has_dirty_io(wb) && 964 (base_work->sync_mode == WB_SYNC_NONE || 965 list_empty(&wb->b_dirty_time))) 966 continue; 967 if (skip_if_busy && writeback_in_progress(wb)) 968 continue; 969 970 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 971 972 work = kmalloc(sizeof(*work), GFP_ATOMIC); 973 if (work) { 974 *work = *base_work; 975 work->nr_pages = nr_pages; 976 work->auto_free = 1; 977 wb_queue_work(wb, work); 978 continue; 979 } 980 981 /* alloc failed, execute synchronously using on-stack fallback */ 982 work = &fallback_work; 983 *work = *base_work; 984 work->nr_pages = nr_pages; 985 work->auto_free = 0; 986 work->done = &fallback_work_done; 987 988 wb_queue_work(wb, work); 989 990 /* 991 * Pin @wb so that it stays on @bdi->wb_list. This allows 992 * continuing iteration from @wb after dropping and 993 * regrabbing rcu read lock. 994 */ 995 wb_get(wb); 996 last_wb = wb; 997 998 rcu_read_unlock(); 999 wb_wait_for_completion(&fallback_work_done); 1000 goto restart; 1001 } 1002 rcu_read_unlock(); 1003 1004 if (last_wb) 1005 wb_put(last_wb); 1006 } 1007 1008 /** 1009 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1010 * @bdi_id: target bdi id 1011 * @memcg_id: target memcg css id 1012 * @reason: reason why some writeback work initiated 1013 * @done: target wb_completion 1014 * 1015 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1016 * with the specified parameters. 1017 */ 1018 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, 1019 enum wb_reason reason, struct wb_completion *done) 1020 { 1021 struct backing_dev_info *bdi; 1022 struct cgroup_subsys_state *memcg_css; 1023 struct bdi_writeback *wb; 1024 struct wb_writeback_work *work; 1025 unsigned long dirty; 1026 int ret; 1027 1028 /* lookup bdi and memcg */ 1029 bdi = bdi_get_by_id(bdi_id); 1030 if (!bdi) 1031 return -ENOENT; 1032 1033 rcu_read_lock(); 1034 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1035 if (memcg_css && !css_tryget(memcg_css)) 1036 memcg_css = NULL; 1037 rcu_read_unlock(); 1038 if (!memcg_css) { 1039 ret = -ENOENT; 1040 goto out_bdi_put; 1041 } 1042 1043 /* 1044 * And find the associated wb. If the wb isn't there already 1045 * there's nothing to flush, don't create one. 1046 */ 1047 wb = wb_get_lookup(bdi, memcg_css); 1048 if (!wb) { 1049 ret = -ENOENT; 1050 goto out_css_put; 1051 } 1052 1053 /* 1054 * The caller is attempting to write out most of 1055 * the currently dirty pages. Let's take the current dirty page 1056 * count and inflate it by 25% which should be large enough to 1057 * flush out most dirty pages while avoiding getting livelocked by 1058 * concurrent dirtiers. 1059 * 1060 * BTW the memcg stats are flushed periodically and this is best-effort 1061 * estimation, so some potential error is ok. 1062 */ 1063 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); 1064 dirty = dirty * 10 / 8; 1065 1066 /* issue the writeback work */ 1067 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 1068 if (work) { 1069 work->nr_pages = dirty; 1070 work->sync_mode = WB_SYNC_NONE; 1071 work->range_cyclic = 1; 1072 work->reason = reason; 1073 work->done = done; 1074 work->auto_free = 1; 1075 wb_queue_work(wb, work); 1076 ret = 0; 1077 } else { 1078 ret = -ENOMEM; 1079 } 1080 1081 wb_put(wb); 1082 out_css_put: 1083 css_put(memcg_css); 1084 out_bdi_put: 1085 bdi_put(bdi); 1086 return ret; 1087 } 1088 1089 /** 1090 * cgroup_writeback_umount - flush inode wb switches for umount 1091 * 1092 * This function is called when a super_block is about to be destroyed and 1093 * flushes in-flight inode wb switches. An inode wb switch goes through 1094 * RCU and then workqueue, so the two need to be flushed in order to ensure 1095 * that all previously scheduled switches are finished. As wb switches are 1096 * rare occurrences and synchronize_rcu() can take a while, perform 1097 * flushing iff wb switches are in flight. 1098 */ 1099 void cgroup_writeback_umount(void) 1100 { 1101 /* 1102 * SB_ACTIVE should be reliably cleared before checking 1103 * isw_nr_in_flight, see generic_shutdown_super(). 1104 */ 1105 smp_mb(); 1106 1107 if (atomic_read(&isw_nr_in_flight)) { 1108 /* 1109 * Use rcu_barrier() to wait for all pending callbacks to 1110 * ensure that all in-flight wb switches are in the workqueue. 1111 */ 1112 rcu_barrier(); 1113 flush_workqueue(isw_wq); 1114 } 1115 } 1116 1117 static int __init cgroup_writeback_init(void) 1118 { 1119 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1120 if (!isw_wq) 1121 return -ENOMEM; 1122 return 0; 1123 } 1124 fs_initcall(cgroup_writeback_init); 1125 1126 #else /* CONFIG_CGROUP_WRITEBACK */ 1127 1128 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1129 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1130 1131 static void inode_cgwb_move_to_attached(struct inode *inode, 1132 struct bdi_writeback *wb) 1133 { 1134 assert_spin_locked(&wb->list_lock); 1135 assert_spin_locked(&inode->i_lock); 1136 WARN_ON_ONCE(inode->i_state & I_FREEING); 1137 1138 inode->i_state &= ~I_SYNC_QUEUED; 1139 list_del_init(&inode->i_io_list); 1140 wb_io_lists_depopulated(wb); 1141 } 1142 1143 static struct bdi_writeback * 1144 locked_inode_to_wb_and_lock_list(struct inode *inode) 1145 __releases(&inode->i_lock) 1146 __acquires(&wb->list_lock) 1147 { 1148 struct bdi_writeback *wb = inode_to_wb(inode); 1149 1150 spin_unlock(&inode->i_lock); 1151 spin_lock(&wb->list_lock); 1152 return wb; 1153 } 1154 1155 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1156 __acquires(&wb->list_lock) 1157 { 1158 struct bdi_writeback *wb = inode_to_wb(inode); 1159 1160 spin_lock(&wb->list_lock); 1161 return wb; 1162 } 1163 1164 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1165 { 1166 return nr_pages; 1167 } 1168 1169 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1170 struct wb_writeback_work *base_work, 1171 bool skip_if_busy) 1172 { 1173 might_sleep(); 1174 1175 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1176 base_work->auto_free = 0; 1177 wb_queue_work(&bdi->wb, base_work); 1178 } 1179 } 1180 1181 #endif /* CONFIG_CGROUP_WRITEBACK */ 1182 1183 /* 1184 * Add in the number of potentially dirty inodes, because each inode 1185 * write can dirty pagecache in the underlying blockdev. 1186 */ 1187 static unsigned long get_nr_dirty_pages(void) 1188 { 1189 return global_node_page_state(NR_FILE_DIRTY) + 1190 get_nr_dirty_inodes(); 1191 } 1192 1193 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1194 { 1195 if (!wb_has_dirty_io(wb)) 1196 return; 1197 1198 /* 1199 * All callers of this function want to start writeback of all 1200 * dirty pages. Places like vmscan can call this at a very 1201 * high frequency, causing pointless allocations of tons of 1202 * work items and keeping the flusher threads busy retrieving 1203 * that work. Ensure that we only allow one of them pending and 1204 * inflight at the time. 1205 */ 1206 if (test_bit(WB_start_all, &wb->state) || 1207 test_and_set_bit(WB_start_all, &wb->state)) 1208 return; 1209 1210 wb->start_all_reason = reason; 1211 wb_wakeup(wb); 1212 } 1213 1214 /** 1215 * wb_start_background_writeback - start background writeback 1216 * @wb: bdi_writback to write from 1217 * 1218 * Description: 1219 * This makes sure WB_SYNC_NONE background writeback happens. When 1220 * this function returns, it is only guaranteed that for given wb 1221 * some IO is happening if we are over background dirty threshold. 