1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include <linux/device.h> 30 #include "internal.h" 31 32 /* 33 * 4MB minimal write chunk size 34 */ 35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 36 37 /* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40 struct wb_writeback_work { 41 long nr_pages; 42 struct super_block *sb; 43 unsigned long *older_than_this; 44 enum writeback_sync_modes sync_mode; 45 unsigned int tagged_writepages:1; 46 unsigned int for_kupdate:1; 47 unsigned int range_cyclic:1; 48 unsigned int for_background:1; 49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 50 enum wb_reason reason; /* why was writeback initiated? */ 51 52 struct list_head list; /* pending work list */ 53 struct completion *done; /* set if the caller waits */ 54 }; 55 56 /** 57 * writeback_in_progress - determine whether there is writeback in progress 58 * @bdi: the device's backing_dev_info structure. 59 * 60 * Determine whether there is writeback waiting to be handled against a 61 * backing device. 62 */ 63 int writeback_in_progress(struct backing_dev_info *bdi) 64 { 65 return test_bit(BDI_writeback_running, &bdi->state); 66 } 67 EXPORT_SYMBOL(writeback_in_progress); 68 69 struct backing_dev_info *inode_to_bdi(struct inode *inode) 70 { 71 struct super_block *sb; 72 73 if (!inode) 74 return &noop_backing_dev_info; 75 76 sb = inode->i_sb; 77 #ifdef CONFIG_BLOCK 78 if (sb_is_blkdev_sb(sb)) 79 return blk_get_backing_dev_info(I_BDEV(inode)); 80 #endif 81 return sb->s_bdi; 82 } 83 EXPORT_SYMBOL_GPL(inode_to_bdi); 84 85 static inline struct inode *wb_inode(struct list_head *head) 86 { 87 return list_entry(head, struct inode, i_wb_list); 88 } 89 90 /* 91 * Include the creation of the trace points after defining the 92 * wb_writeback_work structure and inline functions so that the definition 93 * remains local to this file. 94 */ 95 #define CREATE_TRACE_POINTS 96 #include <trace/events/writeback.h> 97 98 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 99 100 static void bdi_wakeup_thread(struct backing_dev_info *bdi) 101 { 102 spin_lock_bh(&bdi->wb_lock); 103 if (test_bit(BDI_registered, &bdi->state)) 104 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 105 spin_unlock_bh(&bdi->wb_lock); 106 } 107 108 static void bdi_queue_work(struct backing_dev_info *bdi, 109 struct wb_writeback_work *work) 110 { 111 trace_writeback_queue(bdi, work); 112 113 spin_lock_bh(&bdi->wb_lock); 114 if (!test_bit(BDI_registered, &bdi->state)) { 115 if (work->done) 116 complete(work->done); 117 goto out_unlock; 118 } 119 list_add_tail(&work->list, &bdi->work_list); 120 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 121 out_unlock: 122 spin_unlock_bh(&bdi->wb_lock); 123 } 124 125 static void 126 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 127 bool range_cyclic, enum wb_reason reason) 128 { 129 struct wb_writeback_work *work; 130 131 /* 132 * This is WB_SYNC_NONE writeback, so if allocation fails just 133 * wakeup the thread for old dirty data writeback 134 */ 135 work = kzalloc(sizeof(*work), GFP_ATOMIC); 136 if (!work) { 137 trace_writeback_nowork(bdi); 138 bdi_wakeup_thread(bdi); 139 return; 140 } 141 142 work->sync_mode = WB_SYNC_NONE; 143 work->nr_pages = nr_pages; 144 work->range_cyclic = range_cyclic; 145 work->reason = reason; 146 147 bdi_queue_work(bdi, work); 148 } 149 150 /** 151 * bdi_start_writeback - start writeback 152 * @bdi: the backing device to write from 153 * @nr_pages: the number of pages to write 154 * @reason: reason why some writeback work was initiated 155 * 156 * Description: 157 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 158 * started when this function returns, we make no guarantees on 159 * completion. Caller need not hold sb s_umount semaphore. 