xref: /openbmc/linux/fs/fs-writeback.c (revision 11a163f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 
124 	list_move(&inode->i_io_list, head);
125 
126 	/* dirty_time doesn't count as dirty_io until expiration */
127 	if (head != &wb->b_dirty_time)
128 		return wb_io_lists_populated(wb);
129 
130 	wb_io_lists_depopulated(wb);
131 	return false;
132 }
133 
134 /**
135  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
136  * @inode: inode to be removed
137  * @wb: bdi_writeback @inode is being removed from
138  *
139  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
140  * clear %WB_has_dirty_io if all are empty afterwards.
141  */
142 static void inode_io_list_del_locked(struct inode *inode,
143 				     struct bdi_writeback *wb)
144 {
145 	assert_spin_locked(&wb->list_lock);
146 	assert_spin_locked(&inode->i_lock);
147 
148 	inode->i_state &= ~I_SYNC_QUEUED;
149 	list_del_init(&inode->i_io_list);
150 	wb_io_lists_depopulated(wb);
151 }
152 
153 static void wb_wakeup(struct bdi_writeback *wb)
154 {
155 	spin_lock_bh(&wb->work_lock);
156 	if (test_bit(WB_registered, &wb->state))
157 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
158 	spin_unlock_bh(&wb->work_lock);
159 }
160 
161 static void finish_writeback_work(struct bdi_writeback *wb,
162 				  struct wb_writeback_work *work)
163 {
164 	struct wb_completion *done = work->done;
165 
166 	if (work->auto_free)
167 		kfree(work);
168 	if (done) {
169 		wait_queue_head_t *waitq = done->waitq;
170 
171 		/* @done can't be accessed after the following dec */
172 		if (atomic_dec_and_test(&done->cnt))
173 			wake_up_all(waitq);
174 	}
175 }
176 
177 static void wb_queue_work(struct bdi_writeback *wb,
178 			  struct wb_writeback_work *work)
179 {
180 	trace_writeback_queue(wb, work);
181 
182 	if (work->done)
183 		atomic_inc(&work->done->cnt);
184 
185 	spin_lock_bh(&wb->work_lock);
186 
187 	if (test_bit(WB_registered, &wb->state)) {
188 		list_add_tail(&work->list, &wb->work_list);
189 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
190 	} else
191 		finish_writeback_work(wb, work);
192 
193 	spin_unlock_bh(&wb->work_lock);
194 }
195 
196 /**
197  * wb_wait_for_completion - wait for completion of bdi_writeback_works
198  * @done: target wb_completion
199  *
200  * Wait for one or more work items issued to @bdi with their ->done field
201  * set to @done, which should have been initialized with
202  * DEFINE_WB_COMPLETION().  This function returns after all such work items
203  * are completed.  Work items which are waited upon aren't freed
204  * automatically on completion.
205  */
206 void wb_wait_for_completion(struct wb_completion *done)
207 {
208 	atomic_dec(&done->cnt);		/* put down the initial count */
209 	wait_event(*done->waitq, !atomic_read(&done->cnt));
210 }
211 
212 #ifdef CONFIG_CGROUP_WRITEBACK
213 
214 /*
215  * Parameters for foreign inode detection, see wbc_detach_inode() to see
216  * how they're used.
217  *
218  * These paramters are inherently heuristical as the detection target
219  * itself is fuzzy.  All we want to do is detaching an inode from the
220  * current owner if it's being written to by some other cgroups too much.
221  *
222  * The current cgroup writeback is built on the assumption that multiple
223  * cgroups writing to the same inode concurrently is very rare and a mode
224  * of operation which isn't well supported.  As such, the goal is not
225  * taking too long when a different cgroup takes over an inode while
226  * avoiding too aggressive flip-flops from occasional foreign writes.
227  *
228  * We record, very roughly, 2s worth of IO time history and if more than
229  * half of that is foreign, trigger the switch.  The recording is quantized
230  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
231  * writes smaller than 1/8 of avg size are ignored.
232  */
233 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
234 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
235 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
236 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
237 
238 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
239 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
240 					/* each slot's duration is 2s / 16 */
241 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
242 					/* if foreign slots >= 8, switch */
243 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
244 					/* one round can affect upto 5 slots */
245 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
246 
247 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
248 static struct workqueue_struct *isw_wq;
249 
250 void __inode_attach_wb(struct inode *inode, struct page *page)
251 {
252 	struct backing_dev_info *bdi = inode_to_bdi(inode);
253 	struct bdi_writeback *wb = NULL;
254 
255 	if (inode_cgwb_enabled(inode)) {
256 		struct cgroup_subsys_state *memcg_css;
257 
258 		if (page) {
259 			memcg_css = mem_cgroup_css_from_page(page);
260 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
261 		} else {
262 			/* must pin memcg_css, see wb_get_create() */
263 			memcg_css = task_get_css(current, memory_cgrp_id);
264 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
265 			css_put(memcg_css);
266 		}
267 	}
268 
269 	if (!wb)
270 		wb = &bdi->wb;
271 
272 	/*
273 	 * There may be multiple instances of this function racing to
274 	 * update the same inode.  Use cmpxchg() to tell the winner.
275 	 */
276 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
277 		wb_put(wb);
278 }
279 EXPORT_SYMBOL_GPL(__inode_attach_wb);
280 
281 /**
282  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
283  * @inode: inode of interest with i_lock held
284  *
285  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
286  * held on entry and is released on return.  The returned wb is guaranteed
287  * to stay @inode's associated wb until its list_lock is released.
288  */
289 static struct bdi_writeback *
290 locked_inode_to_wb_and_lock_list(struct inode *inode)
291 	__releases(&inode->i_lock)
292 	__acquires(&wb->list_lock)
293 {
294 	while (true) {
295 		struct bdi_writeback *wb = inode_to_wb(inode);
296 
297 		/*
298 		 * inode_to_wb() association is protected by both
299 		 * @inode->i_lock and @wb->list_lock but list_lock nests
300 		 * outside i_lock.  Drop i_lock and verify that the
301 		 * association hasn't changed after acquiring list_lock.
302 		 */
303 		wb_get(wb);
304 		spin_unlock(&inode->i_lock);
305 		spin_lock(&wb->list_lock);
306 
307 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
308 		if (likely(wb == inode->i_wb)) {
309 			wb_put(wb);	/* @inode already has ref */
310 			return wb;
311 		}
312 
313 		spin_unlock(&wb->list_lock);
314 		wb_put(wb);
315 		cpu_relax();
316 		spin_lock(&inode->i_lock);
317 	}
318 }
319 
320 /**
321  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
322  * @inode: inode of interest
323  *
324  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
325  * on entry.
326  */
327 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
328 	__acquires(&wb->list_lock)
329 {
330 	spin_lock(&inode->i_lock);
331 	return locked_inode_to_wb_and_lock_list(inode);
332 }
333 
334 struct inode_switch_wbs_context {
335 	struct inode		*inode;
336 	struct bdi_writeback	*new_wb;
337 
338 	struct rcu_head		rcu_head;
339 	struct work_struct	work;
340 };
341 
342 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
343 {
344 	down_write(&bdi->wb_switch_rwsem);
345 }
346 
347 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
348 {
349 	up_write(&bdi->wb_switch_rwsem);
350 }
351 
352 static void inode_switch_wbs_work_fn(struct work_struct *work)
353 {
354 	struct inode_switch_wbs_context *isw =
355 		container_of(work, struct inode_switch_wbs_context, work);
356 	struct inode *inode = isw->inode;
357 	struct backing_dev_info *bdi = inode_to_bdi(inode);
358 	struct address_space *mapping = inode->i_mapping;
359 	struct bdi_writeback *old_wb = inode->i_wb;
360 	struct bdi_writeback *new_wb = isw->new_wb;
361 	XA_STATE(xas, &mapping->i_pages, 0);
362 	struct page *page;
363 	bool switched = false;
364 
365 	/*
366 	 * If @inode switches cgwb membership while sync_inodes_sb() is
367 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
368 	 */
369 	down_read(&bdi->wb_switch_rwsem);
370 
371 	/*
372 	 * By the time control reaches here, RCU grace period has passed
373 	 * since I_WB_SWITCH assertion and all wb stat update transactions
374 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
375 	 * synchronizing against the i_pages lock.
376 	 *
377 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
378 	 * gives us exclusion against all wb related operations on @inode
379 	 * including IO list manipulations and stat updates.
380 	 */
381 	if (old_wb < new_wb) {
382 		spin_lock(&old_wb->list_lock);
383 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
384 	} else {
385 		spin_lock(&new_wb->list_lock);
386 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
387 	}
388 	spin_lock(&inode->i_lock);
389 	xa_lock_irq(&mapping->i_pages);
390 
391 	/*
392 	 * Once I_FREEING is visible under i_lock, the eviction path owns
393 	 * the inode and we shouldn't modify ->i_io_list.
394 	 */
395 	if (unlikely(inode->i_state & I_FREEING))
396 		goto skip_switch;
397 
398 	trace_inode_switch_wbs(inode, old_wb, new_wb);
399 
400 	/*
401 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
402 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
403 	 * pages actually under writeback.
404 	 */
405 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
406 		if (PageDirty(page)) {
407 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
408 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
409 		}
410 	}
411 
412 	xas_set(&xas, 0);
413 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
414 		WARN_ON_ONCE(!PageWriteback(page));
415 		dec_wb_stat(old_wb, WB_WRITEBACK);
416 		inc_wb_stat(new_wb, WB_WRITEBACK);
417 	}
418 
419 	wb_get(new_wb);
420 
421 	/*
422 	 * Transfer to @new_wb's IO list if necessary.  The specific list
423 	 * @inode was on is ignored and the inode is put on ->b_dirty which
424 	 * is always correct including from ->b_dirty_time.  The transfer
425 	 * preserves @inode->dirtied_when ordering.