1222 * Caller need not hold sb s_umount semaphore. 1223 */ 1224 void wb_start_background_writeback(struct bdi_writeback *wb) 1225 { 1226 /* 1227 * We just wake up the flusher thread. It will perform background 1228 * writeback as soon as there is no other work to do. 1229 */ 1230 trace_writeback_wake_background(wb); 1231 wb_wakeup(wb); 1232 } 1233 1234 /* 1235 * Remove the inode from the writeback list it is on. 1236 */ 1237 void inode_io_list_del(struct inode *inode) 1238 { 1239 struct bdi_writeback *wb; 1240 1241 wb = inode_to_wb_and_lock_list(inode); 1242 spin_lock(&inode->i_lock); 1243 1244 inode->i_state &= ~I_SYNC_QUEUED; 1245 list_del_init(&inode->i_io_list); 1246 wb_io_lists_depopulated(wb); 1247 1248 spin_unlock(&inode->i_lock); 1249 spin_unlock(&wb->list_lock); 1250 } 1251 EXPORT_SYMBOL(inode_io_list_del); 1252 1253 /* 1254 * mark an inode as under writeback on the sb 1255 */ 1256 void sb_mark_inode_writeback(struct inode *inode) 1257 { 1258 struct super_block *sb = inode->i_sb; 1259 unsigned long flags; 1260 1261 if (list_empty(&inode->i_wb_list)) { 1262 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1263 if (list_empty(&inode->i_wb_list)) { 1264 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1265 trace_sb_mark_inode_writeback(inode); 1266 } 1267 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1268 } 1269 } 1270 1271 /* 1272 * clear an inode as under writeback on the sb 1273 */ 1274 void sb_clear_inode_writeback(struct inode *inode) 1275 { 1276 struct super_block *sb = inode->i_sb; 1277 unsigned long flags; 1278 1279 if (!list_empty(&inode->i_wb_list)) { 1280 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1281 if (!list_empty(&inode->i_wb_list)) { 1282 list_del_init(&inode->i_wb_list); 1283 trace_sb_clear_inode_writeback(inode); 1284 } 1285 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1286 } 1287 } 1288 1289 /* 1290 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1291 * furthest end of its superblock's dirty-inode list. 1292 * 1293 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1294 * already the most-recently-dirtied inode on the b_dirty list. If that is 1295 * the case then the inode must have been redirtied while it was being written 1296 * out and we don't reset its dirtied_when. 1297 */ 1298 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1299 { 1300 assert_spin_locked(&inode->i_lock); 1301 1302 inode->i_state &= ~I_SYNC_QUEUED; 1303 /* 1304 * When the inode is being freed just don't bother with dirty list 1305 * tracking. Flush worker will ignore this inode anyway and it will 1306 * trigger assertions in inode_io_list_move_locked(). 1307 */ 1308 if (inode->i_state & I_FREEING) { 1309 list_del_init(&inode->i_io_list); 1310 wb_io_lists_depopulated(wb); 1311 return; 1312 } 1313 if (!list_empty(&wb->b_dirty)) { 1314 struct inode *tail; 1315 1316 tail = wb_inode(wb->b_dirty.next); 1317 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1318 inode->dirtied_when = jiffies; 1319 } 1320 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1321 } 1322 1323 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1324 { 1325 spin_lock(&inode->i_lock); 1326 redirty_tail_locked(inode, wb); 1327 spin_unlock(&inode->i_lock); 1328 } 1329 1330 /* 1331 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1332 */ 1333 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1334 { 1335 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1336 } 1337 1338 static void inode_sync_complete(struct inode *inode) 1339 { 1340 inode->i_state &= ~I_SYNC; 1341 /* If inode is clean an unused, put it into LRU now... */ 1342 inode_add_lru(inode); 1343 /* Waiters must see I_SYNC cleared before being woken up */ 1344 smp_mb(); 1345 wake_up_bit(&inode->i_state, __I_SYNC); 1346 } 1347 1348 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1349 { 1350 bool ret = time_after(inode->dirtied_when, t); 1351 #ifndef CONFIG_64BIT 1352 /* 1353 * For inodes being constantly redirtied, dirtied_when can get stuck. 1354 * It _appears_ to be in the future, but is actually in distant past. 1355 * This test is necessary to prevent such wrapped-around relative times 1356 * from permanently stopping the whole bdi writeback. 1357 */ 1358 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1359 #endif 1360 return ret; 1361 } 1362 1363 /* 1364 * Move expired (dirtied before dirtied_before) dirty inodes from 1365 * @delaying_queue to @dispatch_queue. 1366 */ 1367 static int move_expired_inodes(struct list_head *delaying_queue, 1368 struct list_head *dispatch_queue, 1369 unsigned long dirtied_before) 1370 { 1371 LIST_HEAD(tmp); 1372 struct list_head *pos, *node; 1373 struct super_block *sb = NULL; 1374 struct inode *inode; 1375 int do_sb_sort = 0; 1376 int moved = 0; 1377 1378 while (!list_empty(delaying_queue)) { 1379 inode = wb_inode(delaying_queue->prev); 1380 if (inode_dirtied_after(inode, dirtied_before)) 1381 break; 1382 spin_lock(&inode->i_lock); 1383 list_move(&inode->i_io_list, &tmp); 1384 moved++; 1385 inode->i_state |= I_SYNC_QUEUED; 1386 spin_unlock(&inode->i_lock); 1387 if (sb_is_blkdev_sb(inode->i_sb)) 1388 continue; 1389 if (sb && sb != inode->i_sb) 1390 do_sb_sort = 1; 1391 sb = inode->i_sb; 1392 } 1393 1394 /* just one sb in list, splice to dispatch_queue and we're done */ 1395 if (!do_sb_sort) { 1396 list_splice(&tmp, dispatch_queue); 1397 goto out; 1398 } 1399 1400 /* 1401 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue', 1402 * we don't take inode->i_lock here because it is just a pointless overhead. 1403 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is 1404 * fully under our control. 1405 */ 1406 while (!list_empty(&tmp)) { 1407 sb = wb_inode(tmp.prev)->i_sb; 1408 list_for_each_prev_safe(pos, node, &tmp) { 1409 inode = wb_inode(pos); 1410 if (inode->i_sb == sb) 1411 list_move(&inode->i_io_list, dispatch_queue); 1412 } 1413 } 1414 out: 1415 return moved; 1416 } 1417 1418 /* 1419 * Queue all expired dirty inodes for io, eldest first. 