1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 akpm@zip.com.au 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/spinlock.h> 18 #include <linux/sched.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/backing-dev.h> 24 #include <linux/buffer_head.h> 25 26 extern struct super_block *blockdev_superblock; 27 28 /** 29 * __mark_inode_dirty - internal function 30 * @inode: inode to mark 31 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 32 * Mark an inode as dirty. Callers should use mark_inode_dirty or 33 * mark_inode_dirty_sync. 34 * 35 * Put the inode on the super block's dirty list. 36 * 37 * CAREFUL! We mark it dirty unconditionally, but move it onto the 38 * dirty list only if it is hashed or if it refers to a blockdev. 39 * If it was not hashed, it will never be added to the dirty list 40 * even if it is later hashed, as it will have been marked dirty already. 41 * 42 * In short, make sure you hash any inodes _before_ you start marking 43 * them dirty. 44 * 45 * This function *must* be atomic for the I_DIRTY_PAGES case - 46 * set_page_dirty() is called under spinlock in several places. 47 * 48 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 49 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 50 * the kernel-internal blockdev inode represents the dirtying time of the 51 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 52 * page->mapping->host, so the page-dirtying time is recorded in the internal 53 * blockdev inode. 54 */ 55 void __mark_inode_dirty(struct inode *inode, int flags) 56 { 57 struct super_block *sb = inode->i_sb; 58 59 /* 60 * Don't do this for I_DIRTY_PAGES - that doesn't actually 61 * dirty the inode itself 62 */ 63 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 64 if (sb->s_op->dirty_inode) 65 sb->s_op->dirty_inode(inode); 66 } 67 68 /* 69 * make sure that changes are seen by all cpus before we test i_state 70 * -- mikulas 71 */ 72 smp_mb(); 73 74 /* avoid the locking if we can */ 75 if ((inode->i_state & flags) == flags) 76 return; 77 78 if (unlikely(block_dump)) { 79 struct dentry *dentry = NULL; 80 const char *name = "?"; 81 82 if (!list_empty(&inode->i_dentry)) { 83 dentry = list_entry(inode->i_dentry.next, 84 struct dentry, d_alias); 85 if (dentry && dentry->d_name.name) 86 name = (const char *) dentry->d_name.name; 87 } 88 89 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) 90 printk(KERN_DEBUG 91 "%s(%d): dirtied inode %lu (%s) on %s\n", 92 current->comm, current->pid, inode->i_ino, 93 name, inode->i_sb->s_id); 94 } 95 96 spin_lock(&inode_lock); 97 if ((inode->i_state & flags) != flags) { 98 const int was_dirty = inode->i_state & I_DIRTY; 99 100 inode->i_state |= flags; 101 102 /* 103 * If the inode is locked, just update its dirty state. 104 * The unlocker will place the inode on the appropriate 105 * superblock list, based upon its state. 106 */ 107 if (inode->i_state & I_LOCK) 108 goto out; 109 110 /* 111 * Only add valid (hashed) inodes to the superblock's 112 * dirty list. Add blockdev inodes as well. 113 */ 114 if (!S_ISBLK(inode->i_mode)) { 115 if (hlist_unhashed(&inode->i_hash)) 116 goto out; 117 } 118 if (inode->i_state & (I_FREEING|I_CLEAR)) 119 goto out; 120 121 /* 122 * If the inode was already on s_dirty or s_io, don't 123 * reposition it (that would break s_dirty time-ordering). 124 */ 125 if (!was_dirty) { 126 inode->dirtied_when = jiffies; 127 list_move(&inode->i_list, &sb->s_dirty); 128 } 129 } 130 out: 131 spin_unlock(&inode_lock); 132 } 133 134 EXPORT_SYMBOL(__mark_inode_dirty); 135 136 static int write_inode(struct inode *inode, int sync) 137 { 138 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 139 return inode->i_sb->s_op->write_inode(inode, sync); 140 return 0; 141 } 142 143 /* 144 * Write a single inode's dirty pages and inode data out to disk. 145 * If `wait' is set, wait on the writeout. 