xref: /openbmc/linux/fs/fs-writeback.c (revision 110e6f26)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32 
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
37 
38 struct wb_completion {
39 	atomic_t		cnt;
40 };
41 
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46 	long nr_pages;
47 	struct super_block *sb;
48 	unsigned long *older_than_this;
49 	enum writeback_sync_modes sync_mode;
50 	unsigned int tagged_writepages:1;
51 	unsigned int for_kupdate:1;
52 	unsigned int range_cyclic:1;
53 	unsigned int for_background:1;
54 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55 	unsigned int auto_free:1;	/* free on completion */
56 	enum wb_reason reason;		/* why was writeback initiated? */
57 
58 	struct list_head list;		/* pending work list */
59 	struct wb_completion *done;	/* set if the caller waits */
60 };
61 
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
70 	struct wb_completion cmpl = {					\
71 		.cnt		= ATOMIC_INIT(1),			\
72 	}
73 
74 
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86 
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 	return list_entry(head, struct inode, i_io_list);
90 }
91 
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101 
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 	if (wb_has_dirty_io(wb)) {
105 		return false;
106 	} else {
107 		set_bit(WB_has_dirty_io, &wb->state);
108 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 		atomic_long_add(wb->avg_write_bandwidth,
110 				&wb->bdi->tot_write_bandwidth);
111 		return true;
112 	}
113 }
114 
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 		clear_bit(WB_has_dirty_io, &wb->state);
120 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 					&wb->bdi->tot_write_bandwidth) < 0);
122 	}
123 }
124 
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 				      struct bdi_writeback *wb,
137 				      struct list_head *head)
138 {
139 	assert_spin_locked(&wb->list_lock);
140 
141 	list_move(&inode->i_io_list, head);
142 
143 	/* dirty_time doesn't count as dirty_io until expiration */
144 	if (head != &wb->b_dirty_time)
145 		return wb_io_lists_populated(wb);
146 
147 	wb_io_lists_depopulated(wb);
148 	return false;
149 }
150 
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160 				     struct bdi_writeback *wb)
161 {
162 	assert_spin_locked(&wb->list_lock);
163 
164 	list_del_init(&inode->i_io_list);
165 	wb_io_lists_depopulated(wb);
166 }
167 
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 	spin_lock_bh(&wb->work_lock);
171 	if (test_bit(WB_registered, &wb->state))
172 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 	spin_unlock_bh(&wb->work_lock);
174 }
175 
176 static void wb_queue_work(struct bdi_writeback *wb,
177 			  struct wb_writeback_work *work)
178 {
179 	trace_writeback_queue(wb, work);
180 
181 	spin_lock_bh(&wb->work_lock);
182 	if (!test_bit(WB_registered, &wb->state))
183 		goto out_unlock;
184 	if (work->done)
185 		atomic_inc(&work->done->cnt);
186 	list_add_tail(&work->list, &wb->work_list);
187 	mod_delayed_work(bdi_wq, &wb->dwork, 0);
188 out_unlock:
189 	spin_unlock_bh(&wb->work_lock);
190 }
191 
192 /**
193  * wb_wait_for_completion - wait for completion of bdi_writeback_works
194  * @bdi: bdi work items were issued to
195  * @done: target wb_completion
196  *
197  * Wait for one or more work items issued to @bdi with their ->done field
198  * set to @done, which should have been defined with
199  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
200  * work items are completed.  Work items which are waited upon aren't freed
201  * automatically on completion.
202  */
203 static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 				   struct wb_completion *done)
205 {
206 	atomic_dec(&done->cnt);		/* put down the initial count */
207 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208 }
209 
210 #ifdef CONFIG_CGROUP_WRITEBACK
211 
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
217 
218 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 					/* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
222 					/* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 					/* one round can affect upto 5 slots */
225 
226 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
227 static struct workqueue_struct *isw_wq;
228 
229 void __inode_attach_wb(struct inode *inode, struct page *page)
230 {
231 	struct backing_dev_info *bdi = inode_to_bdi(inode);
232 	struct bdi_writeback *wb = NULL;
233 
234 	if (inode_cgwb_enabled(inode)) {
235 		struct cgroup_subsys_state *memcg_css;
236 
237 		if (page) {
238 			memcg_css = mem_cgroup_css_from_page(page);
239 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
240 		} else {
241 			/* must pin memcg_css, see wb_get_create() */
242 			memcg_css = task_get_css(current, memory_cgrp_id);
243 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
244 			css_put(memcg_css);
245 		}
246 	}
247 
248 	if (!wb)
249 		wb = &bdi->wb;
250 
251 	/*
252 	 * There may be multiple instances of this function racing to
253 	 * update the same inode.  Use cmpxchg() to tell the winner.
254 	 */
255 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
256 		wb_put(wb);
257 }
258 
259 /**
260  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
261  * @inode: inode of interest with i_lock held
262  *
263  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
264  * held on entry and is released on return.  The returned wb is guaranteed
265  * to stay @inode's associated wb until its list_lock is released.
266  */
267 static struct bdi_writeback *
268 locked_inode_to_wb_and_lock_list(struct inode *inode)
269 	__releases(&inode->i_lock)
270 	__acquires(&wb->list_lock)
271 {
272 	while (true) {
273 		struct bdi_writeback *wb = inode_to_wb(inode);
274 
275 		/*
276 		 * inode_to_wb() association is protected by both
277 		 * @inode->i_lock and @wb->list_lock but list_lock nests
278 		 * outside i_lock.  Drop i_lock and verify that the
279 		 * association hasn't changed after acquiring list_lock.
280 		 */
281 		wb_get(wb);
282 		spin_unlock(&inode->i_lock);
283 		spin_lock(&wb->list_lock);
284 
285 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
286 		if (likely(wb == inode->i_wb)) {
287 			wb_put(wb);	/* @inode already has ref */
288 			return wb;
289 		}
290 
291 		spin_unlock(&wb->list_lock);
292 		wb_put(wb);
293 		cpu_relax();
294 		spin_lock(&inode->i_lock);
295 	}
296 }
297 
298 /**
299  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300  * @inode: inode of interest
301  *
302  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303  * on entry.
304  */
305 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306 	__acquires(&wb->list_lock)
307 {
308 	spin_lock(&inode->i_lock);
309 	return locked_inode_to_wb_and_lock_list(inode);
310 }
311 
312 struct inode_switch_wbs_context {
313 	struct inode		*inode;
314 	struct bdi_writeback	*new_wb;
315 
316 	struct rcu_head		rcu_head;
317 	struct work_struct	work;
318 };
319 
320 static void inode_switch_wbs_work_fn(struct work_struct *work)
321 {
322 	struct inode_switch_wbs_context *isw =
323 		container_of(work, struct inode_switch_wbs_context, work);
324 	struct inode *inode = isw->inode;
325 	struct address_space *mapping = inode->i_mapping;
326 	struct bdi_writeback *old_wb = inode->i_wb;
327 	struct bdi_writeback *new_wb = isw->new_wb;
328 	struct radix_tree_iter iter;
329 	bool switched = false;
330 	void **slot;
331 
332 	/*
333 	 * By the time control reaches here, RCU grace period has passed
334 	 * since I_WB_SWITCH assertion and all wb stat update transactions
335 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 	 * synchronizing against mapping->tree_lock.
337 	 *
338 	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 	 * gives us exclusion against all wb related operations on @inode
340 	 * including IO list manipulations and stat updates.
341 	 */
342 	if (old_wb < new_wb) {
343 		spin_lock(&old_wb->list_lock);
344 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345 	} else {
346 		spin_lock(&new_wb->list_lock);
347 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348 	}
349 	spin_lock(&inode->i_lock);
350 	spin_lock_irq(&mapping->tree_lock);
351 
352 	/*
353 	 * Once I_FREEING is visible under i_lock, the eviction path owns
354 	 * the inode and we shouldn't modify ->i_io_list.
355 	 */
356 	if (unlikely(inode->i_state & I_FREEING))
357 		goto skip_switch;
358 
359 	/*
360 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
361 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 	 * pages actually under underwriteback.
363 	 */
364 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365 				   PAGECACHE_TAG_DIRTY) {
366 		struct page *page = radix_tree_deref_slot_protected(slot,
367 							&mapping->tree_lock);
368 		if (likely(page) && PageDirty(page)) {
369 			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
370 			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
371 		}
372 	}
373 
374 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375 				   PAGECACHE_TAG_WRITEBACK) {
376 		struct page *page = radix_tree_deref_slot_protected(slot,
377 							&mapping->tree_lock);
378 		if (likely(page)) {
379 			WARN_ON_ONCE(!PageWriteback(page));
380 			__dec_wb_stat(old_wb, WB_WRITEBACK);
381 			__inc_wb_stat(new_wb, WB_WRITEBACK);
382 		}
383 	}
384 
385 	wb_get(new_wb);
386 
387 	/*
388 	 * Transfer to @new_wb's IO list if necessary.  The specific list
389 	 * @inode was on is ignored and the inode is put on ->b_dirty which
390 	 * is always correct including from ->b_dirty_time.  The transfer
391 	 * preserves @inode->dirtied_when ordering.