426 	 */
427 	if (!list_empty(&inode->i_io_list)) {
428 		struct inode *pos;
429 
430 		inode_io_list_del_locked(inode, old_wb);
431 		inode->i_wb = new_wb;
432 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
433 			if (time_after_eq(inode->dirtied_when,
434 					  pos->dirtied_when))
435 				break;
436 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
437 	} else {
438 		inode->i_wb = new_wb;
439 	}
440 
441 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
442 	inode->i_wb_frn_winner = 0;
443 	inode->i_wb_frn_avg_time = 0;
444 	inode->i_wb_frn_history = 0;
445 	switched = true;
446 skip_switch:
447 	/*
448 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
449 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
450 	 */
451 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
452 
453 	xa_unlock_irq(&mapping->i_pages);
454 	spin_unlock(&inode->i_lock);
455 	spin_unlock(&new_wb->list_lock);
456 	spin_unlock(&old_wb->list_lock);
457 
458 	up_read(&bdi->wb_switch_rwsem);
459 
460 	if (switched) {
461 		wb_wakeup(new_wb);
462 		wb_put(old_wb);
463 	}
464 	wb_put(new_wb);
465 
466 	iput(inode);
467 	kfree(isw);
468 
469 	atomic_dec(&isw_nr_in_flight);
470 }
471 
472 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
473 {
474 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
475 				struct inode_switch_wbs_context, rcu_head);
476 
477 	/* needs to grab bh-unsafe locks, bounce to work item */
478 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
479 	queue_work(isw_wq, &isw->work);
480 }
481 
482 /**
483  * inode_switch_wbs - change the wb association of an inode
484  * @inode: target inode
485  * @new_wb_id: ID of the new wb
486  *
487  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
488  * switching is performed asynchronously and may fail silently.
489  */
490 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
491 {
492 	struct backing_dev_info *bdi = inode_to_bdi(inode);
493 	struct cgroup_subsys_state *memcg_css;
494 	struct inode_switch_wbs_context *isw;
495 
496 	/* noop if seems to be already in progress */
497 	if (inode->i_state & I_WB_SWITCH)
498 		return;
499 
500 	/* avoid queueing a new switch if too many are already in flight */
501 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
502 		return;
503 
504 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
505 	if (!isw)
506 		return;
507 
508 	/* find and pin the new wb */
509 	rcu_read_lock();
510 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
511 	if (memcg_css)
512 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
513 	rcu_read_unlock();
514 	if (!isw->new_wb)
515 		goto out_free;
516 
517 	/* while holding I_WB_SWITCH, no one else can update the association */
518 	spin_lock(&inode->i_lock);
519 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
520 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
521 	    inode_to_wb(inode) == isw->new_wb) {
522 		spin_unlock(&inode->i_lock);
523 		goto out_free;
524 	}
525 	inode->i_state |= I_WB_SWITCH;
526 	__iget(inode);
527 	spin_unlock(&inode->i_lock);
528 
529 	isw->inode = inode;
530 
531 	/*
532 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
533 	 * the RCU protected stat update paths to grab the i_page
534 	 * lock so that stat transfer can synchronize against them.
535 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
536 	 */
537 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
538 
539 	atomic_inc(&isw_nr_in_flight);
540 	return;
541 
542 out_free:
543 	if (isw->new_wb)
544 		wb_put(isw->new_wb);
545 	kfree(isw);
546 }
547 
548 /**
549  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
550  * @wbc: writeback_control of interest
551  * @inode: target inode
552  *
553  * @inode is locked and about to be written back under the control of @wbc.
554  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
555  * writeback completion, wbc_detach_inode() should be called.  This is used
556  * to track the cgroup writeback context.
557  */
558 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
559 				 struct inode *inode)
560 {
561 	if (!inode_cgwb_enabled(inode)) {
562 		spin_unlock(&inode->i_lock);
563 		return;
564 	}
565 
566 	wbc->wb = inode_to_wb(inode);
567 	wbc->inode = inode;
568 
569 	wbc->wb_id = wbc->wb->memcg_css->id;
570 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
571 	wbc->wb_tcand_id = 0;
572 	wbc->wb_bytes = 0;
573 	wbc->wb_lcand_bytes = 0;
574 	wbc->wb_tcand_bytes = 0;
575 
576 	wb_get(wbc->wb);
577 	spin_unlock(&inode->i_lock);
578 
579 	/*
580 	 * A dying wb indicates that either the blkcg associated with the
581 	 * memcg changed or the associated memcg is dying.  In the first
582 	 * case, a replacement wb should already be available and we should
583 	 * refresh the wb immediately.  In the second case, trying to
584 	 * refresh will keep failing.
585 	 */
586 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
587 		inode_switch_wbs(inode, wbc->wb_id);
588 }
589 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
590 
591 /**
592  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
593  * @wbc: writeback_control of the just finished writeback
594  *
595  * To be called after a writeback attempt of an inode finishes and undoes
596  * wbc_attach_and_unlock_inode().  Can be called under any context.
597  *
598  * As concurrent write sharing of an inode is expected to be very rare and
599  * memcg only tracks page ownership on first-use basis severely confining
600  * the usefulness of such sharing, cgroup writeback tracks ownership
601  * per-inode.  While the support for concurrent write sharing of an inode
602  * is deemed unnecessary, an inode being written to by different cgroups at
603  * different points in time is a lot more common, and, more importantly,
604  * charging only by first-use can too readily lead to grossly incorrect
605  * behaviors (single foreign page can lead to gigabytes of writeback to be
606  * incorrectly attributed).
607  *
608  * To resolve this issue, cgroup writeback detects the majority dirtier of
609  * an inode and transfers the ownership to it.  To avoid unnnecessary
610  * oscillation, the detection mechanism keeps track of history and gives
611  * out the switch verdict only if the foreign usage pattern is stable over
612  * a certain amount of time and/or writeback attempts.
613  *
614  * On each writeback attempt, @wbc tries to detect the majority writer
615  * using Boyer-Moore majority vote algorithm.  In addition to the byte
616  * count from the majority voting, it also counts the bytes written for the
617  * current wb and the last round's winner wb (max of last round's current
618  * wb, the winner from two rounds ago, and the last round's majority
619  * candidate).  Keeping track of the historical winner helps the algorithm
620  * to semi-reliably detect the most active writer even when it's not the
621  * absolute majority.
622  *
623  * Once the winner of the round is determined, whether the winner is
624  * foreign or not and how much IO time the round consumed is recorded in
625  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
626  * over a certain threshold, the switch verdict is given.
627  */
628 void wbc_detach_inode(struct writeback_control *wbc)
629 {
630 	struct bdi_writeback *wb = wbc->wb;
631 	struct inode *inode = wbc->inode;
632 	unsigned long avg_time, max_bytes, max_time;
633 	u16 history;
634 	int max_id;
635 
636 	if (!wb)
637 		return;
638 
639 	history = inode->i_wb_frn_history;
640 	avg_time = inode->i_wb_frn_avg_time;
641 
642 	/* pick the winner of this round */
643 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
644 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
645 		max_id = wbc->wb_id;
646 		max_bytes = wbc->wb_bytes;
647 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
648 		max_id = wbc->wb_lcand_id;
649 		max_bytes = wbc->wb_lcand_bytes;
650 	} else {
651 		max_id = wbc->wb_tcand_id;
652 		max_bytes = wbc->wb_tcand_bytes;
653 	}
654 
655 	/*
656 	 * Calculate the amount of IO time the winner consumed and fold it
657 	 * into the running average kept per inode.  If the consumed IO
658 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
659 	 * deciding whether to switch or not.  This is to prevent one-off
660 	 * small dirtiers from skewing the verdict.
661 	 */
662 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
663 				wb->avg_write_bandwidth);
664 	if (avg_time)
665 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
666 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
667 	else
668 		avg_time = max_time;	/* immediate catch up on first run */
669 
670 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
671 		int slots;
672 
673 		/*
674 		 * The switch verdict is reached if foreign wb's consume
675 		 * more than a certain proportion of IO time in a
676 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
677 		 * history mask where each bit represents one sixteenth of
678 		 * the period.  Determine the number of slots to shift into
679 		 * history from @max_time.
680 		 */
681 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
682 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
683 		history <<= slots;
684 		if (wbc->wb_id != max_id)
685 			history |= (1U << slots) - 1;
686 
687 		if (history)
688 			trace_inode_foreign_history(inode, wbc, history);
689 
690 		/*
691 		 * Switch if the current wb isn't the consistent winner.
692 		 * If there are multiple closely competing dirtiers, the
693 		 * inode may switch across them repeatedly over time, which
694 		 * is okay.  The main goal is avoiding keeping an inode on
695 		 * the wrong wb for an extended period of time.
696 		 */
697 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
698 			inode_switch_wbs(inode, max_id);
699 	}
700 
701 	/*
702 	 * Multiple instances of this function may race to update the
703 	 * following fields but we don't mind occassional inaccuracies.
704 	 */
705 	inode->i_wb_frn_winner = max_id;
706 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
707 	inode->i_wb_frn_history = history;
708 
709 	wb_put(wbc->wb);
710 	wbc->wb = NULL;
711 }
712 EXPORT_SYMBOL_GPL(wbc_detach_inode);
713 
714 /**
715  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
716  * @wbc: writeback_control of the writeback in progress
717  * @page: page being written out
718  * @bytes: number of bytes being written out
719  *
720  * @bytes from @page are about to written out during the writeback
721  * controlled by @wbc.  Keep the book for foreign inode detection.  See
722  * wbc_detach_inode().
723  */
724 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
725 			      size_t bytes)
726 {
727 	struct cgroup_subsys_state *css;
728 	int id;
729 
730 	/*
731 	 * pageout() path doesn't attach @wbc to the inode being written
732 	 * out.  This is intentional as we don't want the function to block
733 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
734 	 * regular writeback instead of writing things out itself.
735 	 */
736 	if (!wbc->wb || wbc->no_cgroup_owner)
737 		return;
738 
739 	css = mem_cgroup_css_from_page(page);
740 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
741 	if (!(css->flags & CSS_ONLINE))
742 		return;
743 
744 	id = css->id;
745 
746 	if (id == wbc->wb_id) {
747 		wbc->wb_bytes += bytes;
748 		return;
749 	}
750 
751 	if (id == wbc->wb_lcand_id)
752 		wbc->wb_lcand_bytes += bytes;
753 
754 	/* Boyer-Moore majority vote algorithm */
755 	if (!wbc->wb_tcand_bytes)
756 		wbc->wb_tcand_id = id;
757 	if (id == wbc->wb_tcand_id)
758 		wbc->wb_tcand_bytes += bytes;
759 	else
760 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
761 }
762 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
763 
764 /**
765  * inode_congested - test whether an inode is congested
766  * @inode: inode to test for congestion (may be NULL)
767  * @cong_bits: mask of WB_[a]sync_congested bits to test
768  *
769  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
770  * bits to test and the return value is the mask of set bits.
