xref: /openbmc/linux/fs/fs-writeback.c (revision 089a49b6)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include "internal.h"
30 
31 /*
32  * 4MB minimal write chunk size
33  */
34 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
35 
36 /*
37  * Passed into wb_writeback(), essentially a subset of writeback_control
38  */
39 struct wb_writeback_work {
40 	long nr_pages;
41 	struct super_block *sb;
42 	unsigned long *older_than_this;
43 	enum writeback_sync_modes sync_mode;
44 	unsigned int tagged_writepages:1;
45 	unsigned int for_kupdate:1;
46 	unsigned int range_cyclic:1;
47 	unsigned int for_background:1;
48 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
49 	enum wb_reason reason;		/* why was writeback initiated? */
50 
51 	struct list_head list;		/* pending work list */
52 	struct completion *done;	/* set if the caller waits */
53 };
54 
55 /**
56  * writeback_in_progress - determine whether there is writeback in progress
57  * @bdi: the device's backing_dev_info structure.
58  *
59  * Determine whether there is writeback waiting to be handled against a
60  * backing device.
61  */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64 	return test_bit(BDI_writeback_running, &bdi->state);
65 }
66 EXPORT_SYMBOL(writeback_in_progress);
67 
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
69 {
70 	struct super_block *sb = inode->i_sb;
71 
72 	if (sb_is_blkdev_sb(sb))
73 		return inode->i_mapping->backing_dev_info;
74 
75 	return sb->s_bdi;
76 }
77 
78 static inline struct inode *wb_inode(struct list_head *head)
79 {
80 	return list_entry(head, struct inode, i_wb_list);
81 }
82 
83 /*
84  * Include the creation of the trace points after defining the
85  * wb_writeback_work structure and inline functions so that the definition
86  * remains local to this file.
87  */
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
90 
91 static void bdi_queue_work(struct backing_dev_info *bdi,
92 			   struct wb_writeback_work *work)
93 {
94 	trace_writeback_queue(bdi, work);
95 
96 	spin_lock_bh(&bdi->wb_lock);
97 	list_add_tail(&work->list, &bdi->work_list);
98 	spin_unlock_bh(&bdi->wb_lock);
99 
100 	mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
101 }
102 
103 static void
104 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
105 		      bool range_cyclic, enum wb_reason reason)
106 {
107 	struct wb_writeback_work *work;
108 
109 	/*
110 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
111 	 * wakeup the thread for old dirty data writeback
112 	 */
113 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
114 	if (!work) {
115 		trace_writeback_nowork(bdi);
116 		mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
117 		return;
118 	}
119 
120 	work->sync_mode	= WB_SYNC_NONE;
121 	work->nr_pages	= nr_pages;
122 	work->range_cyclic = range_cyclic;
123 	work->reason	= reason;
124 
125 	bdi_queue_work(bdi, work);
126 }
127 
128 /**
129  * bdi_start_writeback - start writeback
130  * @bdi: the backing device to write from
131  * @nr_pages: the number of pages to write
132  * @reason: reason why some writeback work was initiated
133  *
134  * Description:
135  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
136  *   started when this function returns, we make no guarantees on
137  *   completion. Caller need not hold sb s_umount semaphore.
138  *
139  */
140 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
141 			enum wb_reason reason)
142 {
143 	__bdi_start_writeback(bdi, nr_pages, true, reason);
144 }
145 
146 /**
147  * bdi_start_background_writeback - start background writeback
148  * @bdi: the backing device to write from
149  *
150  * Description:
151  *   This makes sure WB_SYNC_NONE background writeback happens. When
152  *   this function returns, it is only guaranteed that for given BDI
153  *   some IO is happening if we are over background dirty threshold.
154  *   Caller need not hold sb s_umount semaphore.
155  */
156 void bdi_start_background_writeback(struct backing_dev_info *bdi)
157 {
158 	/*
159 	 * We just wake up the flusher thread. It will perform background
160 	 * writeback as soon as there is no other work to do.
161 	 */
162 	trace_writeback_wake_background(bdi);
163 	mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
164 }
165 
166 /*
167  * Remove the inode from the writeback list it is on.
168  */
169 void inode_wb_list_del(struct inode *inode)
170 {
171 	struct backing_dev_info *bdi = inode_to_bdi(inode);
172 
173 	spin_lock(&bdi->wb.list_lock);
174 	list_del_init(&inode->i_wb_list);
175 	spin_unlock(&bdi->wb.list_lock);
176 }
177 
178 /*
179  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
180  * furthest end of its superblock's dirty-inode list.
181  *
182  * Before stamping the inode's ->dirtied_when, we check to see whether it is
183  * already the most-recently-dirtied inode on the b_dirty list.  If that is
184  * the case then the inode must have been redirtied while it was being written
185  * out and we don't reset its dirtied_when.
186  */
187 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
188 {
189 	assert_spin_locked(&wb->list_lock);
190 	if (!list_empty(&wb->b_dirty)) {
191 		struct inode *tail;
192 
193 		tail = wb_inode(wb->b_dirty.next);
194 		if (time_before(inode->dirtied_when, tail->dirtied_when))
195 			inode->dirtied_when = jiffies;
196 	}
197 	list_move(&inode->i_wb_list, &wb->b_dirty);
198 }
199 
200 /*
201  * requeue inode for re-scanning after bdi->b_io list is exhausted.
202  */
203 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
204 {
205 	assert_spin_locked(&wb->list_lock);
206 	list_move(&inode->i_wb_list, &wb->b_more_io);
207 }
208 
209 static void inode_sync_complete(struct inode *inode)
210 {
211 	inode->i_state &= ~I_SYNC;
212 	/* If inode is clean an unused, put it into LRU now... */
213 	inode_add_lru(inode);
214 	/* Waiters must see I_SYNC cleared before being woken up */
215 	smp_mb();
216 	wake_up_bit(&inode->i_state, __I_SYNC);
217 }
218 
219 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
220 {
221 	bool ret = time_after(inode->dirtied_when, t);
222 #ifndef CONFIG_64BIT
223 	/*
224 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
225 	 * It _appears_ to be in the future, but is actually in distant past.