1420 * Before 1421 * newly dirtied b_dirty b_io b_more_io 1422 * =============> gf edc BA 1423 * After 1424 * newly dirtied b_dirty b_io b_more_io 1425 * =============> g fBAedc 1426 * | 1427 * +--> dequeue for IO 1428 */ 1429 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1430 unsigned long dirtied_before) 1431 { 1432 int moved; 1433 unsigned long time_expire_jif = dirtied_before; 1434 1435 assert_spin_locked(&wb->list_lock); 1436 list_splice_init(&wb->b_more_io, &wb->b_io); 1437 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1438 if (!work->for_sync) 1439 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1440 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1441 time_expire_jif); 1442 if (moved) 1443 wb_io_lists_populated(wb); 1444 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1445 } 1446 1447 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1448 { 1449 int ret; 1450 1451 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1452 trace_writeback_write_inode_start(inode, wbc); 1453 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1454 trace_writeback_write_inode(inode, wbc); 1455 return ret; 1456 } 1457 return 0; 1458 } 1459 1460 /* 1461 * Wait for writeback on an inode to complete. Called with i_lock held. 1462 * Caller must make sure inode cannot go away when we drop i_lock. 1463 */ 1464 static void __inode_wait_for_writeback(struct inode *inode) 1465 __releases(inode->i_lock) 1466 __acquires(inode->i_lock) 1467 { 1468 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1469 wait_queue_head_t *wqh; 1470 1471 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1472 while (inode->i_state & I_SYNC) { 1473 spin_unlock(&inode->i_lock); 1474 __wait_on_bit(wqh, &wq, bit_wait, 1475 TASK_UNINTERRUPTIBLE); 1476 spin_lock(&inode->i_lock); 1477 } 1478 } 1479 1480 /* 1481 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1482 */ 1483 void inode_wait_for_writeback(struct inode *inode) 1484 { 1485 spin_lock(&inode->i_lock); 1486 __inode_wait_for_writeback(inode); 1487 spin_unlock(&inode->i_lock); 1488 } 1489 1490 /* 1491 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1492 * held and drops it. It is aimed for callers not holding any inode reference 1493 * so once i_lock is dropped, inode can go away. 1494 */ 1495 static void inode_sleep_on_writeback(struct inode *inode) 1496 __releases(inode->i_lock) 1497 { 1498 DEFINE_WAIT(wait); 1499 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1500 int sleep; 1501 1502 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1503 sleep = inode->i_state & I_SYNC; 1504 spin_unlock(&inode->i_lock); 1505 if (sleep) 1506 schedule(); 1507 finish_wait(wqh, &wait); 1508 } 1509 1510 /* 1511 * Find proper writeback list for the inode depending on its current state and 1512 * possibly also change of its state while we were doing writeback. Here we 1513 * handle things such as livelock prevention or fairness of writeback among 1514 * inodes. This function can be called only by flusher thread - noone else 1515 * processes all inodes in writeback lists and requeueing inodes behind flusher 1516 * thread's back can have unexpected consequences. 1517 */ 1518 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1519 struct writeback_control *wbc) 1520 { 1521 if (inode->i_state & I_FREEING) 1522 return; 1523 1524 /* 1525 * Sync livelock prevention. Each inode is tagged and synced in one 1526 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1527 * the dirty time to prevent enqueue and sync it again. 1528 */ 1529 if ((inode->i_state & I_DIRTY) && 1530 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1531 inode->dirtied_when = jiffies; 1532 1533 if (wbc->pages_skipped) { 1534 /* 1535 * writeback is not making progress due to locked 1536 * buffers. Skip this inode for now. 1537 */ 1538 redirty_tail_locked(inode, wb); 1539 return; 1540 } 1541 1542 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1543 /* 1544 * We didn't write back all the pages. nfs_writepages() 1545 * sometimes bales out without doing anything. 1546 */ 1547 if (wbc->nr_to_write <= 0) { 1548 /* Slice used up. Queue for next turn. */ 1549 requeue_io(inode, wb); 1550 } else { 1551 /* 1552 * Writeback blocked by something other than 1553 * congestion. Delay the inode for some time to 1554 * avoid spinning on the CPU (100% iowait) 1555 * retrying writeback of the dirty page/inode 1556 * that cannot be performed immediately. 1557 */ 1558 redirty_tail_locked(inode, wb); 1559 } 1560 } else if (inode->i_state & I_DIRTY) { 1561 /* 1562 * Filesystems can dirty the inode during writeback operations, 1563 * such as delayed allocation during submission or metadata 1564 * updates after data IO completion. 1565 */ 1566 redirty_tail_locked(inode, wb); 1567 } else if (inode->i_state & I_DIRTY_TIME) { 1568 inode->dirtied_when = jiffies; 1569 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1570 inode->i_state &= ~I_SYNC_QUEUED; 1571 } else { 1572 /* The inode is clean. Remove from writeback lists. */ 1573 inode_cgwb_move_to_attached(inode, wb); 1574 } 1575 } 1576 1577 /* 1578 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1579 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1580 * 1581 * This doesn't remove the inode from the writeback list it is on, except 1582 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1583 * expiration. The caller is otherwise responsible for writeback list handling. 1584 * 1585 * The caller is also responsible for setting the I_SYNC flag beforehand and 1586 * calling inode_sync_complete() to clear it afterwards. 1587 */ 1588 static int 1589 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1590 { 1591 struct address_space *mapping = inode->i_mapping; 1592 long nr_to_write = wbc->nr_to_write; 1593 unsigned dirty; 1594 int ret; 1595 1596 WARN_ON(!(inode->i_state & I_SYNC)); 1597 1598 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1599 1600 ret = do_writepages(mapping, wbc); 1601 1602 /* 1603 * Make sure to wait on the data before writing out the metadata. 1604 * This is important for filesystems that modify metadata on data 1605 * I/O completion. We don't do it for sync(2) writeback because it has a 1606 * separate, external IO completion path and ->sync_fs for guaranteeing 1607 * inode metadata is written back correctly. 1608 */ 1609 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1610 int err = filemap_fdatawait(mapping); 1611 if (ret == 0) 1612 ret = err; 1613 } 1614 1615 /* 1616 * If the inode has dirty timestamps and we need to write them, call 1617 * mark_inode_dirty_sync() to notify the filesystem about it and to 1618 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1619 */ 1620 if ((inode->i_state & I_DIRTY_TIME) && 1621 (wbc->sync_mode == WB_SYNC_ALL || 1622 time_after(jiffies, inode->dirtied_time_when + 1623 dirtytime_expire_interval * HZ))) { 1624 trace_writeback_lazytime(inode); 1625 mark_inode_dirty_sync(inode); 1626 } 1627 1628 /* 1629 * Get and clear the dirty flags from i_state. This needs to be done 1630 * after calling writepages because some filesystems may redirty the 1631 * inode during writepages due to delalloc. It also needs to be done 1632 * after handling timestamp expiration, as that may dirty the inode too. 1633 */ 1634 spin_lock(&inode->i_lock); 1635 dirty = inode->i_state & I_DIRTY; 1636 inode->i_state &= ~dirty; 1637 1638 /* 1639 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1640 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1641 * either they see the I_DIRTY bits cleared or we see the dirtied 1642 * inode. 