392 	 */
393 	if (!list_empty(&inode->i_io_list)) {
394 		struct inode *pos;
395 
396 		inode_io_list_del_locked(inode, old_wb);
397 		inode->i_wb = new_wb;
398 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
399 			if (time_after_eq(inode->dirtied_when,
400 					  pos->dirtied_when))
401 				break;
402 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
403 	} else {
404 		inode->i_wb = new_wb;
405 	}
406 
407 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408 	inode->i_wb_frn_winner = 0;
409 	inode->i_wb_frn_avg_time = 0;
410 	inode->i_wb_frn_history = 0;
411 	switched = true;
412 skip_switch:
413 	/*
414 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
416 	 */
417 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418 
419 	spin_unlock_irq(&mapping->tree_lock);
420 	spin_unlock(&inode->i_lock);
421 	spin_unlock(&new_wb->list_lock);
422 	spin_unlock(&old_wb->list_lock);
423 
424 	if (switched) {
425 		wb_wakeup(new_wb);
426 		wb_put(old_wb);
427 	}
428 	wb_put(new_wb);
429 
430 	iput(inode);
431 	kfree(isw);
432 
433 	atomic_dec(&isw_nr_in_flight);
434 }
435 
436 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
437 {
438 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
439 				struct inode_switch_wbs_context, rcu_head);
440 
441 	/* needs to grab bh-unsafe locks, bounce to work item */
442 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
443 	queue_work(isw_wq, &isw->work);
444 }
445 
446 /**
447  * inode_switch_wbs - change the wb association of an inode
448  * @inode: target inode
449  * @new_wb_id: ID of the new wb
450  *
451  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
452  * switching is performed asynchronously and may fail silently.
453  */
454 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
455 {
456 	struct backing_dev_info *bdi = inode_to_bdi(inode);
457 	struct cgroup_subsys_state *memcg_css;
458 	struct inode_switch_wbs_context *isw;
459 
460 	/* noop if seems to be already in progress */
461 	if (inode->i_state & I_WB_SWITCH)
462 		return;
463 
464 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
465 	if (!isw)
466 		return;
467 
468 	/* find and pin the new wb */
469 	rcu_read_lock();
470 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
471 	if (memcg_css)
472 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
473 	rcu_read_unlock();
474 	if (!isw->new_wb)
475 		goto out_free;
476 
477 	/* while holding I_WB_SWITCH, no one else can update the association */
478 	spin_lock(&inode->i_lock);
479 	if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
480 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
481 	    inode_to_wb(inode) == isw->new_wb) {
482 		spin_unlock(&inode->i_lock);
483 		goto out_free;
484 	}
485 	inode->i_state |= I_WB_SWITCH;
486 	spin_unlock(&inode->i_lock);
487 
488 	ihold(inode);
489 	isw->inode = inode;
490 
491 	atomic_inc(&isw_nr_in_flight);
492 
493 	/*
494 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
495 	 * the RCU protected stat update paths to grab the mapping's
496 	 * tree_lock so that stat transfer can synchronize against them.
497 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
498 	 */
499 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
500 	return;
501 
502 out_free:
503 	if (isw->new_wb)
504 		wb_put(isw->new_wb);
505 	kfree(isw);
506 }
507 
508 /**
509  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
510  * @wbc: writeback_control of interest
511  * @inode: target inode
512  *
513  * @inode is locked and about to be written back under the control of @wbc.
514  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
515  * writeback completion, wbc_detach_inode() should be called.  This is used
516  * to track the cgroup writeback context.
517  */
518 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
519 				 struct inode *inode)
520 {
521 	if (!inode_cgwb_enabled(inode)) {
522 		spin_unlock(&inode->i_lock);
523 		return;
524 	}
525 
526 	wbc->wb = inode_to_wb(inode);
527 	wbc->inode = inode;
528 
529 	wbc->wb_id = wbc->wb->memcg_css->id;
530 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
531 	wbc->wb_tcand_id = 0;
532 	wbc->wb_bytes = 0;
533 	wbc->wb_lcand_bytes = 0;
534 	wbc->wb_tcand_bytes = 0;
535 
536 	wb_get(wbc->wb);
537 	spin_unlock(&inode->i_lock);
538 
539 	/*
540 	 * A dying wb indicates that the memcg-blkcg mapping has changed
541 	 * and a new wb is already serving the memcg.  Switch immediately.
542 	 */
543 	if (unlikely(wb_dying(wbc->wb)))
544 		inode_switch_wbs(inode, wbc->wb_id);
545 }
546 
547 /**
548  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
549  * @wbc: writeback_control of the just finished writeback
550  *
551  * To be called after a writeback attempt of an inode finishes and undoes
552  * wbc_attach_and_unlock_inode().  Can be called under any context.
553  *
554  * As concurrent write sharing of an inode is expected to be very rare and
555  * memcg only tracks page ownership on first-use basis severely confining
556  * the usefulness of such sharing, cgroup writeback tracks ownership
557  * per-inode.  While the support for concurrent write sharing of an inode
558  * is deemed unnecessary, an inode being written to by different cgroups at
559  * different points in time is a lot more common, and, more importantly,
560  * charging only by first-use can too readily lead to grossly incorrect
561  * behaviors (single foreign page can lead to gigabytes of writeback to be
562  * incorrectly attributed).
563  *
564  * To resolve this issue, cgroup writeback detects the majority dirtier of
565  * an inode and transfers the ownership to it.  To avoid unnnecessary
566  * oscillation, the detection mechanism keeps track of history and gives
567  * out the switch verdict only if the foreign usage pattern is stable over
568  * a certain amount of time and/or writeback attempts.
569  *
570  * On each writeback attempt, @wbc tries to detect the majority writer
571  * using Boyer-Moore majority vote algorithm.  In addition to the byte
572  * count from the majority voting, it also counts the bytes written for the
573  * current wb and the last round's winner wb (max of last round's current
574  * wb, the winner from two rounds ago, and the last round's majority
575  * candidate).  Keeping track of the historical winner helps the algorithm
576  * to semi-reliably detect the most active writer even when it's not the
577  * absolute majority.
578  *
579  * Once the winner of the round is determined, whether the winner is
580  * foreign or not and how much IO time the round consumed is recorded in
581  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
582  * over a certain threshold, the switch verdict is given.
583  */
584 void wbc_detach_inode(struct writeback_control *wbc)
585 {
586 	struct bdi_writeback *wb = wbc->wb;
587 	struct inode *inode = wbc->inode;
588 	unsigned long avg_time, max_bytes, max_time;
589 	u16 history;
590 	int max_id;
591 
592 	if (!wb)
593 		return;
594 
595 	history = inode->i_wb_frn_history;
596 	avg_time = inode->i_wb_frn_avg_time;
597 
598 	/* pick the winner of this round */
599 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
600 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
601 		max_id = wbc->wb_id;
602 		max_bytes = wbc->wb_bytes;
603 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
604 		max_id = wbc->wb_lcand_id;
605 		max_bytes = wbc->wb_lcand_bytes;
606 	} else {
607 		max_id = wbc->wb_tcand_id;
608 		max_bytes = wbc->wb_tcand_bytes;
609 	}
610 
611 	/*
612 	 * Calculate the amount of IO time the winner consumed and fold it
613 	 * into the running average kept per inode.  If the consumed IO
614 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
615 	 * deciding whether to switch or not.  This is to prevent one-off
616 	 * small dirtiers from skewing the verdict.
617 	 */
618 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
619 				wb->avg_write_bandwidth);
620 	if (avg_time)
621 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
622 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
623 	else
624 		avg_time = max_time;	/* immediate catch up on first run */
625 
626 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
627 		int slots;
628 
629 		/*
630 		 * The switch verdict is reached if foreign wb's consume
631 		 * more than a certain proportion of IO time in a
632 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
633 		 * history mask where each bit represents one sixteenth of
634 		 * the period.  Determine the number of slots to shift into
635 		 * history from @max_time.
636 		 */
637 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
638 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
639 		history <<= slots;
640 		if (wbc->wb_id != max_id)
641 			history |= (1U << slots) - 1;
642 
643 		/*
644 		 * Switch if the current wb isn't the consistent winner.
645 		 * If there are multiple closely competing dirtiers, the
646 		 * inode may switch across them repeatedly over time, which
647 		 * is okay.  The main goal is avoiding keeping an inode on
648 		 * the wrong wb for an extended period of time.
649 		 */
650 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
651 			inode_switch_wbs(inode, max_id);
652 	}
653 
654 	/*
655 	 * Multiple instances of this function may race to update the
656 	 * following fields but we don't mind occassional inaccuracies.
657 	 */
658 	inode->i_wb_frn_winner = max_id;
659 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
660 	inode->i_wb_frn_history = history;
661 
662 	wb_put(wbc->wb);
663 	wbc->wb = NULL;
664 }
665 
666 /**
667  * wbc_account_io - account IO issued during writeback
668  * @wbc: writeback_control of the writeback in progress
669  * @page: page being written out
670  * @bytes: number of bytes being written out
671  *
672  * @bytes from @page are about to written out during the writeback
673  * controlled by @wbc.  Keep the book for foreign inode detection.  See
674  * wbc_detach_inode().
675  */
676 void wbc_account_io(struct writeback_control *wbc, struct page *page,
677 		    size_t bytes)
678 {
679 	int id;
680 
681 	/*
682 	 * pageout() path doesn't attach @wbc to the inode being written
683 	 * out.  This is intentional as we don't want the function to block
684 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
685 	 * regular writeback instead of writing things out itself.