226 	 * This test is necessary to prevent such wrapped-around relative times
227 	 * from permanently stopping the whole bdi writeback.
228 	 */
229 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
230 #endif
231 	return ret;
232 }
233 
234 /*
235  * Move expired (dirtied before work->older_than_this) dirty inodes from
236  * @delaying_queue to @dispatch_queue.
237  */
238 static int move_expired_inodes(struct list_head *delaying_queue,
239 			       struct list_head *dispatch_queue,
240 			       struct wb_writeback_work *work)
241 {
242 	LIST_HEAD(tmp);
243 	struct list_head *pos, *node;
244 	struct super_block *sb = NULL;
245 	struct inode *inode;
246 	int do_sb_sort = 0;
247 	int moved = 0;
248 
249 	while (!list_empty(delaying_queue)) {
250 		inode = wb_inode(delaying_queue->prev);
251 		if (work->older_than_this &&
252 		    inode_dirtied_after(inode, *work->older_than_this))
253 			break;
254 		list_move(&inode->i_wb_list, &tmp);
255 		moved++;
256 		if (sb_is_blkdev_sb(inode->i_sb))
257 			continue;
258 		if (sb && sb != inode->i_sb)
259 			do_sb_sort = 1;
260 		sb = inode->i_sb;
261 	}
262 
263 	/* just one sb in list, splice to dispatch_queue and we're done */
264 	if (!do_sb_sort) {
265 		list_splice(&tmp, dispatch_queue);
266 		goto out;
267 	}
268 
269 	/* Move inodes from one superblock together */
270 	while (!list_empty(&tmp)) {
271 		sb = wb_inode(tmp.prev)->i_sb;
272 		list_for_each_prev_safe(pos, node, &tmp) {
273 			inode = wb_inode(pos);
274 			if (inode->i_sb == sb)
275 				list_move(&inode->i_wb_list, dispatch_queue);
276 		}
277 	}
278 out:
279 	return moved;
280 }
281 
282 /*
283  * Queue all expired dirty inodes for io, eldest first.
284  * Before
285  *         newly dirtied     b_dirty    b_io    b_more_io
286  *         =============>    gf         edc     BA
287  * After
288  *         newly dirtied     b_dirty    b_io    b_more_io
289  *         =============>    g          fBAedc
290  *                                           |
291  *                                           +--> dequeue for IO
292  */
293 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
294 {
295 	int moved;
296 	assert_spin_locked(&wb->list_lock);
297 	list_splice_init(&wb->b_more_io, &wb->b_io);
298 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
299 	trace_writeback_queue_io(wb, work, moved);
300 }
301 
302 static int write_inode(struct inode *inode, struct writeback_control *wbc)
303 {
304 	int ret;
305 
306 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
307 		trace_writeback_write_inode_start(inode, wbc);
308 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
309 		trace_writeback_write_inode(inode, wbc);
310 		return ret;
311 	}
312 	return 0;
313 }
314 
315 /*
316  * Wait for writeback on an inode to complete. Called with i_lock held.
317  * Caller must make sure inode cannot go away when we drop i_lock.
318  */
319 static void __inode_wait_for_writeback(struct inode *inode)
320 	__releases(inode->i_lock)
321 	__acquires(inode->i_lock)
322 {
323 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
324 	wait_queue_head_t *wqh;
325 
326 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
327 	while (inode->i_state & I_SYNC) {
328 		spin_unlock(&inode->i_lock);
329 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
330 		spin_lock(&inode->i_lock);
331 	}
332 }
333 
334 /*
335  * Wait for writeback on an inode to complete. Caller must have inode pinned.
336  */
337 void inode_wait_for_writeback(struct inode *inode)
338 {
339 	spin_lock(&inode->i_lock);
340 	__inode_wait_for_writeback(inode);
341 	spin_unlock(&inode->i_lock);
342 }
343 
344 /*
345  * Sleep until I_SYNC is cleared. This function must be called with i_lock
346  * held and drops it. It is aimed for callers not holding any inode reference
347  * so once i_lock is dropped, inode can go away.
348  */
349 static void inode_sleep_on_writeback(struct inode *inode)
350 	__releases(inode->i_lock)
351 {
352 	DEFINE_WAIT(wait);
353 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
354 	int sleep;
355 
356 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
357 	sleep = inode->i_state & I_SYNC;
358 	spin_unlock(&inode->i_lock);
359 	if (sleep)
360 		schedule();
361 	finish_wait(wqh, &wait);
362 }
363 
364 /*
365  * Find proper writeback list for the inode depending on its current state and
366  * possibly also change of its state while we were doing writeback.  Here we
367  * handle things such as livelock prevention or fairness of writeback among
368  * inodes. This function can be called only by flusher thread - noone else
369  * processes all inodes in writeback lists and requeueing inodes behind flusher
370  * thread's back can have unexpected consequences.
371  */
372 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
373 			  struct writeback_control *wbc)
374 {
375 	if (inode->i_state & I_FREEING)
376 		return;
377 
378 	/*
379 	 * Sync livelock prevention. Each inode is tagged and synced in one
380 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
381 	 * the dirty time to prevent enqueue and sync it again.
382 	 */
383 	if ((inode->i_state & I_DIRTY) &&
384 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
385 		inode->dirtied_when = jiffies;
386 
387 	if (wbc->pages_skipped) {
388 		/*
389 		 * writeback is not making progress due to locked
390 		 * buffers. Skip this inode for now.
391 		 */
392 		redirty_tail(inode, wb);
393 		return;
394 	}
395 
396 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
397 		/*
398 		 * We didn't write back all the pages.  nfs_writepages()
399 		 * sometimes bales out without doing anything.