1643 * 1644 * I_DIRTY_PAGES is always cleared together above even if @mapping 1645 * still has dirty pages. The flag is reinstated after smp_mb() if 1646 * necessary. This guarantees that either __mark_inode_dirty() 1647 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1648 */ 1649 smp_mb(); 1650 1651 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1652 inode->i_state |= I_DIRTY_PAGES; 1653 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) { 1654 if (!(inode->i_state & I_DIRTY_PAGES)) { 1655 inode->i_state &= ~I_PINNING_FSCACHE_WB; 1656 wbc->unpinned_fscache_wb = true; 1657 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */ 1658 } 1659 } 1660 1661 spin_unlock(&inode->i_lock); 1662 1663 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1664 if (dirty & ~I_DIRTY_PAGES) { 1665 int err = write_inode(inode, wbc); 1666 if (ret == 0) 1667 ret = err; 1668 } 1669 wbc->unpinned_fscache_wb = false; 1670 trace_writeback_single_inode(inode, wbc, nr_to_write); 1671 return ret; 1672 } 1673 1674 /* 1675 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1676 * the regular batched writeback done by the flusher threads in 1677 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1678 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1679 * 1680 * To prevent the inode from going away, either the caller must have a reference 1681 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1682 */ 1683 static int writeback_single_inode(struct inode *inode, 1684 struct writeback_control *wbc) 1685 { 1686 struct bdi_writeback *wb; 1687 int ret = 0; 1688 1689 spin_lock(&inode->i_lock); 1690 if (!atomic_read(&inode->i_count)) 1691 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1692 else 1693 WARN_ON(inode->i_state & I_WILL_FREE); 1694 1695 if (inode->i_state & I_SYNC) { 1696 /* 1697 * Writeback is already running on the inode. For WB_SYNC_NONE, 1698 * that's enough and we can just return. For WB_SYNC_ALL, we 1699 * must wait for the existing writeback to complete, then do 1700 * writeback again if there's anything left. 1701 */ 1702 if (wbc->sync_mode != WB_SYNC_ALL) 1703 goto out; 1704 __inode_wait_for_writeback(inode); 1705 } 1706 WARN_ON(inode->i_state & I_SYNC); 1707 /* 1708 * If the inode is already fully clean, then there's nothing to do. 1709 * 1710 * For data-integrity syncs we also need to check whether any pages are 1711 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1712 * there are any such pages, we'll need to wait for them. 1713 */ 1714 if (!(inode->i_state & I_DIRTY_ALL) && 1715 (wbc->sync_mode != WB_SYNC_ALL || 1716 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1717 goto out; 1718 inode->i_state |= I_SYNC; 1719 wbc_attach_and_unlock_inode(wbc, inode); 1720 1721 ret = __writeback_single_inode(inode, wbc); 1722 1723 wbc_detach_inode(wbc); 1724 1725 wb = inode_to_wb_and_lock_list(inode); 1726 spin_lock(&inode->i_lock); 1727 /* 1728 * If the inode is freeing, its i_io_list shoudn't be updated 1729 * as it can be finally deleted at this moment. 1730 */ 1731 if (!(inode->i_state & I_FREEING)) { 1732 /* 1733 * If the inode is now fully clean, then it can be safely 1734 * removed from its writeback list (if any). Otherwise the 1735 * flusher threads are responsible for the writeback lists. 1736 */ 1737 if (!(inode->i_state & I_DIRTY_ALL)) 1738 inode_cgwb_move_to_attached(inode, wb); 1739 else if (!(inode->i_state & I_SYNC_QUEUED)) { 1740 if ((inode->i_state & I_DIRTY)) 1741 redirty_tail_locked(inode, wb); 1742 else if (inode->i_state & I_DIRTY_TIME) { 1743 inode->dirtied_when = jiffies; 1744 inode_io_list_move_locked(inode, 1745 wb, 1746 &wb->b_dirty_time); 1747 } 1748 } 1749 } 1750 1751 spin_unlock(&wb->list_lock); 1752 inode_sync_complete(inode); 1753 out: 1754 spin_unlock(&inode->i_lock); 1755 return ret; 1756 } 1757 1758 static long writeback_chunk_size(struct bdi_writeback *wb, 1759 struct wb_writeback_work *work) 1760 { 1761 long pages; 1762 1763 /* 1764 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1765 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1766 * here avoids calling into writeback_inodes_wb() more than once. 1767 * 1768 * The intended call sequence for WB_SYNC_ALL writeback is: 1769 * 1770 * wb_writeback() 1771 * writeback_sb_inodes() <== called only once 1772 * write_cache_pages() <== called once for each inode 1773 * (quickly) tag currently dirty pages 1774 * (maybe slowly) sync all tagged pages 1775 */ 1776 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1777 pages = LONG_MAX; 1778 else { 1779 pages = min(wb->avg_write_bandwidth / 2, 1780 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1781 pages = min(pages, work->nr_pages); 1782 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1783 MIN_WRITEBACK_PAGES); 1784 } 1785 1786 return pages; 1787 } 1788 1789 /* 1790 * Write a portion of b_io inodes which belong to @sb. 1791 * 1792 * Return the number of pages and/or inodes written. 1793 * 1794 * NOTE! This is called with wb->list_lock held, and will 1795 * unlock and relock that for each inode it ends up doing 1796 * IO for. 1797 */ 1798 static long writeback_sb_inodes(struct super_block *sb, 1799 struct bdi_writeback *wb, 1800 struct wb_writeback_work *work) 1801 { 1802 struct writeback_control wbc = { 1803 .sync_mode = work->sync_mode, 1804 .tagged_writepages = work->tagged_writepages, 1805 .for_kupdate = work->for_kupdate, 1806 .for_background = work->for_background, 1807 .for_sync = work->for_sync, 1808 .range_cyclic = work->range_cyclic, 1809 .range_start = 0, 1810 .range_end = LLONG_MAX, 1811 }; 1812 unsigned long start_time = jiffies; 1813 long write_chunk; 1814 long total_wrote = 0; /* count both pages and inodes */ 1815 1816 while (!list_empty(&wb->b_io)) { 1817 struct inode *inode = wb_inode(wb->b_io.prev); 1818 struct bdi_writeback *tmp_wb; 1819 long wrote; 1820 1821 if (inode->i_sb != sb) { 1822 if (work->sb) { 1823 /* 1824 * We only want to write back data for this 1825 * superblock, move all inodes not belonging 1826 * to it back onto the dirty list. 1827 */ 1828 redirty_tail(inode, wb); 1829 continue; 1830 } 1831 1832 /* 1833 * The inode belongs to a different superblock. 1834 * Bounce back to the caller to unpin this and 1835 * pin the next superblock. 1836 */ 1837 break; 1838 } 1839 1840 /* 1841 * Don't bother with new inodes or inodes being freed, first 1842 * kind does not need periodic writeout yet, and for the latter 1843 * kind writeout is handled by the freer. 