xref: /openbmc/linux/fs/fs-writeback.c (revision 0a907292)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 
124 	list_move(&inode->i_io_list, head);
125 
126 	/* dirty_time doesn't count as dirty_io until expiration */
127 	if (head != &wb->b_dirty_time)
128 		return wb_io_lists_populated(wb);
129 
130 	wb_io_lists_depopulated(wb);
131 	return false;
132 }
133 
134 static void wb_wakeup(struct bdi_writeback *wb)
135 {
136 	spin_lock_bh(&wb->work_lock);
137 	if (test_bit(WB_registered, &wb->state))
138 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
139 	spin_unlock_bh(&wb->work_lock);
140 }
141 
142 static void finish_writeback_work(struct bdi_writeback *wb,
143 				  struct wb_writeback_work *work)
144 {
145 	struct wb_completion *done = work->done;
146 
147 	if (work->auto_free)
148 		kfree(work);
149 	if (done) {
150 		wait_queue_head_t *waitq = done->waitq;
151 
152 		/* @done can't be accessed after the following dec */
153 		if (atomic_dec_and_test(&done->cnt))
154 			wake_up_all(waitq);
155 	}
156 }
157 
158 static void wb_queue_work(struct bdi_writeback *wb,
159 			  struct wb_writeback_work *work)
160 {
161 	trace_writeback_queue(wb, work);
162 
163 	if (work->done)
164 		atomic_inc(&work->done->cnt);
165 
166 	spin_lock_bh(&wb->work_lock);
167 
168 	if (test_bit(WB_registered, &wb->state)) {
169 		list_add_tail(&work->list, &wb->work_list);
170 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
171 	} else
172 		finish_writeback_work(wb, work);
173 
174 	spin_unlock_bh(&wb->work_lock);
175 }
176 
177 /**
178  * wb_wait_for_completion - wait for completion of bdi_writeback_works
179  * @done: target wb_completion
180  *
181  * Wait for one or more work items issued to @bdi with their ->done field
182  * set to @done, which should have been initialized with
183  * DEFINE_WB_COMPLETION().  This function returns after all such work items
184  * are completed.  Work items which are waited upon aren't freed
185  * automatically on completion.
186  */
187 void wb_wait_for_completion(struct wb_completion *done)
188 {
189 	atomic_dec(&done->cnt);		/* put down the initial count */
190 	wait_event(*done->waitq, !atomic_read(&done->cnt));
191 }
192 
193 #ifdef CONFIG_CGROUP_WRITEBACK
194 
195 /*
196  * Parameters for foreign inode detection, see wbc_detach_inode() to see
197  * how they're used.
198  *
199  * These paramters are inherently heuristical as the detection target
200  * itself is fuzzy.  All we want to do is detaching an inode from the
201  * current owner if it's being written to by some other cgroups too much.
202  *
203  * The current cgroup writeback is built on the assumption that multiple
204  * cgroups writing to the same inode concurrently is very rare and a mode
205  * of operation which isn't well supported.  As such, the goal is not
206  * taking too long when a different cgroup takes over an inode while
207  * avoiding too aggressive flip-flops from occasional foreign writes.
208  *
209  * We record, very roughly, 2s worth of IO time history and if more than
210  * half of that is foreign, trigger the switch.  The recording is quantized
211  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
212  * writes smaller than 1/8 of avg size are ignored.
213  */
214 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
215 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
216 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
217 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
218 
219 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
220 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221 					/* each slot's duration is 2s / 16 */
222 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
223 					/* if foreign slots >= 8, switch */
224 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
225 					/* one round can affect upto 5 slots */
226 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
227 
228 /*
229  * Maximum inodes per isw.  A specific value has been chosen to make
230  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
231  */
232 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233                                 / sizeof(struct inode *))
234 
235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236 static struct workqueue_struct *isw_wq;
237 
238 void __inode_attach_wb(struct inode *inode, struct page *page)
239 {
240 	struct backing_dev_info *bdi = inode_to_bdi(inode);
241 	struct bdi_writeback *wb = NULL;
242 
243 	if (inode_cgwb_enabled(inode)) {
244 		struct cgroup_subsys_state *memcg_css;
245 
246 		if (page) {
247 			memcg_css = mem_cgroup_css_from_page(page);
248 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
249 		} else {
250 			/* must pin memcg_css, see wb_get_create() */
251 			memcg_css = task_get_css(current, memory_cgrp_id);
252 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
253 			css_put(memcg_css);
254 		}
255 	}
256 
257 	if (!wb)
258 		wb = &bdi->wb;
259 
260 	/*
261 	 * There may be multiple instances of this function racing to
262 	 * update the same inode.  Use cmpxchg() to tell the winner.
263 	 */
264 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
265 		wb_put(wb);
266 }
267 EXPORT_SYMBOL_GPL(__inode_attach_wb);
268 
269 /**
270  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271  * @inode: inode of interest with i_lock held
272  * @wb: target bdi_writeback
273  *
274  * Remove the inode from wb's io lists and if necessarily put onto b_attached
275  * list.  Only inodes attached to cgwb's are kept on this list.
276  */
277 static void inode_cgwb_move_to_attached(struct inode *inode,
278 					struct bdi_writeback *wb)
279 {
280 	assert_spin_locked(&wb->list_lock);
281 	assert_spin_locked(&inode->i_lock);
282 
283 	inode->i_state &= ~I_SYNC_QUEUED;
284 	if (wb != &wb->bdi->wb)
285 		list_move(&inode->i_io_list, &wb->b_attached);
286 	else
287 		list_del_init(&inode->i_io_list);
288 	wb_io_lists_depopulated(wb);
289 }
290 
291 /**
292  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293  * @inode: inode of interest with i_lock held
294  *
295  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
296  * held on entry and is released on return.  The returned wb is guaranteed
297  * to stay @inode's associated wb until its list_lock is released.
298  */
299 static struct bdi_writeback *
300 locked_inode_to_wb_and_lock_list(struct inode *inode)
301 	__releases(&inode->i_lock)
302 	__acquires(&wb->list_lock)
303 {
304 	while (true) {
305 		struct bdi_writeback *wb = inode_to_wb(inode);
306 
307 		/*
308 		 * inode_to_wb() association is protected by both
309 		 * @inode->i_lock and @wb->list_lock but list_lock nests
310 		 * outside i_lock.  Drop i_lock and verify that the
311 		 * association hasn't changed after acquiring list_lock.
312 		 */
313 		wb_get(wb);
314 		spin_unlock(&inode->i_lock);
315 		spin_lock(&wb->list_lock);
316 
317 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
318 		if (likely(wb == inode->i_wb)) {
319 			wb_put(wb);	/* @inode already has ref */
320 			return wb;
321 		}
322 
323 		spin_unlock(&wb->list_lock);
324 		wb_put(wb);
325 		cpu_relax();
326 		spin_lock(&inode->i_lock);
327 	}
328 }
329 
330 /**
331  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332  * @inode: inode of interest
333  *
334  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
335  * on entry.
336  */
337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338 	__acquires(&wb->list_lock)
339 {
340 	spin_lock(&inode->i_lock);
341 	return locked_inode_to_wb_and_lock_list(inode);
342 }
343 
344 struct inode_switch_wbs_context {
345 	struct rcu_work		work;
346 
347 	/*
348 	 * Multiple inodes can be switched at once.  The switching procedure
349 	 * consists of two parts, separated by a RCU grace period.  To make
350 	 * sure that the second part is executed for each inode gone through
351 	 * the first part, all inode pointers are placed into a NULL-terminated
352 	 * array embedded into struct inode_switch_wbs_context.  Otherwise
353 	 * an inode could be left in a non-consistent state.
354 	 */
355 	struct bdi_writeback	*new_wb;
356 	struct inode		*inodes[];
357 };
358 
359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360 {
361 	down_write(&bdi->wb_switch_rwsem);
362 }
363 
364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
365 {
366 	up_write(&bdi->wb_switch_rwsem);
367 }
368 
369 static bool inode_do_switch_wbs(struct inode *inode,
370 				struct bdi_writeback *old_wb,
371 				struct bdi_writeback *new_wb)
372 {
373 	struct address_space *mapping = inode->i_mapping;
374 	XA_STATE(xas, &mapping->i_pages, 0);
375 	struct page *page;
376 	bool switched = false;
377 
378 	spin_lock(&inode->i_lock);
379 	xa_lock_irq(&mapping->i_pages);
380 
381 	/*
382 	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383 	 * path owns the inode and we shouldn't modify ->i_io_list.
384 	 */
385 	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
386 		goto skip_switch;
387 
388 	trace_inode_switch_wbs(inode, old_wb, new_wb);
389 
390 	/*
391 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 	 * pages actually under writeback.
394 	 */
395 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396 		if (PageDirty(page)) {
397 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
398 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
399 		}
400 	}
401 
402 	xas_set(&xas, 0);
403 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404 		WARN_ON_ONCE(!PageWriteback(page));
405 		dec_wb_stat(old_wb, WB_WRITEBACK);
406 		inc_wb_stat(new_wb, WB_WRITEBACK);
407 	}
408 
409 	if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
410 		atomic_dec(&old_wb->writeback_inodes);
411 		atomic_inc(&new_wb->writeback_inodes);
412 	}
413 
414 	wb_get(new_wb);
415 
416 	/*
417 	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
418 	 * the specific list @inode was on is ignored and the @inode is put on
419 	 * ->b_dirty which is always correct including from ->b_dirty_time.
420 	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
421 	 * was clean, it means it was on the b_attached list, so move it onto
422 	 * the b_attached list of @new_wb.
423 	 */
424 	if (!list_empty(&inode->i_io_list)) {
425 		inode->i_wb = new_wb;
426 
427 		if (inode->i_state & I_DIRTY_ALL) {
428 			struct inode *pos;
429 
430 			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
431 				if (time_after_eq(inode->dirtied_when,
432 						  pos->dirtied_when))
433 					break;
434 			inode_io_list_move_locked(inode, new_wb,
435 						  pos->i_io_list.prev);
436 		} else {
437 			inode_cgwb_move_to_attached(inode, new_wb);
438 		}
439 	} else {
440 		inode->i_wb = new_wb;
441 	}
442 
443 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
444 	inode->i_wb_frn_winner = 0;
445 	inode->i_wb_frn_avg_time = 0;
446 	inode->i_wb_frn_history = 0;
447 	switched = true;
448 skip_switch:
449 	/*
450 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
451 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
452 	 */
453 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
454 
455 	xa_unlock_irq(&mapping->i_pages);
456 	spin_unlock(&inode->i_lock);
457 
458 	return switched;
459 }
460 
461 static void inode_switch_wbs_work_fn(struct work_struct *work)
462 {
463 	struct inode_switch_wbs_context *isw =
464 		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
465 	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
466 	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
467 	struct bdi_writeback *new_wb = isw->new_wb;
468 	unsigned long nr_switched = 0;
469 	struct inode **inodep;
470 
471 	/*
472 	 * If @inode switches cgwb membership while sync_inodes_sb() is
473 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
474 	 */
475 	down_read(&bdi->wb_switch_rwsem);
476 
477 	/*
478 	 * By the time control reaches here, RCU grace period has passed
479 	 * since I_WB_SWITCH assertion and all wb stat update transactions
480 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
481 	 * synchronizing against the i_pages lock.