400 		 */
401 		if (wbc->nr_to_write <= 0) {
402 			/* Slice used up. Queue for next turn. */
403 			requeue_io(inode, wb);
404 		} else {
405 			/*
406 			 * Writeback blocked by something other than
407 			 * congestion. Delay the inode for some time to
408 			 * avoid spinning on the CPU (100% iowait)
409 			 * retrying writeback of the dirty page/inode
410 			 * that cannot be performed immediately.
411 			 */
412 			redirty_tail(inode, wb);
413 		}
414 	} else if (inode->i_state & I_DIRTY) {
415 		/*
416 		 * Filesystems can dirty the inode during writeback operations,
417 		 * such as delayed allocation during submission or metadata
418 		 * updates after data IO completion.
419 		 */
420 		redirty_tail(inode, wb);
421 	} else {
422 		/* The inode is clean. Remove from writeback lists. */
423 		list_del_init(&inode->i_wb_list);
424 	}
425 }
426 
427 /*
428  * Write out an inode and its dirty pages. Do not update the writeback list
429  * linkage. That is left to the caller. The caller is also responsible for
430  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
431  */
432 static int
433 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
434 {
435 	struct address_space *mapping = inode->i_mapping;
436 	long nr_to_write = wbc->nr_to_write;
437 	unsigned dirty;
438 	int ret;
439 
440 	WARN_ON(!(inode->i_state & I_SYNC));
441 
442 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
443 
444 	ret = do_writepages(mapping, wbc);
445 
446 	/*
447 	 * Make sure to wait on the data before writing out the metadata.
448 	 * This is important for filesystems that modify metadata on data
449 	 * I/O completion. We don't do it for sync(2) writeback because it has a
450 	 * separate, external IO completion path and ->sync_fs for guaranteeing
451 	 * inode metadata is written back correctly.
452 	 */
453 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
454 		int err = filemap_fdatawait(mapping);
455 		if (ret == 0)
456 			ret = err;
457 	}
458 
459 	/*
460 	 * Some filesystems may redirty the inode during the writeback
461 	 * due to delalloc, clear dirty metadata flags right before
462 	 * write_inode()
463 	 */
464 	spin_lock(&inode->i_lock);
465 	/* Clear I_DIRTY_PAGES if we've written out all dirty pages */
466 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
467 		inode->i_state &= ~I_DIRTY_PAGES;
468 	dirty = inode->i_state & I_DIRTY;
469 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
470 	spin_unlock(&inode->i_lock);
471 	/* Don't write the inode if only I_DIRTY_PAGES was set */
472 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
473 		int err = write_inode(inode, wbc);
474 		if (ret == 0)
475 			ret = err;
476 	}
477 	trace_writeback_single_inode(inode, wbc, nr_to_write);
478 	return ret;
479 }
480 
481 /*
482  * Write out an inode's dirty pages. Either the caller has an active reference
483  * on the inode or the inode has I_WILL_FREE set.
484  *
485  * This function is designed to be called for writing back one inode which
486  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
487  * and does more profound writeback list handling in writeback_sb_inodes().
488  */
489 static int
490 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
491 		       struct writeback_control *wbc)
492 {
493 	int ret = 0;
494 
495 	spin_lock(&inode->i_lock);
496 	if (!atomic_read(&inode->i_count))
497 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
498 	else
499 		WARN_ON(inode->i_state & I_WILL_FREE);
500 
501 	if (inode->i_state & I_SYNC) {
502 		if (wbc->sync_mode != WB_SYNC_ALL)
503 			goto out;
504 		/*
505 		 * It's a data-integrity sync. We must wait. Since callers hold
506 		 * inode reference or inode has I_WILL_FREE set, it cannot go
507 		 * away under us.
508 		 */
509 		__inode_wait_for_writeback(inode);
510 	}
511 	WARN_ON(inode->i_state & I_SYNC);
512 	/*
513 	 * Skip inode if it is clean. We don't want to mess with writeback
514 	 * lists in this function since flusher thread may be doing for example
515 	 * sync in parallel and if we move the inode, it could get skipped. So
516 	 * here we make sure inode is on some writeback list and leave it there
517 	 * unless we have completely cleaned the inode.
518 	 */
519 	if (!(inode->i_state & I_DIRTY))
520 		goto out;
521 	inode->i_state |= I_SYNC;
522 	spin_unlock(&inode->i_lock);
523 
524 	ret = __writeback_single_inode(inode, wbc);
525 
526 	spin_lock(&wb->list_lock);
527 	spin_lock(&inode->i_lock);
528 	/*
529 	 * If inode is clean, remove it from writeback lists. Otherwise don't
530 	 * touch it. See comment above for explanation.
531 	 */
532 	if (!(inode->i_state & I_DIRTY))
533 		list_del_init(&inode->i_wb_list);
534 	spin_unlock(&wb->list_lock);
535 	inode_sync_complete(inode);
536 out:
537 	spin_unlock(&inode->i_lock);
538 	return ret;
539 }
540 
541 static long writeback_chunk_size(struct backing_dev_info *bdi,
542 				 struct wb_writeback_work *work)
543 {
544 	long pages;
545 
546 	/*
547 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
548 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
549 	 * here avoids calling into writeback_inodes_wb() more than once.
550 	 *
551 	 * The intended call sequence for WB_SYNC_ALL writeback is:
552 	 *
553 	 *      wb_writeback()
554 	 *          writeback_sb_inodes()       <== called only once
555 	 *              write_cache_pages()     <== called once for each inode
556 	 *                   (quickly) tag currently dirty pages
557 	 *                   (maybe slowly) sync all tagged pages
558 	 */
559 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
560 		pages = LONG_MAX;
561 	else {
562 		pages = min(bdi->avg_write_bandwidth / 2,
563 			    global_dirty_limit / DIRTY_SCOPE);
564 		pages = min(pages, work->nr_pages);
565 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
566 				   MIN_WRITEBACK_PAGES);
567 	}
568 
569 	return pages;
570 }
571 
572 /*
573  * Write a portion of b_io inodes which belong to @sb.