686 	 */
687 	if (!wbc->wb)
688 		return;
689 
690 	id = mem_cgroup_css_from_page(page)->id;
691 
692 	if (id == wbc->wb_id) {
693 		wbc->wb_bytes += bytes;
694 		return;
695 	}
696 
697 	if (id == wbc->wb_lcand_id)
698 		wbc->wb_lcand_bytes += bytes;
699 
700 	/* Boyer-Moore majority vote algorithm */
701 	if (!wbc->wb_tcand_bytes)
702 		wbc->wb_tcand_id = id;
703 	if (id == wbc->wb_tcand_id)
704 		wbc->wb_tcand_bytes += bytes;
705 	else
706 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
707 }
708 EXPORT_SYMBOL_GPL(wbc_account_io);
709 
710 /**
711  * inode_congested - test whether an inode is congested
712  * @inode: inode to test for congestion (may be NULL)
713  * @cong_bits: mask of WB_[a]sync_congested bits to test
714  *
715  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
716  * bits to test and the return value is the mask of set bits.
717  *
718  * If cgroup writeback is enabled for @inode, the congestion state is
719  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
720  * associated with @inode is congested; otherwise, the root wb's congestion
721  * state is used.
722  *
723  * @inode is allowed to be NULL as this function is often called on
724  * mapping->host which is NULL for the swapper space.
725  */
726 int inode_congested(struct inode *inode, int cong_bits)
727 {
728 	/*
729 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
730 	 * Start transaction iff ->i_wb is visible.
731 	 */
732 	if (inode && inode_to_wb_is_valid(inode)) {
733 		struct bdi_writeback *wb;
734 		bool locked, congested;
735 
736 		wb = unlocked_inode_to_wb_begin(inode, &locked);
737 		congested = wb_congested(wb, cong_bits);
738 		unlocked_inode_to_wb_end(inode, locked);
739 		return congested;
740 	}
741 
742 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
743 }
744 EXPORT_SYMBOL_GPL(inode_congested);
745 
746 /**
747  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
748  * @wb: target bdi_writeback to split @nr_pages to
749  * @nr_pages: number of pages to write for the whole bdi
750  *
751  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
752  * relation to the total write bandwidth of all wb's w/ dirty inodes on
753  * @wb->bdi.
754  */
755 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
756 {
757 	unsigned long this_bw = wb->avg_write_bandwidth;
758 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
759 
760 	if (nr_pages == LONG_MAX)
761 		return LONG_MAX;
762 
763 	/*
764 	 * This may be called on clean wb's and proportional distribution
765 	 * may not make sense, just use the original @nr_pages in those
766 	 * cases.  In general, we wanna err on the side of writing more.
767 	 */
768 	if (!tot_bw || this_bw >= tot_bw)
769 		return nr_pages;
770 	else
771 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
772 }
773 
774 /**
775  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
776  * @bdi: target backing_dev_info
777  * @base_work: wb_writeback_work to issue
778  * @skip_if_busy: skip wb's which already have writeback in progress
779  *
780  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
781  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
782  * distributed to the busy wbs according to each wb's proportion in the
783  * total active write bandwidth of @bdi.
784  */
785 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
786 				  struct wb_writeback_work *base_work,
787 				  bool skip_if_busy)
788 {
789 	struct bdi_writeback *last_wb = NULL;
790 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
791 					      struct bdi_writeback, bdi_node);
792 
793 	might_sleep();
794 restart:
795 	rcu_read_lock();
796 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
797 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
798 		struct wb_writeback_work fallback_work;
799 		struct wb_writeback_work *work;
800 		long nr_pages;
801 
802 		if (last_wb) {
803 			wb_put(last_wb);
804 			last_wb = NULL;
805 		}
806 
807 		/* SYNC_ALL writes out I_DIRTY_TIME too */
808 		if (!wb_has_dirty_io(wb) &&
809 		    (base_work->sync_mode == WB_SYNC_NONE ||
810 		     list_empty(&wb->b_dirty_time)))
811 			continue;
812 		if (skip_if_busy && writeback_in_progress(wb))
813 			continue;
814 
815 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
816 
817 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
818 		if (work) {
819 			*work = *base_work;
820 			work->nr_pages = nr_pages;
821 			work->auto_free = 1;
822 			wb_queue_work(wb, work);
823 			continue;
824 		}
825 
826 		/* alloc failed, execute synchronously using on-stack fallback */
827 		work = &fallback_work;
828 		*work = *base_work;
829 		work->nr_pages = nr_pages;
830 		work->auto_free = 0;
831 		work->done = &fallback_work_done;
832 
833 		wb_queue_work(wb, work);
834 
835 		/*
836 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
837 		 * continuing iteration from @wb after dropping and
838 		 * regrabbing rcu read lock.
839 		 */
840 		wb_get(wb);
841 		last_wb = wb;
842 
843 		rcu_read_unlock();
844 		wb_wait_for_completion(bdi, &fallback_work_done);
845 		goto restart;
846 	}
847 	rcu_read_unlock();
848 
849 	if (last_wb)
850 		wb_put(last_wb);
851 }
852 
853 /**
854  * cgroup_writeback_umount - flush inode wb switches for umount
855  *
856  * This function is called when a super_block is about to be destroyed and
857  * flushes in-flight inode wb switches.  An inode wb switch goes through
858  * RCU and then workqueue, so the two need to be flushed in order to ensure
859  * that all previously scheduled switches are finished.  As wb switches are
860  * rare occurrences and synchronize_rcu() can take a while, perform
861  * flushing iff wb switches are in flight.
862  */
863 void cgroup_writeback_umount(void)
864 {
865 	if (atomic_read(&isw_nr_in_flight)) {
866 		synchronize_rcu();
867 		flush_workqueue(isw_wq);
868 	}
869 }
870 
871 static int __init cgroup_writeback_init(void)
872 {
873 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
874 	if (!isw_wq)
875 		return -ENOMEM;
876 	return 0;
877 }
878 fs_initcall(cgroup_writeback_init);
879 
880 #else	/* CONFIG_CGROUP_WRITEBACK */
881 
882 static struct bdi_writeback *
883 locked_inode_to_wb_and_lock_list(struct inode *inode)
884 	__releases(&inode->i_lock)
885 	__acquires(&wb->list_lock)
886 {
887 	struct bdi_writeback *wb = inode_to_wb(inode);
888 
889 	spin_unlock(&inode->i_lock);
890 	spin_lock(&wb->list_lock);
891 	return wb;
892 }
893 
894 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
895 	__acquires(&wb->list_lock)
896 {
897 	struct bdi_writeback *wb = inode_to_wb(inode);
898 
899 	spin_lock(&wb->list_lock);
900 	return wb;
901 }
902 
903 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
904 {
905 	return nr_pages;
906 }
907 
908 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
909 				  struct wb_writeback_work *base_work,
910 				  bool skip_if_busy)
911 {
912 	might_sleep();
913 
914 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
915 		base_work->auto_free = 0;
916 		wb_queue_work(&bdi->wb, base_work);
917 	}
918 }
919 
920 #endif	/* CONFIG_CGROUP_WRITEBACK */
921 
922 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
923 			bool range_cyclic, enum wb_reason reason)
924 {
925 	struct wb_writeback_work *work;
926 
927 	if (!wb_has_dirty_io(wb))
928 		return;
929 
930 	/*
931 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
932 	 * wakeup the thread for old dirty data writeback
933 	 */
934 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
935 	if (!work) {
936 		trace_writeback_nowork(wb);
937 		wb_wakeup(wb);
938 		return;
939 	}
940 
941 	work->sync_mode	= WB_SYNC_NONE;
942 	work->nr_pages	= nr_pages;
943 	work->range_cyclic = range_cyclic;
944 	work->reason	= reason;
945 	work->auto_free	= 1;
946 
947 	wb_queue_work(wb, work);
948 }
949 
950 /**
951  * wb_start_background_writeback - start background writeback
952  * @wb: bdi_writback to write from
953  *
954  * Description:
955  *   This makes sure WB_SYNC_NONE background writeback happens. When
956  *   this function returns, it is only guaranteed that for given wb
957  *   some IO is happening if we are over background dirty threshold.
958  *   Caller need not hold sb s_umount semaphore.
959  */
960 void wb_start_background_writeback(struct bdi_writeback *wb)
961 {
962 	/*
963 	 * We just wake up the flusher thread. It will perform background
964 	 * writeback as soon as there is no other work to do.
965 	 */
966 	trace_writeback_wake_background(wb);
967 	wb_wakeup(wb);
968 }
969 
970 /*
971  * Remove the inode from the writeback list it is on.
972  */
973 void inode_io_list_del(struct inode *inode)
974 {
975 	struct bdi_writeback *wb;
976 
977 	wb = inode_to_wb_and_lock_list(inode);
978 	inode_io_list_del_locked(inode, wb);
979 	spin_unlock(&wb->list_lock);
980 }
981 
982 /*
983  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
984  * furthest end of its superblock's dirty-inode list.
985  *
986  * Before stamping the inode's ->dirtied_when, we check to see whether it is
987  * already the most-recently-dirtied inode on the b_dirty list.  If that is
988  * the case then the inode must have been redirtied while it was being written
989  * out and we don't reset its dirtied_when.