482 	 *
483 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
484 	 * gives us exclusion against all wb related operations on @inode
485 	 * including IO list manipulations and stat updates.
486 	 */
487 	if (old_wb < new_wb) {
488 		spin_lock(&old_wb->list_lock);
489 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
490 	} else {
491 		spin_lock(&new_wb->list_lock);
492 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
493 	}
494 
495 	for (inodep = isw->inodes; *inodep; inodep++) {
496 		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
497 		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
498 			nr_switched++;
499 	}
500 
501 	spin_unlock(&new_wb->list_lock);
502 	spin_unlock(&old_wb->list_lock);
503 
504 	up_read(&bdi->wb_switch_rwsem);
505 
506 	if (nr_switched) {
507 		wb_wakeup(new_wb);
508 		wb_put_many(old_wb, nr_switched);
509 	}
510 
511 	for (inodep = isw->inodes; *inodep; inodep++)
512 		iput(*inodep);
513 	wb_put(new_wb);
514 	kfree(isw);
515 	atomic_dec(&isw_nr_in_flight);
516 }
517 
518 static bool inode_prepare_wbs_switch(struct inode *inode,
519 				     struct bdi_writeback *new_wb)
520 {
521 	/*
522 	 * Paired with smp_mb() in cgroup_writeback_umount().
523 	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
524 	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
525 	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
526 	 */
527 	smp_mb();
528 
529 	if (IS_DAX(inode))
530 		return false;
531 
532 	/* while holding I_WB_SWITCH, no one else can update the association */
533 	spin_lock(&inode->i_lock);
534 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
535 	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
536 	    inode_to_wb(inode) == new_wb) {
537 		spin_unlock(&inode->i_lock);
538 		return false;
539 	}
540 	inode->i_state |= I_WB_SWITCH;
541 	__iget(inode);
542 	spin_unlock(&inode->i_lock);
543 
544 	return true;
545 }
546 
547 /**
548  * inode_switch_wbs - change the wb association of an inode
549  * @inode: target inode
550  * @new_wb_id: ID of the new wb
551  *
552  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
553  * switching is performed asynchronously and may fail silently.
554  */
555 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
556 {
557 	struct backing_dev_info *bdi = inode_to_bdi(inode);
558 	struct cgroup_subsys_state *memcg_css;
559 	struct inode_switch_wbs_context *isw;
560 
561 	/* noop if seems to be already in progress */
562 	if (inode->i_state & I_WB_SWITCH)
563 		return;
564 
565 	/* avoid queueing a new switch if too many are already in flight */
566 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
567 		return;
568 
569 	isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC);
570 	if (!isw)
571 		return;
572 
573 	atomic_inc(&isw_nr_in_flight);
574 
575 	/* find and pin the new wb */
576 	rcu_read_lock();
577 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
578 	if (memcg_css && !css_tryget(memcg_css))
579 		memcg_css = NULL;
580 	rcu_read_unlock();
581 	if (!memcg_css)
582 		goto out_free;
583 
584 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
585 	css_put(memcg_css);
586 	if (!isw->new_wb)
587 		goto out_free;
588 
589 	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
590 		goto out_free;
591 
592 	isw->inodes[0] = inode;
593 
594 	/*
595 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
596 	 * the RCU protected stat update paths to grab the i_page
597 	 * lock so that stat transfer can synchronize against them.
598 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
599 	 */
600 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
601 	queue_rcu_work(isw_wq, &isw->work);
602 	return;
603 
604 out_free:
605 	atomic_dec(&isw_nr_in_flight);
606 	if (isw->new_wb)
607 		wb_put(isw->new_wb);
608 	kfree(isw);
609 }
610 
611 /**
612  * cleanup_offline_cgwb - detach associated inodes
613  * @wb: target wb
614  *
615  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
616  * to eventually release the dying @wb.  Returns %true if not all inodes were
617  * switched and the function has to be restarted.
618  */
619 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
620 {
621 	struct cgroup_subsys_state *memcg_css;
622 	struct inode_switch_wbs_context *isw;
623 	struct inode *inode;
624 	int nr;
625 	bool restart = false;
626 
627 	isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW),
628 		      GFP_KERNEL);
629 	if (!isw)
630 		return restart;
631 
632 	atomic_inc(&isw_nr_in_flight);
633 
634 	for (memcg_css = wb->memcg_css->parent; memcg_css;
635 	     memcg_css = memcg_css->parent) {
636 		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
637 		if (isw->new_wb)
638 			break;
639 	}
640 	if (unlikely(!isw->new_wb))
641 		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
642 
643 	nr = 0;
644 	spin_lock(&wb->list_lock);
645 	list_for_each_entry(inode, &wb->b_attached, i_io_list) {
646 		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
647 			continue;
648 
649 		isw->inodes[nr++] = inode;
650 
651 		if (nr >= WB_MAX_INODES_PER_ISW - 1) {
652 			restart = true;
653 			break;
654 		}
655 	}
656 	spin_unlock(&wb->list_lock);
657 
658 	/* no attached inodes? bail out */
659 	if (nr == 0) {
660 		atomic_dec(&isw_nr_in_flight);
661 		wb_put(isw->new_wb);
662 		kfree(isw);
663 		return restart;
664 	}
665 
666 	/*
667 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
668 	 * the RCU protected stat update paths to grab the i_page
669 	 * lock so that stat transfer can synchronize against them.
670 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
671 	 */
672 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
673 	queue_rcu_work(isw_wq, &isw->work);
674 
675 	return restart;
676 }
677 
678 /**
679  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
680  * @wbc: writeback_control of interest
681  * @inode: target inode
682  *
683  * @inode is locked and about to be written back under the control of @wbc.
684  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
685  * writeback completion, wbc_detach_inode() should be called.  This is used
686  * to track the cgroup writeback context.
687  */
688 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
689 				 struct inode *inode)
690 {
691 	if (!inode_cgwb_enabled(inode)) {
692 		spin_unlock(&inode->i_lock);
693 		return;
694 	}
695 
696 	wbc->wb = inode_to_wb(inode);
697 	wbc->inode = inode;
698 
699 	wbc->wb_id = wbc->wb->memcg_css->id;
700 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
701 	wbc->wb_tcand_id = 0;
702 	wbc->wb_bytes = 0;
703 	wbc->wb_lcand_bytes = 0;
704 	wbc->wb_tcand_bytes = 0;
705 
706 	wb_get(wbc->wb);
707 	spin_unlock(&inode->i_lock);
708 
709 	/*
710 	 * A dying wb indicates that either the blkcg associated with the
711 	 * memcg changed or the associated memcg is dying.  In the first
712 	 * case, a replacement wb should already be available and we should
713 	 * refresh the wb immediately.  In the second case, trying to
714 	 * refresh will keep failing.
715 	 */
716 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
717 		inode_switch_wbs(inode, wbc->wb_id);
718 }
719 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
720 
721 /**
722  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
723  * @wbc: writeback_control of the just finished writeback
724  *
725  * To be called after a writeback attempt of an inode finishes and undoes
726  * wbc_attach_and_unlock_inode().  Can be called under any context.
727  *
728  * As concurrent write sharing of an inode is expected to be very rare and
729  * memcg only tracks page ownership on first-use basis severely confining
730  * the usefulness of such sharing, cgroup writeback tracks ownership
731  * per-inode.  While the support for concurrent write sharing of an inode
732  * is deemed unnecessary, an inode being written to by different cgroups at
733  * different points in time is a lot more common, and, more importantly,
734  * charging only by first-use can too readily lead to grossly incorrect
735  * behaviors (single foreign page can lead to gigabytes of writeback to be
736  * incorrectly attributed).
737  *
738  * To resolve this issue, cgroup writeback detects the majority dirtier of
739  * an inode and transfers the ownership to it.  To avoid unnnecessary
740  * oscillation, the detection mechanism keeps track of history and gives
741  * out the switch verdict only if the foreign usage pattern is stable over
742  * a certain amount of time and/or writeback attempts.
743  *
744  * On each writeback attempt, @wbc tries to detect the majority writer
745  * using Boyer-Moore majority vote algorithm.  In addition to the byte
746  * count from the majority voting, it also counts the bytes written for the
747  * current wb and the last round's winner wb (max of last round's current
748  * wb, the winner from two rounds ago, and the last round's majority
749  * candidate).  Keeping track of the historical winner helps the algorithm
750  * to semi-reliably detect the most active writer even when it's not the
751  * absolute majority.
752  *
753  * Once the winner of the round is determined, whether the winner is
754  * foreign or not and how much IO time the round consumed is recorded in
755  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
756  * over a certain threshold, the switch verdict is given.
757  */
758 void wbc_detach_inode(struct writeback_control *wbc)
759 {
760 	struct bdi_writeback *wb = wbc->wb;
761 	struct inode *inode = wbc->inode;
762 	unsigned long avg_time, max_bytes, max_time;
763 	u16 history;
764 	int max_id;
765 
766 	if (!wb)
767 		return;
768 
769 	history = inode->i_wb_frn_history;
770 	avg_time = inode->i_wb_frn_avg_time;
771 
772 	/* pick the winner of this round */
773 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
774 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
775 		max_id = wbc->wb_id;
776 		max_bytes = wbc->wb_bytes;
777 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
778 		max_id = wbc->wb_lcand_id;
779 		max_bytes = wbc->wb_lcand_bytes;
780 	} else {
781 		max_id = wbc->wb_tcand_id;
782 		max_bytes = wbc->wb_tcand_bytes;
783 	}
784 
785 	/*
786 	 * Calculate the amount of IO time the winner consumed and fold it
787 	 * into the running average kept per inode.  If the consumed IO
788 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
789 	 * deciding whether to switch or not.  This is to prevent one-off
790 	 * small dirtiers from skewing the verdict.
791 	 */
792 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
793 				wb->avg_write_bandwidth);
794 	if (avg_time)
795 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
796 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
797 	else
798 		avg_time = max_time;	/* immediate catch up on first run */
799 
800 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
801 		int slots;
802 
803 		/*
804 		 * The switch verdict is reached if foreign wb's consume
805 		 * more than a certain proportion of IO time in a
806 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
807 		 * history mask where each bit represents one sixteenth of
808 		 * the period.  Determine the number of slots to shift into
809 		 * history from @max_time.