1844 */ 1845 spin_lock(&inode->i_lock); 1846 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1847 redirty_tail_locked(inode, wb); 1848 spin_unlock(&inode->i_lock); 1849 continue; 1850 } 1851 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1852 /* 1853 * If this inode is locked for writeback and we are not 1854 * doing writeback-for-data-integrity, move it to 1855 * b_more_io so that writeback can proceed with the 1856 * other inodes on s_io. 1857 * 1858 * We'll have another go at writing back this inode 1859 * when we completed a full scan of b_io. 1860 */ 1861 requeue_io(inode, wb); 1862 spin_unlock(&inode->i_lock); 1863 trace_writeback_sb_inodes_requeue(inode); 1864 continue; 1865 } 1866 spin_unlock(&wb->list_lock); 1867 1868 /* 1869 * We already requeued the inode if it had I_SYNC set and we 1870 * are doing WB_SYNC_NONE writeback. So this catches only the 1871 * WB_SYNC_ALL case. 1872 */ 1873 if (inode->i_state & I_SYNC) { 1874 /* Wait for I_SYNC. This function drops i_lock... */ 1875 inode_sleep_on_writeback(inode); 1876 /* Inode may be gone, start again */ 1877 spin_lock(&wb->list_lock); 1878 continue; 1879 } 1880 inode->i_state |= I_SYNC; 1881 wbc_attach_and_unlock_inode(&wbc, inode); 1882 1883 write_chunk = writeback_chunk_size(wb, work); 1884 wbc.nr_to_write = write_chunk; 1885 wbc.pages_skipped = 0; 1886 1887 /* 1888 * We use I_SYNC to pin the inode in memory. While it is set 1889 * evict_inode() will wait so the inode cannot be freed. 1890 */ 1891 __writeback_single_inode(inode, &wbc); 1892 1893 wbc_detach_inode(&wbc); 1894 work->nr_pages -= write_chunk - wbc.nr_to_write; 1895 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped; 1896 wrote = wrote < 0 ? 0 : wrote; 1897 total_wrote += wrote; 1898 1899 if (need_resched()) { 1900 /* 1901 * We're trying to balance between building up a nice 1902 * long list of IOs to improve our merge rate, and 1903 * getting those IOs out quickly for anyone throttling 1904 * in balance_dirty_pages(). cond_resched() doesn't 1905 * unplug, so get our IOs out the door before we 1906 * give up the CPU. 1907 */ 1908 blk_flush_plug(current->plug, false); 1909 cond_resched(); 1910 } 1911 1912 /* 1913 * Requeue @inode if still dirty. Be careful as @inode may 1914 * have been switched to another wb in the meantime. 1915 */ 1916 tmp_wb = inode_to_wb_and_lock_list(inode); 1917 spin_lock(&inode->i_lock); 1918 if (!(inode->i_state & I_DIRTY_ALL)) 1919 total_wrote++; 1920 requeue_inode(inode, tmp_wb, &wbc); 1921 inode_sync_complete(inode); 1922 spin_unlock(&inode->i_lock); 1923 1924 if (unlikely(tmp_wb != wb)) { 1925 spin_unlock(&tmp_wb->list_lock); 1926 spin_lock(&wb->list_lock); 1927 } 1928 1929 /* 1930 * bail out to wb_writeback() often enough to check 1931 * background threshold and other termination conditions. 1932 */ 1933 if (total_wrote) { 1934 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1935 break; 1936 if (work->nr_pages <= 0) 1937 break; 1938 } 1939 } 1940 return total_wrote; 1941 } 1942 1943 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1944 struct wb_writeback_work *work) 1945 { 1946 unsigned long start_time = jiffies; 1947 long wrote = 0; 1948 1949 while (!list_empty(&wb->b_io)) { 1950 struct inode *inode = wb_inode(wb->b_io.prev); 1951 struct super_block *sb = inode->i_sb; 1952 1953 if (!trylock_super(sb)) { 1954 /* 1955 * trylock_super() may fail consistently due to 1956 * s_umount being grabbed by someone else. Don't use 1957 * requeue_io() to avoid busy retrying the inode/sb. 1958 */ 1959 redirty_tail(inode, wb); 1960 continue; 1961 } 1962 wrote += writeback_sb_inodes(sb, wb, work); 1963 up_read(&sb->s_umount); 1964 1965 /* refer to the same tests at the end of writeback_sb_inodes */ 1966 if (wrote) { 1967 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1968 break; 1969 if (work->nr_pages <= 0) 1970 break; 1971 } 1972 } 1973 /* Leave any unwritten inodes on b_io */ 1974 return wrote; 1975 } 1976 1977 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1978 enum wb_reason reason) 1979 { 1980 struct wb_writeback_work work = { 1981 .nr_pages = nr_pages, 1982 .sync_mode = WB_SYNC_NONE, 1983 .range_cyclic = 1, 1984 .reason = reason, 1985 }; 1986 struct blk_plug plug; 1987 1988 blk_start_plug(&plug); 1989 spin_lock(&wb->list_lock); 1990 if (list_empty(&wb->b_io)) 1991 queue_io(wb, &work, jiffies); 1992 __writeback_inodes_wb(wb, &work); 1993 spin_unlock(&wb->list_lock); 1994 blk_finish_plug(&plug); 1995 1996 return nr_pages - work.nr_pages; 1997 } 1998 1999 /* 2000 * Explicit flushing or periodic writeback of "old" data. 2001 * 2002 * Define "old": the first time one of an inode's pages is dirtied, we mark the 2003 * dirtying-time in the inode's address_space. So this periodic writeback code 2004 * just walks the superblock inode list, writing back any inodes which are 2005 * older than a specific point in time. 2006 * 2007 * Try to run once per dirty_writeback_interval. But if a writeback event 2008 * takes longer than a dirty_writeback_interval interval, then leave a 2009 * one-second gap. 2010 * 2011 * dirtied_before takes precedence over nr_to_write. So we'll only write back 2012 * all dirty pages if they are all attached to "old" mappings. 2013 */ 2014 static long wb_writeback(struct bdi_writeback *wb, 2015 struct wb_writeback_work *work) 2016 { 2017 long nr_pages = work->nr_pages; 2018 unsigned long dirtied_before = jiffies; 2019 struct inode *inode; 2020 long progress; 2021 struct blk_plug plug; 2022 2023 blk_start_plug(&plug); 2024 spin_lock(&wb->list_lock); 2025 for (;;) { 2026 /* 2027 * Stop writeback when nr_pages has been consumed 2028 */ 2029 if (work->nr_pages <= 0) 2030 break; 2031 2032 /* 2033 * Background writeout and kupdate-style writeback may 2034 * run forever. Stop them if there is other work to do 2035 * so that e.g. sync can proceed. They'll be restarted 2036 * after the other works are all done. 2037 */ 2038 if ((work->for_background || work->for_kupdate) && 2039 !list_empty(&wb->work_list)) 2040 break; 2041 2042 /* 2043 * For background writeout, stop when we are below the 2044 * background dirty threshold 2045 */ 2046 if (work->for_background && !wb_over_bg_thresh(wb)) 2047 break; 2048 2049 /* 2050 * Kupdate and background works are special and we want to 2051 * include all inodes that need writing. Livelock avoidance is 2052 * handled by these works yielding to any other work so we are 2053 * safe. 2054 */ 2055 if (work->for_kupdate) { 2056 dirtied_before = jiffies - 2057 msecs_to_jiffies(dirty_expire_interval * 10); 2058 } else if (work->for_background) 2059 dirtied_before = jiffies; 2060 2061 trace_writeback_start(wb, work); 2062 if (list_empty(&wb->b_io)) 2063 queue_io(wb, work, dirtied_before); 2064 if (work->sb) 2065 progress = writeback_sb_inodes(work->sb, wb, work); 2066 else 2067 progress = __writeback_inodes_wb(wb, work); 2068 trace_writeback_written(wb, work); 2069 2070 /* 2071 * Did we write something? Try for more 2072 * 2073 * Dirty inodes are moved to b_io for writeback in batches. 2074 * The completion of the current batch does not necessarily 2075 * mean the overall work is done. So we keep looping as long 2076 * as made some progress on cleaning pages or inodes. 2077 */ 2078 if (progress) 2079 continue; 2080 /* 2081 * No more inodes for IO, bail 2082 */ 2083 if (list_empty(&wb->b_more_io)) 2084 break; 2085 /* 2086 * Nothing written. Wait for some inode to 2087 * become available for writeback. Otherwise 2088 * we'll just busyloop. 