160 * 161 */ 162 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 163 enum wb_reason reason) 164 { 165 __bdi_start_writeback(bdi, nr_pages, true, reason); 166 } 167 168 /** 169 * bdi_start_background_writeback - start background writeback 170 * @bdi: the backing device to write from 171 * 172 * Description: 173 * This makes sure WB_SYNC_NONE background writeback happens. When 174 * this function returns, it is only guaranteed that for given BDI 175 * some IO is happening if we are over background dirty threshold. 176 * Caller need not hold sb s_umount semaphore. 177 */ 178 void bdi_start_background_writeback(struct backing_dev_info *bdi) 179 { 180 /* 181 * We just wake up the flusher thread. It will perform background 182 * writeback as soon as there is no other work to do. 183 */ 184 trace_writeback_wake_background(bdi); 185 bdi_wakeup_thread(bdi); 186 } 187 188 /* 189 * Remove the inode from the writeback list it is on. 190 */ 191 void inode_wb_list_del(struct inode *inode) 192 { 193 struct backing_dev_info *bdi = inode_to_bdi(inode); 194 195 spin_lock(&bdi->wb.list_lock); 196 list_del_init(&inode->i_wb_list); 197 spin_unlock(&bdi->wb.list_lock); 198 } 199 200 /* 201 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 202 * furthest end of its superblock's dirty-inode list. 203 * 204 * Before stamping the inode's ->dirtied_when, we check to see whether it is 205 * already the most-recently-dirtied inode on the b_dirty list. If that is 206 * the case then the inode must have been redirtied while it was being written 207 * out and we don't reset its dirtied_when. 208 */ 209 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 210 { 211 assert_spin_locked(&wb->list_lock); 212 if (!list_empty(&wb->b_dirty)) { 213 struct inode *tail; 214 215 tail = wb_inode(wb->b_dirty.next); 216 if (time_before(inode->dirtied_when, tail->dirtied_when)) 217 inode->dirtied_when = jiffies; 218 } 219 list_move(&inode->i_wb_list, &wb->b_dirty); 220 } 221 222 /* 223 * requeue inode for re-scanning after bdi->b_io list is exhausted. 224 */ 225 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 226 { 227 assert_spin_locked(&wb->list_lock); 228 list_move(&inode->i_wb_list, &wb->b_more_io); 229 } 230 231 static void inode_sync_complete(struct inode *inode) 232 { 233 inode->i_state &= ~I_SYNC; 234 /* If inode is clean an unused, put it into LRU now... */ 235 inode_add_lru(inode); 236 /* Waiters must see I_SYNC cleared before being woken up */ 237 smp_mb(); 238 wake_up_bit(&inode->i_state, __I_SYNC); 239 } 240 241 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 242 { 243 bool ret = time_after(inode->dirtied_when, t); 244 #ifndef CONFIG_64BIT 245 /* 246 * For inodes being constantly redirtied, dirtied_when can get stuck. 247 * It _appears_ to be in the future, but is actually in distant past. 248 * This test is necessary to prevent such wrapped-around relative times 249 * from permanently stopping the whole bdi writeback. 250 */ 251 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 252 #endif 253 return ret; 254 } 255 256 #define EXPIRE_DIRTY_ATIME 0x0001 257 258 /* 259 * Move expired (dirtied before work->older_than_this) dirty inodes from 260 * @delaying_queue to @dispatch_queue. 