810 		 */
811 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
812 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
813 		history <<= slots;
814 		if (wbc->wb_id != max_id)
815 			history |= (1U << slots) - 1;
816 
817 		if (history)
818 			trace_inode_foreign_history(inode, wbc, history);
819 
820 		/*
821 		 * Switch if the current wb isn't the consistent winner.
822 		 * If there are multiple closely competing dirtiers, the
823 		 * inode may switch across them repeatedly over time, which
824 		 * is okay.  The main goal is avoiding keeping an inode on
825 		 * the wrong wb for an extended period of time.
826 		 */
827 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
828 			inode_switch_wbs(inode, max_id);
829 	}
830 
831 	/*
832 	 * Multiple instances of this function may race to update the
833 	 * following fields but we don't mind occassional inaccuracies.
834 	 */
835 	inode->i_wb_frn_winner = max_id;
836 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
837 	inode->i_wb_frn_history = history;
838 
839 	wb_put(wbc->wb);
840 	wbc->wb = NULL;
841 }
842 EXPORT_SYMBOL_GPL(wbc_detach_inode);
843 
844 /**
845  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
846  * @wbc: writeback_control of the writeback in progress
847  * @page: page being written out
848  * @bytes: number of bytes being written out
849  *
850  * @bytes from @page are about to written out during the writeback
851  * controlled by @wbc.  Keep the book for foreign inode detection.  See
852  * wbc_detach_inode().
853  */
854 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
855 			      size_t bytes)
856 {
857 	struct cgroup_subsys_state *css;
858 	int id;
859 
860 	/*
861 	 * pageout() path doesn't attach @wbc to the inode being written
862 	 * out.  This is intentional as we don't want the function to block
863 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
864 	 * regular writeback instead of writing things out itself.
865 	 */
866 	if (!wbc->wb || wbc->no_cgroup_owner)
867 		return;
868 
869 	css = mem_cgroup_css_from_page(page);
870 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
871 	if (!(css->flags & CSS_ONLINE))
872 		return;
873 
874 	id = css->id;
875 
876 	if (id == wbc->wb_id) {
877 		wbc->wb_bytes += bytes;
878 		return;
879 	}
880 
881 	if (id == wbc->wb_lcand_id)
882 		wbc->wb_lcand_bytes += bytes;
883 
884 	/* Boyer-Moore majority vote algorithm */
885 	if (!wbc->wb_tcand_bytes)
886 		wbc->wb_tcand_id = id;
887 	if (id == wbc->wb_tcand_id)
888 		wbc->wb_tcand_bytes += bytes;
889 	else
890 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
891 }
892 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
893 
894 /**
895  * inode_congested - test whether an inode is congested
896  * @inode: inode to test for congestion (may be NULL)
897  * @cong_bits: mask of WB_[a]sync_congested bits to test
898  *
899  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
900  * bits to test and the return value is the mask of set bits.
901  *
902  * If cgroup writeback is enabled for @inode, the congestion state is
903  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
904  * associated with @inode is congested; otherwise, the root wb's congestion
905  * state is used.
906  *
907  * @inode is allowed to be NULL as this function is often called on
908  * mapping->host which is NULL for the swapper space.
909  */
910 int inode_congested(struct inode *inode, int cong_bits)
911 {
912 	/*
913 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
914 	 * Start transaction iff ->i_wb is visible.
915 	 */
916 	if (inode && inode_to_wb_is_valid(inode)) {
917 		struct bdi_writeback *wb;
918 		struct wb_lock_cookie lock_cookie = {};
919 		bool congested;
920 
921 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
922 		congested = wb_congested(wb, cong_bits);
923 		unlocked_inode_to_wb_end(inode, &lock_cookie);
924 		return congested;
925 	}
926 
927 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
928 }
929 EXPORT_SYMBOL_GPL(inode_congested);
930 
931 /**
932  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
933  * @wb: target bdi_writeback to split @nr_pages to
934  * @nr_pages: number of pages to write for the whole bdi
935  *
936  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
937  * relation to the total write bandwidth of all wb's w/ dirty inodes on
938  * @wb->bdi.
939  */
940 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
941 {
942 	unsigned long this_bw = wb->avg_write_bandwidth;
943 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
944 
945 	if (nr_pages == LONG_MAX)
946 		return LONG_MAX;
947 
948 	/*
949 	 * This may be called on clean wb's and proportional distribution
950 	 * may not make sense, just use the original @nr_pages in those
951 	 * cases.  In general, we wanna err on the side of writing more.
952 	 */
953 	if (!tot_bw || this_bw >= tot_bw)
954 		return nr_pages;
955 	else
956 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
957 }
958 
959 /**
960  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
961  * @bdi: target backing_dev_info
962  * @base_work: wb_writeback_work to issue
963  * @skip_if_busy: skip wb's which already have writeback in progress
964  *
965  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
966  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
967  * distributed to the busy wbs according to each wb's proportion in the
968  * total active write bandwidth of @bdi.
969  */
970 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
971 				  struct wb_writeback_work *base_work,
972 				  bool skip_if_busy)
973 {
974 	struct bdi_writeback *last_wb = NULL;
975 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
976 					      struct bdi_writeback, bdi_node);
977 
978 	might_sleep();
979 restart:
980 	rcu_read_lock();
981 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
982 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
983 		struct wb_writeback_work fallback_work;
984 		struct wb_writeback_work *work;
985 		long nr_pages;
986 
987 		if (last_wb) {
988 			wb_put(last_wb);
989 			last_wb = NULL;
990 		}
991 
992 		/* SYNC_ALL writes out I_DIRTY_TIME too */
993 		if (!wb_has_dirty_io(wb) &&
994 		    (base_work->sync_mode == WB_SYNC_NONE ||
995 		     list_empty(&wb->b_dirty_time)))
996 			continue;
997 		if (skip_if_busy && writeback_in_progress(wb))
998 			continue;
999 
1000 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1001 
1002 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
1003 		if (work) {
1004 			*work = *base_work;
1005 			work->nr_pages = nr_pages;
1006 			work->auto_free = 1;
1007 			wb_queue_work(wb, work);
1008 			continue;
1009 		}
1010 
1011 		/* alloc failed, execute synchronously using on-stack fallback */
1012 		work = &fallback_work;
1013 		*work = *base_work;
1014 		work->nr_pages = nr_pages;
1015 		work->auto_free = 0;
1016 		work->done = &fallback_work_done;
1017 
1018 		wb_queue_work(wb, work);
1019 
1020 		/*
1021 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1022 		 * continuing iteration from @wb after dropping and
1023 		 * regrabbing rcu read lock.
1024 		 */
1025 		wb_get(wb);
1026 		last_wb = wb;
1027 
1028 		rcu_read_unlock();
1029 		wb_wait_for_completion(&fallback_work_done);
1030 		goto restart;
1031 	}
1032 	rcu_read_unlock();
1033 
1034 	if (last_wb)
1035 		wb_put(last_wb);
1036 }
1037 
1038 /**
1039  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1040  * @bdi_id: target bdi id
1041  * @memcg_id: target memcg css id
1042  * @reason: reason why some writeback work initiated
1043  * @done: target wb_completion
1044  *
1045  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1046  * with the specified parameters.
1047  */
1048 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1049 			   enum wb_reason reason, struct wb_completion *done)
1050 {
1051 	struct backing_dev_info *bdi;
1052 	struct cgroup_subsys_state *memcg_css;
1053 	struct bdi_writeback *wb;
1054 	struct wb_writeback_work *work;
1055 	unsigned long dirty;
1056 	int ret;
1057 
1058 	/* lookup bdi and memcg */
1059 	bdi = bdi_get_by_id(bdi_id);
1060 	if (!bdi)
1061 		return -ENOENT;
1062 
1063 	rcu_read_lock();
1064 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1065 	if (memcg_css && !css_tryget(memcg_css))
1066 		memcg_css = NULL;
1067 	rcu_read_unlock();
1068 	if (!memcg_css) {
1069 		ret = -ENOENT;
1070 		goto out_bdi_put;
1071 	}
1072 
1073 	/*
1074 	 * And find the associated wb.  If the wb isn't there already
1075 	 * there's nothing to flush, don't create one.
1076 	 */
1077 	wb = wb_get_lookup(bdi, memcg_css);
1078 	if (!wb) {
1079 		ret = -ENOENT;
1080 		goto out_css_put;
1081 	}
1082 
1083 	/*
1084 	 * The caller is attempting to write out most of
1085 	 * the currently dirty pages.  Let's take the current dirty page
1086 	 * count and inflate it by 25% which should be large enough to
1087 	 * flush out most dirty pages while avoiding getting livelocked by
1088 	 * concurrent dirtiers.
1089 	 *
1090 	 * BTW the memcg stats are flushed periodically and this is best-effort
1091 	 * estimation, so some potential error is ok.
1092 	 */
1093 	dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1094 	dirty = dirty * 10 / 8;
1095 
1096 	/* issue the writeback work */
1097 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1098 	if (work) {
1099 		work->nr_pages = dirty;
1100 		work->sync_mode = WB_SYNC_NONE;
1101 		work->range_cyclic = 1;
1102 		work->reason = reason;
1103 		work->done = done;
1104 		work->auto_free = 1;
1105 		wb_queue_work(wb, work);
1106 		ret = 0;
1107 	} else {
1108 		ret = -ENOMEM;
1109 	}
1110 
1111 	wb_put(wb);
1112 out_css_put:
1113 	css_put(memcg_css);
1114 out_bdi_put:
1115 	bdi_put(bdi);
1116 	return ret;
1117 }
1118 
1119 /**
1120  * cgroup_writeback_umount - flush inode wb switches for umount
1121  *
1122  * This function is called when a super_block is about to be destroyed and
1123  * flushes in-flight inode wb switches.  An inode wb switch goes through
1124  * RCU and then workqueue, so the two need to be flushed in order to ensure
1125  * that all previously scheduled switches are finished.  As wb switches are
1126  * rare occurrences and synchronize_rcu() can take a while, perform
1127  * flushing iff wb switches are in flight.
1128  */
1129 void cgroup_writeback_umount(void)
1130 {
1131 	/*
1132 	 * SB_ACTIVE should be reliably cleared before checking
1133 	 * isw_nr_in_flight, see generic_shutdown_super().
1134 	 */
1135 	smp_mb();
1136 
1137 	if (atomic_read(&isw_nr_in_flight)) {
1138 		/*
1139 		 * Use rcu_barrier() to wait for all pending callbacks to
1140 		 * ensure that all in-flight wb switches are in the workqueue.