2089 */ 2090 trace_writeback_wait(wb, work); 2091 inode = wb_inode(wb->b_more_io.prev); 2092 spin_lock(&inode->i_lock); 2093 spin_unlock(&wb->list_lock); 2094 /* This function drops i_lock... */ 2095 inode_sleep_on_writeback(inode); 2096 spin_lock(&wb->list_lock); 2097 } 2098 spin_unlock(&wb->list_lock); 2099 blk_finish_plug(&plug); 2100 2101 return nr_pages - work->nr_pages; 2102 } 2103 2104 /* 2105 * Return the next wb_writeback_work struct that hasn't been processed yet. 2106 */ 2107 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2108 { 2109 struct wb_writeback_work *work = NULL; 2110 2111 spin_lock_irq(&wb->work_lock); 2112 if (!list_empty(&wb->work_list)) { 2113 work = list_entry(wb->work_list.next, 2114 struct wb_writeback_work, list); 2115 list_del_init(&work->list); 2116 } 2117 spin_unlock_irq(&wb->work_lock); 2118 return work; 2119 } 2120 2121 static long wb_check_background_flush(struct bdi_writeback *wb) 2122 { 2123 if (wb_over_bg_thresh(wb)) { 2124 2125 struct wb_writeback_work work = { 2126 .nr_pages = LONG_MAX, 2127 .sync_mode = WB_SYNC_NONE, 2128 .for_background = 1, 2129 .range_cyclic = 1, 2130 .reason = WB_REASON_BACKGROUND, 2131 }; 2132 2133 return wb_writeback(wb, &work); 2134 } 2135 2136 return 0; 2137 } 2138 2139 static long wb_check_old_data_flush(struct bdi_writeback *wb) 2140 { 2141 unsigned long expired; 2142 long nr_pages; 2143 2144 /* 2145 * When set to zero, disable periodic writeback 2146 */ 2147 if (!dirty_writeback_interval) 2148 return 0; 2149 2150 expired = wb->last_old_flush + 2151 msecs_to_jiffies(dirty_writeback_interval * 10); 2152 if (time_before(jiffies, expired)) 2153 return 0; 2154 2155 wb->last_old_flush = jiffies; 2156 nr_pages = get_nr_dirty_pages(); 2157 2158 if (nr_pages) { 2159 struct wb_writeback_work work = { 2160 .nr_pages = nr_pages, 2161 .sync_mode = WB_SYNC_NONE, 2162 .for_kupdate = 1, 2163 .range_cyclic = 1, 2164 .reason = WB_REASON_PERIODIC, 2165 }; 2166 2167 return wb_writeback(wb, &work); 2168 } 2169 2170 return 0; 2171 } 2172 2173 static long wb_check_start_all(struct bdi_writeback *wb) 2174 { 2175 long nr_pages; 2176 2177 if (!test_bit(WB_start_all, &wb->state)) 2178 return 0; 2179 2180 nr_pages = get_nr_dirty_pages(); 2181 if (nr_pages) { 2182 struct wb_writeback_work work = { 2183 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2184 .sync_mode = WB_SYNC_NONE, 2185 .range_cyclic = 1, 2186 .reason = wb->start_all_reason, 2187 }; 2188 2189 nr_pages = wb_writeback(wb, &work); 2190 } 2191 2192 clear_bit(WB_start_all, &wb->state); 2193 return nr_pages; 2194 } 2195 2196 2197 /* 2198 * Retrieve work items and do the writeback they describe 2199 */ 2200 static long wb_do_writeback(struct bdi_writeback *wb) 2201 { 2202 struct wb_writeback_work *work; 2203 long wrote = 0; 2204 2205 set_bit(WB_writeback_running, &wb->state); 2206 while ((work = get_next_work_item(wb)) != NULL) { 2207 trace_writeback_exec(wb, work); 2208 wrote += wb_writeback(wb, work); 2209 finish_writeback_work(wb, work); 2210 } 2211 2212 /* 2213 * Check for a flush-everything request 2214 */ 2215 wrote += wb_check_start_all(wb); 2216 2217 /* 2218 * Check for periodic writeback, kupdated() style 2219 */ 2220 wrote += wb_check_old_data_flush(wb); 2221 wrote += wb_check_background_flush(wb); 2222 clear_bit(WB_writeback_running, &wb->state); 2223 2224 return wrote; 2225 } 2226 2227 /* 2228 * Handle writeback of dirty data for the device backed by this bdi. Also 2229 * reschedules periodically and does kupdated style flushing. 2230 */ 2231 void wb_workfn(struct work_struct *work) 2232 { 2233 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2234 struct bdi_writeback, dwork); 2235 long pages_written; 2236 2237 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2238 2239 if (likely(!current_is_workqueue_rescuer() || 2240 !test_bit(WB_registered, &wb->state))) { 2241 /* 2242 * The normal path. Keep writing back @wb until its 2243 * work_list is empty. Note that this path is also taken 2244 * if @wb is shutting down even when we're running off the 2245 * rescuer as work_list needs to be drained. 2246 */ 2247 do { 2248 pages_written = wb_do_writeback(wb); 2249 trace_writeback_pages_written(pages_written); 2250 } while (!list_empty(&wb->work_list)); 2251 } else { 2252 /* 2253 * bdi_wq can't get enough workers and we're running off 2254 * the emergency worker. Don't hog it. Hopefully, 1024 is 2255 * enough for efficient IO. 2256 */ 2257 pages_written = writeback_inodes_wb(wb, 1024, 2258 WB_REASON_FORKER_THREAD); 2259 trace_writeback_pages_written(pages_written); 2260 } 2261 2262 if (!list_empty(&wb->work_list)) 2263 wb_wakeup(wb); 2264 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2265 wb_wakeup_delayed(wb); 2266 } 2267 2268 /* 2269 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2270 * write back the whole world. 2271 */ 2272 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2273 enum wb_reason reason) 2274 { 2275 struct bdi_writeback *wb; 2276 2277 if (!bdi_has_dirty_io(bdi)) 2278 return; 2279 2280 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2281 wb_start_writeback(wb, reason); 2282 } 2283 2284 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2285 enum wb_reason reason) 2286 { 2287 rcu_read_lock(); 2288 __wakeup_flusher_threads_bdi(bdi, reason); 2289 rcu_read_unlock(); 2290 } 2291 2292 /* 2293 * Wakeup the flusher threads to start writeback of all currently dirty pages 2294 */ 2295 void wakeup_flusher_threads(enum wb_reason reason) 2296 { 2297 struct backing_dev_info *bdi; 2298 2299 /* 2300 * If we are expecting writeback progress we must submit plugged IO. 2301 */ 2302 blk_flush_plug(current->plug, true); 2303 2304 rcu_read_lock(); 2305 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2306 __wakeup_flusher_threads_bdi(bdi, reason); 2307 rcu_read_unlock(); 2308 } 2309 2310 /* 2311 * Wake up bdi's periodically to make sure dirtytime inodes gets 2312 * written back periodically. We deliberately do *not* check the 2313 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2314 * kernel to be constantly waking up once there are any dirtytime 2315 * inodes on the system. So instead we define a separate delayed work 2316 * function which gets called much more rarely. (By default, only 2317 * once every 12 hours.) 2318 * 2319 * If there is any other write activity going on in the file system, 2320 * this function won't be necessary. But if the only thing that has 2321 * happened on the file system is a dirtytime inode caused by an atime 2322 * update, we need this infrastructure below to make sure that inode 2323 * eventually gets pushed out to disk. 2324 */ 2325 static void wakeup_dirtytime_writeback(struct work_struct *w); 2326 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2327 2328 static void wakeup_dirtytime_writeback(struct work_struct *w) 2329 { 2330 struct backing_dev_info *bdi; 2331 2332 rcu_read_lock(); 2333 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2334 struct bdi_writeback *wb; 2335 2336 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2337 if (!list_empty(&wb->b_dirty_time)) 2338 wb_wakeup(wb); 2339 } 2340 rcu_read_unlock(); 2341 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2342 } 2343 2344 static int __init start_dirtytime_writeback(void) 2345 { 2346 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2347 return 0; 2348 } 2349 __initcall(start_dirtytime_writeback); 2350 2351 int dirtytime_interval_handler(struct ctl_table *table, int write, 2352 void *buffer, size_t *lenp, loff_t *ppos) 2353 { 2354 int ret; 2355 2356 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2357 if (ret == 0 && write) 2358 mod_delayed_work(system_wq, &dirtytime_work, 0); 2359 return ret; 2360 } 2361 2362 /** 2363 * __mark_inode_dirty - internal function to mark an inode dirty 2364 * 2365 * @inode: inode to mark 2366 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2367 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2368 * with I_DIRTY_PAGES. 