146 * 147 * The whole writeout design is quite complex and fragile. We want to avoid 148 * starvation of particular inodes when others are being redirtied, prevent 149 * livelocks, etc. 150 * 151 * Called under inode_lock. 152 */ 153 static int 154 __sync_single_inode(struct inode *inode, struct writeback_control *wbc) 155 { 156 unsigned dirty; 157 struct address_space *mapping = inode->i_mapping; 158 struct super_block *sb = inode->i_sb; 159 int wait = wbc->sync_mode == WB_SYNC_ALL; 160 int ret; 161 162 BUG_ON(inode->i_state & I_LOCK); 163 164 /* Set I_LOCK, reset I_DIRTY */ 165 dirty = inode->i_state & I_DIRTY; 166 inode->i_state |= I_LOCK; 167 inode->i_state &= ~I_DIRTY; 168 169 spin_unlock(&inode_lock); 170 171 ret = do_writepages(mapping, wbc); 172 173 /* Don't write the inode if only I_DIRTY_PAGES was set */ 174 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 175 int err = write_inode(inode, wait); 176 if (ret == 0) 177 ret = err; 178 } 179 180 if (wait) { 181 int err = filemap_fdatawait(mapping); 182 if (ret == 0) 183 ret = err; 184 } 185 186 spin_lock(&inode_lock); 187 inode->i_state &= ~I_LOCK; 188 if (!(inode->i_state & I_FREEING)) { 189 if (!(inode->i_state & I_DIRTY) && 190 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 191 /* 192 * We didn't write back all the pages. nfs_writepages() 193 * sometimes bales out without doing anything. Redirty 194 * the inode. It is still on sb->s_io. 195 */ 196 if (wbc->for_kupdate) { 197 /* 198 * For the kupdate function we leave the inode 199 * at the head of sb_dirty so it will get more 200 * writeout as soon as the queue becomes 201 * uncongested. 202 */ 203 inode->i_state |= I_DIRTY_PAGES; 204 list_move_tail(&inode->i_list, &sb->s_dirty); 205 } else { 206 /* 207 * Otherwise fully redirty the inode so that 208 * other inodes on this superblock will get some 209 * writeout. Otherwise heavy writing to one 210 * file would indefinitely suspend writeout of 211 * all the other files. 212 */ 213 inode->i_state |= I_DIRTY_PAGES; 214 inode->dirtied_when = jiffies; 215 list_move(&inode->i_list, &sb->s_dirty); 216 } 217 } else if (inode->i_state & I_DIRTY) { 218 /* 219 * Someone redirtied the inode while were writing back 220 * the pages. 221 */ 222 list_move(&inode->i_list, &sb->s_dirty); 223 } else if (atomic_read(&inode->i_count)) { 224 /* 225 * The inode is clean, inuse 226 */ 227 list_move(&inode->i_list, &inode_in_use); 228 } else { 229 /* 230 * The inode is clean, unused 231 */ 232 list_move(&inode->i_list, &inode_unused); 233 inodes_stat.nr_unused++; 234 } 235 } 236 wake_up_inode(inode); 237 return ret; 238 } 239 240 /* 241 * Write out an inode's dirty pages. Called under inode_lock. 242 */ 243 static int 244 __writeback_single_inode(struct inode *inode, 245 struct writeback_control *wbc) 246 { 247 wait_queue_head_t *wqh; 248 249 if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_LOCK)) { 250 list_move(&inode->i_list, &inode->i_sb->s_dirty); 251 return 0; 252 } 253 254 /* 255 * It's a data-integrity sync. We must wait. 256 */ 257 if (inode->i_state & I_LOCK) { 258 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LOCK); 259 260 wqh = bit_waitqueue(&inode->i_state, __I_LOCK); 261 do { 262 __iget(inode); 263 spin_unlock(&inode_lock); 264 __wait_on_bit(wqh, &wq, inode_wait, 265 TASK_UNINTERRUPTIBLE); 266 iput(inode); 267 spin_lock(&inode_lock); 268 } while (inode->i_state & I_LOCK); 269 } 270 return __sync_single_inode(inode, wbc); 271 } 272 273 /* 274 * Write out a superblock's list of dirty inodes. A wait will be performed 275 * upon no inodes, all inodes or the final one, depending upon sync_mode. 276 * 277 * If older_than_this is non-NULL, then only write out inodes which 278 * had their first dirtying at a time earlier than *older_than_this. 279 * 280 * If we're a pdlfush thread, then implement pdflush collision avoidance 281 * against the entire list. 282 * 283 * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so 284 * that it can be located for waiting on in __writeback_single_inode(). 285 * 286 * Called under inode_lock. 287 * 288 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 289 * This function assumes that the blockdev superblock's inodes are backed by 290 * a variety of queues, so all inodes are searched. For other superblocks, 291 * assume that all inodes are backed by the same queue. 292 * 293 * FIXME: this linear search could get expensive with many fileystems. But 294 * how to fix? We need to go from an address_space to all inodes which share 295 * a queue with that address_space. (Easy: have a global "dirty superblocks" 296 * list). 