1141 		 */
1142 		rcu_barrier();
1143 		flush_workqueue(isw_wq);
1144 	}
1145 }
1146 
1147 static int __init cgroup_writeback_init(void)
1148 {
1149 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1150 	if (!isw_wq)
1151 		return -ENOMEM;
1152 	return 0;
1153 }
1154 fs_initcall(cgroup_writeback_init);
1155 
1156 #else	/* CONFIG_CGROUP_WRITEBACK */
1157 
1158 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1159 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1160 
1161 static void inode_cgwb_move_to_attached(struct inode *inode,
1162 					struct bdi_writeback *wb)
1163 {
1164 	assert_spin_locked(&wb->list_lock);
1165 	assert_spin_locked(&inode->i_lock);
1166 
1167 	inode->i_state &= ~I_SYNC_QUEUED;
1168 	list_del_init(&inode->i_io_list);
1169 	wb_io_lists_depopulated(wb);
1170 }
1171 
1172 static struct bdi_writeback *
1173 locked_inode_to_wb_and_lock_list(struct inode *inode)
1174 	__releases(&inode->i_lock)
1175 	__acquires(&wb->list_lock)
1176 {
1177 	struct bdi_writeback *wb = inode_to_wb(inode);
1178 
1179 	spin_unlock(&inode->i_lock);
1180 	spin_lock(&wb->list_lock);
1181 	return wb;
1182 }
1183 
1184 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1185 	__acquires(&wb->list_lock)
1186 {
1187 	struct bdi_writeback *wb = inode_to_wb(inode);
1188 
1189 	spin_lock(&wb->list_lock);
1190 	return wb;
1191 }
1192 
1193 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1194 {
1195 	return nr_pages;
1196 }
1197 
1198 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1199 				  struct wb_writeback_work *base_work,
1200 				  bool skip_if_busy)
1201 {
1202 	might_sleep();
1203 
1204 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1205 		base_work->auto_free = 0;
1206 		wb_queue_work(&bdi->wb, base_work);
1207 	}
1208 }
1209 
1210 #endif	/* CONFIG_CGROUP_WRITEBACK */
1211 
1212 /*
1213  * Add in the number of potentially dirty inodes, because each inode
1214  * write can dirty pagecache in the underlying blockdev.
1215  */
1216 static unsigned long get_nr_dirty_pages(void)
1217 {
1218 	return global_node_page_state(NR_FILE_DIRTY) +
1219 		get_nr_dirty_inodes();
1220 }
1221 
1222 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1223 {
1224 	if (!wb_has_dirty_io(wb))
1225 		return;
1226 
1227 	/*
1228 	 * All callers of this function want to start writeback of all
1229 	 * dirty pages. Places like vmscan can call this at a very
1230 	 * high frequency, causing pointless allocations of tons of
1231 	 * work items and keeping the flusher threads busy retrieving
1232 	 * that work. Ensure that we only allow one of them pending and
1233 	 * inflight at the time.
1234 	 */
1235 	if (test_bit(WB_start_all, &wb->state) ||
1236 	    test_and_set_bit(WB_start_all, &wb->state))
1237 		return;
1238 
1239 	wb->start_all_reason = reason;
1240 	wb_wakeup(wb);
1241 }
1242 
1243 /**
1244  * wb_start_background_writeback - start background writeback
1245  * @wb: bdi_writback to write from
1246  *
1247  * Description:
1248  *   This makes sure WB_SYNC_NONE background writeback happens. When
1249  *   this function returns, it is only guaranteed that for given wb
1250  *   some IO is happening if we are over background dirty threshold.
1251  *   Caller need not hold sb s_umount semaphore.
1252  */
1253 void wb_start_background_writeback(struct bdi_writeback *wb)
1254 {
1255 	/*
1256 	 * We just wake up the flusher thread. It will perform background
1257 	 * writeback as soon as there is no other work to do.
1258 	 */
1259 	trace_writeback_wake_background(wb);
1260 	wb_wakeup(wb);
1261 }
1262 
1263 /*
1264  * Remove the inode from the writeback list it is on.
1265  */
1266 void inode_io_list_del(struct inode *inode)
1267 {
1268 	struct bdi_writeback *wb;
1269 
1270 	wb = inode_to_wb_and_lock_list(inode);
1271 	spin_lock(&inode->i_lock);
1272 
1273 	inode->i_state &= ~I_SYNC_QUEUED;
1274 	list_del_init(&inode->i_io_list);
1275 	wb_io_lists_depopulated(wb);
1276 
1277 	spin_unlock(&inode->i_lock);
1278 	spin_unlock(&wb->list_lock);
1279 }
1280 EXPORT_SYMBOL(inode_io_list_del);
1281 
1282 /*
1283  * mark an inode as under writeback on the sb
1284  */
1285 void sb_mark_inode_writeback(struct inode *inode)
1286 {
1287 	struct super_block *sb = inode->i_sb;
1288 	unsigned long flags;
1289 
1290 	if (list_empty(&inode->i_wb_list)) {
1291 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1292 		if (list_empty(&inode->i_wb_list)) {
1293 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1294 			trace_sb_mark_inode_writeback(inode);
1295 		}
1296 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1297 	}
1298 }
1299 
1300 /*
1301  * clear an inode as under writeback on the sb
1302  */
1303 void sb_clear_inode_writeback(struct inode *inode)
1304 {
1305 	struct super_block *sb = inode->i_sb;
1306 	unsigned long flags;
1307 
1308 	if (!list_empty(&inode->i_wb_list)) {
1309 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1310 		if (!list_empty(&inode->i_wb_list)) {
1311 			list_del_init(&inode->i_wb_list);
1312 			trace_sb_clear_inode_writeback(inode);
1313 		}
1314 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1315 	}
1316 }
1317 
1318 /*
1319  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1320  * furthest end of its superblock's dirty-inode list.
1321  *
1322  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1323  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1324  * the case then the inode must have been redirtied while it was being written
1325  * out and we don't reset its dirtied_when.
1326  */
1327 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1328 {
1329 	assert_spin_locked(&inode->i_lock);
1330 
1331 	if (!list_empty(&wb->b_dirty)) {
1332 		struct inode *tail;
1333 
1334 		tail = wb_inode(wb->b_dirty.next);
1335 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1336 			inode->dirtied_when = jiffies;
1337 	}
1338 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1339 	inode->i_state &= ~I_SYNC_QUEUED;
1340 }
1341 
1342 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1343 {
1344 	spin_lock(&inode->i_lock);
1345 	redirty_tail_locked(inode, wb);
1346 	spin_unlock(&inode->i_lock);
1347 }
1348 
1349 /*
1350  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1351  */
1352 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1353 {
1354 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1355 }
1356 
1357 static void inode_sync_complete(struct inode *inode)
1358 {
1359 	inode->i_state &= ~I_SYNC;
1360 	/* If inode is clean an unused, put it into LRU now... */
1361 	inode_add_lru(inode);
1362 	/* Waiters must see I_SYNC cleared before being woken up */
1363 	smp_mb();
1364 	wake_up_bit(&inode->i_state, __I_SYNC);
1365 }
1366 
1367 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1368 {
1369 	bool ret = time_after(inode->dirtied_when, t);
1370 #ifndef CONFIG_64BIT
1371 	/*
1372 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1373 	 * It _appears_ to be in the future, but is actually in distant past.
1374 	 * This test is necessary to prevent such wrapped-around relative times
1375 	 * from permanently stopping the whole bdi writeback.
1376 	 */
1377 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1378 #endif
1379 	return ret;
1380 }
1381 
1382 #define EXPIRE_DIRTY_ATIME 0x0001
1383 
1384 /*
1385  * Move expired (dirtied before dirtied_before) dirty inodes from
1386  * @delaying_queue to @dispatch_queue.
1387  */
1388 static int move_expired_inodes(struct list_head *delaying_queue,
1389 			       struct list_head *dispatch_queue,
1390 			       unsigned long dirtied_before)
1391 {
1392 	LIST_HEAD(tmp);
1393 	struct list_head *pos, *node;
1394 	struct super_block *sb = NULL;
1395 	struct inode *inode;
1396 	int do_sb_sort = 0;
1397 	int moved = 0;
1398 
1399 	while (!list_empty(delaying_queue)) {
1400 		inode = wb_inode(delaying_queue->prev);
1401 		if (inode_dirtied_after(inode, dirtied_before))
1402 			break;
1403 		list_move(&inode->i_io_list, &tmp);
1404 		moved++;
1405 		spin_lock(&inode->i_lock);
1406 		inode->i_state |= I_SYNC_QUEUED;
1407 		spin_unlock(&inode->i_lock);
1408 		if (sb_is_blkdev_sb(inode->i_sb))
1409 			continue;
1410 		if (sb && sb != inode->i_sb)
1411 			do_sb_sort = 1;
1412 		sb = inode->i_sb;
1413 	}
1414 
1415 	/* just one sb in list, splice to dispatch_queue and we're done */
1416 	if (!do_sb_sort) {
1417 		list_splice(&tmp, dispatch_queue);
1418 		goto out;
1419 	}
1420 
1421 	/* Move inodes from one superblock together */
1422 	while (!list_empty(&tmp)) {
1423 		sb = wb_inode(tmp.prev)->i_sb;
1424 		list_for_each_prev_safe(pos, node, &tmp) {
1425 			inode = wb_inode(pos);
1426 			if (inode->i_sb == sb)
1427 				list_move(&inode->i_io_list, dispatch_queue);
1428 		}
1429 	}
1430 out:
1431 	return moved;
1432 }
1433 
1434 /*
1435  * Queue all expired dirty inodes for io, eldest first.
1436  * Before
1437  *         newly dirtied     b_dirty    b_io    b_more_io
1438  *         =============>    gf         edc     BA
1439  * After
1440  *         newly dirtied     b_dirty    b_io    b_more_io
1441  *         =============>    g          fBAedc
1442  *                                           |
1443  *                                           +--> dequeue for IO
1444  */
1445 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1446 		     unsigned long dirtied_before)
1447 {
1448 	int moved;
1449 	unsigned long time_expire_jif = dirtied_before;
1450 
1451 	assert_spin_locked(&wb->list_lock);
1452 	list_splice_init(&wb->b_more_io, &wb->b_io);
1453 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1454 	if (!work->for_sync)
1455 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1456 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1457 				     time_expire_jif);
1458 	if (moved)
1459 		wb_io_lists_populated(wb);
1460 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1461 }
1462 
1463 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1464 {
1465 	int ret;
1466 
1467 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1468 		trace_writeback_write_inode_start(inode, wbc);
1469 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1470 		trace_writeback_write_inode(inode, wbc);
1471 		return ret;
1472 	}
1473 	return 0;
1474 }
1475 
1476 /*
1477  * Wait for writeback on an inode to complete. Called with i_lock held.