2369 * 2370 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2371 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2372 * 2373 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2374 * instead of calling this directly. 2375 * 2376 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2377 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2378 * even if they are later hashed, as they will have been marked dirty already. 2379 * 2380 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2381 * 2382 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2383 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2384 * the kernel-internal blockdev inode represents the dirtying time of the 2385 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2386 * page->mapping->host, so the page-dirtying time is recorded in the internal 2387 * blockdev inode. 2388 */ 2389 void __mark_inode_dirty(struct inode *inode, int flags) 2390 { 2391 struct super_block *sb = inode->i_sb; 2392 int dirtytime = 0; 2393 struct bdi_writeback *wb = NULL; 2394 2395 trace_writeback_mark_inode_dirty(inode, flags); 2396 2397 if (flags & I_DIRTY_INODE) { 2398 /* 2399 * Inode timestamp update will piggback on this dirtying. 2400 * We tell ->dirty_inode callback that timestamps need to 2401 * be updated by setting I_DIRTY_TIME in flags. 2402 */ 2403 if (inode->i_state & I_DIRTY_TIME) { 2404 spin_lock(&inode->i_lock); 2405 if (inode->i_state & I_DIRTY_TIME) { 2406 inode->i_state &= ~I_DIRTY_TIME; 2407 flags |= I_DIRTY_TIME; 2408 } 2409 spin_unlock(&inode->i_lock); 2410 } 2411 2412 /* 2413 * Notify the filesystem about the inode being dirtied, so that 2414 * (if needed) it can update on-disk fields and journal the 2415 * inode. This is only needed when the inode itself is being 2416 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2417 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2418 */ 2419 trace_writeback_dirty_inode_start(inode, flags); 2420 if (sb->s_op->dirty_inode) 2421 sb->s_op->dirty_inode(inode, 2422 flags & (I_DIRTY_INODE | I_DIRTY_TIME)); 2423 trace_writeback_dirty_inode(inode, flags); 2424 2425 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2426 flags &= ~I_DIRTY_TIME; 2427 } else { 2428 /* 2429 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2430 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2431 * in one call to __mark_inode_dirty().) 2432 */ 2433 dirtytime = flags & I_DIRTY_TIME; 2434 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2435 } 2436 2437 /* 2438 * Paired with smp_mb() in __writeback_single_inode() for the 2439 * following lockless i_state test. See there for details. 2440 */ 2441 smp_mb(); 2442 2443 if ((inode->i_state & flags) == flags) 2444 return; 2445 2446 spin_lock(&inode->i_lock); 2447 if ((inode->i_state & flags) != flags) { 2448 const int was_dirty = inode->i_state & I_DIRTY; 2449 2450 inode_attach_wb(inode, NULL); 2451 2452 inode->i_state |= flags; 2453 2454 /* 2455 * Grab inode's wb early because it requires dropping i_lock and we 2456 * need to make sure following checks happen atomically with dirty 2457 * list handling so that we don't move inodes under flush worker's 2458 * hands. 2459 */ 2460 if (!was_dirty) { 2461 wb = locked_inode_to_wb_and_lock_list(inode); 2462 spin_lock(&inode->i_lock); 2463 } 2464 2465 /* 2466 * If the inode is queued for writeback by flush worker, just 2467 * update its dirty state. Once the flush worker is done with 2468 * the inode it will place it on the appropriate superblock 2469 * list, based upon its state. 2470 */ 2471 if (inode->i_state & I_SYNC_QUEUED) 2472 goto out_unlock; 2473 2474 /* 2475 * Only add valid (hashed) inodes to the superblock's 2476 * dirty list. Add blockdev inodes as well. 2477 */ 2478 if (!S_ISBLK(inode->i_mode)) { 2479 if (inode_unhashed(inode)) 2480 goto out_unlock; 2481 } 2482 if (inode->i_state & I_FREEING) 2483 goto out_unlock; 2484 2485 /* 2486 * If the inode was already on b_dirty/b_io/b_more_io, don't 2487 * reposition it (that would break b_dirty time-ordering). 2488 */ 2489 if (!was_dirty) { 2490 struct list_head *dirty_list; 2491 bool wakeup_bdi = false; 2492 2493 inode->dirtied_when = jiffies; 2494 if (dirtytime) 2495 inode->dirtied_time_when = jiffies; 2496 2497 if (inode->i_state & I_DIRTY) 2498 dirty_list = &wb->b_dirty; 2499 else 2500 dirty_list = &wb->b_dirty_time; 2501 2502 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2503 dirty_list); 2504 2505 spin_unlock(&wb->list_lock); 2506 spin_unlock(&inode->i_lock); 2507 trace_writeback_dirty_inode_enqueue(inode); 2508 2509 /* 2510 * If this is the first dirty inode for this bdi, 2511 * we have to wake-up the corresponding bdi thread 2512 * to make sure background write-back happens 2513 * later. 2514 */ 2515 if (wakeup_bdi && 2516 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2517 wb_wakeup_delayed(wb); 2518 return; 2519 } 2520 } 2521 out_unlock: 2522 if (wb) 2523 spin_unlock(&wb->list_lock); 2524 spin_unlock(&inode->i_lock); 2525 } 2526 EXPORT_SYMBOL(__mark_inode_dirty); 2527 2528 /* 2529 * The @s_sync_lock is used to serialise concurrent sync operations 2530 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2531 * Concurrent callers will block on the s_sync_lock rather than doing contending 2532 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2533 * has been issued up to the time this function is enter is guaranteed to be 2534 * completed by the time we have gained the lock and waited for all IO that is 2535 * in progress regardless of the order callers are granted the lock. 2536 */ 2537 static void wait_sb_inodes(struct super_block *sb) 2538 { 2539 LIST_HEAD(sync_list); 2540 2541 /* 2542 * We need to be protected against the filesystem going from 2543 * r/o to r/w or vice versa. 2544 */ 2545 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2546 2547 mutex_lock(&sb->s_sync_lock); 2548 2549 /* 2550 * Splice the writeback list onto a temporary list to avoid waiting on 2551 * inodes that have started writeback after this point. 2552 * 2553 * Use rcu_read_lock() to keep the inodes around until we have a 2554 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2555 * the local list because inodes can be dropped from either by writeback 2556 * completion. 