771  *
772  * If cgroup writeback is enabled for @inode, the congestion state is
773  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
774  * associated with @inode is congested; otherwise, the root wb's congestion
775  * state is used.
776  *
777  * @inode is allowed to be NULL as this function is often called on
778  * mapping->host which is NULL for the swapper space.
779  */
780 int inode_congested(struct inode *inode, int cong_bits)
781 {
782 	/*
783 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
784 	 * Start transaction iff ->i_wb is visible.
785 	 */
786 	if (inode && inode_to_wb_is_valid(inode)) {
787 		struct bdi_writeback *wb;
788 		struct wb_lock_cookie lock_cookie = {};
789 		bool congested;
790 
791 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
792 		congested = wb_congested(wb, cong_bits);
793 		unlocked_inode_to_wb_end(inode, &lock_cookie);
794 		return congested;
795 	}
796 
797 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
798 }
799 EXPORT_SYMBOL_GPL(inode_congested);
800 
801 /**
802  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
803  * @wb: target bdi_writeback to split @nr_pages to
804  * @nr_pages: number of pages to write for the whole bdi
805  *
806  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
807  * relation to the total write bandwidth of all wb's w/ dirty inodes on
808  * @wb->bdi.
809  */
810 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
811 {
812 	unsigned long this_bw = wb->avg_write_bandwidth;
813 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
814 
815 	if (nr_pages == LONG_MAX)
816 		return LONG_MAX;
817 
818 	/*
819 	 * This may be called on clean wb's and proportional distribution
820 	 * may not make sense, just use the original @nr_pages in those
821 	 * cases.  In general, we wanna err on the side of writing more.
822 	 */
823 	if (!tot_bw || this_bw >= tot_bw)
824 		return nr_pages;
825 	else
826 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
827 }
828 
829 /**
830  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
831  * @bdi: target backing_dev_info
832  * @base_work: wb_writeback_work to issue
833  * @skip_if_busy: skip wb's which already have writeback in progress
834  *
835  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
836  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
837  * distributed to the busy wbs according to each wb's proportion in the
838  * total active write bandwidth of @bdi.
839  */
840 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
841 				  struct wb_writeback_work *base_work,
842 				  bool skip_if_busy)
843 {
844 	struct bdi_writeback *last_wb = NULL;
845 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
846 					      struct bdi_writeback, bdi_node);
847 
848 	might_sleep();
849 restart:
850 	rcu_read_lock();
851 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
852 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
853 		struct wb_writeback_work fallback_work;
854 		struct wb_writeback_work *work;
855 		long nr_pages;
856 
857 		if (last_wb) {
858 			wb_put(last_wb);
859 			last_wb = NULL;
860 		}
861 
862 		/* SYNC_ALL writes out I_DIRTY_TIME too */
863 		if (!wb_has_dirty_io(wb) &&
864 		    (base_work->sync_mode == WB_SYNC_NONE ||
865 		     list_empty(&wb->b_dirty_time)))
866 			continue;
867 		if (skip_if_busy && writeback_in_progress(wb))
868 			continue;
869 
870 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
871 
872 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
873 		if (work) {
874 			*work = *base_work;
875 			work->nr_pages = nr_pages;
876 			work->auto_free = 1;
877 			wb_queue_work(wb, work);
878 			continue;
879 		}
880 
881 		/* alloc failed, execute synchronously using on-stack fallback */
882 		work = &fallback_work;
883 		*work = *base_work;
884 		work->nr_pages = nr_pages;
885 		work->auto_free = 0;
886 		work->done = &fallback_work_done;
887 
888 		wb_queue_work(wb, work);
889 
890 		/*
891 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
892 		 * continuing iteration from @wb after dropping and
893 		 * regrabbing rcu read lock.
894 		 */
895 		wb_get(wb);
896 		last_wb = wb;
897 
898 		rcu_read_unlock();
899 		wb_wait_for_completion(&fallback_work_done);
900 		goto restart;
901 	}
902 	rcu_read_unlock();
903 
904 	if (last_wb)
905 		wb_put(last_wb);
906 }
907 
908 /**
909  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
910  * @bdi_id: target bdi id
911  * @memcg_id: target memcg css id
912  * @nr: number of pages to write, 0 for best-effort dirty flushing
913  * @reason: reason why some writeback work initiated
914  * @done: target wb_completion
915  *
916  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
917  * with the specified parameters.
918  */
919 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
920 			   enum wb_reason reason, struct wb_completion *done)
921 {
922 	struct backing_dev_info *bdi;
923 	struct cgroup_subsys_state *memcg_css;
924 	struct bdi_writeback *wb;
925 	struct wb_writeback_work *work;
926 	int ret;
927 
928 	/* lookup bdi and memcg */
929 	bdi = bdi_get_by_id(bdi_id);
930 	if (!bdi)
931 		return -ENOENT;
932 
933 	rcu_read_lock();
934 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
935 	if (memcg_css && !css_tryget(memcg_css))
936 		memcg_css = NULL;
937 	rcu_read_unlock();
938 	if (!memcg_css) {
939 		ret = -ENOENT;
940 		goto out_bdi_put;
941 	}
942 
943 	/*
944 	 * And find the associated wb.  If the wb isn't there already
945 	 * there's nothing to flush, don't create one.
946 	 */
947 	wb = wb_get_lookup(bdi, memcg_css);
948 	if (!wb) {
949 		ret = -ENOENT;
950 		goto out_css_put;
951 	}
952 
953 	/*
954 	 * If @nr is zero, the caller is attempting to write out most of
955 	 * the currently dirty pages.  Let's take the current dirty page
956 	 * count and inflate it by 25% which should be large enough to
957 	 * flush out most dirty pages while avoiding getting livelocked by
958 	 * concurrent dirtiers.
959 	 */
960 	if (!nr) {
961 		unsigned long filepages, headroom, dirty, writeback;
962 
963 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
964 				      &writeback);
965 		nr = dirty * 10 / 8;
966 	}
967 
968 	/* issue the writeback work */
969 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
970 	if (work) {
971 		work->nr_pages = nr;
972 		work->sync_mode = WB_SYNC_NONE;
973 		work->range_cyclic = 1;
974 		work->reason = reason;
975 		work->done = done;
976 		work->auto_free = 1;
977 		wb_queue_work(wb, work);
978 		ret = 0;
979 	} else {
980 		ret = -ENOMEM;
981 	}
982 
983 	wb_put(wb);
984 out_css_put:
985 	css_put(memcg_css);
986 out_bdi_put:
987 	bdi_put(bdi);
988 	return ret;
989 }
990 
991 /**
992  * cgroup_writeback_umount - flush inode wb switches for umount
993  *
994  * This function is called when a super_block is about to be destroyed and
995  * flushes in-flight inode wb switches.  An inode wb switch goes through
996  * RCU and then workqueue, so the two need to be flushed in order to ensure
997  * that all previously scheduled switches are finished.  As wb switches are
998  * rare occurrences and synchronize_rcu() can take a while, perform
999  * flushing iff wb switches are in flight.
1000  */
1001 void cgroup_writeback_umount(void)
1002 {
1003 	if (atomic_read(&isw_nr_in_flight)) {
1004 		/*
1005 		 * Use rcu_barrier() to wait for all pending callbacks to
1006 		 * ensure that all in-flight wb switches are in the workqueue.
1007 		 */
1008 		rcu_barrier();
1009 		flush_workqueue(isw_wq);
1010 	}
1011 }
1012 
1013 static int __init cgroup_writeback_init(void)
1014 {
1015 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1016 	if (!isw_wq)
1017 		return -ENOMEM;
1018 	return 0;
1019 }
1020 fs_initcall(cgroup_writeback_init);
1021 
1022 #else	/* CONFIG_CGROUP_WRITEBACK */
1023 
1024 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1025 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1026 
1027 static struct bdi_writeback *
1028 locked_inode_to_wb_and_lock_list(struct inode *inode)
1029 	__releases(&inode->i_lock)
1030 	__acquires(&wb->list_lock)
1031 {
1032 	struct bdi_writeback *wb = inode_to_wb(inode);
1033 
1034 	spin_unlock(&inode->i_lock);
1035 	spin_lock(&wb->list_lock);
1036 	return wb;
1037 }
1038 
1039 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1040 	__acquires(&wb->list_lock)
1041 {
1042 	struct bdi_writeback *wb = inode_to_wb(inode);
1043 
1044 	spin_lock(&wb->list_lock);
1045 	return wb;
1046 }
1047 
1048 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1049 {
1050 	return nr_pages;
1051 }
1052 
1053 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1054 				  struct wb_writeback_work *base_work,
1055 				  bool skip_if_busy)
1056 {
1057 	might_sleep();
1058 
1059 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1060 		base_work->auto_free = 0;
1061 		wb_queue_work(&bdi->wb, base_work);
1062 	}
1063 }
1064 
1065 #endif	/* CONFIG_CGROUP_WRITEBACK */
1066 
1067 /*
1068  * Add in the number of potentially dirty inodes, because each inode
1069  * write can dirty pagecache in the underlying blockdev.
1070  */
1071 static unsigned long get_nr_dirty_pages(void)
1072 {
1073 	return global_node_page_state(NR_FILE_DIRTY) +
1074 		get_nr_dirty_inodes();
1075 }
1076 
1077 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1078 {
1079 	if (!wb_has_dirty_io(wb))
1080 		return;
1081 
1082 	/*
1083 	 * All callers of this function want to start writeback of all
1084 	 * dirty pages. Places like vmscan can call this at a very
1085 	 * high frequency, causing pointless allocations of tons of
1086 	 * work items and keeping the flusher threads busy retrieving
1087 	 * that work. Ensure that we only allow one of them pending and
1088 	 * inflight at the time.
1089 	 */
1090 	if (test_bit(WB_start_all, &wb->state) ||
1091 	    test_and_set_bit(WB_start_all, &wb->state))
1092 		return;
1093 
1094 	wb->start_all_reason = reason;
1095 	wb_wakeup(wb);
1096 }
1097 
1098 /**
1099  * wb_start_background_writeback - start background writeback
1100  * @wb: bdi_writback to write from
1101  *
1102  * Description:
1103  *   This makes sure WB_SYNC_NONE background writeback happens. When
1104  *   this function returns, it is only guaranteed that for given wb
1105  *   some IO is happening if we are over background dirty threshold.