1478  * Caller must make sure inode cannot go away when we drop i_lock.
1479  */
1480 static void __inode_wait_for_writeback(struct inode *inode)
1481 	__releases(inode->i_lock)
1482 	__acquires(inode->i_lock)
1483 {
1484 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1485 	wait_queue_head_t *wqh;
1486 
1487 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1488 	while (inode->i_state & I_SYNC) {
1489 		spin_unlock(&inode->i_lock);
1490 		__wait_on_bit(wqh, &wq, bit_wait,
1491 			      TASK_UNINTERRUPTIBLE);
1492 		spin_lock(&inode->i_lock);
1493 	}
1494 }
1495 
1496 /*
1497  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1498  */
1499 void inode_wait_for_writeback(struct inode *inode)
1500 {
1501 	spin_lock(&inode->i_lock);
1502 	__inode_wait_for_writeback(inode);
1503 	spin_unlock(&inode->i_lock);
1504 }
1505 
1506 /*
1507  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1508  * held and drops it. It is aimed for callers not holding any inode reference
1509  * so once i_lock is dropped, inode can go away.
1510  */
1511 static void inode_sleep_on_writeback(struct inode *inode)
1512 	__releases(inode->i_lock)
1513 {
1514 	DEFINE_WAIT(wait);
1515 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1516 	int sleep;
1517 
1518 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1519 	sleep = inode->i_state & I_SYNC;
1520 	spin_unlock(&inode->i_lock);
1521 	if (sleep)
1522 		schedule();
1523 	finish_wait(wqh, &wait);
1524 }
1525 
1526 /*
1527  * Find proper writeback list for the inode depending on its current state and
1528  * possibly also change of its state while we were doing writeback.  Here we
1529  * handle things such as livelock prevention or fairness of writeback among
1530  * inodes. This function can be called only by flusher thread - noone else
1531  * processes all inodes in writeback lists and requeueing inodes behind flusher
1532  * thread's back can have unexpected consequences.
1533  */
1534 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1535 			  struct writeback_control *wbc)
1536 {
1537 	if (inode->i_state & I_FREEING)
1538 		return;
1539 
1540 	/*
1541 	 * Sync livelock prevention. Each inode is tagged and synced in one
1542 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1543 	 * the dirty time to prevent enqueue and sync it again.
1544 	 */
1545 	if ((inode->i_state & I_DIRTY) &&
1546 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1547 		inode->dirtied_when = jiffies;
1548 
1549 	if (wbc->pages_skipped) {
1550 		/*
1551 		 * writeback is not making progress due to locked
1552 		 * buffers. Skip this inode for now.
1553 		 */
1554 		redirty_tail_locked(inode, wb);
1555 		return;
1556 	}
1557 
1558 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1559 		/*
1560 		 * We didn't write back all the pages.  nfs_writepages()
1561 		 * sometimes bales out without doing anything.
1562 		 */
1563 		if (wbc->nr_to_write <= 0) {
1564 			/* Slice used up. Queue for next turn. */
1565 			requeue_io(inode, wb);
1566 		} else {
1567 			/*
1568 			 * Writeback blocked by something other than
1569 			 * congestion. Delay the inode for some time to
1570 			 * avoid spinning on the CPU (100% iowait)
1571 			 * retrying writeback of the dirty page/inode
1572 			 * that cannot be performed immediately.
1573 			 */
1574 			redirty_tail_locked(inode, wb);
1575 		}
1576 	} else if (inode->i_state & I_DIRTY) {
1577 		/*
1578 		 * Filesystems can dirty the inode during writeback operations,
1579 		 * such as delayed allocation during submission or metadata
1580 		 * updates after data IO completion.
1581 		 */
1582 		redirty_tail_locked(inode, wb);
1583 	} else if (inode->i_state & I_DIRTY_TIME) {
1584 		inode->dirtied_when = jiffies;
1585 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1586 		inode->i_state &= ~I_SYNC_QUEUED;
1587 	} else {
1588 		/* The inode is clean. Remove from writeback lists. */
1589 		inode_cgwb_move_to_attached(inode, wb);
1590 	}
1591 }
1592 
1593 /*
1594  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1595  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1596  *
1597  * This doesn't remove the inode from the writeback list it is on, except
1598  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1599  * expiration.  The caller is otherwise responsible for writeback list handling.
1600  *
1601  * The caller is also responsible for setting the I_SYNC flag beforehand and
1602  * calling inode_sync_complete() to clear it afterwards.
1603  */
1604 static int
1605 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1606 {
1607 	struct address_space *mapping = inode->i_mapping;
1608 	long nr_to_write = wbc->nr_to_write;
1609 	unsigned dirty;
1610 	int ret;
1611 
1612 	WARN_ON(!(inode->i_state & I_SYNC));
1613 
1614 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1615 
1616 	ret = do_writepages(mapping, wbc);
1617 
1618 	/*
1619 	 * Make sure to wait on the data before writing out the metadata.
1620 	 * This is important for filesystems that modify metadata on data
1621 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1622 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1623 	 * inode metadata is written back correctly.
1624 	 */
1625 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1626 		int err = filemap_fdatawait(mapping);
1627 		if (ret == 0)
1628 			ret = err;
1629 	}
1630 
1631 	/*
1632 	 * If the inode has dirty timestamps and we need to write them, call
1633 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1634 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1635 	 */
1636 	if ((inode->i_state & I_DIRTY_TIME) &&
1637 	    (wbc->sync_mode == WB_SYNC_ALL ||
1638 	     time_after(jiffies, inode->dirtied_time_when +
1639 			dirtytime_expire_interval * HZ))) {
1640 		trace_writeback_lazytime(inode);
1641 		mark_inode_dirty_sync(inode);
1642 	}
1643 
1644 	/*
1645 	 * Get and clear the dirty flags from i_state.  This needs to be done
1646 	 * after calling writepages because some filesystems may redirty the
1647 	 * inode during writepages due to delalloc.  It also needs to be done
1648 	 * after handling timestamp expiration, as that may dirty the inode too.
1649 	 */
1650 	spin_lock(&inode->i_lock);
1651 	dirty = inode->i_state & I_DIRTY;
1652 	inode->i_state &= ~dirty;
1653 
1654 	/*
1655 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1656 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1657 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1658 	 * inode.
1659 	 *
1660 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1661 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1662 	 * necessary.  This guarantees that either __mark_inode_dirty()
1663 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1664 	 */
1665 	smp_mb();
1666 
1667 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1668 		inode->i_state |= I_DIRTY_PAGES;
1669 
1670 	spin_unlock(&inode->i_lock);
1671 
1672 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1673 	if (dirty & ~I_DIRTY_PAGES) {
1674 		int err = write_inode(inode, wbc);
1675 		if (ret == 0)
1676 			ret = err;
1677 	}
1678 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1679 	return ret;
1680 }
1681 
1682 /*
1683  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1684  * the regular batched writeback done by the flusher threads in
1685  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1686  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1687  *
1688  * To prevent the inode from going away, either the caller must have a reference
1689  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1690  */
1691 static int writeback_single_inode(struct inode *inode,
1692 				  struct writeback_control *wbc)
1693 {
1694 	struct bdi_writeback *wb;
1695 	int ret = 0;
1696 
1697 	spin_lock(&inode->i_lock);
1698 	if (!atomic_read(&inode->i_count))
1699 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1700 	else
1701 		WARN_ON(inode->i_state & I_WILL_FREE);
1702 
1703 	if (inode->i_state & I_SYNC) {
1704 		/*
1705 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1706 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1707 		 * must wait for the existing writeback to complete, then do
1708 		 * writeback again if there's anything left.
1709 		 */
1710 		if (wbc->sync_mode != WB_SYNC_ALL)
1711 			goto out;
1712 		__inode_wait_for_writeback(inode);
1713 	}
1714 	WARN_ON(inode->i_state & I_SYNC);
1715 	/*
1716 	 * If the inode is already fully clean, then there's nothing to do.
1717 	 *
1718 	 * For data-integrity syncs we also need to check whether any pages are
1719 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1720 	 * there are any such pages, we'll need to wait for them.
1721 	 */
1722 	if (!(inode->i_state & I_DIRTY_ALL) &&
1723 	    (wbc->sync_mode != WB_SYNC_ALL ||
1724 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1725 		goto out;
1726 	inode->i_state |= I_SYNC;
1727 	wbc_attach_and_unlock_inode(wbc, inode);
1728 
1729 	ret = __writeback_single_inode(inode, wbc);
1730 
1731 	wbc_detach_inode(wbc);
1732 
1733 	wb = inode_to_wb_and_lock_list(inode);
1734 	spin_lock(&inode->i_lock);
1735 	/*
1736 	 * If the inode is now fully clean, then it can be safely removed from
1737 	 * its writeback list (if any).  Otherwise the flusher threads are
1738 	 * responsible for the writeback lists.
1739 	 */
1740 	if (!(inode->i_state & I_DIRTY_ALL))
1741 		inode_cgwb_move_to_attached(inode, wb);
1742 	spin_unlock(&wb->list_lock);
1743 	inode_sync_complete(inode);
1744 out:
1745 	spin_unlock(&inode->i_lock);
1746 	return ret;
1747 }
1748 
1749 static long writeback_chunk_size(struct bdi_writeback *wb,
1750 				 struct wb_writeback_work *work)
1751 {
1752 	long pages;
1753 
1754 	/*
1755 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1756 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1757 	 * here avoids calling into writeback_inodes_wb() more than once.
1758 	 *
1759 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1760 	 *
1761 	 *      wb_writeback()
1762 	 *          writeback_sb_inodes()       <== called only once
1763 	 *              write_cache_pages()     <== called once for each inode
1764 	 *                   (quickly) tag currently dirty pages
1765 	 *                   (maybe slowly) sync all tagged pages
1766 	 */
1767 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1768 		pages = LONG_MAX;
1769 	else {
1770 		pages = min(wb->avg_write_bandwidth / 2,
1771 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1772 		pages = min(pages, work->nr_pages);
1773 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1774 				   MIN_WRITEBACK_PAGES);
1775 	}
1776 
1777 	return pages;
1778 }
1779 
1780 /*
1781  * Write a portion of b_io inodes which belong to @sb.
1782  *
1783  * Return the number of pages and/or inodes written.
1784  *
1785  * NOTE! This is called with wb->list_lock held, and will
1786  * unlock and relock that for each inode it ends up doing
1787  * IO for.