297 * 298 * The inodes to be written are parked on sb->s_io. They are moved back onto 299 * sb->s_dirty as they are selected for writing. This way, none can be missed 300 * on the writer throttling path, and we get decent balancing between many 301 * throttled threads: we don't want them all piling up on __wait_on_inode. 302 */ 303 static void 304 sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc) 305 { 306 const unsigned long start = jiffies; /* livelock avoidance */ 307 308 if (!wbc->for_kupdate || list_empty(&sb->s_io)) 309 list_splice_init(&sb->s_dirty, &sb->s_io); 310 311 while (!list_empty(&sb->s_io)) { 312 struct inode *inode = list_entry(sb->s_io.prev, 313 struct inode, i_list); 314 struct address_space *mapping = inode->i_mapping; 315 struct backing_dev_info *bdi = mapping->backing_dev_info; 316 long pages_skipped; 317 318 if (!bdi_cap_writeback_dirty(bdi)) { 319 list_move(&inode->i_list, &sb->s_dirty); 320 if (sb == blockdev_superblock) { 321 /* 322 * Dirty memory-backed blockdev: the ramdisk 323 * driver does this. Skip just this inode 324 */ 325 continue; 326 } 327 /* 328 * Dirty memory-backed inode against a filesystem other 329 * than the kernel-internal bdev filesystem. Skip the 330 * entire superblock. 331 */ 332 break; 333 } 334 335 if (wbc->nonblocking && bdi_write_congested(bdi)) { 336 wbc->encountered_congestion = 1; 337 if (sb != blockdev_superblock) 338 break; /* Skip a congested fs */ 339 list_move(&inode->i_list, &sb->s_dirty); 340 continue; /* Skip a congested blockdev */ 341 } 342 343 if (wbc->bdi && bdi != wbc->bdi) { 344 if (sb != blockdev_superblock) 345 break; /* fs has the wrong queue */ 346 list_move(&inode->i_list, &sb->s_dirty); 347 continue; /* blockdev has wrong queue */ 348 } 349 350 /* Was this inode dirtied after sync_sb_inodes was called? */ 351 if (time_after(inode->dirtied_when, start)) 352 break; 353 354 /* Was this inode dirtied too recently? */ 355 if (wbc->older_than_this && time_after(inode->dirtied_when, 356 *wbc->older_than_this)) 357 break; 358 359 /* Is another pdflush already flushing this queue? */ 360 if (current_is_pdflush() && !writeback_acquire(bdi)) 361 break; 362 363 BUG_ON(inode->i_state & I_FREEING); 364 __iget(inode); 365 pages_skipped = wbc->pages_skipped; 366 __writeback_single_inode(inode, wbc); 367 if (wbc->sync_mode == WB_SYNC_HOLD) { 368 inode->dirtied_when = jiffies; 369 list_move(&inode->i_list, &sb->s_dirty); 370 } 371 if (current_is_pdflush()) 372 writeback_release(bdi); 373 if (wbc->pages_skipped != pages_skipped) { 374 /* 375 * writeback is not making progress due to locked 376 * buffers. Skip this inode for now. 377 */ 378 list_move(&inode->i_list, &sb->s_dirty); 379 } 380 spin_unlock(&inode_lock); 381 cond_resched(); 382 iput(inode); 383 spin_lock(&inode_lock); 384 if (wbc->nr_to_write <= 0) 385 break; 386 } 387 return; /* Leave any unwritten inodes on s_io */ 388 } 389 390 /* 391 * Start writeback of dirty pagecache data against all unlocked inodes. 392 * 393 * Note: 394 * We don't need to grab a reference to superblock here. If it has non-empty 395 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed 396 * past sync_inodes_sb() until both the ->s_dirty and ->s_io lists are 397 * empty. Since __sync_single_inode() regains inode_lock before it finally moves 398 * inode from superblock lists we are OK. 399 * 400 * If `older_than_this' is non-zero then only flush inodes which have a 401 * flushtime older than *older_than_this. 402 * 403 * If `bdi' is non-zero then we will scan the first inode against each 404 * superblock until we find the matching ones. One group will be the dirty 405 * inodes against a filesystem. Then when we hit the dummy blockdev superblock, 406 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not 407 * super-efficient but we're about to do a ton of I/O... 408 */ 409 void 410 writeback_inodes(struct writeback_control *wbc) 411 { 412 struct super_block *sb; 413 414 might_sleep(); 415 spin_lock(&sb_lock); 416 restart: 417 sb = sb_entry(super_blocks.prev); 418 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) { 419 if (!list_empty(&sb->s_dirty) || !list_empty(&sb->s_io)) { 420 /* we're making our own get_super here */ 421 sb->s_count++; 422 spin_unlock(&sb_lock); 423 /* 424 * If we can't get the readlock, there's no sense in 425 * waiting around, most of the time the FS is going to 426 * be unmounted by the time it is released. 