1106  *   Caller need not hold sb s_umount semaphore.
1107  */
1108 void wb_start_background_writeback(struct bdi_writeback *wb)
1109 {
1110 	/*
1111 	 * We just wake up the flusher thread. It will perform background
1112 	 * writeback as soon as there is no other work to do.
1113 	 */
1114 	trace_writeback_wake_background(wb);
1115 	wb_wakeup(wb);
1116 }
1117 
1118 /*
1119  * Remove the inode from the writeback list it is on.
1120  */
1121 void inode_io_list_del(struct inode *inode)
1122 {
1123 	struct bdi_writeback *wb;
1124 
1125 	wb = inode_to_wb_and_lock_list(inode);
1126 	spin_lock(&inode->i_lock);
1127 	inode_io_list_del_locked(inode, wb);
1128 	spin_unlock(&inode->i_lock);
1129 	spin_unlock(&wb->list_lock);
1130 }
1131 EXPORT_SYMBOL(inode_io_list_del);
1132 
1133 /*
1134  * mark an inode as under writeback on the sb
1135  */
1136 void sb_mark_inode_writeback(struct inode *inode)
1137 {
1138 	struct super_block *sb = inode->i_sb;
1139 	unsigned long flags;
1140 
1141 	if (list_empty(&inode->i_wb_list)) {
1142 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1143 		if (list_empty(&inode->i_wb_list)) {
1144 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1145 			trace_sb_mark_inode_writeback(inode);
1146 		}
1147 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1148 	}
1149 }
1150 
1151 /*
1152  * clear an inode as under writeback on the sb
1153  */
1154 void sb_clear_inode_writeback(struct inode *inode)
1155 {
1156 	struct super_block *sb = inode->i_sb;
1157 	unsigned long flags;
1158 
1159 	if (!list_empty(&inode->i_wb_list)) {
1160 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1161 		if (!list_empty(&inode->i_wb_list)) {
1162 			list_del_init(&inode->i_wb_list);
1163 			trace_sb_clear_inode_writeback(inode);
1164 		}
1165 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1166 	}
1167 }
1168 
1169 /*
1170  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1171  * furthest end of its superblock's dirty-inode list.
1172  *
1173  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1174  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1175  * the case then the inode must have been redirtied while it was being written
1176  * out and we don't reset its dirtied_when.
1177  */
1178 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1179 {
1180 	assert_spin_locked(&inode->i_lock);
1181 
1182 	if (!list_empty(&wb->b_dirty)) {
1183 		struct inode *tail;
1184 
1185 		tail = wb_inode(wb->b_dirty.next);
1186 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1187 			inode->dirtied_when = jiffies;
1188 	}
1189 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1190 	inode->i_state &= ~I_SYNC_QUEUED;
1191 }
1192 
1193 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1194 {
1195 	spin_lock(&inode->i_lock);
1196 	redirty_tail_locked(inode, wb);
1197 	spin_unlock(&inode->i_lock);
1198 }
1199 
1200 /*
1201  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1202  */
1203 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1204 {
1205 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1206 }
1207 
1208 static void inode_sync_complete(struct inode *inode)
1209 {
1210 	inode->i_state &= ~I_SYNC;
1211 	/* If inode is clean an unused, put it into LRU now... */
1212 	inode_add_lru(inode);
1213 	/* Waiters must see I_SYNC cleared before being woken up */
1214 	smp_mb();
1215 	wake_up_bit(&inode->i_state, __I_SYNC);
1216 }
1217 
1218 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1219 {
1220 	bool ret = time_after(inode->dirtied_when, t);
1221 #ifndef CONFIG_64BIT
1222 	/*
1223 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1224 	 * It _appears_ to be in the future, but is actually in distant past.
1225 	 * This test is necessary to prevent such wrapped-around relative times
1226 	 * from permanently stopping the whole bdi writeback.
1227 	 */
1228 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1229 #endif
1230 	return ret;
1231 }
1232 
1233 #define EXPIRE_DIRTY_ATIME 0x0001
1234 
1235 /*
1236  * Move expired (dirtied before dirtied_before) dirty inodes from
1237  * @delaying_queue to @dispatch_queue.
1238  */
1239 static int move_expired_inodes(struct list_head *delaying_queue,
1240 			       struct list_head *dispatch_queue,
1241 			       unsigned long dirtied_before)
1242 {
1243 	LIST_HEAD(tmp);
1244 	struct list_head *pos, *node;
1245 	struct super_block *sb = NULL;
1246 	struct inode *inode;
1247 	int do_sb_sort = 0;
1248 	int moved = 0;
1249 
1250 	while (!list_empty(delaying_queue)) {
1251 		inode = wb_inode(delaying_queue->prev);
1252 		if (inode_dirtied_after(inode, dirtied_before))
1253 			break;
1254 		list_move(&inode->i_io_list, &tmp);
1255 		moved++;
1256 		spin_lock(&inode->i_lock);
1257 		inode->i_state |= I_SYNC_QUEUED;
1258 		spin_unlock(&inode->i_lock);
1259 		if (sb_is_blkdev_sb(inode->i_sb))
1260 			continue;
1261 		if (sb && sb != inode->i_sb)
1262 			do_sb_sort = 1;
1263 		sb = inode->i_sb;
1264 	}
1265 
1266 	/* just one sb in list, splice to dispatch_queue and we're done */
1267 	if (!do_sb_sort) {
1268 		list_splice(&tmp, dispatch_queue);
1269 		goto out;
1270 	}
1271 
1272 	/* Move inodes from one superblock together */
1273 	while (!list_empty(&tmp)) {
1274 		sb = wb_inode(tmp.prev)->i_sb;
1275 		list_for_each_prev_safe(pos, node, &tmp) {
1276 			inode = wb_inode(pos);
1277 			if (inode->i_sb == sb)
1278 				list_move(&inode->i_io_list, dispatch_queue);
1279 		}
1280 	}
1281 out:
1282 	return moved;
1283 }
1284 
1285 /*
1286  * Queue all expired dirty inodes for io, eldest first.
1287  * Before
1288  *         newly dirtied     b_dirty    b_io    b_more_io
1289  *         =============>    gf         edc     BA
1290  * After
1291  *         newly dirtied     b_dirty    b_io    b_more_io
1292  *         =============>    g          fBAedc
1293  *                                           |
1294  *                                           +--> dequeue for IO
1295  */
1296 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1297 		     unsigned long dirtied_before)
1298 {
1299 	int moved;
1300 	unsigned long time_expire_jif = dirtied_before;
1301 
1302 	assert_spin_locked(&wb->list_lock);
1303 	list_splice_init(&wb->b_more_io, &wb->b_io);
1304 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1305 	if (!work->for_sync)
1306 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1307 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1308 				     time_expire_jif);
1309 	if (moved)
1310 		wb_io_lists_populated(wb);
1311 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1312 }
1313 
1314 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1315 {
1316 	int ret;
1317 
1318 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1319 		trace_writeback_write_inode_start(inode, wbc);
1320 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1321 		trace_writeback_write_inode(inode, wbc);
1322 		return ret;
1323 	}
1324 	return 0;
1325 }
1326 
1327 /*
1328  * Wait for writeback on an inode to complete. Called with i_lock held.
1329  * Caller must make sure inode cannot go away when we drop i_lock.
1330  */
1331 static void __inode_wait_for_writeback(struct inode *inode)
1332 	__releases(inode->i_lock)
1333 	__acquires(inode->i_lock)
1334 {
1335 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1336 	wait_queue_head_t *wqh;
1337 
1338 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1339 	while (inode->i_state & I_SYNC) {
1340 		spin_unlock(&inode->i_lock);
1341 		__wait_on_bit(wqh, &wq, bit_wait,
1342 			      TASK_UNINTERRUPTIBLE);
1343 		spin_lock(&inode->i_lock);
1344 	}
1345 }
1346 
1347 /*
1348  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1349  */
1350 void inode_wait_for_writeback(struct inode *inode)
1351 {
1352 	spin_lock(&inode->i_lock);
1353 	__inode_wait_for_writeback(inode);
1354 	spin_unlock(&inode->i_lock);
1355 }
1356 
1357 /*
1358  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1359  * held and drops it. It is aimed for callers not holding any inode reference
1360  * so once i_lock is dropped, inode can go away.
1361  */
1362 static void inode_sleep_on_writeback(struct inode *inode)
1363 	__releases(inode->i_lock)
1364 {
1365 	DEFINE_WAIT(wait);
1366 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1367 	int sleep;
1368 
1369 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1370 	sleep = inode->i_state & I_SYNC;
1371 	spin_unlock(&inode->i_lock);
1372 	if (sleep)
1373 		schedule();
1374 	finish_wait(wqh, &wait);
1375 }
1376 
1377 /*
1378  * Find proper writeback list for the inode depending on its current state and
1379  * possibly also change of its state while we were doing writeback.  Here we
1380  * handle things such as livelock prevention or fairness of writeback among
1381  * inodes. This function can be called only by flusher thread - noone else
1382  * processes all inodes in writeback lists and requeueing inodes behind flusher
1383  * thread's back can have unexpected consequences.
1384  */
1385 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1386 			  struct writeback_control *wbc)
1387 {
1388 	if (inode->i_state & I_FREEING)
1389 		return;
1390 
1391 	/*
1392 	 * Sync livelock prevention. Each inode is tagged and synced in one
1393 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1394 	 * the dirty time to prevent enqueue and sync it again.
1395 	 */
1396 	if ((inode->i_state & I_DIRTY) &&
1397 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1398 		inode->dirtied_when = jiffies;
1399 
1400 	if (wbc->pages_skipped) {
1401 		/*
1402 		 * writeback is not making progress due to locked
1403 		 * buffers. Skip this inode for now.
1404 		 */
1405 		redirty_tail_locked(inode, wb);
1406 		return;
1407 	}
1408 
1409 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1410 		/*
1411 		 * We didn't write back all the pages.  nfs_writepages()
1412 		 * sometimes bales out without doing anything.