1788  */
1789 static long writeback_sb_inodes(struct super_block *sb,
1790 				struct bdi_writeback *wb,
1791 				struct wb_writeback_work *work)
1792 {
1793 	struct writeback_control wbc = {
1794 		.sync_mode		= work->sync_mode,
1795 		.tagged_writepages	= work->tagged_writepages,
1796 		.for_kupdate		= work->for_kupdate,
1797 		.for_background		= work->for_background,
1798 		.for_sync		= work->for_sync,
1799 		.range_cyclic		= work->range_cyclic,
1800 		.range_start		= 0,
1801 		.range_end		= LLONG_MAX,
1802 	};
1803 	unsigned long start_time = jiffies;
1804 	long write_chunk;
1805 	long wrote = 0;  /* count both pages and inodes */
1806 
1807 	while (!list_empty(&wb->b_io)) {
1808 		struct inode *inode = wb_inode(wb->b_io.prev);
1809 		struct bdi_writeback *tmp_wb;
1810 
1811 		if (inode->i_sb != sb) {
1812 			if (work->sb) {
1813 				/*
1814 				 * We only want to write back data for this
1815 				 * superblock, move all inodes not belonging
1816 				 * to it back onto the dirty list.
1817 				 */
1818 				redirty_tail(inode, wb);
1819 				continue;
1820 			}
1821 
1822 			/*
1823 			 * The inode belongs to a different superblock.
1824 			 * Bounce back to the caller to unpin this and
1825 			 * pin the next superblock.
1826 			 */
1827 			break;
1828 		}
1829 
1830 		/*
1831 		 * Don't bother with new inodes or inodes being freed, first
1832 		 * kind does not need periodic writeout yet, and for the latter
1833 		 * kind writeout is handled by the freer.
1834 		 */
1835 		spin_lock(&inode->i_lock);
1836 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1837 			redirty_tail_locked(inode, wb);
1838 			spin_unlock(&inode->i_lock);
1839 			continue;
1840 		}
1841 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1842 			/*
1843 			 * If this inode is locked for writeback and we are not
1844 			 * doing writeback-for-data-integrity, move it to
1845 			 * b_more_io so that writeback can proceed with the
1846 			 * other inodes on s_io.
1847 			 *
1848 			 * We'll have another go at writing back this inode
1849 			 * when we completed a full scan of b_io.
1850 			 */
1851 			spin_unlock(&inode->i_lock);
1852 			requeue_io(inode, wb);
1853 			trace_writeback_sb_inodes_requeue(inode);
1854 			continue;
1855 		}
1856 		spin_unlock(&wb->list_lock);
1857 
1858 		/*
1859 		 * We already requeued the inode if it had I_SYNC set and we
1860 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1861 		 * WB_SYNC_ALL case.
1862 		 */
1863 		if (inode->i_state & I_SYNC) {
1864 			/* Wait for I_SYNC. This function drops i_lock... */
1865 			inode_sleep_on_writeback(inode);
1866 			/* Inode may be gone, start again */
1867 			spin_lock(&wb->list_lock);
1868 			continue;
1869 		}
1870 		inode->i_state |= I_SYNC;
1871 		wbc_attach_and_unlock_inode(&wbc, inode);
1872 
1873 		write_chunk = writeback_chunk_size(wb, work);
1874 		wbc.nr_to_write = write_chunk;
1875 		wbc.pages_skipped = 0;
1876 
1877 		/*
1878 		 * We use I_SYNC to pin the inode in memory. While it is set
1879 		 * evict_inode() will wait so the inode cannot be freed.
1880 		 */
1881 		__writeback_single_inode(inode, &wbc);
1882 
1883 		wbc_detach_inode(&wbc);
1884 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1885 		wrote += write_chunk - wbc.nr_to_write;
1886 
1887 		if (need_resched()) {
1888 			/*
1889 			 * We're trying to balance between building up a nice
1890 			 * long list of IOs to improve our merge rate, and
1891 			 * getting those IOs out quickly for anyone throttling
1892 			 * in balance_dirty_pages().  cond_resched() doesn't
1893 			 * unplug, so get our IOs out the door before we
1894 			 * give up the CPU.
1895 			 */
1896 			if (current->plug)
1897 				blk_flush_plug(current->plug, false);
1898 			cond_resched();
1899 		}
1900 
1901 		/*
1902 		 * Requeue @inode if still dirty.  Be careful as @inode may
1903 		 * have been switched to another wb in the meantime.
1904 		 */
1905 		tmp_wb = inode_to_wb_and_lock_list(inode);
1906 		spin_lock(&inode->i_lock);
1907 		if (!(inode->i_state & I_DIRTY_ALL))
1908 			wrote++;
1909 		requeue_inode(inode, tmp_wb, &wbc);
1910 		inode_sync_complete(inode);
1911 		spin_unlock(&inode->i_lock);
1912 
1913 		if (unlikely(tmp_wb != wb)) {
1914 			spin_unlock(&tmp_wb->list_lock);
1915 			spin_lock(&wb->list_lock);
1916 		}
1917 
1918 		/*
1919 		 * bail out to wb_writeback() often enough to check
1920 		 * background threshold and other termination conditions.
1921 		 */
1922 		if (wrote) {
1923 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1924 				break;
1925 			if (work->nr_pages <= 0)
1926 				break;
1927 		}
1928 	}
1929 	return wrote;
1930 }
1931 
1932 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1933 				  struct wb_writeback_work *work)
1934 {
1935 	unsigned long start_time = jiffies;
1936 	long wrote = 0;
1937 
1938 	while (!list_empty(&wb->b_io)) {
1939 		struct inode *inode = wb_inode(wb->b_io.prev);
1940 		struct super_block *sb = inode->i_sb;
1941 
1942 		if (!trylock_super(sb)) {
1943 			/*
1944 			 * trylock_super() may fail consistently due to
1945 			 * s_umount being grabbed by someone else. Don't use
1946 			 * requeue_io() to avoid busy retrying the inode/sb.
1947 			 */
1948 			redirty_tail(inode, wb);
1949 			continue;
1950 		}
1951 		wrote += writeback_sb_inodes(sb, wb, work);
1952 		up_read(&sb->s_umount);
1953 
1954 		/* refer to the same tests at the end of writeback_sb_inodes */
1955 		if (wrote) {
1956 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1957 				break;
1958 			if (work->nr_pages <= 0)
1959 				break;
1960 		}
1961 	}
1962 	/* Leave any unwritten inodes on b_io */
1963 	return wrote;
1964 }
1965 
1966 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1967 				enum wb_reason reason)
1968 {
1969 	struct wb_writeback_work work = {
1970 		.nr_pages	= nr_pages,
1971 		.sync_mode	= WB_SYNC_NONE,
1972 		.range_cyclic	= 1,
1973 		.reason		= reason,
1974 	};
1975 	struct blk_plug plug;
1976 
1977 	blk_start_plug(&plug);
1978 	spin_lock(&wb->list_lock);
1979 	if (list_empty(&wb->b_io))
1980 		queue_io(wb, &work, jiffies);
1981 	__writeback_inodes_wb(wb, &work);
1982 	spin_unlock(&wb->list_lock);
1983 	blk_finish_plug(&plug);
1984 
1985 	return nr_pages - work.nr_pages;
1986 }
1987 
1988 /*
1989  * Explicit flushing or periodic writeback of "old" data.
1990  *
1991  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1992  * dirtying-time in the inode's address_space.  So this periodic writeback code
1993  * just walks the superblock inode list, writing back any inodes which are
1994  * older than a specific point in time.
1995  *
1996  * Try to run once per dirty_writeback_interval.  But if a writeback event
1997  * takes longer than a dirty_writeback_interval interval, then leave a
1998  * one-second gap.
1999  *
2000  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
2001  * all dirty pages if they are all attached to "old" mappings.
2002  */
2003 static long wb_writeback(struct bdi_writeback *wb,
2004 			 struct wb_writeback_work *work)
2005 {
2006 	long nr_pages = work->nr_pages;
2007 	unsigned long dirtied_before = jiffies;
2008 	struct inode *inode;
2009 	long progress;
2010 	struct blk_plug plug;
2011 
2012 	blk_start_plug(&plug);
2013 	spin_lock(&wb->list_lock);
2014 	for (;;) {
2015 		/*
2016 		 * Stop writeback when nr_pages has been consumed
2017 		 */
2018 		if (work->nr_pages <= 0)
2019 			break;
2020 
2021 		/*
2022 		 * Background writeout and kupdate-style writeback may
2023 		 * run forever. Stop them if there is other work to do
2024 		 * so that e.g. sync can proceed. They'll be restarted
2025 		 * after the other works are all done.
2026 		 */
2027 		if ((work->for_background || work->for_kupdate) &&
2028 		    !list_empty(&wb->work_list))
2029 			break;
2030 
2031 		/*
2032 		 * For background writeout, stop when we are below the
2033 		 * background dirty threshold
2034 		 */
2035 		if (work->for_background && !wb_over_bg_thresh(wb))
2036 			break;
2037 
2038 		/*
2039 		 * Kupdate and background works are special and we want to
2040 		 * include all inodes that need writing. Livelock avoidance is
2041 		 * handled by these works yielding to any other work so we are
2042 		 * safe.
2043 		 */
2044 		if (work->for_kupdate) {
2045 			dirtied_before = jiffies -
2046 				msecs_to_jiffies(dirty_expire_interval * 10);
2047 		} else if (work->for_background)
2048 			dirtied_before = jiffies;
2049 
2050 		trace_writeback_start(wb, work);
2051 		if (list_empty(&wb->b_io))
2052 			queue_io(wb, work, dirtied_before);
2053 		if (work->sb)
2054 			progress = writeback_sb_inodes(work->sb, wb, work);
2055 		else
2056 			progress = __writeback_inodes_wb(wb, work);
2057 		trace_writeback_written(wb, work);
2058 
2059 		/*
2060 		 * Did we write something? Try for more
2061 		 *
2062 		 * Dirty inodes are moved to b_io for writeback in batches.
2063 		 * The completion of the current batch does not necessarily
2064 		 * mean the overall work is done. So we keep looping as long
2065 		 * as made some progress on cleaning pages or inodes.
2066 		 */
2067 		if (progress)
2068 			continue;
2069 		/*
2070 		 * No more inodes for IO, bail
2071 		 */
2072 		if (list_empty(&wb->b_more_io))
2073 			break;
2074 		/*
2075 		 * Nothing written. Wait for some inode to
2076 		 * become available for writeback. Otherwise
2077 		 * we'll just busyloop.
2078 		 */
2079 		trace_writeback_wait(wb, work);
2080 		inode = wb_inode(wb->b_more_io.prev);
2081 		spin_lock(&inode->i_lock);
2082 		spin_unlock(&wb->list_lock);
2083 		/* This function drops i_lock... */
2084 		inode_sleep_on_writeback(inode);
2085 		spin_lock(&wb->list_lock);
2086 	}
2087 	spin_unlock(&wb->list_lock);
2088 	blk_finish_plug(&plug);
2089 
2090 	return nr_pages - work->nr_pages;
2091 }
2092 
2093 /*
2094  * Return the next wb_writeback_work struct that hasn't been processed yet.