990  */
991 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
992 {
993 	if (!list_empty(&wb->b_dirty)) {
994 		struct inode *tail;
995 
996 		tail = wb_inode(wb->b_dirty.next);
997 		if (time_before(inode->dirtied_when, tail->dirtied_when))
998 			inode->dirtied_when = jiffies;
999 	}
1000 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1001 }
1002 
1003 /*
1004  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1005  */
1006 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1007 {
1008 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1009 }
1010 
1011 static void inode_sync_complete(struct inode *inode)
1012 {
1013 	inode->i_state &= ~I_SYNC;
1014 	/* If inode is clean an unused, put it into LRU now... */
1015 	inode_add_lru(inode);
1016 	/* Waiters must see I_SYNC cleared before being woken up */
1017 	smp_mb();
1018 	wake_up_bit(&inode->i_state, __I_SYNC);
1019 }
1020 
1021 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1022 {
1023 	bool ret = time_after(inode->dirtied_when, t);
1024 #ifndef CONFIG_64BIT
1025 	/*
1026 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1027 	 * It _appears_ to be in the future, but is actually in distant past.
1028 	 * This test is necessary to prevent such wrapped-around relative times
1029 	 * from permanently stopping the whole bdi writeback.
1030 	 */
1031 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1032 #endif
1033 	return ret;
1034 }
1035 
1036 #define EXPIRE_DIRTY_ATIME 0x0001
1037 
1038 /*
1039  * Move expired (dirtied before work->older_than_this) dirty inodes from
1040  * @delaying_queue to @dispatch_queue.
1041  */
1042 static int move_expired_inodes(struct list_head *delaying_queue,
1043 			       struct list_head *dispatch_queue,
1044 			       int flags,
1045 			       struct wb_writeback_work *work)
1046 {
1047 	unsigned long *older_than_this = NULL;
1048 	unsigned long expire_time;
1049 	LIST_HEAD(tmp);
1050 	struct list_head *pos, *node;
1051 	struct super_block *sb = NULL;
1052 	struct inode *inode;
1053 	int do_sb_sort = 0;
1054 	int moved = 0;
1055 
1056 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1057 		older_than_this = work->older_than_this;
1058 	else if (!work->for_sync) {
1059 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1060 		older_than_this = &expire_time;
1061 	}
1062 	while (!list_empty(delaying_queue)) {
1063 		inode = wb_inode(delaying_queue->prev);
1064 		if (older_than_this &&
1065 		    inode_dirtied_after(inode, *older_than_this))
1066 			break;
1067 		list_move(&inode->i_io_list, &tmp);
1068 		moved++;
1069 		if (flags & EXPIRE_DIRTY_ATIME)
1070 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1071 		if (sb_is_blkdev_sb(inode->i_sb))
1072 			continue;
1073 		if (sb && sb != inode->i_sb)
1074 			do_sb_sort = 1;
1075 		sb = inode->i_sb;
1076 	}
1077 
1078 	/* just one sb in list, splice to dispatch_queue and we're done */
1079 	if (!do_sb_sort) {
1080 		list_splice(&tmp, dispatch_queue);
1081 		goto out;
1082 	}
1083 
1084 	/* Move inodes from one superblock together */
1085 	while (!list_empty(&tmp)) {
1086 		sb = wb_inode(tmp.prev)->i_sb;
1087 		list_for_each_prev_safe(pos, node, &tmp) {
1088 			inode = wb_inode(pos);
1089 			if (inode->i_sb == sb)
1090 				list_move(&inode->i_io_list, dispatch_queue);
1091 		}
1092 	}
1093 out:
1094 	return moved;
1095 }
1096 
1097 /*
1098  * Queue all expired dirty inodes for io, eldest first.
1099  * Before
1100  *         newly dirtied     b_dirty    b_io    b_more_io
1101  *         =============>    gf         edc     BA
1102  * After
1103  *         newly dirtied     b_dirty    b_io    b_more_io
1104  *         =============>    g          fBAedc
1105  *                                           |
1106  *                                           +--> dequeue for IO
1107  */
1108 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1109 {
1110 	int moved;
1111 
1112 	assert_spin_locked(&wb->list_lock);
1113 	list_splice_init(&wb->b_more_io, &wb->b_io);
1114 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1115 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1116 				     EXPIRE_DIRTY_ATIME, work);
1117 	if (moved)
1118 		wb_io_lists_populated(wb);
1119 	trace_writeback_queue_io(wb, work, moved);
1120 }
1121 
1122 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1123 {
1124 	int ret;
1125 
1126 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1127 		trace_writeback_write_inode_start(inode, wbc);
1128 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1129 		trace_writeback_write_inode(inode, wbc);
1130 		return ret;
1131 	}
1132 	return 0;
1133 }
1134 
1135 /*
1136  * Wait for writeback on an inode to complete. Called with i_lock held.
1137  * Caller must make sure inode cannot go away when we drop i_lock.
1138  */
1139 static void __inode_wait_for_writeback(struct inode *inode)
1140 	__releases(inode->i_lock)
1141 	__acquires(inode->i_lock)
1142 {
1143 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1144 	wait_queue_head_t *wqh;
1145 
1146 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1147 	while (inode->i_state & I_SYNC) {
1148 		spin_unlock(&inode->i_lock);
1149 		__wait_on_bit(wqh, &wq, bit_wait,
1150 			      TASK_UNINTERRUPTIBLE);
1151 		spin_lock(&inode->i_lock);
1152 	}
1153 }
1154 
1155 /*
1156  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1157  */
1158 void inode_wait_for_writeback(struct inode *inode)
1159 {
1160 	spin_lock(&inode->i_lock);
1161 	__inode_wait_for_writeback(inode);
1162 	spin_unlock(&inode->i_lock);
1163 }
1164 
1165 /*
1166  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1167  * held and drops it. It is aimed for callers not holding any inode reference
1168  * so once i_lock is dropped, inode can go away.
1169  */
1170 static void inode_sleep_on_writeback(struct inode *inode)
1171 	__releases(inode->i_lock)
1172 {
1173 	DEFINE_WAIT(wait);
1174 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1175 	int sleep;
1176 
1177 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1178 	sleep = inode->i_state & I_SYNC;
1179 	spin_unlock(&inode->i_lock);
1180 	if (sleep)
1181 		schedule();
1182 	finish_wait(wqh, &wait);
1183 }
1184 
1185 /*
1186  * Find proper writeback list for the inode depending on its current state and
1187  * possibly also change of its state while we were doing writeback.  Here we
1188  * handle things such as livelock prevention or fairness of writeback among
1189  * inodes. This function can be called only by flusher thread - noone else
1190  * processes all inodes in writeback lists and requeueing inodes behind flusher
1191  * thread's back can have unexpected consequences.
1192  */
1193 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1194 			  struct writeback_control *wbc)
1195 {
1196 	if (inode->i_state & I_FREEING)
1197 		return;
1198 
1199 	/*
1200 	 * Sync livelock prevention. Each inode is tagged and synced in one
1201 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1202 	 * the dirty time to prevent enqueue and sync it again.
1203 	 */
1204 	if ((inode->i_state & I_DIRTY) &&
1205 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1206 		inode->dirtied_when = jiffies;
1207 
1208 	if (wbc->pages_skipped) {
1209 		/*
1210 		 * writeback is not making progress due to locked
1211 		 * buffers. Skip this inode for now.
1212 		 */
1213 		redirty_tail(inode, wb);
1214 		return;
1215 	}
1216 
1217 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1218 		/*
1219 		 * We didn't write back all the pages.  nfs_writepages()
1220 		 * sometimes bales out without doing anything.
1221 		 */
1222 		if (wbc->nr_to_write <= 0) {
1223 			/* Slice used up. Queue for next turn. */
1224 			requeue_io(inode, wb);
1225 		} else {
1226 			/*
1227 			 * Writeback blocked by something other than
1228 			 * congestion. Delay the inode for some time to
1229 			 * avoid spinning on the CPU (100% iowait)
1230 			 * retrying writeback of the dirty page/inode
1231 			 * that cannot be performed immediately.
1232 			 */
1233 			redirty_tail(inode, wb);
1234 		}
1235 	} else if (inode->i_state & I_DIRTY) {
1236 		/*
1237 		 * Filesystems can dirty the inode during writeback operations,
1238 		 * such as delayed allocation during submission or metadata
1239 		 * updates after data IO completion.
1240 		 */
1241 		redirty_tail(inode, wb);
1242 	} else if (inode->i_state & I_DIRTY_TIME) {
1243 		inode->dirtied_when = jiffies;
1244 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1245 	} else {
1246 		/* The inode is clean. Remove from writeback lists. */
1247 		inode_io_list_del_locked(inode, wb);
1248 	}
1249 }
1250 
1251 /*
1252  * Write out an inode and its dirty pages. Do not update the writeback list
1253  * linkage. That is left to the caller. The caller is also responsible for
1254  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1255  */
1256 static int
1257 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1258 {
1259 	struct address_space *mapping = inode->i_mapping;
1260 	long nr_to_write = wbc->nr_to_write;
1261 	unsigned dirty;
1262 	int ret;
1263 
1264 	WARN_ON(!(inode->i_state & I_SYNC));
1265 
1266 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1267 
1268 	ret = do_writepages(mapping, wbc);
1269 
1270 	/*
1271 	 * Make sure to wait on the data before writing out the metadata.
1272 	 * This is important for filesystems that modify metadata on data
1273 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1274 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1275 	 * inode metadata is written back correctly.