1413 		 */
1414 		if (wbc->nr_to_write <= 0) {
1415 			/* Slice used up. Queue for next turn. */
1416 			requeue_io(inode, wb);
1417 		} else {
1418 			/*
1419 			 * Writeback blocked by something other than
1420 			 * congestion. Delay the inode for some time to
1421 			 * avoid spinning on the CPU (100% iowait)
1422 			 * retrying writeback of the dirty page/inode
1423 			 * that cannot be performed immediately.
1424 			 */
1425 			redirty_tail_locked(inode, wb);
1426 		}
1427 	} else if (inode->i_state & I_DIRTY) {
1428 		/*
1429 		 * Filesystems can dirty the inode during writeback operations,
1430 		 * such as delayed allocation during submission or metadata
1431 		 * updates after data IO completion.
1432 		 */
1433 		redirty_tail_locked(inode, wb);
1434 	} else if (inode->i_state & I_DIRTY_TIME) {
1435 		inode->dirtied_when = jiffies;
1436 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1437 		inode->i_state &= ~I_SYNC_QUEUED;
1438 	} else {
1439 		/* The inode is clean. Remove from writeback lists. */
1440 		inode_io_list_del_locked(inode, wb);
1441 	}
1442 }
1443 
1444 /*
1445  * Write out an inode and its dirty pages. Do not update the writeback list
1446  * linkage. That is left to the caller. The caller is also responsible for
1447  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1448  */
1449 static int
1450 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1451 {
1452 	struct address_space *mapping = inode->i_mapping;
1453 	long nr_to_write = wbc->nr_to_write;
1454 	unsigned dirty;
1455 	int ret;
1456 
1457 	WARN_ON(!(inode->i_state & I_SYNC));
1458 
1459 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1460 
1461 	ret = do_writepages(mapping, wbc);
1462 
1463 	/*
1464 	 * Make sure to wait on the data before writing out the metadata.
1465 	 * This is important for filesystems that modify metadata on data
1466 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1467 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1468 	 * inode metadata is written back correctly.
1469 	 */
1470 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1471 		int err = filemap_fdatawait(mapping);
1472 		if (ret == 0)
1473 			ret = err;
1474 	}
1475 
1476 	/*
1477 	 * Some filesystems may redirty the inode during the writeback
1478 	 * due to delalloc, clear dirty metadata flags right before
1479 	 * write_inode()
1480 	 */
1481 	spin_lock(&inode->i_lock);
1482 
1483 	dirty = inode->i_state & I_DIRTY;
1484 	if ((inode->i_state & I_DIRTY_TIME) &&
1485 	    ((dirty & I_DIRTY_INODE) ||
1486 	     wbc->sync_mode == WB_SYNC_ALL || wbc->for_sync ||
1487 	     time_after(jiffies, inode->dirtied_time_when +
1488 			dirtytime_expire_interval * HZ))) {
1489 		dirty |= I_DIRTY_TIME;
1490 		trace_writeback_lazytime(inode);
1491 	}
1492 	inode->i_state &= ~dirty;
1493 
1494 	/*
1495 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1496 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1497 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1498 	 * inode.
1499 	 *
1500 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1501 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1502 	 * necessary.  This guarantees that either __mark_inode_dirty()
1503 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1504 	 */
1505 	smp_mb();
1506 
1507 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1508 		inode->i_state |= I_DIRTY_PAGES;
1509 
1510 	spin_unlock(&inode->i_lock);
1511 
1512 	if (dirty & I_DIRTY_TIME)
1513 		mark_inode_dirty_sync(inode);
1514 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1515 	if (dirty & ~I_DIRTY_PAGES) {
1516 		int err = write_inode(inode, wbc);
1517 		if (ret == 0)
1518 			ret = err;
1519 	}
1520 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1521 	return ret;
1522 }
1523 
1524 /*
1525  * Write out an inode's dirty pages. Either the caller has an active reference
1526  * on the inode or the inode has I_WILL_FREE set.
1527  *
1528  * This function is designed to be called for writing back one inode which
1529  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1530  * and does more profound writeback list handling in writeback_sb_inodes().
1531  */
1532 static int writeback_single_inode(struct inode *inode,
1533 				  struct writeback_control *wbc)
1534 {
1535 	struct bdi_writeback *wb;
1536 	int ret = 0;
1537 
1538 	spin_lock(&inode->i_lock);
1539 	if (!atomic_read(&inode->i_count))
1540 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1541 	else
1542 		WARN_ON(inode->i_state & I_WILL_FREE);
1543 
1544 	if (inode->i_state & I_SYNC) {
1545 		if (wbc->sync_mode != WB_SYNC_ALL)
1546 			goto out;
1547 		/*
1548 		 * It's a data-integrity sync. We must wait. Since callers hold
1549 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1550 		 * away under us.
1551 		 */
1552 		__inode_wait_for_writeback(inode);
1553 	}
1554 	WARN_ON(inode->i_state & I_SYNC);
1555 	/*
1556 	 * Skip inode if it is clean and we have no outstanding writeback in
1557 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1558 	 * function since flusher thread may be doing for example sync in
1559 	 * parallel and if we move the inode, it could get skipped. So here we
1560 	 * make sure inode is on some writeback list and leave it there unless
1561 	 * we have completely cleaned the inode.
1562 	 */
1563 	if (!(inode->i_state & I_DIRTY_ALL) &&
1564 	    (wbc->sync_mode != WB_SYNC_ALL ||
1565 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1566 		goto out;
1567 	inode->i_state |= I_SYNC;
1568 	wbc_attach_and_unlock_inode(wbc, inode);
1569 
1570 	ret = __writeback_single_inode(inode, wbc);
1571 
1572 	wbc_detach_inode(wbc);
1573 
1574 	wb = inode_to_wb_and_lock_list(inode);
1575 	spin_lock(&inode->i_lock);
1576 	/*
1577 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1578 	 * touch it. See comment above for explanation.
1579 	 */
1580 	if (!(inode->i_state & I_DIRTY_ALL))
1581 		inode_io_list_del_locked(inode, wb);
1582 	spin_unlock(&wb->list_lock);
1583 	inode_sync_complete(inode);
1584 out:
1585 	spin_unlock(&inode->i_lock);
1586 	return ret;
1587 }
1588 
1589 static long writeback_chunk_size(struct bdi_writeback *wb,
1590 				 struct wb_writeback_work *work)
1591 {
1592 	long pages;
1593 
1594 	/*
1595 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1596 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1597 	 * here avoids calling into writeback_inodes_wb() more than once.
1598 	 *
1599 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1600 	 *
1601 	 *      wb_writeback()
1602 	 *          writeback_sb_inodes()       <== called only once
1603 	 *              write_cache_pages()     <== called once for each inode
1604 	 *                   (quickly) tag currently dirty pages
1605 	 *                   (maybe slowly) sync all tagged pages
1606 	 */
1607 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1608 		pages = LONG_MAX;
1609 	else {
1610 		pages = min(wb->avg_write_bandwidth / 2,
1611 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1612 		pages = min(pages, work->nr_pages);
1613 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1614 				   MIN_WRITEBACK_PAGES);
1615 	}
1616 
1617 	return pages;
1618 }
1619 
1620 /*
1621  * Write a portion of b_io inodes which belong to @sb.
1622  *
1623  * Return the number of pages and/or inodes written.
1624  *
1625  * NOTE! This is called with wb->list_lock held, and will
1626  * unlock and relock that for each inode it ends up doing
1627  * IO for.
1628  */
1629 static long writeback_sb_inodes(struct super_block *sb,
1630 				struct bdi_writeback *wb,
1631 				struct wb_writeback_work *work)
1632 {
1633 	struct writeback_control wbc = {
1634 		.sync_mode		= work->sync_mode,
1635 		.tagged_writepages	= work->tagged_writepages,
1636 		.for_kupdate		= work->for_kupdate,
1637 		.for_background		= work->for_background,
1638 		.for_sync		= work->for_sync,
1639 		.range_cyclic		= work->range_cyclic,
1640 		.range_start		= 0,
1641 		.range_end		= LLONG_MAX,
1642 	};
1643 	unsigned long start_time = jiffies;
1644 	long write_chunk;
1645 	long wrote = 0;  /* count both pages and inodes */
1646 
1647 	while (!list_empty(&wb->b_io)) {
1648 		struct inode *inode = wb_inode(wb->b_io.prev);
1649 		struct bdi_writeback *tmp_wb;
1650 
1651 		if (inode->i_sb != sb) {
1652 			if (work->sb) {
1653 				/*
1654 				 * We only want to write back data for this
1655 				 * superblock, move all inodes not belonging
1656 				 * to it back onto the dirty list.
1657 				 */
1658 				redirty_tail(inode, wb);
1659 				continue;
1660 			}
1661 
1662 			/*
1663 			 * The inode belongs to a different superblock.
1664 			 * Bounce back to the caller to unpin this and
1665 			 * pin the next superblock.
1666 			 */
1667 			break;
1668 		}
1669 
1670 		/*
1671 		 * Don't bother with new inodes or inodes being freed, first
1672 		 * kind does not need periodic writeout yet, and for the latter
1673 		 * kind writeout is handled by the freer.
1674 		 */
1675 		spin_lock(&inode->i_lock);
1676 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1677 			redirty_tail_locked(inode, wb);
1678 			spin_unlock(&inode->i_lock);
1679 			continue;
1680 		}
1681 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1682 			/*
1683 			 * If this inode is locked for writeback and we are not
1684 			 * doing writeback-for-data-integrity, move it to
1685 			 * b_more_io so that writeback can proceed with the
1686 			 * other inodes on s_io.
1687 			 *
1688 			 * We'll have another go at writing back this inode
1689 			 * when we completed a full scan of b_io.
1690 			 */
1691 			spin_unlock(&inode->i_lock);
1692 			requeue_io(inode, wb);
1693 			trace_writeback_sb_inodes_requeue(inode);
1694 			continue;
1695 		}
1696 		spin_unlock(&wb->list_lock);
1697 
1698 		/*
1699 		 * We already requeued the inode if it had I_SYNC set and we
1700 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1701 		 * WB_SYNC_ALL case.