2095  */
2096 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2097 {
2098 	struct wb_writeback_work *work = NULL;
2099 
2100 	spin_lock_bh(&wb->work_lock);
2101 	if (!list_empty(&wb->work_list)) {
2102 		work = list_entry(wb->work_list.next,
2103 				  struct wb_writeback_work, list);
2104 		list_del_init(&work->list);
2105 	}
2106 	spin_unlock_bh(&wb->work_lock);
2107 	return work;
2108 }
2109 
2110 static long wb_check_background_flush(struct bdi_writeback *wb)
2111 {
2112 	if (wb_over_bg_thresh(wb)) {
2113 
2114 		struct wb_writeback_work work = {
2115 			.nr_pages	= LONG_MAX,
2116 			.sync_mode	= WB_SYNC_NONE,
2117 			.for_background	= 1,
2118 			.range_cyclic	= 1,
2119 			.reason		= WB_REASON_BACKGROUND,
2120 		};
2121 
2122 		return wb_writeback(wb, &work);
2123 	}
2124 
2125 	return 0;
2126 }
2127 
2128 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2129 {
2130 	unsigned long expired;
2131 	long nr_pages;
2132 
2133 	/*
2134 	 * When set to zero, disable periodic writeback
2135 	 */
2136 	if (!dirty_writeback_interval)
2137 		return 0;
2138 
2139 	expired = wb->last_old_flush +
2140 			msecs_to_jiffies(dirty_writeback_interval * 10);
2141 	if (time_before(jiffies, expired))
2142 		return 0;
2143 
2144 	wb->last_old_flush = jiffies;
2145 	nr_pages = get_nr_dirty_pages();
2146 
2147 	if (nr_pages) {
2148 		struct wb_writeback_work work = {
2149 			.nr_pages	= nr_pages,
2150 			.sync_mode	= WB_SYNC_NONE,
2151 			.for_kupdate	= 1,
2152 			.range_cyclic	= 1,
2153 			.reason		= WB_REASON_PERIODIC,
2154 		};
2155 
2156 		return wb_writeback(wb, &work);
2157 	}
2158 
2159 	return 0;
2160 }
2161 
2162 static long wb_check_start_all(struct bdi_writeback *wb)
2163 {
2164 	long nr_pages;
2165 
2166 	if (!test_bit(WB_start_all, &wb->state))
2167 		return 0;
2168 
2169 	nr_pages = get_nr_dirty_pages();
2170 	if (nr_pages) {
2171 		struct wb_writeback_work work = {
2172 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2173 			.sync_mode	= WB_SYNC_NONE,
2174 			.range_cyclic	= 1,
2175 			.reason		= wb->start_all_reason,
2176 		};
2177 
2178 		nr_pages = wb_writeback(wb, &work);
2179 	}
2180 
2181 	clear_bit(WB_start_all, &wb->state);
2182 	return nr_pages;
2183 }
2184 
2185 
2186 /*
2187  * Retrieve work items and do the writeback they describe
2188  */
2189 static long wb_do_writeback(struct bdi_writeback *wb)
2190 {
2191 	struct wb_writeback_work *work;
2192 	long wrote = 0;
2193 
2194 	set_bit(WB_writeback_running, &wb->state);
2195 	while ((work = get_next_work_item(wb)) != NULL) {
2196 		trace_writeback_exec(wb, work);
2197 		wrote += wb_writeback(wb, work);
2198 		finish_writeback_work(wb, work);
2199 	}
2200 
2201 	/*
2202 	 * Check for a flush-everything request
2203 	 */
2204 	wrote += wb_check_start_all(wb);
2205 
2206 	/*
2207 	 * Check for periodic writeback, kupdated() style
2208 	 */
2209 	wrote += wb_check_old_data_flush(wb);
2210 	wrote += wb_check_background_flush(wb);
2211 	clear_bit(WB_writeback_running, &wb->state);
2212 
2213 	return wrote;
2214 }
2215 
2216 /*
2217  * Handle writeback of dirty data for the device backed by this bdi. Also
2218  * reschedules periodically and does kupdated style flushing.
2219  */
2220 void wb_workfn(struct work_struct *work)
2221 {
2222 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2223 						struct bdi_writeback, dwork);
2224 	long pages_written;
2225 
2226 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2227 	current->flags |= PF_SWAPWRITE;
2228 
2229 	if (likely(!current_is_workqueue_rescuer() ||
2230 		   !test_bit(WB_registered, &wb->state))) {
2231 		/*
2232 		 * The normal path.  Keep writing back @wb until its
2233 		 * work_list is empty.  Note that this path is also taken
2234 		 * if @wb is shutting down even when we're running off the
2235 		 * rescuer as work_list needs to be drained.
2236 		 */
2237 		do {
2238 			pages_written = wb_do_writeback(wb);
2239 			trace_writeback_pages_written(pages_written);
2240 		} while (!list_empty(&wb->work_list));
2241 	} else {
2242 		/*
2243 		 * bdi_wq can't get enough workers and we're running off
2244 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2245 		 * enough for efficient IO.
2246 		 */
2247 		pages_written = writeback_inodes_wb(wb, 1024,
2248 						    WB_REASON_FORKER_THREAD);
2249 		trace_writeback_pages_written(pages_written);
2250 	}
2251 
2252 	if (!list_empty(&wb->work_list))
2253 		wb_wakeup(wb);
2254 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2255 		wb_wakeup_delayed(wb);
2256 
2257 	current->flags &= ~PF_SWAPWRITE;
2258 }
2259 
2260 /*
2261  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2262  * write back the whole world.
2263  */
2264 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2265 					 enum wb_reason reason)
2266 {
2267 	struct bdi_writeback *wb;
2268 
2269 	if (!bdi_has_dirty_io(bdi))
2270 		return;
2271 
2272 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2273 		wb_start_writeback(wb, reason);
2274 }
2275 
2276 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2277 				enum wb_reason reason)
2278 {
2279 	rcu_read_lock();
2280 	__wakeup_flusher_threads_bdi(bdi, reason);
2281 	rcu_read_unlock();
2282 }
2283 
2284 /*
2285  * Wakeup the flusher threads to start writeback of all currently dirty pages
2286  */
2287 void wakeup_flusher_threads(enum wb_reason reason)
2288 {
2289 	struct backing_dev_info *bdi;
2290 
2291 	/*
2292 	 * If we are expecting writeback progress we must submit plugged IO.
2293 	 */
2294 	if (blk_needs_flush_plug(current))
2295 		blk_flush_plug(current->plug, true);
2296 
2297 	rcu_read_lock();
2298 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2299 		__wakeup_flusher_threads_bdi(bdi, reason);
2300 	rcu_read_unlock();
2301 }
2302 
2303 /*
2304  * Wake up bdi's periodically to make sure dirtytime inodes gets
2305  * written back periodically.  We deliberately do *not* check the
2306  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2307  * kernel to be constantly waking up once there are any dirtytime
2308  * inodes on the system.  So instead we define a separate delayed work
2309  * function which gets called much more rarely.  (By default, only
2310  * once every 12 hours.)
2311  *
2312  * If there is any other write activity going on in the file system,
2313  * this function won't be necessary.  But if the only thing that has
2314  * happened on the file system is a dirtytime inode caused by an atime
2315  * update, we need this infrastructure below to make sure that inode
2316  * eventually gets pushed out to disk.
2317  */
2318 static void wakeup_dirtytime_writeback(struct work_struct *w);
2319 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2320 
2321 static void wakeup_dirtytime_writeback(struct work_struct *w)
2322 {
2323 	struct backing_dev_info *bdi;
2324 
2325 	rcu_read_lock();
2326 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2327 		struct bdi_writeback *wb;
2328 
2329 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2330 			if (!list_empty(&wb->b_dirty_time))
2331 				wb_wakeup(wb);
2332 	}
2333 	rcu_read_unlock();
2334 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2335 }
2336 
2337 static int __init start_dirtytime_writeback(void)
2338 {
2339 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2340 	return 0;
2341 }
2342 __initcall(start_dirtytime_writeback);
2343 
2344 int dirtytime_interval_handler(struct ctl_table *table, int write,
2345 			       void *buffer, size_t *lenp, loff_t *ppos)
2346 {
2347 	int ret;
2348 
2349 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2350 	if (ret == 0 && write)
2351 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2352 	return ret;
2353 }
2354 
2355 /**
2356  * __mark_inode_dirty -	internal function to mark an inode dirty
2357  *
2358  * @inode: inode to mark
2359  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2360  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2361  *	   with I_DIRTY_PAGES.
2362  *
2363  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2364  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2365  *
2366  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2367  * instead of calling this directly.
2368  *
2369  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2370  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2371  * even if they are later hashed, as they will have been marked dirty already.
2372  *
2373  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2374  *
2375  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2376  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2377  * the kernel-internal blockdev inode represents the dirtying time of the
2378  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2379  * page->mapping->host, so the page-dirtying time is recorded in the internal
2380  * blockdev inode.
2381  */
2382 void __mark_inode_dirty(struct inode *inode, int flags)
2383 {
2384 	struct super_block *sb = inode->i_sb;
2385 	int dirtytime = 0;
2386 
2387 	trace_writeback_mark_inode_dirty(inode, flags);
2388 
2389 	if (flags & I_DIRTY_INODE) {
2390 		/*
2391 		 * Notify the filesystem about the inode being dirtied, so that
2392 		 * (if needed) it can update on-disk fields and journal the
2393 		 * inode.  This is only needed when the inode itself is being
2394 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2395 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2396 		 */
2397 		trace_writeback_dirty_inode_start(inode, flags);
2398 		if (sb->s_op->dirty_inode)
2399 			sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2400 		trace_writeback_dirty_inode(inode, flags);
2401 
2402 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2403 		flags &= ~I_DIRTY_TIME;
2404 	} else {
2405 		/*
2406 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2407 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2408 		 * in one call to __mark_inode_dirty().)
2409 		 */
2410 		dirtytime = flags & I_DIRTY_TIME;
2411 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2412 	}
2413 
2414 	/*
2415 	 * Paired with smp_mb() in __writeback_single_inode() for the
2416 	 * following lockless i_state test.  See there for details.