1276 	 */
1277 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1278 		int err = filemap_fdatawait(mapping);
1279 		if (ret == 0)
1280 			ret = err;
1281 	}
1282 
1283 	/*
1284 	 * Some filesystems may redirty the inode during the writeback
1285 	 * due to delalloc, clear dirty metadata flags right before
1286 	 * write_inode()
1287 	 */
1288 	spin_lock(&inode->i_lock);
1289 
1290 	dirty = inode->i_state & I_DIRTY;
1291 	if (inode->i_state & I_DIRTY_TIME) {
1292 		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1293 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1294 		    unlikely(time_after(jiffies,
1295 					(inode->dirtied_time_when +
1296 					 dirtytime_expire_interval * HZ)))) {
1297 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1298 			trace_writeback_lazytime(inode);
1299 		}
1300 	} else
1301 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1302 	inode->i_state &= ~dirty;
1303 
1304 	/*
1305 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1306 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1307 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1308 	 * inode.
1309 	 *
1310 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1311 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1312 	 * necessary.  This guarantees that either __mark_inode_dirty()
1313 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1314 	 */
1315 	smp_mb();
1316 
1317 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1318 		inode->i_state |= I_DIRTY_PAGES;
1319 
1320 	spin_unlock(&inode->i_lock);
1321 
1322 	if (dirty & I_DIRTY_TIME)
1323 		mark_inode_dirty_sync(inode);
1324 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1325 	if (dirty & ~I_DIRTY_PAGES) {
1326 		int err = write_inode(inode, wbc);
1327 		if (ret == 0)
1328 			ret = err;
1329 	}
1330 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1331 	return ret;
1332 }
1333 
1334 /*
1335  * Write out an inode's dirty pages. Either the caller has an active reference
1336  * on the inode or the inode has I_WILL_FREE set.
1337  *
1338  * This function is designed to be called for writing back one inode which
1339  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1340  * and does more profound writeback list handling in writeback_sb_inodes().
1341  */
1342 static int writeback_single_inode(struct inode *inode,
1343 				  struct writeback_control *wbc)
1344 {
1345 	struct bdi_writeback *wb;
1346 	int ret = 0;
1347 
1348 	spin_lock(&inode->i_lock);
1349 	if (!atomic_read(&inode->i_count))
1350 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1351 	else
1352 		WARN_ON(inode->i_state & I_WILL_FREE);
1353 
1354 	if (inode->i_state & I_SYNC) {
1355 		if (wbc->sync_mode != WB_SYNC_ALL)
1356 			goto out;
1357 		/*
1358 		 * It's a data-integrity sync. We must wait. Since callers hold
1359 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1360 		 * away under us.
1361 		 */
1362 		__inode_wait_for_writeback(inode);
1363 	}
1364 	WARN_ON(inode->i_state & I_SYNC);
1365 	/*
1366 	 * Skip inode if it is clean and we have no outstanding writeback in
1367 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1368 	 * function since flusher thread may be doing for example sync in
1369 	 * parallel and if we move the inode, it could get skipped. So here we
1370 	 * make sure inode is on some writeback list and leave it there unless
1371 	 * we have completely cleaned the inode.
1372 	 */
1373 	if (!(inode->i_state & I_DIRTY_ALL) &&
1374 	    (wbc->sync_mode != WB_SYNC_ALL ||
1375 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1376 		goto out;
1377 	inode->i_state |= I_SYNC;
1378 	wbc_attach_and_unlock_inode(wbc, inode);
1379 
1380 	ret = __writeback_single_inode(inode, wbc);
1381 
1382 	wbc_detach_inode(wbc);
1383 
1384 	wb = inode_to_wb_and_lock_list(inode);
1385 	spin_lock(&inode->i_lock);
1386 	/*
1387 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1388 	 * touch it. See comment above for explanation.
1389 	 */
1390 	if (!(inode->i_state & I_DIRTY_ALL))
1391 		inode_io_list_del_locked(inode, wb);
1392 	spin_unlock(&wb->list_lock);
1393 	inode_sync_complete(inode);
1394 out:
1395 	spin_unlock(&inode->i_lock);
1396 	return ret;
1397 }
1398 
1399 static long writeback_chunk_size(struct bdi_writeback *wb,
1400 				 struct wb_writeback_work *work)
1401 {
1402 	long pages;
1403 
1404 	/*
1405 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1406 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1407 	 * here avoids calling into writeback_inodes_wb() more than once.
1408 	 *
1409 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1410 	 *
1411 	 *      wb_writeback()
1412 	 *          writeback_sb_inodes()       <== called only once
1413 	 *              write_cache_pages()     <== called once for each inode
1414 	 *                   (quickly) tag currently dirty pages
1415 	 *                   (maybe slowly) sync all tagged pages
1416 	 */
1417 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1418 		pages = LONG_MAX;
1419 	else {
1420 		pages = min(wb->avg_write_bandwidth / 2,
1421 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1422 		pages = min(pages, work->nr_pages);
1423 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1424 				   MIN_WRITEBACK_PAGES);
1425 	}
1426 
1427 	return pages;
1428 }
1429 
1430 /*
1431  * Write a portion of b_io inodes which belong to @sb.
1432  *
1433  * Return the number of pages and/or inodes written.
1434  *
1435  * NOTE! This is called with wb->list_lock held, and will
1436  * unlock and relock that for each inode it ends up doing
1437  * IO for.
1438  */
1439 static long writeback_sb_inodes(struct super_block *sb,
1440 				struct bdi_writeback *wb,
1441 				struct wb_writeback_work *work)
1442 {
1443 	struct writeback_control wbc = {
1444 		.sync_mode		= work->sync_mode,
1445 		.tagged_writepages	= work->tagged_writepages,
1446 		.for_kupdate		= work->for_kupdate,
1447 		.for_background		= work->for_background,
1448 		.for_sync		= work->for_sync,
1449 		.range_cyclic		= work->range_cyclic,
1450 		.range_start		= 0,
1451 		.range_end		= LLONG_MAX,
1452 	};
1453 	unsigned long start_time = jiffies;
1454 	long write_chunk;
1455 	long wrote = 0;  /* count both pages and inodes */
1456 
1457 	while (!list_empty(&wb->b_io)) {
1458 		struct inode *inode = wb_inode(wb->b_io.prev);
1459 		struct bdi_writeback *tmp_wb;
1460 
1461 		if (inode->i_sb != sb) {
1462 			if (work->sb) {
1463 				/*
1464 				 * We only want to write back data for this
1465 				 * superblock, move all inodes not belonging
1466 				 * to it back onto the dirty list.
1467 				 */
1468 				redirty_tail(inode, wb);
1469 				continue;
1470 			}
1471 
1472 			/*
1473 			 * The inode belongs to a different superblock.
1474 			 * Bounce back to the caller to unpin this and
1475 			 * pin the next superblock.
1476 			 */
1477 			break;
1478 		}
1479 
1480 		/*
1481 		 * Don't bother with new inodes or inodes being freed, first
1482 		 * kind does not need periodic writeout yet, and for the latter
1483 		 * kind writeout is handled by the freer.
1484 		 */
1485 		spin_lock(&inode->i_lock);
1486 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1487 			spin_unlock(&inode->i_lock);
1488 			redirty_tail(inode, wb);
1489 			continue;
1490 		}
1491 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1492 			/*
1493 			 * If this inode is locked for writeback and we are not
1494 			 * doing writeback-for-data-integrity, move it to
1495 			 * b_more_io so that writeback can proceed with the
1496 			 * other inodes on s_io.
1497 			 *
1498 			 * We'll have another go at writing back this inode
1499 			 * when we completed a full scan of b_io.
1500 			 */
1501 			spin_unlock(&inode->i_lock);
1502 			requeue_io(inode, wb);
1503 			trace_writeback_sb_inodes_requeue(inode);
1504 			continue;
1505 		}
1506 		spin_unlock(&wb->list_lock);
1507 
1508 		/*
1509 		 * We already requeued the inode if it had I_SYNC set and we
1510 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1511 		 * WB_SYNC_ALL case.
1512 		 */
1513 		if (inode->i_state & I_SYNC) {
1514 			/* Wait for I_SYNC. This function drops i_lock... */
1515 			inode_sleep_on_writeback(inode);
1516 			/* Inode may be gone, start again */
1517 			spin_lock(&wb->list_lock);
1518 			continue;
1519 		}
1520 		inode->i_state |= I_SYNC;
1521 		wbc_attach_and_unlock_inode(&wbc, inode);
1522 
1523 		write_chunk = writeback_chunk_size(wb, work);
1524 		wbc.nr_to_write = write_chunk;
1525 		wbc.pages_skipped = 0;
1526 
1527 		/*
1528 		 * We use I_SYNC to pin the inode in memory. While it is set
1529 		 * evict_inode() will wait so the inode cannot be freed.
1530 		 */
1531 		__writeback_single_inode(inode, &wbc);
1532 
1533 		wbc_detach_inode(&wbc);
1534 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1535 		wrote += write_chunk - wbc.nr_to_write;
1536 
1537 		if (need_resched()) {
1538 			/*
1539 			 * We're trying to balance between building up a nice
1540 			 * long list of IOs to improve our merge rate, and
1541 			 * getting those IOs out quickly for anyone throttling
1542 			 * in balance_dirty_pages().  cond_resched() doesn't
1543 			 * unplug, so get our IOs out the door before we
1544 			 * give up the CPU.
1545 			 */
1546 			blk_flush_plug(current);
1547 			cond_resched();
1548 		}
1549 
1550 		/*
1551 		 * Requeue @inode if still dirty.  Be careful as @inode may
1552 		 * have been switched to another wb in the meantime.