574  *
575  * Return the number of pages and/or inodes written.
576  */
577 static long writeback_sb_inodes(struct super_block *sb,
578 				struct bdi_writeback *wb,
579 				struct wb_writeback_work *work)
580 {
581 	struct writeback_control wbc = {
582 		.sync_mode		= work->sync_mode,
583 		.tagged_writepages	= work->tagged_writepages,
584 		.for_kupdate		= work->for_kupdate,
585 		.for_background		= work->for_background,
586 		.for_sync		= work->for_sync,
587 		.range_cyclic		= work->range_cyclic,
588 		.range_start		= 0,
589 		.range_end		= LLONG_MAX,
590 	};
591 	unsigned long start_time = jiffies;
592 	long write_chunk;
593 	long wrote = 0;  /* count both pages and inodes */
594 
595 	while (!list_empty(&wb->b_io)) {
596 		struct inode *inode = wb_inode(wb->b_io.prev);
597 
598 		if (inode->i_sb != sb) {
599 			if (work->sb) {
600 				/*
601 				 * We only want to write back data for this
602 				 * superblock, move all inodes not belonging
603 				 * to it back onto the dirty list.
604 				 */
605 				redirty_tail(inode, wb);
606 				continue;
607 			}
608 
609 			/*
610 			 * The inode belongs to a different superblock.
611 			 * Bounce back to the caller to unpin this and
612 			 * pin the next superblock.
613 			 */
614 			break;
615 		}
616 
617 		/*
618 		 * Don't bother with new inodes or inodes being freed, first
619 		 * kind does not need periodic writeout yet, and for the latter
620 		 * kind writeout is handled by the freer.
621 		 */
622 		spin_lock(&inode->i_lock);
623 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
624 			spin_unlock(&inode->i_lock);
625 			redirty_tail(inode, wb);
626 			continue;
627 		}
628 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
629 			/*
630 			 * If this inode is locked for writeback and we are not
631 			 * doing writeback-for-data-integrity, move it to
632 			 * b_more_io so that writeback can proceed with the
633 			 * other inodes on s_io.
634 			 *
635 			 * We'll have another go at writing back this inode
636 			 * when we completed a full scan of b_io.
637 			 */
638 			spin_unlock(&inode->i_lock);
639 			requeue_io(inode, wb);
640 			trace_writeback_sb_inodes_requeue(inode);
641 			continue;
642 		}
643 		spin_unlock(&wb->list_lock);
644 
645 		/*
646 		 * We already requeued the inode if it had I_SYNC set and we
647 		 * are doing WB_SYNC_NONE writeback. So this catches only the
648 		 * WB_SYNC_ALL case.
649 		 */
650 		if (inode->i_state & I_SYNC) {
651 			/* Wait for I_SYNC. This function drops i_lock... */
652 			inode_sleep_on_writeback(inode);
653 			/* Inode may be gone, start again */
654 			spin_lock(&wb->list_lock);
655 			continue;
656 		}
657 		inode->i_state |= I_SYNC;
658 		spin_unlock(&inode->i_lock);
659 
660 		write_chunk = writeback_chunk_size(wb->bdi, work);
661 		wbc.nr_to_write = write_chunk;
662 		wbc.pages_skipped = 0;
663 
664 		/*
665 		 * We use I_SYNC to pin the inode in memory. While it is set
666 		 * evict_inode() will wait so the inode cannot be freed.
667 		 */
668 		__writeback_single_inode(inode, &wbc);
669 
670 		work->nr_pages -= write_chunk - wbc.nr_to_write;
671 		wrote += write_chunk - wbc.nr_to_write;
672 		spin_lock(&wb->list_lock);
673 		spin_lock(&inode->i_lock);
674 		if (!(inode->i_state & I_DIRTY))
675 			wrote++;
676 		requeue_inode(inode, wb, &wbc);
677 		inode_sync_complete(inode);
678 		spin_unlock(&inode->i_lock);
679 		cond_resched_lock(&wb->list_lock);
680 		/*
681 		 * bail out to wb_writeback() often enough to check
682 		 * background threshold and other termination conditions.
683 		 */
684 		if (wrote) {
685 			if (time_is_before_jiffies(start_time + HZ / 10UL))
686 				break;
687 			if (work->nr_pages <= 0)
688 				break;
689 		}
690 	}
691 	return wrote;
692 }
693 
694 static long __writeback_inodes_wb(struct bdi_writeback *wb,
695 				  struct wb_writeback_work *work)
696 {
697 	unsigned long start_time = jiffies;
698 	long wrote = 0;
699 
700 	while (!list_empty(&wb->b_io)) {
701 		struct inode *inode = wb_inode(wb->b_io.prev);
702 		struct super_block *sb = inode->i_sb;
703 
704 		if (!grab_super_passive(sb)) {
705 			/*
706 			 * grab_super_passive() may fail consistently due to
707 			 * s_umount being grabbed by someone else. Don't use
708 			 * requeue_io() to avoid busy retrying the inode/sb.