261 */ 262 static int move_expired_inodes(struct list_head *delaying_queue, 263 struct list_head *dispatch_queue, 264 int flags, 265 struct wb_writeback_work *work) 266 { 267 unsigned long *older_than_this = NULL; 268 unsigned long expire_time; 269 LIST_HEAD(tmp); 270 struct list_head *pos, *node; 271 struct super_block *sb = NULL; 272 struct inode *inode; 273 int do_sb_sort = 0; 274 int moved = 0; 275 276 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 277 older_than_this = work->older_than_this; 278 else if ((work->reason == WB_REASON_SYNC) == 0) { 279 expire_time = jiffies - (HZ * 86400); 280 older_than_this = &expire_time; 281 } 282 while (!list_empty(delaying_queue)) { 283 inode = wb_inode(delaying_queue->prev); 284 if (older_than_this && 285 inode_dirtied_after(inode, *older_than_this)) 286 break; 287 list_move(&inode->i_wb_list, &tmp); 288 moved++; 289 if (flags & EXPIRE_DIRTY_ATIME) 290 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 291 if (sb_is_blkdev_sb(inode->i_sb)) 292 continue; 293 if (sb && sb != inode->i_sb) 294 do_sb_sort = 1; 295 sb = inode->i_sb; 296 } 297 298 /* just one sb in list, splice to dispatch_queue and we're done */ 299 if (!do_sb_sort) { 300 list_splice(&tmp, dispatch_queue); 301 goto out; 302 } 303 304 /* Move inodes from one superblock together */ 305 while (!list_empty(&tmp)) { 306 sb = wb_inode(tmp.prev)->i_sb; 307 list_for_each_prev_safe(pos, node, &tmp) { 308 inode = wb_inode(pos); 309 if (inode->i_sb == sb) 310 list_move(&inode->i_wb_list, dispatch_queue); 311 } 312 } 313 out: 314 return moved; 315 } 316 317 /* 318 * Queue all expired dirty inodes for io, eldest first. 319 * Before 320 * newly dirtied b_dirty b_io b_more_io 321 * =============> gf edc BA 322 * After 323 * newly dirtied b_dirty b_io b_more_io 324 * =============> g fBAedc 325 * | 326 * +--> dequeue for IO 327 */ 328 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 329 { 330 int moved; 331 332 assert_spin_locked(&wb->list_lock); 333 list_splice_init(&wb->b_more_io, &wb->b_io); 334 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 335 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 336 EXPIRE_DIRTY_ATIME, work); 337 trace_writeback_queue_io(wb, work, moved); 338 } 339 340 static int write_inode(struct inode *inode, struct writeback_control *wbc) 341 { 342 int ret; 343 344 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 345 trace_writeback_write_inode_start(inode, wbc); 346 ret = inode->i_sb->s_op->write_inode(inode, wbc); 347 trace_writeback_write_inode(inode, wbc); 348 return ret; 349 } 350 return 0; 351 } 352 353 /* 354 * Wait for writeback on an inode to complete. Called with i_lock held. 355 * Caller must make sure inode cannot go away when we drop i_lock. 356 */ 357 static void __inode_wait_for_writeback(struct inode *inode) 358 __releases(inode->i_lock) 359 __acquires(inode->i_lock) 360 { 361 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 362 wait_queue_head_t *wqh; 363 364 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 365 while (inode->i_state & I_SYNC) { 366 spin_unlock(&inode->i_lock); 367 __wait_on_bit(wqh, &wq, bit_wait, 368 TASK_UNINTERRUPTIBLE); 369 spin_lock(&inode->i_lock); 370 } 371 } 372 373 /* 374 * Wait for writeback on an inode to complete. Caller must have inode pinned. 375 */ 376 void inode_wait_for_writeback(struct inode *inode) 377 { 378 spin_lock(&inode->i_lock); 379 __inode_wait_for_writeback(inode); 380 spin_unlock(&inode->i_lock); 381 } 382 383 /* 384 * Sleep until I_SYNC is cleared. This function must be called with i_lock 385 * held and drops it. It is aimed for callers not holding any inode reference 386 * so once i_lock is dropped, inode can go away. 387 */ 388 static void inode_sleep_on_writeback(struct inode *inode) 389 __releases(inode->i_lock) 390 { 391 DEFINE_WAIT(wait); 392 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 393 int sleep; 394 395 