427 */ 428 if (down_read_trylock(&sb->s_umount)) { 429 if (sb->s_root) { 430 spin_lock(&inode_lock); 431 sync_sb_inodes(sb, wbc); 432 spin_unlock(&inode_lock); 433 } 434 up_read(&sb->s_umount); 435 } 436 spin_lock(&sb_lock); 437 if (__put_super_and_need_restart(sb)) 438 goto restart; 439 } 440 if (wbc->nr_to_write <= 0) 441 break; 442 } 443 spin_unlock(&sb_lock); 444 } 445 446 /* 447 * writeback and wait upon the filesystem's dirty inodes. The caller will 448 * do this in two passes - one to write, and one to wait. WB_SYNC_HOLD is 449 * used to park the written inodes on sb->s_dirty for the wait pass. 450 * 451 * A finite limit is set on the number of pages which will be written. 452 * To prevent infinite livelock of sys_sync(). 453 * 454 * We add in the number of potentially dirty inodes, because each inode write 455 * can dirty pagecache in the underlying blockdev. 456 */ 457 void sync_inodes_sb(struct super_block *sb, int wait) 458 { 459 struct writeback_control wbc = { 460 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD, 461 }; 462 unsigned long nr_dirty = read_page_state(nr_dirty); 463 unsigned long nr_unstable = read_page_state(nr_unstable); 464 465 wbc.nr_to_write = nr_dirty + nr_unstable + 466 (inodes_stat.nr_inodes - inodes_stat.nr_unused) + 467 nr_dirty + nr_unstable; 468 wbc.nr_to_write += wbc.nr_to_write / 2; /* Bit more for luck */ 469 spin_lock(&inode_lock); 470 sync_sb_inodes(sb, &wbc); 471 spin_unlock(&inode_lock); 472 } 473 474 /* 475 * Rather lame livelock avoidance. 476 */ 477 static void set_sb_syncing(int val) 478 { 479 struct super_block *sb; 480 spin_lock(&sb_lock); 481 sb = sb_entry(super_blocks.prev); 482 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) { 483 sb->s_syncing = val; 484 } 485 spin_unlock(&sb_lock); 486 } 487 488 /* 489 * Find a superblock with inodes that need to be synced 490 */ 491 static struct super_block *get_super_to_sync(void) 492 { 493 struct super_block *sb; 494 restart: 495 spin_lock(&sb_lock); 496 sb = sb_entry(super_blocks.prev); 497 for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) { 498 if (sb->s_syncing) 499 continue; 500 sb->s_syncing = 1; 501 sb->s_count++; 502 spin_unlock(&sb_lock); 503 down_read(&sb->s_umount); 504 if (!sb->s_root) { 505 drop_super(sb); 506 goto restart; 507 } 508 return sb; 509 } 510 spin_unlock(&sb_lock); 511 return NULL; 512 } 513 514 /** 515 * sync_inodes 516 * 517 * sync_inodes() goes through each super block's dirty inode list, writes the 518 * inodes out, waits on the writeout and puts the inodes back on the normal 519 * list. 520 * 521 * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle 522 * part of the sync functions is that the blockdev "superblock" is processed 523 * last. This is because the write_inode() function of a typical fs will 524 * perform no I/O, but will mark buffers in the blockdev mapping as dirty. 525 * What we want to do is to perform all that dirtying first, and then write 526 * back all those inode blocks via the blockdev mapping in one sweep. So the 527 * additional (somewhat redundant) sync_blockdev() calls here are to make 528 * sure that really happens. Because if we call sync_inodes_sb(wait=1) with 529 * outstanding dirty inodes, the writeback goes block-at-a-time within the 530 * filesystem's write_inode(). This is extremely slow. 531 */ 532 void sync_inodes(int wait) 533 { 534 struct super_block *sb; 535 536 set_sb_syncing(0); 537 while ((sb = get_super_to_sync()) != NULL) { 538 sync_inodes_sb(sb, 0); 539 sync_blockdev(sb->s_bdev); 540 drop_super(sb); 541 } 542 if (wait) { 543 set_sb_syncing(0); 544 while ((sb = get_super_to_sync()) != NULL) { 545 sync_inodes_sb(sb, 1); 546 sync_blockdev(sb->s_bdev); 547 drop_super(sb); 548 } 549 } 550 } 551 552 /** 553 * write_inode_now - write an inode to disk 554 * @inode: inode to write to disk 555 * @sync: whether the write should be synchronous or not 556 * 557 * This function commits an inode to disk immediately if it is 558 * dirty. This is primarily needed by knfsd. 