2417 	 */
2418 	smp_mb();
2419 
2420 	if (((inode->i_state & flags) == flags) ||
2421 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2422 		return;
2423 
2424 	spin_lock(&inode->i_lock);
2425 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2426 		goto out_unlock_inode;
2427 	if ((inode->i_state & flags) != flags) {
2428 		const int was_dirty = inode->i_state & I_DIRTY;
2429 
2430 		inode_attach_wb(inode, NULL);
2431 
2432 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2433 		if (flags & I_DIRTY_INODE)
2434 			inode->i_state &= ~I_DIRTY_TIME;
2435 		inode->i_state |= flags;
2436 
2437 		/*
2438 		 * If the inode is queued for writeback by flush worker, just
2439 		 * update its dirty state. Once the flush worker is done with
2440 		 * the inode it will place it on the appropriate superblock
2441 		 * list, based upon its state.
2442 		 */
2443 		if (inode->i_state & I_SYNC_QUEUED)
2444 			goto out_unlock_inode;
2445 
2446 		/*
2447 		 * Only add valid (hashed) inodes to the superblock's
2448 		 * dirty list.  Add blockdev inodes as well.
2449 		 */
2450 		if (!S_ISBLK(inode->i_mode)) {
2451 			if (inode_unhashed(inode))
2452 				goto out_unlock_inode;
2453 		}
2454 		if (inode->i_state & I_FREEING)
2455 			goto out_unlock_inode;
2456 
2457 		/*
2458 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2459 		 * reposition it (that would break b_dirty time-ordering).
2460 		 */
2461 		if (!was_dirty) {
2462 			struct bdi_writeback *wb;
2463 			struct list_head *dirty_list;
2464 			bool wakeup_bdi = false;
2465 
2466 			wb = locked_inode_to_wb_and_lock_list(inode);
2467 
2468 			inode->dirtied_when = jiffies;
2469 			if (dirtytime)
2470 				inode->dirtied_time_when = jiffies;
2471 
2472 			if (inode->i_state & I_DIRTY)
2473 				dirty_list = &wb->b_dirty;
2474 			else
2475 				dirty_list = &wb->b_dirty_time;
2476 
2477 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2478 							       dirty_list);
2479 
2480 			spin_unlock(&wb->list_lock);
2481 			trace_writeback_dirty_inode_enqueue(inode);
2482 
2483 			/*
2484 			 * If this is the first dirty inode for this bdi,
2485 			 * we have to wake-up the corresponding bdi thread
2486 			 * to make sure background write-back happens
2487 			 * later.
2488 			 */
2489 			if (wakeup_bdi &&
2490 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2491 				wb_wakeup_delayed(wb);
2492 			return;
2493 		}
2494 	}
2495 out_unlock_inode:
2496 	spin_unlock(&inode->i_lock);
2497 }
2498 EXPORT_SYMBOL(__mark_inode_dirty);
2499 
2500 /*
2501  * The @s_sync_lock is used to serialise concurrent sync operations
2502  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2503  * Concurrent callers will block on the s_sync_lock rather than doing contending
2504  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2505  * has been issued up to the time this function is enter is guaranteed to be
2506  * completed by the time we have gained the lock and waited for all IO that is
2507  * in progress regardless of the order callers are granted the lock.
2508  */
2509 static void wait_sb_inodes(struct super_block *sb)
2510 {
2511 	LIST_HEAD(sync_list);
2512 
2513 	/*
2514 	 * We need to be protected against the filesystem going from
2515 	 * r/o to r/w or vice versa.
2516 	 */
2517 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2518 
2519 	mutex_lock(&sb->s_sync_lock);
2520 
2521 	/*
2522 	 * Splice the writeback list onto a temporary list to avoid waiting on
2523 	 * inodes that have started writeback after this point.
2524 	 *
2525 	 * Use rcu_read_lock() to keep the inodes around until we have a
2526 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2527 	 * the local list because inodes can be dropped from either by writeback
2528 	 * completion.
2529 	 */
2530 	rcu_read_lock();
2531 	spin_lock_irq(&sb->s_inode_wblist_lock);
2532 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2533 
2534 	/*
2535 	 * Data integrity sync. Must wait for all pages under writeback, because
2536 	 * there may have been pages dirtied before our sync call, but which had
2537 	 * writeout started before we write it out.  In which case, the inode
2538 	 * may not be on the dirty list, but we still have to wait for that
2539 	 * writeout.
2540 	 */
2541 	while (!list_empty(&sync_list)) {
2542 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2543 						       i_wb_list);
2544 		struct address_space *mapping = inode->i_mapping;
2545 
2546 		/*
2547 		 * Move each inode back to the wb list before we drop the lock
2548 		 * to preserve consistency between i_wb_list and the mapping
2549 		 * writeback tag. Writeback completion is responsible to remove
2550 		 * the inode from either list once the writeback tag is cleared.
2551 		 */
2552 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2553 
2554 		/*
2555 		 * The mapping can appear untagged while still on-list since we
2556 		 * do not have the mapping lock. Skip it here, wb completion
2557 		 * will remove it.
2558 		 */
2559 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2560 			continue;
2561 
2562 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2563 
2564 		spin_lock(&inode->i_lock);
2565 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2566 			spin_unlock(&inode->i_lock);
2567 
2568 			spin_lock_irq(&sb->s_inode_wblist_lock);
2569 			continue;
2570 		}
2571 		__iget(inode);
2572 		spin_unlock(&inode->i_lock);
2573 		rcu_read_unlock();
2574 
2575 		/*
2576 		 * We keep the error status of individual mapping so that
2577 		 * applications can catch the writeback error using fsync(2).
2578 		 * See filemap_fdatawait_keep_errors() for details.
2579 		 */
2580 		filemap_fdatawait_keep_errors(mapping);
2581 
2582 		cond_resched();
2583 
2584 		iput(inode);
2585 
2586 		rcu_read_lock();
2587 		spin_lock_irq(&sb->s_inode_wblist_lock);
2588 	}
2589 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2590 	rcu_read_unlock();
2591 	mutex_unlock(&sb->s_sync_lock);
2592 }
2593 
2594 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2595 				     enum wb_reason reason, bool skip_if_busy)
2596 {
2597 	struct backing_dev_info *bdi = sb->s_bdi;
2598 	DEFINE_WB_COMPLETION(done, bdi);
2599 	struct wb_writeback_work work = {
2600 		.sb			= sb,
2601 		.sync_mode		= WB_SYNC_NONE,
2602 		.tagged_writepages	= 1,
2603 		.done			= &done,
2604 		.nr_pages		= nr,
2605 		.reason			= reason,
2606 	};
2607 
2608 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2609 		return;
2610 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2611 
2612 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2613 	wb_wait_for_completion(&done);
2614 }
2615 
2616 /**
2617  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2618  * @sb: the superblock
2619  * @nr: the number of pages to write
2620  * @reason: reason why some writeback work initiated
2621  *
2622  * Start writeback on some inodes on this super_block. No guarantees are made
2623  * on how many (if any) will be written, and this function does not wait
2624  * for IO completion of submitted IO.
2625  */
2626 void writeback_inodes_sb_nr(struct super_block *sb,
2627 			    unsigned long nr,
2628 			    enum wb_reason reason)
2629 {
2630 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2631 }
2632 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2633 
2634 /**
2635  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2636  * @sb: the superblock
2637  * @reason: reason why some writeback work was initiated
2638  *
2639  * Start writeback on some inodes on this super_block. No guarantees are made
2640  * on how many (if any) will be written, and this function does not wait
2641  * for IO completion of submitted IO.
2642  */
2643 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2644 {
2645 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2646 }
2647 EXPORT_SYMBOL(writeback_inodes_sb);
2648 
2649 /**
2650  * try_to_writeback_inodes_sb - try to start writeback if none underway
2651  * @sb: the superblock
2652  * @reason: reason why some writeback work was initiated
2653  *
2654  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2655  */
2656 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2657 {
2658 	if (!down_read_trylock(&sb->s_umount))
2659 		return;
2660 
2661 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2662 	up_read(&sb->s_umount);
2663 }
2664 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2665 
2666 /**
2667  * sync_inodes_sb	-	sync sb inode pages
2668  * @sb: the superblock
2669  *
2670  * This function writes and waits on any dirty inode belonging to this
2671  * super_block.
2672  */
2673 void sync_inodes_sb(struct super_block *sb)
2674 {
2675 	struct backing_dev_info *bdi = sb->s_bdi;
2676 	DEFINE_WB_COMPLETION(done, bdi);
2677 	struct wb_writeback_work work = {
2678 		.sb		= sb,
2679 		.sync_mode	= WB_SYNC_ALL,
2680 		.nr_pages	= LONG_MAX,
2681 		.range_cyclic	= 0,
2682 		.done		= &done,
2683 		.reason		= WB_REASON_SYNC,
2684 		.for_sync	= 1,
2685 	};
2686 
2687 	/*
2688 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2689 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2690 	 * bdi_has_dirty() need to be written out too.
2691 	 */
2692 	if (bdi == &noop_backing_dev_info)
2693 		return;
2694 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2695 
2696 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2697 	bdi_down_write_wb_switch_rwsem(bdi);
2698 	bdi_split_work_to_wbs(bdi, &work, false);
2699 	wb_wait_for_completion(&done);
2700 	bdi_up_write_wb_switch_rwsem(bdi);
2701 
2702 	wait_sb_inodes(sb);
2703 }
2704 EXPORT_SYMBOL(sync_inodes_sb);
2705 
2706 /**
2707  * write_inode_now	-	write an inode to disk
2708  * @inode: inode to write to disk
2709  * @sync: whether the write should be synchronous or not
2710  *
2711  * This function commits an inode to disk immediately if it is dirty. This is
2712  * primarily needed by knfsd.
2713  *
2714  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2715  */
2716 int write_inode_now(struct inode *inode, int sync)
2717 {
2718 	struct writeback_control wbc = {
2719 		.nr_to_write = LONG_MAX,
2720 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2721 		.range_start = 0,
2722 		.range_end = LLONG_MAX,
2723 	};
2724 
2725 	if (!mapping_can_writeback(inode->i_mapping))
2726 		wbc.nr_to_write = 0;
2727 
2728 	might_sleep();
2729 	return writeback_single_inode(inode, &wbc);
2730 }
2731 EXPORT_SYMBOL(write_inode_now);
2732 
2733 /**
2734  * sync_inode_metadata - write an inode to disk
2735  * @inode: the inode to sync
2736  * @wait: wait for I/O to complete.
2737  *
2738  * Write an inode to disk and adjust its dirty state after completion.
2739  *
2740  * Note: only writes the actual inode, no associated data or other metadata.
2741  */
2742 int sync_inode_metadata(struct inode *inode, int wait)
2743 {
2744 	struct writeback_control wbc = {
2745 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2746 		.nr_to_write = 0, /* metadata-only */
2747 	};
2748 
2749 	return writeback_single_inode(inode, &wbc);
2750 }
2751 EXPORT_SYMBOL(sync_inode_metadata);
2752