1702 		 */
1703 		if (inode->i_state & I_SYNC) {
1704 			/* Wait for I_SYNC. This function drops i_lock... */
1705 			inode_sleep_on_writeback(inode);
1706 			/* Inode may be gone, start again */
1707 			spin_lock(&wb->list_lock);
1708 			continue;
1709 		}
1710 		inode->i_state |= I_SYNC;
1711 		wbc_attach_and_unlock_inode(&wbc, inode);
1712 
1713 		write_chunk = writeback_chunk_size(wb, work);
1714 		wbc.nr_to_write = write_chunk;
1715 		wbc.pages_skipped = 0;
1716 
1717 		/*
1718 		 * We use I_SYNC to pin the inode in memory. While it is set
1719 		 * evict_inode() will wait so the inode cannot be freed.
1720 		 */
1721 		__writeback_single_inode(inode, &wbc);
1722 
1723 		wbc_detach_inode(&wbc);
1724 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1725 		wrote += write_chunk - wbc.nr_to_write;
1726 
1727 		if (need_resched()) {
1728 			/*
1729 			 * We're trying to balance between building up a nice
1730 			 * long list of IOs to improve our merge rate, and
1731 			 * getting those IOs out quickly for anyone throttling
1732 			 * in balance_dirty_pages().  cond_resched() doesn't
1733 			 * unplug, so get our IOs out the door before we
1734 			 * give up the CPU.
1735 			 */
1736 			blk_flush_plug(current);
1737 			cond_resched();
1738 		}
1739 
1740 		/*
1741 		 * Requeue @inode if still dirty.  Be careful as @inode may
1742 		 * have been switched to another wb in the meantime.
1743 		 */
1744 		tmp_wb = inode_to_wb_and_lock_list(inode);
1745 		spin_lock(&inode->i_lock);
1746 		if (!(inode->i_state & I_DIRTY_ALL))
1747 			wrote++;
1748 		requeue_inode(inode, tmp_wb, &wbc);
1749 		inode_sync_complete(inode);
1750 		spin_unlock(&inode->i_lock);
1751 
1752 		if (unlikely(tmp_wb != wb)) {
1753 			spin_unlock(&tmp_wb->list_lock);
1754 			spin_lock(&wb->list_lock);
1755 		}
1756 
1757 		/*
1758 		 * bail out to wb_writeback() often enough to check
1759 		 * background threshold and other termination conditions.
1760 		 */
1761 		if (wrote) {
1762 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1763 				break;
1764 			if (work->nr_pages <= 0)
1765 				break;
1766 		}
1767 	}
1768 	return wrote;
1769 }
1770 
1771 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1772 				  struct wb_writeback_work *work)
1773 {
1774 	unsigned long start_time = jiffies;
1775 	long wrote = 0;
1776 
1777 	while (!list_empty(&wb->b_io)) {
1778 		struct inode *inode = wb_inode(wb->b_io.prev);
1779 		struct super_block *sb = inode->i_sb;
1780 
1781 		if (!trylock_super(sb)) {
1782 			/*
1783 			 * trylock_super() may fail consistently due to
1784 			 * s_umount being grabbed by someone else. Don't use
1785 			 * requeue_io() to avoid busy retrying the inode/sb.
1786 			 */
1787 			redirty_tail(inode, wb);
1788 			continue;
1789 		}
1790 		wrote += writeback_sb_inodes(sb, wb, work);
1791 		up_read(&sb->s_umount);
1792 
1793 		/* refer to the same tests at the end of writeback_sb_inodes */
1794 		if (wrote) {
1795 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1796 				break;
1797 			if (work->nr_pages <= 0)
1798 				break;
1799 		}
1800 	}
1801 	/* Leave any unwritten inodes on b_io */
1802 	return wrote;
1803 }
1804 
1805 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1806 				enum wb_reason reason)
1807 {
1808 	struct wb_writeback_work work = {
1809 		.nr_pages	= nr_pages,
1810 		.sync_mode	= WB_SYNC_NONE,
1811 		.range_cyclic	= 1,
1812 		.reason		= reason,
1813 	};
1814 	struct blk_plug plug;
1815 
1816 	blk_start_plug(&plug);
1817 	spin_lock(&wb->list_lock);
1818 	if (list_empty(&wb->b_io))
1819 		queue_io(wb, &work, jiffies);
1820 	__writeback_inodes_wb(wb, &work);
1821 	spin_unlock(&wb->list_lock);
1822 	blk_finish_plug(&plug);
1823 
1824 	return nr_pages - work.nr_pages;
1825 }
1826 
1827 /*
1828  * Explicit flushing or periodic writeback of "old" data.
1829  *
1830  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1831  * dirtying-time in the inode's address_space.  So this periodic writeback code
1832  * just walks the superblock inode list, writing back any inodes which are
1833  * older than a specific point in time.
1834  *
1835  * Try to run once per dirty_writeback_interval.  But if a writeback event
1836  * takes longer than a dirty_writeback_interval interval, then leave a
1837  * one-second gap.
1838  *
1839  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1840  * all dirty pages if they are all attached to "old" mappings.
1841  */
1842 static long wb_writeback(struct bdi_writeback *wb,
1843 			 struct wb_writeback_work *work)
1844 {
1845 	unsigned long wb_start = jiffies;
1846 	long nr_pages = work->nr_pages;
1847 	unsigned long dirtied_before = jiffies;
1848 	struct inode *inode;
1849 	long progress;
1850 	struct blk_plug plug;
1851 
1852 	blk_start_plug(&plug);
1853 	spin_lock(&wb->list_lock);
1854 	for (;;) {
1855 		/*
1856 		 * Stop writeback when nr_pages has been consumed
1857 		 */
1858 		if (work->nr_pages <= 0)
1859 			break;
1860 
1861 		/*
1862 		 * Background writeout and kupdate-style writeback may
1863 		 * run forever. Stop them if there is other work to do
1864 		 * so that e.g. sync can proceed. They'll be restarted
1865 		 * after the other works are all done.
1866 		 */
1867 		if ((work->for_background || work->for_kupdate) &&
1868 		    !list_empty(&wb->work_list))
1869 			break;
1870 
1871 		/*
1872 		 * For background writeout, stop when we are below the
1873 		 * background dirty threshold
1874 		 */
1875 		if (work->for_background && !wb_over_bg_thresh(wb))
1876 			break;
1877 
1878 		/*
1879 		 * Kupdate and background works are special and we want to
1880 		 * include all inodes that need writing. Livelock avoidance is
1881 		 * handled by these works yielding to any other work so we are
1882 		 * safe.
1883 		 */
1884 		if (work->for_kupdate) {
1885 			dirtied_before = jiffies -
1886 				msecs_to_jiffies(dirty_expire_interval * 10);
1887 		} else if (work->for_background)
1888 			dirtied_before = jiffies;
1889 
1890 		trace_writeback_start(wb, work);
1891 		if (list_empty(&wb->b_io))
1892 			queue_io(wb, work, dirtied_before);
1893 		if (work->sb)
1894 			progress = writeback_sb_inodes(work->sb, wb, work);
1895 		else
1896 			progress = __writeback_inodes_wb(wb, work);
1897 		trace_writeback_written(wb, work);
1898 
1899 		wb_update_bandwidth(wb, wb_start);
1900 
1901 		/*
1902 		 * Did we write something? Try for more
1903 		 *
1904 		 * Dirty inodes are moved to b_io for writeback in batches.
1905 		 * The completion of the current batch does not necessarily
1906 		 * mean the overall work is done. So we keep looping as long
1907 		 * as made some progress on cleaning pages or inodes.
1908 		 */
1909 		if (progress)
1910 			continue;
1911 		/*
1912 		 * No more inodes for IO, bail
1913 		 */
1914 		if (list_empty(&wb->b_more_io))
1915 			break;
1916 		/*
1917 		 * Nothing written. Wait for some inode to
1918 		 * become available for writeback. Otherwise
1919 		 * we'll just busyloop.
1920 		 */
1921 		trace_writeback_wait(wb, work);
1922 		inode = wb_inode(wb->b_more_io.prev);
1923 		spin_lock(&inode->i_lock);
1924 		spin_unlock(&wb->list_lock);
1925 		/* This function drops i_lock... */
1926 		inode_sleep_on_writeback(inode);
1927 		spin_lock(&wb->list_lock);
1928 	}
1929 	spin_unlock(&wb->list_lock);
1930 	blk_finish_plug(&plug);
1931 
1932 	return nr_pages - work->nr_pages;
1933 }
1934 
1935 /*
1936  * Return the next wb_writeback_work struct that hasn't been processed yet.
1937  */
1938 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1939 {
1940 	struct wb_writeback_work *work = NULL;
1941 
1942 	spin_lock_bh(&wb->work_lock);
1943 	if (!list_empty(&wb->work_list)) {
1944 		work = list_entry(wb->work_list.next,
1945 				  struct wb_writeback_work, list);
1946 		list_del_init(&work->list);
1947 	}
1948 	spin_unlock_bh(&wb->work_lock);
1949 	return work;
1950 }
1951 
1952 static long wb_check_background_flush(struct bdi_writeback *wb)
1953 {
1954 	if (wb_over_bg_thresh(wb)) {
1955 
1956 		struct wb_writeback_work work = {
1957 			.nr_pages	= LONG_MAX,
1958 			.sync_mode	= WB_SYNC_NONE,
1959 			.for_background	= 1,
1960 			.range_cyclic	= 1,
1961 			.reason		= WB_REASON_BACKGROUND,
1962 		};
1963 
1964 		return wb_writeback(wb, &work);
1965 	}
1966 
1967 	return 0;
1968 }
1969 
1970 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1971 {
1972 	unsigned long expired;
1973 	long nr_pages;
1974 
1975 	/*
1976 	 * When set to zero, disable periodic writeback
1977 	 */
1978 	if (!dirty_writeback_interval)
1979 		return 0;
1980 
1981 	expired = wb->last_old_flush +
1982 			msecs_to_jiffies(dirty_writeback_interval * 10);
1983 	if (time_before(jiffies, expired))
1984 		return 0;
1985 
1986 	wb->last_old_flush = jiffies;
1987 	nr_pages = get_nr_dirty_pages();
1988 
1989 	if (nr_pages) {
1990 		struct wb_writeback_work work = {
1991 			.nr_pages	= nr_pages,
1992 			.sync_mode	= WB_SYNC_NONE,
1993 			.for_kupdate	= 1,
1994 			.range_cyclic	= 1,
1995 			.reason		= WB_REASON_PERIODIC,
1996 		};
1997 
1998 		return wb_writeback(wb, &work);
1999 	}
2000 
2001 	return 0;
2002 }
2003 
2004 static long wb_check_start_all(struct bdi_writeback *wb)
2005 {
2006 	long nr_pages;
2007 
2008 	if (!test_bit(WB_start_all, &wb->state))
2009 		return 0;
2010 
2011 	nr_pages = get_nr_dirty_pages();
2012 	if (nr_pages) {
2013 		struct wb_writeback_work work = {
2014 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2015 			.sync_mode	= WB_SYNC_NONE,
2016 			.range_cyclic	= 1,
2017 			.reason		= wb->start_all_reason,
2018 		};
2019 
2020 		nr_pages = wb_writeback(wb, &work);
2021 	}
2022 
2023 	clear_bit(WB_start_all, &wb->state);
2024 	return nr_pages;
2025 }
2026 
2027 
2028 /*
2029  * Retrieve work items and do the writeback they describe
2030  */
2031 static long wb_do_writeback(struct bdi_writeback *wb)
2032 {
2033 	struct wb_writeback_work *work;
2034 	long wrote = 0;
2035 
2036 	set_bit(WB_writeback_running, &wb->state);
2037 	while ((work = get_next_work_item(wb)) != NULL) {
2038 		trace_writeback_exec(wb, work);
2039 		wrote += wb_writeback(wb, work);
2040 		finish_writeback_work(wb, work);
2041 	}
2042 
2043 	/*
2044 	 * Check for a flush-everything request
2045 	 */
2046 	wrote += wb_check_start_all(wb);
2047 
2048 	/*
2049 	 * Check for periodic writeback, kupdated() style
2050 	 */
2051 	wrote += wb_check_old_data_flush(wb);
2052 	wrote += wb_check_background_flush(wb);
2053 	clear_bit(WB_writeback_running, &wb->state);
2054 
2055 	return wrote;
2056 }
2057 
2058 /*
2059  * Handle writeback of dirty data for the device backed by this bdi. Also
2060  * reschedules periodically and does kupdated style flushing.