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 396 sleep = inode->i_state & I_SYNC; 397 spin_unlock(&inode->i_lock); 398 if (sleep) 399 schedule(); 400 finish_wait(wqh, &wait); 401 } 402 403 /* 404 * Find proper writeback list for the inode depending on its current state and 405 * possibly also change of its state while we were doing writeback. Here we 406 * handle things such as livelock prevention or fairness of writeback among 407 * inodes. This function can be called only by flusher thread - noone else 408 * processes all inodes in writeback lists and requeueing inodes behind flusher 409 * thread's back can have unexpected consequences. 410 */ 411 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 412 struct writeback_control *wbc) 413 { 414 if (inode->i_state & I_FREEING) 415 return; 416 417 /* 418 * Sync livelock prevention. Each inode is tagged and synced in one 419 * shot. If still dirty, it will be redirty_tail()'ed below. Update 420 * the dirty time to prevent enqueue and sync it again. 421 */ 422 if ((inode->i_state & I_DIRTY) && 423 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 424 inode->dirtied_when = jiffies; 425 426 if (wbc->pages_skipped) { 427 /* 428 * writeback is not making progress due to locked 429 * buffers. Skip this inode for now. 430 */ 431 redirty_tail(inode, wb); 432 return; 433 } 434 435 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 436 /* 437 * We didn't write back all the pages. nfs_writepages() 438 * sometimes bales out without doing anything. 439 */ 440 if (wbc->nr_to_write <= 0) { 441 /* Slice used up. Queue for next turn. */ 442 requeue_io(inode, wb); 443 } else { 444 /* 445 * Writeback blocked by something other than 446 * congestion. Delay the inode for some time to 447 * avoid spinning on the CPU (100% iowait) 448 * retrying writeback of the dirty page/inode 449 * that cannot be performed immediately. 450 */ 451 redirty_tail(inode, wb); 452 } 453 } else if (inode->i_state & I_DIRTY) { 454 /* 455 * Filesystems can dirty the inode during writeback operations, 456 * such as delayed allocation during submission or metadata 457 * updates after data IO completion. 458 */ 459 redirty_tail(inode, wb); 460 } else if (inode->i_state & I_DIRTY_TIME) { 461 list_move(&inode->i_wb_list, &wb->b_dirty_time); 462 } else { 463 /* The inode is clean. Remove from writeback lists. */ 464 list_del_init(&inode->i_wb_list); 465 } 466 } 467 468 /* 469 * Write out an inode and its dirty pages. Do not update the writeback list 470 * linkage. That is left to the caller. The caller is also responsible for 471 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 472 */ 473 static int 474 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 475 { 476 struct address_space *mapping = inode->i_mapping; 477 long nr_to_write = wbc->nr_to_write; 478 unsigned dirty; 479 int ret; 480 481 WARN_ON(!(inode->i_state & I_SYNC)); 482 483 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 484 485 ret = do_writepages(mapping, wbc); 486 487 /* 488 * Make sure to wait on the data before writing out the metadata. 489 * This is important for filesystems that modify metadata on data 490 * I/O completion. We don't do it for sync(2) writeback because it has a 491 * separate, external IO completion path and ->sync_fs for guaranteeing 492 * inode metadata is written back correctly. 