709 			 */
710 			redirty_tail(inode, wb);
711 			continue;
712 		}
713 		wrote += writeback_sb_inodes(sb, wb, work);
714 		drop_super(sb);
715 
716 		/* refer to the same tests at the end of writeback_sb_inodes */
717 		if (wrote) {
718 			if (time_is_before_jiffies(start_time + HZ / 10UL))
719 				break;
720 			if (work->nr_pages <= 0)
721 				break;
722 		}
723 	}
724 	/* Leave any unwritten inodes on b_io */
725 	return wrote;
726 }
727 
728 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
729 				enum wb_reason reason)
730 {
731 	struct wb_writeback_work work = {
732 		.nr_pages	= nr_pages,
733 		.sync_mode	= WB_SYNC_NONE,
734 		.range_cyclic	= 1,
735 		.reason		= reason,
736 	};
737 
738 	spin_lock(&wb->list_lock);
739 	if (list_empty(&wb->b_io))
740 		queue_io(wb, &work);
741 	__writeback_inodes_wb(wb, &work);
742 	spin_unlock(&wb->list_lock);
743 
744 	return nr_pages - work.nr_pages;
745 }
746 
747 static bool over_bground_thresh(struct backing_dev_info *bdi)
748 {
749 	unsigned long background_thresh, dirty_thresh;
750 
751 	global_dirty_limits(&background_thresh, &dirty_thresh);
752 
753 	if (global_page_state(NR_FILE_DIRTY) +
754 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
755 		return true;
756 
757 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
758 				bdi_dirty_limit(bdi, background_thresh))
759 		return true;
760 
761 	return false;
762 }
763 
764 /*
765  * Called under wb->list_lock. If there are multiple wb per bdi,
766  * only the flusher working on the first wb should do it.
767  */
768 static void wb_update_bandwidth(struct bdi_writeback *wb,
769 				unsigned long start_time)
770 {
771 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
772 }
773 
774 /*
775  * Explicit flushing or periodic writeback of "old" data.
776  *
777  * Define "old": the first time one of an inode's pages is dirtied, we mark the
778  * dirtying-time in the inode's address_space.  So this periodic writeback code
779  * just walks the superblock inode list, writing back any inodes which are
780  * older than a specific point in time.
781  *
782  * Try to run once per dirty_writeback_interval.  But if a writeback event
783  * takes longer than a dirty_writeback_interval interval, then leave a
784  * one-second gap.
785  *
786  * older_than_this takes precedence over nr_to_write.  So we'll only write back
787  * all dirty pages if they are all attached to "old" mappings.
788  */
789 static long wb_writeback(struct bdi_writeback *wb,
790 			 struct wb_writeback_work *work)
791 {
792 	unsigned long wb_start = jiffies;
793 	long nr_pages = work->nr_pages;
794 	unsigned long oldest_jif;
795 	struct inode *inode;
796 	long progress;
797 
798 	oldest_jif = jiffies;
799 	work->older_than_this = &oldest_jif;
800 
801 	spin_lock(&wb->list_lock);
802 	for (;;) {
803 		/*
804 		 * Stop writeback when nr_pages has been consumed
805 		 */
806 		if (work->nr_pages <= 0)
807 			break;
808 
809 		/*
810 		 * Background writeout and kupdate-style writeback may
811 		 * run forever. Stop them if there is other work to do
812 		 * so that e.g. sync can proceed. They'll be restarted
813 		 * after the other works are all done.
814 		 */
815 		if ((work->for_background || work->for_kupdate) &&
816 		    !list_empty(&wb->bdi->work_list))
817 			break;
818 
819 		/*
820 		 * For background writeout, stop when we are below the
821 		 * background dirty threshold
822 		 */
823 		if (work->for_background && !over_bground_thresh(wb->bdi))
824 			break;
825 
826 		/*
827 		 * Kupdate and background works are special and we want to
828 		 * include all inodes that need writing. Livelock avoidance is
829 		 * handled by these works yielding to any other work so we are
830 		 * safe.
831 		 */
832 		if (work->for_kupdate) {
833 			oldest_jif = jiffies -
834 				msecs_to_jiffies(dirty_expire_interval * 10);
835 		} else if (work->for_background)
836 			oldest_jif = jiffies;
837 
838 		trace_writeback_start(wb->bdi, work);
839 		if (list_empty(&wb->b_io))
840 			queue_io(wb, work);
841 		if (work->sb)
842 			progress = writeback_sb_inodes(work->sb, wb, work);
843 		else
844 			progress = __writeback_inodes_wb(wb, work);
845 		trace_writeback_written(wb->bdi, work);
846 
847 		wb_update_bandwidth(wb, wb_start);
848 
849 		/*
850 		 * Did we write something? Try for more
851 		 *
852 		 * Dirty inodes are moved to b_io for writeback in batches.
853 		 * The completion of the current batch does not necessarily
854 		 * mean the overall work is done. So we keep looping as long
855 		 * as made some progress on cleaning pages or inodes.
856 		 */
857 		if (progress)
858 			continue;
859 		/*
860 		 * No more inodes for IO, bail
861 		 */
862 		if (list_empty(&wb->b_more_io))
863 			break;
864 		/*
865 		 * Nothing written. Wait for some inode to
866 		 * become available for writeback. Otherwise
867 		 * we'll just busyloop.
868 		 */
869 		if (!list_empty(&wb->b_more_io))  {
870 			trace_writeback_wait(wb->bdi, work);
871 			inode = wb_inode(wb->b_more_io.prev);
872 			spin_lock(&inode->i_lock);
873 			spin_unlock(&wb->list_lock);
874 			/* This function drops i_lock... */
875 			inode_sleep_on_writeback(inode);
876 			spin_lock(&wb->list_lock);
877 		}
878 	}
879 	spin_unlock(&wb->list_lock);
880 
881 	return nr_pages - work->nr_pages;
882 }
883 
884 /*
885  * Return the next wb_writeback_work struct that hasn't been processed yet.
886  */
887 static struct wb_writeback_work *
888 get_next_work_item(struct backing_dev_info *bdi)
889 {
890 	struct wb_writeback_work *work = NULL;
891 
892 	spin_lock_bh(&bdi->wb_lock);
893 	if (!list_empty(&bdi->work_list)) {
894 		work = list_entry(bdi->work_list.next,
895 				  struct wb_writeback_work, list);
896 		list_del_init(&work->list);
897 	}
898 	spin_unlock_bh(&bdi->wb_lock);
899 	return work;
900 }
901 
902 /*
903  * Add in the number of potentially dirty inodes, because each inode
904  * write can dirty pagecache in the underlying blockdev.