2061  */
2062 void wb_workfn(struct work_struct *work)
2063 {
2064 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2065 						struct bdi_writeback, dwork);
2066 	long pages_written;
2067 
2068 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2069 	current->flags |= PF_SWAPWRITE;
2070 
2071 	if (likely(!current_is_workqueue_rescuer() ||
2072 		   !test_bit(WB_registered, &wb->state))) {
2073 		/*
2074 		 * The normal path.  Keep writing back @wb until its
2075 		 * work_list is empty.  Note that this path is also taken
2076 		 * if @wb is shutting down even when we're running off the
2077 		 * rescuer as work_list needs to be drained.
2078 		 */
2079 		do {
2080 			pages_written = wb_do_writeback(wb);
2081 			trace_writeback_pages_written(pages_written);
2082 		} while (!list_empty(&wb->work_list));
2083 	} else {
2084 		/*
2085 		 * bdi_wq can't get enough workers and we're running off
2086 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2087 		 * enough for efficient IO.
2088 		 */
2089 		pages_written = writeback_inodes_wb(wb, 1024,
2090 						    WB_REASON_FORKER_THREAD);
2091 		trace_writeback_pages_written(pages_written);
2092 	}
2093 
2094 	if (!list_empty(&wb->work_list))
2095 		wb_wakeup(wb);
2096 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2097 		wb_wakeup_delayed(wb);
2098 
2099 	current->flags &= ~PF_SWAPWRITE;
2100 }
2101 
2102 /*
2103  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2104  * write back the whole world.
2105  */
2106 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2107 					 enum wb_reason reason)
2108 {
2109 	struct bdi_writeback *wb;
2110 
2111 	if (!bdi_has_dirty_io(bdi))
2112 		return;
2113 
2114 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2115 		wb_start_writeback(wb, reason);
2116 }
2117 
2118 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2119 				enum wb_reason reason)
2120 {
2121 	rcu_read_lock();
2122 	__wakeup_flusher_threads_bdi(bdi, reason);
2123 	rcu_read_unlock();
2124 }
2125 
2126 /*
2127  * Wakeup the flusher threads to start writeback of all currently dirty pages
2128  */
2129 void wakeup_flusher_threads(enum wb_reason reason)
2130 {
2131 	struct backing_dev_info *bdi;
2132 
2133 	/*
2134 	 * If we are expecting writeback progress we must submit plugged IO.
2135 	 */
2136 	if (blk_needs_flush_plug(current))
2137 		blk_schedule_flush_plug(current);
2138 
2139 	rcu_read_lock();
2140 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2141 		__wakeup_flusher_threads_bdi(bdi, reason);
2142 	rcu_read_unlock();
2143 }
2144 
2145 /*
2146  * Wake up bdi's periodically to make sure dirtytime inodes gets
2147  * written back periodically.  We deliberately do *not* check the
2148  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2149  * kernel to be constantly waking up once there are any dirtytime
2150  * inodes on the system.  So instead we define a separate delayed work
2151  * function which gets called much more rarely.  (By default, only
2152  * once every 12 hours.)
2153  *
2154  * If there is any other write activity going on in the file system,
2155  * this function won't be necessary.  But if the only thing that has
2156  * happened on the file system is a dirtytime inode caused by an atime
2157  * update, we need this infrastructure below to make sure that inode
2158  * eventually gets pushed out to disk.
2159  */
2160 static void wakeup_dirtytime_writeback(struct work_struct *w);
2161 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2162 
2163 static void wakeup_dirtytime_writeback(struct work_struct *w)
2164 {
2165 	struct backing_dev_info *bdi;
2166 
2167 	rcu_read_lock();
2168 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2169 		struct bdi_writeback *wb;
2170 
2171 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2172 			if (!list_empty(&wb->b_dirty_time))
2173 				wb_wakeup(wb);
2174 	}
2175 	rcu_read_unlock();
2176 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2177 }
2178 
2179 static int __init start_dirtytime_writeback(void)
2180 {
2181 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2182 	return 0;
2183 }
2184 __initcall(start_dirtytime_writeback);
2185 
2186 int dirtytime_interval_handler(struct ctl_table *table, int write,
2187 			       void *buffer, size_t *lenp, loff_t *ppos)
2188 {
2189 	int ret;
2190 
2191 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2192 	if (ret == 0 && write)
2193 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2194 	return ret;
2195 }
2196 
2197 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2198 {
2199 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2200 		struct dentry *dentry;
2201 		const char *name = "?";
2202 
2203 		dentry = d_find_alias(inode);
2204 		if (dentry) {
2205 			spin_lock(&dentry->d_lock);
2206 			name = (const char *) dentry->d_name.name;
2207 		}
2208 		printk(KERN_DEBUG
2209 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2210 		       current->comm, task_pid_nr(current), inode->i_ino,
2211 		       name, inode->i_sb->s_id);
2212 		if (dentry) {
2213 			spin_unlock(&dentry->d_lock);
2214 			dput(dentry);
2215 		}
2216 	}
2217 }
2218 
2219 /**
2220  * __mark_inode_dirty -	internal function
2221  *
2222  * @inode: inode to mark
2223  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2224  *
2225  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2226  * mark_inode_dirty_sync.
2227  *
2228  * Put the inode on the super block's dirty list.
2229  *
2230  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2231  * dirty list only if it is hashed or if it refers to a blockdev.
2232  * If it was not hashed, it will never be added to the dirty list
2233  * even if it is later hashed, as it will have been marked dirty already.
2234  *
2235  * In short, make sure you hash any inodes _before_ you start marking
2236  * them dirty.
2237  *
2238  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2239  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2240  * the kernel-internal blockdev inode represents the dirtying time of the
2241  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2242  * page->mapping->host, so the page-dirtying time is recorded in the internal
2243  * blockdev inode.
2244  */
2245 void __mark_inode_dirty(struct inode *inode, int flags)
2246 {
2247 	struct super_block *sb = inode->i_sb;
2248 	int dirtytime;
2249 
2250 	trace_writeback_mark_inode_dirty(inode, flags);
2251 
2252 	/*
2253 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2254 	 * dirty the inode itself
2255 	 */
2256 	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2257 		trace_writeback_dirty_inode_start(inode, flags);
2258 
2259 		if (sb->s_op->dirty_inode)
2260 			sb->s_op->dirty_inode(inode, flags);
2261 
2262 		trace_writeback_dirty_inode(inode, flags);
2263 	}
2264 	if (flags & I_DIRTY_INODE)
2265 		flags &= ~I_DIRTY_TIME;
2266 	dirtytime = flags & I_DIRTY_TIME;
2267 
2268 	/*
2269 	 * Paired with smp_mb() in __writeback_single_inode() for the
2270 	 * following lockless i_state test.  See there for details.
2271 	 */
2272 	smp_mb();
2273 
2274 	if (((inode->i_state & flags) == flags) ||
2275 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2276 		return;
2277 
2278 	if (unlikely(block_dump))
2279 		block_dump___mark_inode_dirty(inode);
2280 
2281 	spin_lock(&inode->i_lock);
2282 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2283 		goto out_unlock_inode;
2284 	if ((inode->i_state & flags) != flags) {
2285 		const int was_dirty = inode->i_state & I_DIRTY;
2286 
2287 		inode_attach_wb(inode, NULL);
2288 
2289 		if (flags & I_DIRTY_INODE)
2290 			inode->i_state &= ~I_DIRTY_TIME;
2291 		inode->i_state |= flags;
2292 
2293 		/*
2294 		 * If the inode is queued for writeback by flush worker, just
2295 		 * update its dirty state. Once the flush worker is done with
2296 		 * the inode it will place it on the appropriate superblock
2297 		 * list, based upon its state.
2298 		 */
2299 		if (inode->i_state & I_SYNC_QUEUED)
2300 			goto out_unlock_inode;
2301 
2302 		/*
2303 		 * Only add valid (hashed) inodes to the superblock's
2304 		 * dirty list.  Add blockdev inodes as well.
2305 		 */
2306 		if (!S_ISBLK(inode->i_mode)) {
2307 			if (inode_unhashed(inode))
2308 				goto out_unlock_inode;
2309 		}
2310 		if (inode->i_state & I_FREEING)
2311 			goto out_unlock_inode;
2312 
2313 		/*
2314 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2315 		 * reposition it (that would break b_dirty time-ordering).