493 */ 494 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 495 int err = filemap_fdatawait(mapping); 496 if (ret == 0) 497 ret = err; 498 } 499 500 /* 501 * Some filesystems may redirty the inode during the writeback 502 * due to delalloc, clear dirty metadata flags right before 503 * write_inode() 504 */ 505 spin_lock(&inode->i_lock); 506 507 dirty = inode->i_state & I_DIRTY; 508 if (((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) && 509 (inode->i_state & I_DIRTY_TIME)) || 510 (inode->i_state & I_DIRTY_TIME_EXPIRED)) { 511 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 512 trace_writeback_lazytime(inode); 513 } 514 inode->i_state &= ~dirty; 515 516 /* 517 * Paired with smp_mb() in __mark_inode_dirty(). This allows 518 * __mark_inode_dirty() to test i_state without grabbing i_lock - 519 * either they see the I_DIRTY bits cleared or we see the dirtied 520 * inode. 521 * 522 * I_DIRTY_PAGES is always cleared together above even if @mapping 523 * still has dirty pages. The flag is reinstated after smp_mb() if 524 * necessary. This guarantees that either __mark_inode_dirty() 525 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 526 */ 527 smp_mb(); 528 529 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 530 inode->i_state |= I_DIRTY_PAGES; 531 532 spin_unlock(&inode->i_lock); 533 534 if (dirty & I_DIRTY_TIME) 535 mark_inode_dirty_sync(inode); 536 /* Don't write the inode if only I_DIRTY_PAGES was set */ 537 if (dirty & ~I_DIRTY_PAGES) { 538 int err = write_inode(inode, wbc); 539 if (ret == 0) 540 ret = err; 541 } 542 trace_writeback_single_inode(inode, wbc, nr_to_write); 543 return ret; 544 } 545 546 /* 547 * Write out an inode's dirty pages. Either the caller has an active reference 548 * on the inode or the inode has I_WILL_FREE set. 549 * 550 * This function is designed to be called for writing back one inode which 551 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 552 * and does more profound writeback list handling in writeback_sb_inodes(). 553 */ 554 static int 555 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 556 struct writeback_control *wbc) 557 { 558 int ret = 0; 559 560 spin_lock(&inode->i_lock); 561 if (!atomic_read(&inode->i_count)) 562 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 563 else 564 WARN_ON(inode->i_state & I_WILL_FREE); 565 566 if (inode->i_state & I_SYNC) { 567 if (wbc->sync_mode != WB_SYNC_ALL) 568 goto out; 569 /* 570 * It's a data-integrity sync. We must wait. Since callers hold 571 * inode reference or inode has I_WILL_FREE set, it cannot go 572 * away under us. 573 */ 574 __inode_wait_for_writeback(inode); 575 } 576 WARN_ON(inode->i_state & I_SYNC); 577 /* 578 * Skip inode if it is clean and we have no outstanding writeback in 579 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 580 * function since flusher thread may be doing for example sync in 581 * parallel and if we move the inode, it could get skipped. So here we 582 * make sure inode is on some writeback list and leave it there unless 583 * we have completely cleaned the inode. 584 */ 585 if (!(inode->i_state & I_DIRTY_ALL) && 586 (wbc->sync_mode != WB_SYNC_ALL || 587 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 588 goto out; 589 inode->i_state |= I_SYNC; 590 spin_unlock(&inode->i_lock); 591 592 ret = __writeback_single_inode(inode, wbc); 593 594 spin_lock(&wb->list_lock); 595 spin_lock(&inode->i_lock); 596 /* 597 * If inode is clean, remove it from writeback lists. Otherwise don't 598 * touch it. See comment above for explanation. 599 */ 600 if (!