2557 */ 2558 rcu_read_lock(); 2559 spin_lock_irq(&sb->s_inode_wblist_lock); 2560 list_splice_init(&sb->s_inodes_wb, &sync_list); 2561 2562 /* 2563 * Data integrity sync. Must wait for all pages under writeback, because 2564 * there may have been pages dirtied before our sync call, but which had 2565 * writeout started before we write it out. In which case, the inode 2566 * may not be on the dirty list, but we still have to wait for that 2567 * writeout. 2568 */ 2569 while (!list_empty(&sync_list)) { 2570 struct inode *inode = list_first_entry(&sync_list, struct inode, 2571 i_wb_list); 2572 struct address_space *mapping = inode->i_mapping; 2573 2574 /* 2575 * Move each inode back to the wb list before we drop the lock 2576 * to preserve consistency between i_wb_list and the mapping 2577 * writeback tag. Writeback completion is responsible to remove 2578 * the inode from either list once the writeback tag is cleared. 2579 */ 2580 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2581 2582 /* 2583 * The mapping can appear untagged while still on-list since we 2584 * do not have the mapping lock. Skip it here, wb completion 2585 * will remove it. 2586 */ 2587 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2588 continue; 2589 2590 spin_unlock_irq(&sb->s_inode_wblist_lock); 2591 2592 spin_lock(&inode->i_lock); 2593 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2594 spin_unlock(&inode->i_lock); 2595 2596 spin_lock_irq(&sb->s_inode_wblist_lock); 2597 continue; 2598 } 2599 __iget(inode); 2600 spin_unlock(&inode->i_lock); 2601 rcu_read_unlock(); 2602 2603 /* 2604 * We keep the error status of individual mapping so that 2605 * applications can catch the writeback error using fsync(2). 2606 * See filemap_fdatawait_keep_errors() for details. 2607 */ 2608 filemap_fdatawait_keep_errors(mapping); 2609 2610 cond_resched(); 2611 2612 iput(inode); 2613 2614 rcu_read_lock(); 2615 spin_lock_irq(&sb->s_inode_wblist_lock); 2616 } 2617 spin_unlock_irq(&sb->s_inode_wblist_lock); 2618 rcu_read_unlock(); 2619 mutex_unlock(&sb->s_sync_lock); 2620 } 2621 2622 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2623 enum wb_reason reason, bool skip_if_busy) 2624 { 2625 struct backing_dev_info *bdi = sb->s_bdi; 2626 DEFINE_WB_COMPLETION(done, bdi); 2627 struct wb_writeback_work work = { 2628 .sb = sb, 2629 .sync_mode = WB_SYNC_NONE, 2630 .tagged_writepages = 1, 2631 .done = &done, 2632 .nr_pages = nr, 2633 .reason = reason, 2634 }; 2635 2636 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2637 return; 2638 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2639 2640 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2641 wb_wait_for_completion(&done); 2642 } 2643 2644 /** 2645 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2646 * @sb: the superblock 2647 * @nr: the number of pages to write 2648 * @reason: reason why some writeback work initiated 2649 * 2650 * Start writeback on some inodes on this super_block. No guarantees are made 2651 * on how many (if any) will be written, and this function does not wait 2652 * for IO completion of submitted IO. 2653 */ 2654 void writeback_inodes_sb_nr(struct super_block *sb, 2655 unsigned long nr, 2656 enum wb_reason reason) 2657 { 2658 __writeback_inodes_sb_nr(sb, nr, reason, false); 2659 } 2660 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2661 2662 /** 2663 * writeback_inodes_sb - writeback dirty inodes from given super_block 2664 * @sb: the superblock 2665 * @reason: reason why some writeback work was initiated 2666 * 2667 * Start writeback on some inodes on this super_block. No guarantees are made 2668 * on how many (if any) will be written, and this function does not wait 2669 * for IO completion of submitted IO. 2670 */ 2671 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2672 { 2673 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2674 } 2675 EXPORT_SYMBOL(writeback_inodes_sb); 2676 2677 /** 2678 * try_to_writeback_inodes_sb - try to start writeback if none underway 2679 * @sb: the superblock 2680 * @reason: reason why some writeback work was initiated 2681 * 2682 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2683 */ 2684 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2685 { 2686 if (!down_read_trylock(&sb->s_umount)) 2687 return; 2688 2689 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2690 up_read(&sb->s_umount); 2691 } 2692 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2693 2694 /** 2695 * sync_inodes_sb - sync sb inode pages 2696 * @sb: the superblock 2697 * 2698 * This function writes and waits on any dirty inode belonging to this 2699 * super_block. 2700 */ 2701 void sync_inodes_sb(struct super_block *sb) 2702 { 2703 struct backing_dev_info *bdi = sb->s_bdi; 2704 DEFINE_WB_COMPLETION(done, bdi); 2705 struct wb_writeback_work work = { 2706 .sb = sb, 2707 .sync_mode = WB_SYNC_ALL, 2708 .nr_pages = LONG_MAX, 2709 .range_cyclic = 0, 2710 .done = &done, 2711 .reason = WB_REASON_SYNC, 2712 .for_sync = 1, 2713 }; 2714 2715 /* 2716 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2717 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2718 * bdi_has_dirty() need to be written out too. 2719 */ 2720 if (bdi == &noop_backing_dev_info) 2721 return; 2722 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2723 2724 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2725 bdi_down_write_wb_switch_rwsem(bdi); 2726 bdi_split_work_to_wbs(bdi, &work, false); 2727 wb_wait_for_completion(&done); 2728 bdi_up_write_wb_switch_rwsem(bdi); 2729 2730 wait_sb_inodes(sb); 2731 } 2732 EXPORT_SYMBOL(sync_inodes_sb); 2733 2734 /** 2735 * write_inode_now - write an inode to disk 2736 * @inode: inode to write to disk 2737 * @sync: whether the write should be synchronous or not 2738 * 2739 * This function commits an inode to disk immediately if it is dirty. This is 2740 * primarily needed by knfsd. 2741 * 2742 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2743 */ 2744 int write_inode_now(struct inode *inode, int sync) 2745 { 2746 struct writeback_control wbc = { 2747 .nr_to_write = LONG_MAX, 2748 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2749 .range_start = 0, 2750 .range_end = LLONG_MAX, 2751 }; 2752 2753 if (!mapping_can_writeback(inode->i_mapping)) 2754 wbc.nr_to_write = 0; 2755 2756 might_sleep(); 2757 return writeback_single_inode(inode, &wbc); 2758 } 2759 EXPORT_SYMBOL(write_inode_now); 2760 2761 /** 2762 * sync_inode_metadata - write an inode to disk 2763 * @inode: the inode to sync 2764 * @wait: wait for I/O to complete. 2765 * 2766 * Write an inode to disk and adjust its dirty state after completion. 2767 * 2768 * Note: only writes the actual inode, no associated data or other metadata. 2769 */ 2770 int sync_inode_metadata(struct inode *inode, int wait) 2771 { 2772 struct writeback_control wbc = { 2773 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2774 .nr_to_write = 0, /* metadata-only */ 2775 }; 2776 2777 return writeback_single_inode(inode, &wbc); 2778 } 2779 EXPORT_SYMBOL(sync_inode_metadata); 2780