2316 		 */
2317 		if (!was_dirty) {
2318 			struct bdi_writeback *wb;
2319 			struct list_head *dirty_list;
2320 			bool wakeup_bdi = false;
2321 
2322 			wb = locked_inode_to_wb_and_lock_list(inode);
2323 
2324 			WARN((wb->bdi->capabilities & BDI_CAP_WRITEBACK) &&
2325 			     !test_bit(WB_registered, &wb->state),
2326 			     "bdi-%s not registered\n", bdi_dev_name(wb->bdi));
2327 
2328 			inode->dirtied_when = jiffies;
2329 			if (dirtytime)
2330 				inode->dirtied_time_when = jiffies;
2331 
2332 			if (inode->i_state & I_DIRTY)
2333 				dirty_list = &wb->b_dirty;
2334 			else
2335 				dirty_list = &wb->b_dirty_time;
2336 
2337 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2338 							       dirty_list);
2339 
2340 			spin_unlock(&wb->list_lock);
2341 			trace_writeback_dirty_inode_enqueue(inode);
2342 
2343 			/*
2344 			 * If this is the first dirty inode for this bdi,
2345 			 * we have to wake-up the corresponding bdi thread
2346 			 * to make sure background write-back happens
2347 			 * later.
2348 			 */
2349 			if (wakeup_bdi &&
2350 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2351 				wb_wakeup_delayed(wb);
2352 			return;
2353 		}
2354 	}
2355 out_unlock_inode:
2356 	spin_unlock(&inode->i_lock);
2357 }
2358 EXPORT_SYMBOL(__mark_inode_dirty);
2359 
2360 /*
2361  * The @s_sync_lock is used to serialise concurrent sync operations
2362  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2363  * Concurrent callers will block on the s_sync_lock rather than doing contending
2364  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2365  * has been issued up to the time this function is enter is guaranteed to be
2366  * completed by the time we have gained the lock and waited for all IO that is
2367  * in progress regardless of the order callers are granted the lock.
2368  */
2369 static void wait_sb_inodes(struct super_block *sb)
2370 {
2371 	LIST_HEAD(sync_list);
2372 
2373 	/*
2374 	 * We need to be protected against the filesystem going from
2375 	 * r/o to r/w or vice versa.
2376 	 */
2377 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2378 
2379 	mutex_lock(&sb->s_sync_lock);
2380 
2381 	/*
2382 	 * Splice the writeback list onto a temporary list to avoid waiting on
2383 	 * inodes that have started writeback after this point.
2384 	 *
2385 	 * Use rcu_read_lock() to keep the inodes around until we have a
2386 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2387 	 * the local list because inodes can be dropped from either by writeback
2388 	 * completion.
2389 	 */
2390 	rcu_read_lock();
2391 	spin_lock_irq(&sb->s_inode_wblist_lock);
2392 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2393 
2394 	/*
2395 	 * Data integrity sync. Must wait for all pages under writeback, because
2396 	 * there may have been pages dirtied before our sync call, but which had
2397 	 * writeout started before we write it out.  In which case, the inode
2398 	 * may not be on the dirty list, but we still have to wait for that
2399 	 * writeout.
2400 	 */
2401 	while (!list_empty(&sync_list)) {
2402 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2403 						       i_wb_list);
2404 		struct address_space *mapping = inode->i_mapping;
2405 
2406 		/*
2407 		 * Move each inode back to the wb list before we drop the lock
2408 		 * to preserve consistency between i_wb_list and the mapping
2409 		 * writeback tag. Writeback completion is responsible to remove
2410 		 * the inode from either list once the writeback tag is cleared.
2411 		 */
2412 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2413 
2414 		/*
2415 		 * The mapping can appear untagged while still on-list since we
2416 		 * do not have the mapping lock. Skip it here, wb completion
2417 		 * will remove it.
2418 		 */
2419 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2420 			continue;
2421 
2422 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2423 
2424 		spin_lock(&inode->i_lock);
2425 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2426 			spin_unlock(&inode->i_lock);
2427 
2428 			spin_lock_irq(&sb->s_inode_wblist_lock);
2429 			continue;
2430 		}
2431 		__iget(inode);
2432 		spin_unlock(&inode->i_lock);
2433 		rcu_read_unlock();
2434 
2435 		/*
2436 		 * We keep the error status of individual mapping so that
2437 		 * applications can catch the writeback error using fsync(2).
2438 		 * See filemap_fdatawait_keep_errors() for details.
2439 		 */
2440 		filemap_fdatawait_keep_errors(mapping);
2441 
2442 		cond_resched();
2443 
2444 		iput(inode);
2445 
2446 		rcu_read_lock();
2447 		spin_lock_irq(&sb->s_inode_wblist_lock);
2448 	}
2449 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2450 	rcu_read_unlock();
2451 	mutex_unlock(&sb->s_sync_lock);
2452 }
2453 
2454 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2455 				     enum wb_reason reason, bool skip_if_busy)
2456 {
2457 	struct backing_dev_info *bdi = sb->s_bdi;
2458 	DEFINE_WB_COMPLETION(done, bdi);
2459 	struct wb_writeback_work work = {
2460 		.sb			= sb,
2461 		.sync_mode		= WB_SYNC_NONE,
2462 		.tagged_writepages	= 1,
2463 		.done			= &done,
2464 		.nr_pages		= nr,
2465 		.reason			= reason,
2466 	};
2467 
2468 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2469 		return;
2470 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2471 
2472 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2473 	wb_wait_for_completion(&done);
2474 }
2475 
2476 /**
2477  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2478  * @sb: the superblock
2479  * @nr: the number of pages to write
2480  * @reason: reason why some writeback work initiated
2481  *
2482  * Start writeback on some inodes on this super_block. No guarantees are made
2483  * on how many (if any) will be written, and this function does not wait
2484  * for IO completion of submitted IO.
2485  */
2486 void writeback_inodes_sb_nr(struct super_block *sb,
2487 			    unsigned long nr,
2488 			    enum wb_reason reason)
2489 {
2490 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2491 }
2492 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2493 
2494 /**
2495  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2496  * @sb: the superblock
2497  * @reason: reason why some writeback work was initiated
2498  *
2499  * Start writeback on some inodes on this super_block. No guarantees are made
2500  * on how many (if any) will be written, and this function does not wait
2501  * for IO completion of submitted IO.
2502  */
2503 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2504 {
2505 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2506 }
2507 EXPORT_SYMBOL(writeback_inodes_sb);
2508 
2509 /**
2510  * try_to_writeback_inodes_sb - try to start writeback if none underway
2511  * @sb: the superblock
2512  * @reason: reason why some writeback work was initiated
2513  *
2514  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2515  */
2516 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2517 {
2518 	if (!down_read_trylock(&sb->s_umount))
2519 		return;
2520 
2521 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2522 	up_read(&sb->s_umount);
2523 }
2524 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2525 
2526 /**
2527  * sync_inodes_sb	-	sync sb inode pages
2528  * @sb: the superblock
2529  *
2530  * This function writes and waits on any dirty inode belonging to this
2531  * super_block.
2532  */
2533 void sync_inodes_sb(struct super_block *sb)
2534 {
2535 	struct backing_dev_info *bdi = sb->s_bdi;
2536 	DEFINE_WB_COMPLETION(done, bdi);
2537 	struct wb_writeback_work work = {
2538 		.sb		= sb,
2539 		.sync_mode	= WB_SYNC_ALL,
2540 		.nr_pages	= LONG_MAX,
2541 		.range_cyclic	= 0,
2542 		.done		= &done,
2543 		.reason		= WB_REASON_SYNC,
2544 		.for_sync	= 1,
2545 	};
2546 
2547 	/*
2548 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2549 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2550 	 * bdi_has_dirty() need to be written out too.
2551 	 */
2552 	if (bdi == &noop_backing_dev_info)
2553 		return;
2554 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2555 
2556 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2557 	bdi_down_write_wb_switch_rwsem(bdi);
2558 	bdi_split_work_to_wbs(bdi, &work, false);
2559 	wb_wait_for_completion(&done);
2560 	bdi_up_write_wb_switch_rwsem(bdi);
2561 
2562 	wait_sb_inodes(sb);
2563 }
2564 EXPORT_SYMBOL(sync_inodes_sb);
2565 
2566 /**
2567  * write_inode_now	-	write an inode to disk
2568  * @inode: inode to write to disk
2569  * @sync: whether the write should be synchronous or not
2570  *
2571  * This function commits an inode to disk immediately if it is dirty. This is
2572  * primarily needed by knfsd.
2573  *
2574  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2575  */
2576 int write_inode_now(struct inode *inode, int sync)
2577 {
2578 	struct writeback_control wbc = {
2579 		.nr_to_write = LONG_MAX,
2580 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2581 		.range_start = 0,
2582 		.range_end = LLONG_MAX,
2583 	};
2584 
2585 	if (!mapping_can_writeback(inode->i_mapping))
2586 		wbc.nr_to_write = 0;
2587 
2588 	might_sleep();
2589 	return writeback_single_inode(inode, &wbc);
2590 }
2591 EXPORT_SYMBOL(write_inode_now);
2592 
2593 /**
2594  * sync_inode - write an inode and its pages to disk.
2595  * @inode: the inode to sync
2596  * @wbc: controls the writeback mode
2597  *
2598  * sync_inode() will write an inode and its pages to disk.  It will also
2599  * correctly update the inode on its superblock's dirty inode lists and will
2600  * update inode->i_state.
2601  *
2602  * The caller must have a ref on the inode.
2603  */
2604 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2605 {
2606 	return writeback_single_inode(inode, wbc);
2607 }
2608 EXPORT_SYMBOL(sync_inode);
2609 
2610 /**
2611  * sync_inode_metadata - write an inode to disk
2612  * @inode: the inode to sync
2613  * @wait: wait for I/O to complete.
2614  *
2615  * Write an inode to disk and adjust its dirty state after completion.
2616  *
2617  * Note: only writes the actual inode, no associated data or other metadata.
2618  */
2619 int sync_inode_metadata(struct inode *inode, int wait)
2620 {
2621 	struct writeback_control wbc = {
2622 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2623 		.nr_to_write = 0, /* metadata-only */
2624 	};
2625 
2626 	return sync_inode(inode, &wbc);
2627 }
2628 EXPORT_SYMBOL(sync_inode_metadata);
2629