(inode->i_state & I_DIRTY_ALL)) 601 list_del_init(&inode->i_wb_list); 602 spin_unlock(&wb->list_lock); 603 inode_sync_complete(inode); 604 out: 605 spin_unlock(&inode->i_lock); 606 return ret; 607 } 608 609 static long writeback_chunk_size(struct backing_dev_info *bdi, 610 struct wb_writeback_work *work) 611 { 612 long pages; 613 614 /* 615 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 616 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 617 * here avoids calling into writeback_inodes_wb() more than once. 618 * 619 * The intended call sequence for WB_SYNC_ALL writeback is: 620 * 621 * wb_writeback() 622 * writeback_sb_inodes() <== called only once 623 * write_cache_pages() <== called once for each inode 624 * (quickly) tag currently dirty pages 625 * (maybe slowly) sync all tagged pages 626 */ 627 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 628 pages = LONG_MAX; 629 else { 630 pages = min(bdi->avg_write_bandwidth / 2, 631 global_dirty_limit / DIRTY_SCOPE); 632 pages = min(pages, work->nr_pages); 633 pages = round_down(pages + MIN_WRITEBACK_PAGES, 634 MIN_WRITEBACK_PAGES); 635 } 636 637 return pages; 638 } 639 640 /* 641 * Write a portion of b_io inodes which belong to @sb. 642 * 643 * Return the number of pages and/or inodes written. 644 */ 645 static long writeback_sb_inodes(struct super_block *sb, 646 struct bdi_writeback *wb, 647 struct wb_writeback_work *work) 648 { 649 struct writeback_control wbc = { 650 .sync_mode = work->sync_mode, 651 .tagged_writepages = work->tagged_writepages, 652 .for_kupdate = work->for_kupdate, 653 .for_background = work->for_background, 654 .for_sync = work->for_sync, 655 .range_cyclic = work->range_cyclic, 656 .range_start = 0, 657 .range_end = LLONG_MAX, 658 }; 659 unsigned long start_time = jiffies; 660 long write_chunk; 661 long wrote = 0; /* count both pages and inodes */ 662 663 while (!list_empty(&wb->b_io)) { 664 struct inode *inode = wb_inode(wb->b_io.prev); 665 666 if (inode->i_sb != sb) { 667 if (work->sb) { 668 /* 669 * We only want to write back data for this 670 * superblock, move all inodes not belonging 671 * to it back onto the dirty list. 672 */ 673 redirty_tail(inode, wb); 674 continue; 675 } 676 677 /* 678 * The inode belongs to a different superblock. 679 * Bounce back to the caller to unpin this and 680 * pin the next superblock. 681 */ 682 break; 683 } 684 685 /* 686 * Don't bother with new inodes or inodes being freed, first 687 * kind does not need periodic writeout yet, and for the latter 688 * kind writeout is handled by the freer. 689 */ 690 spin_lock(&inode->i_lock); 691 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 692 spin_unlock(&inode->i_lock); 693 redirty_tail(inode, wb); 694 continue; 695 } 696 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 697 /* 698 * If this inode is locked for writeback and we are not 699 * doing writeback-for-data-integrity, move it to 700 * b_more_io so that writeback can proceed with the 701 * other inodes on s_io. 702 * 703 * We'll have another go at writing back this inode 704 * when we completed a full scan of b_io. 705 */ 706 spin_unlock(&inode->i_lock); 707 requeue_io(inode, wb); 708 trace_writeback_sb_inodes_requeue(inode); 709 continue; 710 } 711 spin_unlock(&wb->list_lock); 712 713 /* 714 * We already requeued the inode if it had I_SYNC set and we 715 * are doing WB_SYNC_NONE writeback. So this catches only the 716 * WB_SYNC_ALL case. 717 */ 718 if (inode->i_state & I_SYNC) { 719 /* Wait for I_SYNC. This function drops i_lock... */ 720 inode_sleep_on_writeback(inode); 721 /* Inode may be gone, start again */ 722 spin_lock(&wb->list_lock); 723 continue; 724 } 725 inode->i_state |= I_SYNC; 726 spin_unlock(&inode->i_lock); 727 728 write_chunk = writeback_chunk_size(wb->bdi, work); 729 wbc.nr_to_write = write_chunk; 730 wbc.pages_skipped = 0; 731 732 /* 733 * We use I_SYNC to pin the inode in memory. While it is set 734 * evict_inode() will wait so the inode cannot be freed. 