1553 		 */
1554 		tmp_wb = inode_to_wb_and_lock_list(inode);
1555 		spin_lock(&inode->i_lock);
1556 		if (!(inode->i_state & I_DIRTY_ALL))
1557 			wrote++;
1558 		requeue_inode(inode, tmp_wb, &wbc);
1559 		inode_sync_complete(inode);
1560 		spin_unlock(&inode->i_lock);
1561 
1562 		if (unlikely(tmp_wb != wb)) {
1563 			spin_unlock(&tmp_wb->list_lock);
1564 			spin_lock(&wb->list_lock);
1565 		}
1566 
1567 		/*
1568 		 * bail out to wb_writeback() often enough to check
1569 		 * background threshold and other termination conditions.
1570 		 */
1571 		if (wrote) {
1572 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1573 				break;
1574 			if (work->nr_pages <= 0)
1575 				break;
1576 		}
1577 	}
1578 	return wrote;
1579 }
1580 
1581 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1582 				  struct wb_writeback_work *work)
1583 {
1584 	unsigned long start_time = jiffies;
1585 	long wrote = 0;
1586 
1587 	while (!list_empty(&wb->b_io)) {
1588 		struct inode *inode = wb_inode(wb->b_io.prev);
1589 		struct super_block *sb = inode->i_sb;
1590 
1591 		if (!trylock_super(sb)) {
1592 			/*
1593 			 * trylock_super() may fail consistently due to
1594 			 * s_umount being grabbed by someone else. Don't use
1595 			 * requeue_io() to avoid busy retrying the inode/sb.
1596 			 */
1597 			redirty_tail(inode, wb);
1598 			continue;
1599 		}
1600 		wrote += writeback_sb_inodes(sb, wb, work);
1601 		up_read(&sb->s_umount);
1602 
1603 		/* refer to the same tests at the end of writeback_sb_inodes */
1604 		if (wrote) {
1605 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1606 				break;
1607 			if (work->nr_pages <= 0)
1608 				break;
1609 		}
1610 	}
1611 	/* Leave any unwritten inodes on b_io */
1612 	return wrote;
1613 }
1614 
1615 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1616 				enum wb_reason reason)
1617 {
1618 	struct wb_writeback_work work = {
1619 		.nr_pages	= nr_pages,
1620 		.sync_mode	= WB_SYNC_NONE,
1621 		.range_cyclic	= 1,
1622 		.reason		= reason,
1623 	};
1624 	struct blk_plug plug;
1625 
1626 	blk_start_plug(&plug);
1627 	spin_lock(&wb->list_lock);
1628 	if (list_empty(&wb->b_io))
1629 		queue_io(wb, &work);
1630 	__writeback_inodes_wb(wb, &work);
1631 	spin_unlock(&wb->list_lock);
1632 	blk_finish_plug(&plug);
1633 
1634 	return nr_pages - work.nr_pages;
1635 }
1636 
1637 /*
1638  * Explicit flushing or periodic writeback of "old" data.
1639  *
1640  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1641  * dirtying-time in the inode's address_space.  So this periodic writeback code
1642  * just walks the superblock inode list, writing back any inodes which are
1643  * older than a specific point in time.
1644  *
1645  * Try to run once per dirty_writeback_interval.  But if a writeback event
1646  * takes longer than a dirty_writeback_interval interval, then leave a
1647  * one-second gap.
1648  *
1649  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1650  * all dirty pages if they are all attached to "old" mappings.
1651  */
1652 static long wb_writeback(struct bdi_writeback *wb,
1653 			 struct wb_writeback_work *work)
1654 {
1655 	unsigned long wb_start = jiffies;
1656 	long nr_pages = work->nr_pages;
1657 	unsigned long oldest_jif;
1658 	struct inode *inode;
1659 	long progress;
1660 	struct blk_plug plug;
1661 
1662 	oldest_jif = jiffies;
1663 	work->older_than_this = &oldest_jif;
1664 
1665 	blk_start_plug(&plug);
1666 	spin_lock(&wb->list_lock);
1667 	for (;;) {
1668 		/*
1669 		 * Stop writeback when nr_pages has been consumed
1670 		 */
1671 		if (work->nr_pages <= 0)
1672 			break;
1673 
1674 		/*
1675 		 * Background writeout and kupdate-style writeback may
1676 		 * run forever. Stop them if there is other work to do
1677 		 * so that e.g. sync can proceed. They'll be restarted
1678 		 * after the other works are all done.
1679 		 */
1680 		if ((work->for_background || work->for_kupdate) &&
1681 		    !list_empty(&wb->work_list))
1682 			break;
1683 
1684 		/*
1685 		 * For background writeout, stop when we are below the
1686 		 * background dirty threshold
1687 		 */
1688 		if (work->for_background && !wb_over_bg_thresh(wb))
1689 			break;
1690 
1691 		/*
1692 		 * Kupdate and background works are special and we want to
1693 		 * include all inodes that need writing. Livelock avoidance is
1694 		 * handled by these works yielding to any other work so we are
1695 		 * safe.
1696 		 */
1697 		if (work->for_kupdate) {
1698 			oldest_jif = jiffies -
1699 				msecs_to_jiffies(dirty_expire_interval * 10);
1700 		} else if (work->for_background)
1701 			oldest_jif = jiffies;
1702 
1703 		trace_writeback_start(wb, work);
1704 		if (list_empty(&wb->b_io))
1705 			queue_io(wb, work);
1706 		if (work->sb)
1707 			progress = writeback_sb_inodes(work->sb, wb, work);
1708 		else
1709 			progress = __writeback_inodes_wb(wb, work);
1710 		trace_writeback_written(wb, work);
1711 
1712 		wb_update_bandwidth(wb, wb_start);
1713 
1714 		/*
1715 		 * Did we write something? Try for more
1716 		 *
1717 		 * Dirty inodes are moved to b_io for writeback in batches.
1718 		 * The completion of the current batch does not necessarily
1719 		 * mean the overall work is done. So we keep looping as long
1720 		 * as made some progress on cleaning pages or inodes.
1721 		 */
1722 		if (progress)
1723 			continue;
1724 		/*
1725 		 * No more inodes for IO, bail
1726 		 */
1727 		if (list_empty(&wb->b_more_io))
1728 			break;
1729 		/*
1730 		 * Nothing written. Wait for some inode to
1731 		 * become available for writeback. Otherwise
1732 		 * we'll just busyloop.
1733 		 */
1734 		if (!list_empty(&wb->b_more_io))  {
1735 			trace_writeback_wait(wb, work);
1736 			inode = wb_inode(wb->b_more_io.prev);
1737 			spin_lock(&inode->i_lock);
1738 			spin_unlock(&wb->list_lock);
1739 			/* This function drops i_lock... */
1740 			inode_sleep_on_writeback(inode);
1741 			spin_lock(&wb->list_lock);
1742 		}
1743 	}
1744 	spin_unlock(&wb->list_lock);
1745 	blk_finish_plug(&plug);
1746 
1747 	return nr_pages - work->nr_pages;
1748 }
1749 
1750 /*
1751  * Return the next wb_writeback_work struct that hasn't been processed yet.
1752  */
1753 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1754 {
1755 	struct wb_writeback_work *work = NULL;
1756 
1757 	spin_lock_bh(&wb->work_lock);
1758 	if (!list_empty(&wb->work_list)) {
1759 		work = list_entry(wb->work_list.next,
1760 				  struct wb_writeback_work, list);
1761 		list_del_init(&work->list);
1762 	}
1763 	spin_unlock_bh(&wb->work_lock);
1764 	return work;
1765 }
1766 
1767 /*
1768  * Add in the number of potentially dirty inodes, because each inode
1769  * write can dirty pagecache in the underlying blockdev.
1770  */
1771 static unsigned long get_nr_dirty_pages(void)
1772 {
1773 	return global_page_state(NR_FILE_DIRTY) +
1774 		global_page_state(NR_UNSTABLE_NFS) +
1775 		get_nr_dirty_inodes();
1776 }
1777 
1778 static long wb_check_background_flush(struct bdi_writeback *wb)
1779 {
1780 	if (wb_over_bg_thresh(wb)) {
1781 
1782 		struct wb_writeback_work work = {
1783 			.nr_pages	= LONG_MAX,
1784 			.sync_mode	= WB_SYNC_NONE,
1785 			.for_background	= 1,
1786 			.range_cyclic	= 1,
1787 			.reason		= WB_REASON_BACKGROUND,
1788 		};
1789 
1790 		return wb_writeback(wb, &work);
1791 	}
1792 
1793 	return 0;
1794 }
1795 
1796 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1797 {
1798 	unsigned long expired;
1799 	long nr_pages;
1800 
1801 	/*
1802 	 * When set to zero, disable periodic writeback
1803 	 */
1804 	if (!dirty_writeback_interval)
1805 		return 0;
1806 
1807 	expired = wb->last_old_flush +
1808 			msecs_to_jiffies(dirty_writeback_interval * 10);
1809 	if (time_before(jiffies, expired))
1810 		return 0;
1811 
1812 	wb->last_old_flush = jiffies;
1813 	nr_pages = get_nr_dirty_pages();
1814 
1815 	if (nr_pages) {
1816 		struct wb_writeback_work work = {
1817 			.nr_pages	= nr_pages,
1818 			.sync_mode	= WB_SYNC_NONE,
1819 			.for_kupdate	= 1,
1820 			.range_cyclic	= 1,
1821 			.reason		= WB_REASON_PERIODIC,
1822 		};
1823 
1824 		return wb_writeback(wb, &work);
1825 	}
1826 
1827 	return 0;
1828 }
1829 
1830 /*
1831  * Retrieve work items and do the writeback they describe
1832  */
1833 static long wb_do_writeback(struct bdi_writeback *wb)
1834 {
1835 	struct wb_writeback_work *work;
1836 	long wrote = 0;
1837 
1838 	set_bit(WB_writeback_running, &wb->state);
1839 	while ((work = get_next_work_item(wb)) != NULL) {
1840 		struct wb_completion *done = work->done;
1841 
1842 		trace_writeback_exec(wb, work);
1843 
1844 		wrote += wb_writeback(wb, work);
1845 
1846 		if (work->auto_free)
1847 			kfree(work);
1848 		if (done && atomic_dec_and_test(&done->cnt))
1849 			wake_up_all(&wb->bdi->wb_waitq);
1850 	}
1851 
1852 	/*
1853 	 * Check for periodic writeback, kupdated() style
1854 	 */
1855 	wrote += wb_check_old_data_flush(wb);
1856 	wrote += wb_check_background_flush(wb);
1857 	clear_bit(WB_writeback_running, &wb->state);
1858 
1859 	return wrote;
1860 }
1861 
1862 /*
1863  * Handle writeback of dirty data for the device backed by this bdi. Also
1864  * reschedules periodically and does kupdated style flushing.