905  */
906 static unsigned long get_nr_dirty_pages(void)
907 {
908 	return global_page_state(NR_FILE_DIRTY) +
909 		global_page_state(NR_UNSTABLE_NFS) +
910 		get_nr_dirty_inodes();
911 }
912 
913 static long wb_check_background_flush(struct bdi_writeback *wb)
914 {
915 	if (over_bground_thresh(wb->bdi)) {
916 
917 		struct wb_writeback_work work = {
918 			.nr_pages	= LONG_MAX,
919 			.sync_mode	= WB_SYNC_NONE,
920 			.for_background	= 1,
921 			.range_cyclic	= 1,
922 			.reason		= WB_REASON_BACKGROUND,
923 		};
924 
925 		return wb_writeback(wb, &work);
926 	}
927 
928 	return 0;
929 }
930 
931 static long wb_check_old_data_flush(struct bdi_writeback *wb)
932 {
933 	unsigned long expired;
934 	long nr_pages;
935 
936 	/*
937 	 * When set to zero, disable periodic writeback
938 	 */
939 	if (!dirty_writeback_interval)
940 		return 0;
941 
942 	expired = wb->last_old_flush +
943 			msecs_to_jiffies(dirty_writeback_interval * 10);
944 	if (time_before(jiffies, expired))
945 		return 0;
946 
947 	wb->last_old_flush = jiffies;
948 	nr_pages = get_nr_dirty_pages();
949 
950 	if (nr_pages) {
951 		struct wb_writeback_work work = {
952 			.nr_pages	= nr_pages,
953 			.sync_mode	= WB_SYNC_NONE,
954 			.for_kupdate	= 1,
955 			.range_cyclic	= 1,
956 			.reason		= WB_REASON_PERIODIC,
957 		};
958 
959 		return wb_writeback(wb, &work);
960 	}
961 
962 	return 0;
963 }
964 
965 /*
966  * Retrieve work items and do the writeback they describe
967  */
968 static long wb_do_writeback(struct bdi_writeback *wb)
969 {
970 	struct backing_dev_info *bdi = wb->bdi;
971 	struct wb_writeback_work *work;
972 	long wrote = 0;
973 
974 	set_bit(BDI_writeback_running, &wb->bdi->state);
975 	while ((work = get_next_work_item(bdi)) != NULL) {
976 
977 		trace_writeback_exec(bdi, work);
978 
979 		wrote += wb_writeback(wb, work);
980 
981 		/*
982 		 * Notify the caller of completion if this is a synchronous
983 		 * work item, otherwise just free it.
984 		 */
985 		if (work->done)
986 			complete(work->done);
987 		else
988 			kfree(work);
989 	}
990 
991 	/*
992 	 * Check for periodic writeback, kupdated() style
993 	 */
994 	wrote += wb_check_old_data_flush(wb);
995 	wrote += wb_check_background_flush(wb);
996 	clear_bit(BDI_writeback_running, &wb->bdi->state);
997 
998 	return wrote;
999 }
1000 
1001 /*
1002  * Handle writeback of dirty data for the device backed by this bdi. Also
1003  * reschedules periodically and does kupdated style flushing.
1004  */
1005 void bdi_writeback_workfn(struct work_struct *work)
1006 {
1007 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1008 						struct bdi_writeback, dwork);
1009 	struct backing_dev_info *bdi = wb->bdi;
1010 	long pages_written;
1011 
1012 	set_worker_desc("flush-%s", dev_name(bdi->dev));
1013 	current->flags |= PF_SWAPWRITE;
1014 
1015 	if (likely(!current_is_workqueue_rescuer() ||
1016 		   list_empty(&bdi->bdi_list))) {
1017 		/*
1018 		 * The normal path.  Keep writing back @bdi until its
1019 		 * work_list is empty.  Note that this path is also taken
1020 		 * if @bdi is shutting down even when we're running off the
1021 		 * rescuer as work_list needs to be drained.
1022 		 */
1023 		do {
1024 			pages_written = wb_do_writeback(wb);
1025 			trace_writeback_pages_written(pages_written);
1026 		} while (!list_empty(&bdi->work_list));
1027 	} else {
1028 		/*
1029 		 * bdi_wq can't get enough workers and we're running off
1030 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1031 		 * enough for efficient IO.
1032 		 */
1033 		pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1034 						    WB_REASON_FORKER_THREAD);
1035 		trace_writeback_pages_written(pages_written);
1036 	}
1037 
1038 	if (!list_empty(&bdi->work_list) ||
1039 	    (wb_has_dirty_io(wb) && dirty_writeback_interval))
1040 		queue_delayed_work(bdi_wq, &wb->dwork,
1041 			msecs_to_jiffies(dirty_writeback_interval * 10));
1042 
1043 	current->flags &= ~PF_SWAPWRITE;
1044 }
1045 
1046 /*
1047  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1048  * the whole world.
1049  */
1050 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1051 {
1052 	struct backing_dev_info *bdi;
1053 
1054 	if (!nr_pages)
1055 		nr_pages = get_nr_dirty_pages();
1056 
1057 	rcu_read_lock();
1058 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1059 		if (!bdi_has_dirty_io(bdi))
1060 			continue;
1061 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1062 	}
1063 	rcu_read_unlock();
1064 }
1065 
1066 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1067 {
1068 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1069 		struct dentry *dentry;
1070 		const char *name = "?";
1071 
1072 		dentry = d_find_alias(inode);
1073 		if (dentry) {
1074 			spin_lock(&dentry->d_lock);
1075 			name = (const char *) dentry->d_name.name;
1076 		}
1077 		printk(KERN_DEBUG
1078 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1079 		       current->comm, task_pid_nr(current), inode->i_ino,
1080 		       name, inode->i_sb->s_id);
1081 		if (dentry) {
1082 			spin_unlock(&dentry->d_lock);
1083 			dput(dentry);
1084 		}
1085 	}
1086 }
1087 
1088 /**
1089  *	__mark_inode_dirty -	internal function
1090  *	@inode: inode to mark
1091  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1092  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1093  *  	mark_inode_dirty_sync.