559 */ 560 561 int write_inode_now(struct inode *inode, int sync) 562 { 563 int ret; 564 struct writeback_control wbc = { 565 .nr_to_write = LONG_MAX, 566 .sync_mode = WB_SYNC_ALL, 567 }; 568 569 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 570 return 0; 571 572 might_sleep(); 573 spin_lock(&inode_lock); 574 ret = __writeback_single_inode(inode, &wbc); 575 spin_unlock(&inode_lock); 576 if (sync) 577 wait_on_inode(inode); 578 return ret; 579 } 580 EXPORT_SYMBOL(write_inode_now); 581 582 /** 583 * sync_inode - write an inode and its pages to disk. 584 * @inode: the inode to sync 585 * @wbc: controls the writeback mode 586 * 587 * sync_inode() will write an inode and its pages to disk. It will also 588 * correctly update the inode on its superblock's dirty inode lists and will 589 * update inode->i_state. 590 * 591 * The caller must have a ref on the inode. 592 */ 593 int sync_inode(struct inode *inode, struct writeback_control *wbc) 594 { 595 int ret; 596 597 spin_lock(&inode_lock); 598 ret = __writeback_single_inode(inode, wbc); 599 spin_unlock(&inode_lock); 600 return ret; 601 } 602 EXPORT_SYMBOL(sync_inode); 603 604 /** 605 * generic_osync_inode - flush all dirty data for a given inode to disk 606 * @inode: inode to write 607 * @what: what to write and wait upon 608 * 609 * This can be called by file_write functions for files which have the 610 * O_SYNC flag set, to flush dirty writes to disk. 611 * 612 * @what is a bitmask, specifying which part of the inode's data should be 613 * written and waited upon: 614 * 615 * OSYNC_DATA: i_mapping's dirty data 616 * OSYNC_METADATA: the buffers at i_mapping->private_list 617 * OSYNC_INODE: the inode itself 618 */ 619 620 int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what) 621 { 622 int err = 0; 623 int need_write_inode_now = 0; 624 int err2; 625 626 current->flags |= PF_SYNCWRITE; 627 if (what & OSYNC_DATA) 628 err = filemap_fdatawrite(mapping); 629 if (what & (OSYNC_METADATA|OSYNC_DATA)) { 630 err2 = sync_mapping_buffers(mapping); 631 if (!err) 632 err = err2; 633 } 634 if (what & OSYNC_DATA) { 635 err2 = filemap_fdatawait(mapping); 636 if (!err) 637 err = err2; 638 } 639 current->flags &= ~PF_SYNCWRITE; 640 641 spin_lock(&inode_lock); 642 if ((inode->i_state & I_DIRTY) && 643 ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC))) 644 need_write_inode_now = 1; 645 spin_unlock(&inode_lock); 646 647 if (need_write_inode_now) { 648 err2 = write_inode_now(inode, 1); 649 if (!err) 650 err = err2; 651 } 652 else 653 wait_on_inode(inode); 654 655 return err; 656 } 657 658 EXPORT_SYMBOL(generic_osync_inode); 659 660 /** 661 * writeback_acquire: attempt to get exclusive writeback access to a device 662 * @bdi: the device's backing_dev_info structure 663 * 664 * It is a waste of resources to have more than one pdflush thread blocked on 665 * a single request queue. Exclusion at the request_queue level is obtained 666 * via a flag in the request_queue's backing_dev_info.state. 667 * 668 * Non-request_queue-backed address_spaces will share default_backing_dev_info, 669 * unless they implement their own. Which is somewhat inefficient, as this 670 * may prevent concurrent writeback against multiple devices. 671 */ 672 int writeback_acquire(struct backing_dev_info *bdi) 673 { 674 return !test_and_set_bit(BDI_pdflush, &bdi->state); 675 } 676 677 /** 678 * writeback_in_progress: determine whether there is writeback in progress 679 * against a backing device. 680 * @bdi: the device's backing_dev_info structure. 681 */ 682 int writeback_in_progress(struct backing_dev_info *bdi) 683 { 684 return test_bit(BDI_pdflush, &bdi->state); 685 } 686 687 /** 688 * writeback_release: relinquish exclusive writeback access against a device. 689 * @bdi: the device's backing_dev_info structure 690 */ 691 void writeback_release(struct backing_dev_info *bdi) 692 { 693 BUG_ON(!writeback_in_progress(bdi)); 694 clear_bit(BDI_pdflush, &bdi->state); 695 } 696