1865  */
1866 void wb_workfn(struct work_struct *work)
1867 {
1868 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1869 						struct bdi_writeback, dwork);
1870 	long pages_written;
1871 
1872 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1873 	current->flags |= PF_SWAPWRITE;
1874 
1875 	if (likely(!current_is_workqueue_rescuer() ||
1876 		   !test_bit(WB_registered, &wb->state))) {
1877 		/*
1878 		 * The normal path.  Keep writing back @wb until its
1879 		 * work_list is empty.  Note that this path is also taken
1880 		 * if @wb is shutting down even when we're running off the
1881 		 * rescuer as work_list needs to be drained.
1882 		 */
1883 		do {
1884 			pages_written = wb_do_writeback(wb);
1885 			trace_writeback_pages_written(pages_written);
1886 		} while (!list_empty(&wb->work_list));
1887 	} else {
1888 		/*
1889 		 * bdi_wq can't get enough workers and we're running off
1890 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1891 		 * enough for efficient IO.
1892 		 */
1893 		pages_written = writeback_inodes_wb(wb, 1024,
1894 						    WB_REASON_FORKER_THREAD);
1895 		trace_writeback_pages_written(pages_written);
1896 	}
1897 
1898 	if (!list_empty(&wb->work_list))
1899 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1900 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1901 		wb_wakeup_delayed(wb);
1902 
1903 	current->flags &= ~PF_SWAPWRITE;
1904 }
1905 
1906 /*
1907  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1908  * the whole world.
1909  */
1910 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1911 {
1912 	struct backing_dev_info *bdi;
1913 
1914 	if (!nr_pages)
1915 		nr_pages = get_nr_dirty_pages();
1916 
1917 	rcu_read_lock();
1918 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1919 		struct bdi_writeback *wb;
1920 
1921 		if (!bdi_has_dirty_io(bdi))
1922 			continue;
1923 
1924 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1925 			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1926 					   false, reason);
1927 	}
1928 	rcu_read_unlock();
1929 }
1930 
1931 /*
1932  * Wake up bdi's periodically to make sure dirtytime inodes gets
1933  * written back periodically.  We deliberately do *not* check the
1934  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1935  * kernel to be constantly waking up once there are any dirtytime
1936  * inodes on the system.  So instead we define a separate delayed work
1937  * function which gets called much more rarely.  (By default, only
1938  * once every 12 hours.)
1939  *
1940  * If there is any other write activity going on in the file system,
1941  * this function won't be necessary.  But if the only thing that has
1942  * happened on the file system is a dirtytime inode caused by an atime
1943  * update, we need this infrastructure below to make sure that inode
1944  * eventually gets pushed out to disk.
1945  */
1946 static void wakeup_dirtytime_writeback(struct work_struct *w);
1947 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1948 
1949 static void wakeup_dirtytime_writeback(struct work_struct *w)
1950 {
1951 	struct backing_dev_info *bdi;
1952 
1953 	rcu_read_lock();
1954 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1955 		struct bdi_writeback *wb;
1956 
1957 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1958 			if (!list_empty(&wb->b_dirty_time))
1959 				wb_wakeup(wb);
1960 	}
1961 	rcu_read_unlock();
1962 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1963 }
1964 
1965 static int __init start_dirtytime_writeback(void)
1966 {
1967 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1968 	return 0;
1969 }
1970 __initcall(start_dirtytime_writeback);
1971 
1972 int dirtytime_interval_handler(struct ctl_table *table, int write,
1973 			       void __user *buffer, size_t *lenp, loff_t *ppos)
1974 {
1975 	int ret;
1976 
1977 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1978 	if (ret == 0 && write)
1979 		mod_delayed_work(system_wq, &dirtytime_work, 0);
1980 	return ret;
1981 }
1982 
1983 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1984 {
1985 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1986 		struct dentry *dentry;
1987 		const char *name = "?";
1988 
1989 		dentry = d_find_alias(inode);
1990 		if (dentry) {
1991 			spin_lock(&dentry->d_lock);
1992 			name = (const char *) dentry->d_name.name;
1993 		}
1994 		printk(KERN_DEBUG
1995 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1996 		       current->comm, task_pid_nr(current), inode->i_ino,
1997 		       name, inode->i_sb->s_id);
1998 		if (dentry) {
1999 			spin_unlock(&dentry->d_lock);
2000 			dput(dentry);
2001 		}
2002 	}
2003 }
2004 
2005 /**
2006  *	__mark_inode_dirty -	internal function
2007  *	@inode: inode to mark
2008  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2009  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
2010  *  	mark_inode_dirty_sync.
2011  *
2012  * Put the inode on the super block's dirty list.
2013  *
2014  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2015  * dirty list only if it is hashed or if it refers to a blockdev.
2016  * If it was not hashed, it will never be added to the dirty list
2017  * even if it is later hashed, as it will have been marked dirty already.
2018  *
2019  * In short, make sure you hash any inodes _before_ you start marking
2020  * them dirty.
2021  *
2022  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2023  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2024  * the kernel-internal blockdev inode represents the dirtying time of the
2025  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2026  * page->mapping->host, so the page-dirtying time is recorded in the internal
2027  * blockdev inode.
2028  */
2029 void __mark_inode_dirty(struct inode *inode, int flags)
2030 {
2031 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2032 	struct super_block *sb = inode->i_sb;
2033 	int dirtytime;
2034 
2035 	trace_writeback_mark_inode_dirty(inode, flags);
2036 
2037 	/*
2038 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2039 	 * dirty the inode itself
2040 	 */
2041 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2042 		trace_writeback_dirty_inode_start(inode, flags);
2043 
2044 		if (sb->s_op->dirty_inode)
2045 			sb->s_op->dirty_inode(inode, flags);
2046 
2047 		trace_writeback_dirty_inode(inode, flags);
2048 	}
2049 	if (flags & I_DIRTY_INODE)
2050 		flags &= ~I_DIRTY_TIME;
2051 	dirtytime = flags & I_DIRTY_TIME;
2052 
2053 	/*
2054 	 * Paired with smp_mb() in __writeback_single_inode() for the
2055 	 * following lockless i_state test.  See there for details.
2056 	 */
2057 	smp_mb();
2058 
2059 	if (((inode->i_state & flags) == flags) ||
2060 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2061 		return;
2062 
2063 	if (unlikely(block_dump))
2064 		block_dump___mark_inode_dirty(inode);
2065 
2066 	spin_lock(&inode->i_lock);
2067 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2068 		goto out_unlock_inode;
2069 	if ((inode->i_state & flags) != flags) {
2070 		const int was_dirty = inode->i_state & I_DIRTY;
2071 
2072 		inode_attach_wb(inode, NULL);
2073 
2074 		if (flags & I_DIRTY_INODE)
2075 			inode->i_state &= ~I_DIRTY_TIME;
2076 		inode->i_state |= flags;
2077 
2078 		/*
2079 		 * If the inode is being synced, just update its dirty state.
2080 		 * The unlocker will place the inode on the appropriate
2081 		 * superblock list, based upon its state.
2082 		 */
2083 		if (inode->i_state & I_SYNC)
2084 			goto out_unlock_inode;
2085 
2086 		/*
2087 		 * Only add valid (hashed) inodes to the superblock's
2088 		 * dirty list.  Add blockdev inodes as well.
2089 		 */
2090 		if (!S_ISBLK(inode->i_mode)) {
2091 			if (inode_unhashed(inode))
2092 				goto out_unlock_inode;
2093 		}
2094 		if (inode->i_state & I_FREEING)
2095 			goto out_unlock_inode;
2096 
2097 		/*
2098 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2099 		 * reposition it (that would break b_dirty time-ordering).