1094  *
1095  * Put the inode on the super block's dirty list.
1096  *
1097  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1098  * dirty list only if it is hashed or if it refers to a blockdev.
1099  * If it was not hashed, it will never be added to the dirty list
1100  * even if it is later hashed, as it will have been marked dirty already.
1101  *
1102  * In short, make sure you hash any inodes _before_ you start marking
1103  * them dirty.
1104  *
1105  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1106  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1107  * the kernel-internal blockdev inode represents the dirtying time of the
1108  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1109  * page->mapping->host, so the page-dirtying time is recorded in the internal
1110  * blockdev inode.
1111  */
1112 void __mark_inode_dirty(struct inode *inode, int flags)
1113 {
1114 	struct super_block *sb = inode->i_sb;
1115 	struct backing_dev_info *bdi = NULL;
1116 
1117 	/*
1118 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1119 	 * dirty the inode itself
1120 	 */
1121 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1122 		trace_writeback_dirty_inode_start(inode, flags);
1123 
1124 		if (sb->s_op->dirty_inode)
1125 			sb->s_op->dirty_inode(inode, flags);
1126 
1127 		trace_writeback_dirty_inode(inode, flags);
1128 	}
1129 
1130 	/*
1131 	 * make sure that changes are seen by all cpus before we test i_state
1132 	 * -- mikulas
1133 	 */
1134 	smp_mb();
1135 
1136 	/* avoid the locking if we can */
1137 	if ((inode->i_state & flags) == flags)
1138 		return;
1139 
1140 	if (unlikely(block_dump))
1141 		block_dump___mark_inode_dirty(inode);
1142 
1143 	spin_lock(&inode->i_lock);
1144 	if ((inode->i_state & flags) != flags) {
1145 		const int was_dirty = inode->i_state & I_DIRTY;
1146 
1147 		inode->i_state |= flags;
1148 
1149 		/*
1150 		 * If the inode is being synced, just update its dirty state.
1151 		 * The unlocker will place the inode on the appropriate
1152 		 * superblock list, based upon its state.
1153 		 */
1154 		if (inode->i_state & I_SYNC)
1155 			goto out_unlock_inode;
1156 
1157 		/*
1158 		 * Only add valid (hashed) inodes to the superblock's
1159 		 * dirty list.  Add blockdev inodes as well.
1160 		 */
1161 		if (!S_ISBLK(inode->i_mode)) {
1162 			if (inode_unhashed(inode))
1163 				goto out_unlock_inode;
1164 		}
1165 		if (inode->i_state & I_FREEING)
1166 			goto out_unlock_inode;
1167 
1168 		/*
1169 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1170 		 * reposition it (that would break b_dirty time-ordering).
1171 		 */
1172 		if (!was_dirty) {
1173 			bool wakeup_bdi = false;
1174 			bdi = inode_to_bdi(inode);
1175 
1176 			spin_unlock(&inode->i_lock);
1177 			spin_lock(&bdi->wb.list_lock);
1178 			if (bdi_cap_writeback_dirty(bdi)) {
1179 				WARN(!test_bit(BDI_registered, &bdi->state),
1180 				     "bdi-%s not registered\n", bdi->name);
1181 
1182 				/*
1183 				 * If this is the first dirty inode for this
1184 				 * bdi, we have to wake-up the corresponding
1185 				 * bdi thread to make sure background
1186 				 * write-back happens later.
1187 				 */
1188 				if (!wb_has_dirty_io(&bdi->wb))
1189 					wakeup_bdi = true;
1190 			}
1191 
1192 			inode->dirtied_when = jiffies;
1193 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1194 			spin_unlock(&bdi->wb.list_lock);
1195 
1196 			if (wakeup_bdi)
1197 				bdi_wakeup_thread_delayed(bdi);
1198 			return;
1199 		}
1200 	}
1201 out_unlock_inode:
1202 	spin_unlock(&inode->i_lock);
1203 
1204 }
1205 EXPORT_SYMBOL(__mark_inode_dirty);
1206 
1207 static void wait_sb_inodes(struct super_block *sb)
1208 {
1209 	struct inode *inode, *old_inode = NULL;
1210 
1211 	/*
1212 	 * We need to be protected against the filesystem going from
1213 	 * r/o to r/w or vice versa.
1214 	 */
1215 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1216 
1217 	spin_lock(&inode_sb_list_lock);
1218 
1219 	/*
1220 	 * Data integrity sync. Must wait for all pages under writeback,
1221 	 * because there may have been pages dirtied before our sync
1222 	 * call, but which had writeout started before we write it out.
1223 	 * In which case, the inode may not be on the dirty list, but
1224 	 * we still have to wait for that writeout.
1225 	 */
1226 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1227 		struct address_space *mapping = inode->i_mapping;
1228 
1229 		spin_lock(&inode->i_lock);
1230 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1231 		    (mapping->nrpages == 0)) {
1232 			spin_unlock(&inode->i_lock);
1233 			continue;
1234 		}
1235 		__iget(inode);
1236 		spin_unlock(&inode->i_lock);
1237 		spin_unlock(&inode_sb_list_lock);
1238 
1239 		/*
1240 		 * We hold a reference to 'inode' so it couldn't have been
1241 		 * removed from s_inodes list while we dropped the
1242 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1243 		 * be holding the last reference and we cannot iput it under
1244 		 * inode_sb_list_lock. So we keep the reference and iput it
1245 		 * later.