2100 		 */
2101 		if (!was_dirty) {
2102 			struct bdi_writeback *wb;
2103 			struct list_head *dirty_list;
2104 			bool wakeup_bdi = false;
2105 
2106 			wb = locked_inode_to_wb_and_lock_list(inode);
2107 
2108 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2109 			     !test_bit(WB_registered, &wb->state),
2110 			     "bdi-%s not registered\n", wb->bdi->name);
2111 
2112 			inode->dirtied_when = jiffies;
2113 			if (dirtytime)
2114 				inode->dirtied_time_when = jiffies;
2115 
2116 			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2117 				dirty_list = &wb->b_dirty;
2118 			else
2119 				dirty_list = &wb->b_dirty_time;
2120 
2121 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2122 							       dirty_list);
2123 
2124 			spin_unlock(&wb->list_lock);
2125 			trace_writeback_dirty_inode_enqueue(inode);
2126 
2127 			/*
2128 			 * If this is the first dirty inode for this bdi,
2129 			 * we have to wake-up the corresponding bdi thread
2130 			 * to make sure background write-back happens
2131 			 * later.
2132 			 */
2133 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2134 				wb_wakeup_delayed(wb);
2135 			return;
2136 		}
2137 	}
2138 out_unlock_inode:
2139 	spin_unlock(&inode->i_lock);
2140 
2141 #undef I_DIRTY_INODE
2142 }
2143 EXPORT_SYMBOL(__mark_inode_dirty);
2144 
2145 /*
2146  * The @s_sync_lock is used to serialise concurrent sync operations
2147  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2148  * Concurrent callers will block on the s_sync_lock rather than doing contending
2149  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2150  * has been issued up to the time this function is enter is guaranteed to be
2151  * completed by the time we have gained the lock and waited for all IO that is
2152  * in progress regardless of the order callers are granted the lock.
2153  */
2154 static void wait_sb_inodes(struct super_block *sb)
2155 {
2156 	struct inode *inode, *old_inode = NULL;
2157 
2158 	/*
2159 	 * We need to be protected against the filesystem going from
2160 	 * r/o to r/w or vice versa.
2161 	 */
2162 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2163 
2164 	mutex_lock(&sb->s_sync_lock);
2165 	spin_lock(&sb->s_inode_list_lock);
2166 
2167 	/*
2168 	 * Data integrity sync. Must wait for all pages under writeback,
2169 	 * because there may have been pages dirtied before our sync
2170 	 * call, but which had writeout started before we write it out.
2171 	 * In which case, the inode may not be on the dirty list, but
2172 	 * we still have to wait for that writeout.
2173 	 */
2174 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2175 		struct address_space *mapping = inode->i_mapping;
2176 
2177 		spin_lock(&inode->i_lock);
2178 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2179 		    (mapping->nrpages == 0)) {
2180 			spin_unlock(&inode->i_lock);
2181 			continue;
2182 		}
2183 		__iget(inode);
2184 		spin_unlock(&inode->i_lock);
2185 		spin_unlock(&sb->s_inode_list_lock);
2186 
2187 		/*
2188 		 * We hold a reference to 'inode' so it couldn't have been
2189 		 * removed from s_inodes list while we dropped the
2190 		 * s_inode_list_lock.  We cannot iput the inode now as we can
2191 		 * be holding the last reference and we cannot iput it under
2192 		 * s_inode_list_lock. So we keep the reference and iput it
2193 		 * later.
2194 		 */
2195 		iput(old_inode);
2196 		old_inode = inode;
2197 
2198 		/*
2199 		 * We keep the error status of individual mapping so that
2200 		 * applications can catch the writeback error using fsync(2).
2201 		 * See filemap_fdatawait_keep_errors() for details.
2202 		 */
2203 		filemap_fdatawait_keep_errors(mapping);
2204 
2205 		cond_resched();
2206 
2207 		spin_lock(&sb->s_inode_list_lock);
2208 	}
2209 	spin_unlock(&sb->s_inode_list_lock);
2210 	iput(old_inode);
2211 	mutex_unlock(&sb->s_sync_lock);
2212 }
2213 
2214 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2215 				     enum wb_reason reason, bool skip_if_busy)
2216 {
2217 	DEFINE_WB_COMPLETION_ONSTACK(done);
2218 	struct wb_writeback_work work = {
2219 		.sb			= sb,
2220 		.sync_mode		= WB_SYNC_NONE,
2221 		.tagged_writepages	= 1,
2222 		.done			= &done,
2223 		.nr_pages		= nr,
2224 		.reason			= reason,
2225 	};
2226 	struct backing_dev_info *bdi = sb->s_bdi;
2227 
2228 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2229 		return;
2230 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2231 
2232 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2233 	wb_wait_for_completion(bdi, &done);
2234 }
2235 
2236 /**
2237  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2238  * @sb: the superblock
2239  * @nr: the number of pages to write
2240  * @reason: reason why some writeback work initiated
2241  *
2242  * Start writeback on some inodes on this super_block. No guarantees are made
2243  * on how many (if any) will be written, and this function does not wait
2244  * for IO completion of submitted IO.
2245  */
2246 void writeback_inodes_sb_nr(struct super_block *sb,
2247 			    unsigned long nr,
2248 			    enum wb_reason reason)
2249 {
2250 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2251 }
2252 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2253 
2254 /**
2255  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2256  * @sb: the superblock
2257  * @reason: reason why some writeback work was initiated
2258  *
2259  * Start writeback on some inodes on this super_block. No guarantees are made
2260  * on how many (if any) will be written, and this function does not wait
2261  * for IO completion of submitted IO.
2262  */
2263 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2264 {
2265 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2266 }
2267 EXPORT_SYMBOL(writeback_inodes_sb);
2268 
2269 /**
2270  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2271  * @sb: the superblock
2272  * @nr: the number of pages to write
2273  * @reason: the reason of writeback
2274  *
2275  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2276  * Returns 1 if writeback was started, 0 if not.
2277  */
2278 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2279 				   enum wb_reason reason)
2280 {
2281 	if (!down_read_trylock(&sb->s_umount))
2282 		return false;
2283 
2284 	__writeback_inodes_sb_nr(sb, nr, reason, true);
2285 	up_read(&sb->s_umount);
2286 	return true;
2287 }
2288 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2289 
2290 /**
2291  * try_to_writeback_inodes_sb - try to start writeback if none underway
2292  * @sb: the superblock
2293  * @reason: reason why some writeback work was initiated
2294  *
2295  * Implement by try_to_writeback_inodes_sb_nr()
2296  * Returns 1 if writeback was started, 0 if not.
2297  */
2298 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2299 {
2300 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2301 }
2302 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2303 
2304 /**
2305  * sync_inodes_sb	-	sync sb inode pages
2306  * @sb: the superblock
2307  *
2308  * This function writes and waits on any dirty inode belonging to this
2309  * super_block.
2310  */
2311 void sync_inodes_sb(struct super_block *sb)
2312 {
2313 	DEFINE_WB_COMPLETION_ONSTACK(done);
2314 	struct wb_writeback_work work = {
2315 		.sb		= sb,
2316 		.sync_mode	= WB_SYNC_ALL,
2317 		.nr_pages	= LONG_MAX,
2318 		.range_cyclic	= 0,
2319 		.done		= &done,
2320 		.reason		= WB_REASON_SYNC,
2321 		.for_sync	= 1,
2322 	};
2323 	struct backing_dev_info *bdi = sb->s_bdi;
2324 
2325 	/*
2326 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2327 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2328 	 * bdi_has_dirty() need to be written out too.
2329 	 */
2330 	if (bdi == &noop_backing_dev_info)
2331 		return;
2332 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2333 
2334 	bdi_split_work_to_wbs(bdi, &work, false);
2335 	wb_wait_for_completion(bdi, &done);
2336 
2337 	wait_sb_inodes(sb);
2338 }
2339 EXPORT_SYMBOL(sync_inodes_sb);
2340 
2341 /**
2342  * write_inode_now	-	write an inode to disk
2343  * @inode: inode to write to disk
2344  * @sync: whether the write should be synchronous or not
2345  *
2346  * This function commits an inode to disk immediately if it is dirty. This is
2347  * primarily needed by knfsd.
2348  *
2349  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2350  */
2351 int write_inode_now(struct inode *inode, int sync)
2352 {
2353 	struct writeback_control wbc = {
2354 		.nr_to_write = LONG_MAX,
2355 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2356 		.range_start = 0,
2357 		.range_end = LLONG_MAX,
2358 	};
2359 
2360 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2361 		wbc.nr_to_write = 0;
2362 
2363 	might_sleep();
2364 	return writeback_single_inode(inode, &wbc);
2365 }
2366 EXPORT_SYMBOL(write_inode_now);
2367 
2368 /**
2369  * sync_inode - write an inode and its pages to disk.
2370  * @inode: the inode to sync
2371  * @wbc: controls the writeback mode
2372  *
2373  * sync_inode() will write an inode and its pages to disk.  It will also
2374  * correctly update the inode on its superblock's dirty inode lists and will
2375  * update inode->i_state.
2376  *
2377  * The caller must have a ref on the inode.
2378  */
2379 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2380 {
2381 	return writeback_single_inode(inode, wbc);
2382 }
2383 EXPORT_SYMBOL(sync_inode);
2384 
2385 /**
2386  * sync_inode_metadata - write an inode to disk
2387  * @inode: the inode to sync
2388  * @wait: wait for I/O to complete.
2389  *
2390  * Write an inode to disk and adjust its dirty state after completion.
2391  *
2392  * Note: only writes the actual inode, no associated data or other metadata.
2393  */
2394 int sync_inode_metadata(struct inode *inode, int wait)
2395 {
2396 	struct writeback_control wbc = {
2397 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2398 		.nr_to_write = 0, /* metadata-only */
2399 	};
2400 
2401 	return sync_inode(inode, &wbc);
2402 }
2403 EXPORT_SYMBOL(sync_inode_metadata);
2404