1246 		 */
1247 		iput(old_inode);
1248 		old_inode = inode;
1249 
1250 		filemap_fdatawait(mapping);
1251 
1252 		cond_resched();
1253 
1254 		spin_lock(&inode_sb_list_lock);
1255 	}
1256 	spin_unlock(&inode_sb_list_lock);
1257 	iput(old_inode);
1258 }
1259 
1260 /**
1261  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1262  * @sb: the superblock
1263  * @nr: the number of pages to write
1264  * @reason: reason why some writeback work initiated
1265  *
1266  * Start writeback on some inodes on this super_block. No guarantees are made
1267  * on how many (if any) will be written, and this function does not wait
1268  * for IO completion of submitted IO.
1269  */
1270 void writeback_inodes_sb_nr(struct super_block *sb,
1271 			    unsigned long nr,
1272 			    enum wb_reason reason)
1273 {
1274 	DECLARE_COMPLETION_ONSTACK(done);
1275 	struct wb_writeback_work work = {
1276 		.sb			= sb,
1277 		.sync_mode		= WB_SYNC_NONE,
1278 		.tagged_writepages	= 1,
1279 		.done			= &done,
1280 		.nr_pages		= nr,
1281 		.reason			= reason,
1282 	};
1283 
1284 	if (sb->s_bdi == &noop_backing_dev_info)
1285 		return;
1286 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1287 	bdi_queue_work(sb->s_bdi, &work);
1288 	wait_for_completion(&done);
1289 }
1290 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1291 
1292 /**
1293  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1294  * @sb: the superblock
1295  * @reason: reason why some writeback work was initiated
1296  *
1297  * Start writeback on some inodes on this super_block. No guarantees are made
1298  * on how many (if any) will be written, and this function does not wait
1299  * for IO completion of submitted IO.
1300  */
1301 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1302 {
1303 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1304 }
1305 EXPORT_SYMBOL(writeback_inodes_sb);
1306 
1307 /**
1308  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1309  * @sb: the superblock
1310  * @nr: the number of pages to write
1311  * @reason: the reason of writeback
1312  *
1313  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1314  * Returns 1 if writeback was started, 0 if not.
1315  */
1316 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1317 				  unsigned long nr,
1318 				  enum wb_reason reason)
1319 {
1320 	if (writeback_in_progress(sb->s_bdi))
1321 		return 1;
1322 
1323 	if (!down_read_trylock(&sb->s_umount))
1324 		return 0;
1325 
1326 	writeback_inodes_sb_nr(sb, nr, reason);
1327 	up_read(&sb->s_umount);
1328 	return 1;
1329 }
1330 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1331 
1332 /**
1333  * try_to_writeback_inodes_sb - try to start writeback if none underway
1334  * @sb: the superblock
1335  * @reason: reason why some writeback work was initiated
1336  *
1337  * Implement by try_to_writeback_inodes_sb_nr()
1338  * Returns 1 if writeback was started, 0 if not.
1339  */
1340 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1341 {
1342 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1343 }
1344 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1345 
1346 /**
1347  * sync_inodes_sb	-	sync sb inode pages
1348  * @sb: the superblock
1349  *
1350  * This function writes and waits on any dirty inode belonging to this
1351  * super_block.
1352  */
1353 void sync_inodes_sb(struct super_block *sb)
1354 {
1355 	DECLARE_COMPLETION_ONSTACK(done);
1356 	struct wb_writeback_work work = {
1357 		.sb		= sb,
1358 		.sync_mode	= WB_SYNC_ALL,
1359 		.nr_pages	= LONG_MAX,
1360 		.range_cyclic	= 0,
1361 		.done		= &done,
1362 		.reason		= WB_REASON_SYNC,
1363 		.for_sync	= 1,
1364 	};
1365 
1366 	/* Nothing to do? */
1367 	if (sb->s_bdi == &noop_backing_dev_info)
1368 		return;
1369 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1370 
1371 	bdi_queue_work(sb->s_bdi, &work);
1372 	wait_for_completion(&done);
1373 
1374 	wait_sb_inodes(sb);
1375 }
1376 EXPORT_SYMBOL(sync_inodes_sb);
1377 
1378 /**
1379  * write_inode_now	-	write an inode to disk
1380  * @inode: inode to write to disk
1381  * @sync: whether the write should be synchronous or not
1382  *
1383  * This function commits an inode to disk immediately if it is dirty. This is
1384  * primarily needed by knfsd.
1385  *
1386  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1387  */
1388 int write_inode_now(struct inode *inode, int sync)
1389 {
1390 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1391 	struct writeback_control wbc = {
1392 		.nr_to_write = LONG_MAX,
1393 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1394 		.range_start = 0,
1395 		.range_end = LLONG_MAX,
1396 	};
1397 
1398 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1399 		wbc.nr_to_write = 0;
1400 
1401 	might_sleep();
1402 	return writeback_single_inode(inode, wb, &wbc);
1403 }
1404 EXPORT_SYMBOL(write_inode_now);
1405 
1406 /**
1407  * sync_inode - write an inode and its pages to disk.
1408  * @inode: the inode to sync
1409  * @wbc: controls the writeback mode
1410  *
1411  * sync_inode() will write an inode and its pages to disk.  It will also
1412  * correctly update the inode on its superblock's dirty inode lists and will
1413  * update inode->i_state.
1414  *
1415  * The caller must have a ref on the inode.
1416  */
1417 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1418 {
1419 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1420 }
1421 EXPORT_SYMBOL(sync_inode);
1422 
1423 /**
1424  * sync_inode_metadata - write an inode to disk
1425  * @inode: the inode to sync
1426  * @wait: wait for I/O to complete.
1427  *
1428  * Write an inode to disk and adjust its dirty state after completion.
1429  *
1430  * Note: only writes the actual inode, no associated data or other metadata.
1431  */
1432 int sync_inode_metadata(struct inode *inode, int wait)
1433 {
1434 	struct writeback_control wbc = {
1435 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1436 		.nr_to_write = 0, /* metadata-only */
1437 	};
1438 
1439 	return sync_inode(inode, &wbc);
1440 }
1441 EXPORT_SYMBOL(sync_inode_metadata);
1442