735 */ 736 __writeback_single_inode(inode, &wbc); 737 738 work->nr_pages -= write_chunk - wbc.nr_to_write; 739 wrote += write_chunk - wbc.nr_to_write; 740 spin_lock(&wb->list_lock); 741 spin_lock(&inode->i_lock); 742 if (!(inode->i_state & I_DIRTY_ALL)) 743 wrote++; 744 requeue_inode(inode, wb, &wbc); 745 inode_sync_complete(inode); 746 spin_unlock(&inode->i_lock); 747 cond_resched_lock(&wb->list_lock); 748 /* 749 * bail out to wb_writeback() often enough to check 750 * background threshold and other termination conditions. 751 */ 752 if (wrote) { 753 if (time_is_before_jiffies(start_time + HZ / 10UL)) 754 break; 755 if (work->nr_pages <= 0) 756 break; 757 } 758 } 759 return wrote; 760 } 761 762 static long __writeback_inodes_wb(struct bdi_writeback *wb, 763 struct wb_writeback_work *work) 764 { 765 unsigned long start_time = jiffies; 766 long wrote = 0; 767 768 while (!list_empty(&wb->b_io)) { 769 struct inode *inode = wb_inode(wb->b_io.prev); 770 struct super_block *sb = inode->i_sb; 771 772 if (!trylock_super(sb)) { 773 /* 774 * trylock_super() may fail consistently due to 775 * s_umount being grabbed by someone else. Don't use 776 * requeue_io() to avoid busy retrying the inode/sb. 777 */ 778 redirty_tail(inode, wb); 779 continue; 780 } 781 wrote += writeback_sb_inodes(sb, wb, work); 782 up_read(&sb->s_umount); 783 784 /* refer to the same tests at the end of writeback_sb_inodes */ 785 if (wrote) { 786 if (time_is_before_jiffies(start_time + HZ / 10UL)) 787 break; 788 if (work->nr_pages <= 0) 789 break; 790 } 791 } 792 /* Leave any unwritten inodes on b_io */ 793 return wrote; 794 } 795 796 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 797 enum wb_reason reason) 798 { 799 struct wb_writeback_work work = { 800 .nr_pages = nr_pages, 801 .sync_mode = WB_SYNC_NONE, 802 .range_cyclic = 1, 803 .reason = reason, 804 }; 805 806 spin_lock(&wb->list_lock); 807 if (list_empty(&wb->b_io)) 808 queue_io(wb, &work); 809 __writeback_inodes_wb(wb, &work); 810 spin_unlock(&wb->list_lock); 811 812 return nr_pages - work.nr_pages; 813 } 814 815 static bool over_bground_thresh(struct backing_dev_info *bdi) 816 { 817 unsigned long background_thresh, dirty_thresh; 818 819 global_dirty_limits(&background_thresh, &dirty_thresh); 820 821 if (global_page_state(NR_FILE_DIRTY) + 822 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 823 return true; 824 825 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 826 bdi_dirty_limit(bdi, background_thresh)) 827 return true; 828 829 return false; 830 } 831 832 /* 833 * Called under wb->list_lock. If there are multiple wb per bdi, 834 * only the flusher working on the first wb should do it. 835 */ 836 static void wb_update_bandwidth(struct bdi_writeback *wb, 837 unsigned long start_time) 838 { 839 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 840 } 841 842 /* 843 * Explicit flushing or periodic writeback of "old" data. 844 * 845 * Define "old": the first time one of an inode's pages is dirtied, we mark the 846 * dirtying-time in the inode's address_space. So this periodic writeback code 847 * just walks the superblock inode list, writing back any inodes which are 848 * older than a specific point in time. 849 * 850 * Try to run once per dirty_writeback_interval. But if a writeback event 851 * takes longer than a dirty_writeback_interval interval, then leave a 852 * one-second gap. 853 * 854 * older_than_this takes precedence over nr_to_write. So we'll only write back 855 * all dirty pages if they are all attached to "old" mappings. 856 */ 857 static long wb_writeback(struct bdi_writeback *wb, 858 struct wb_writeback_work *work) 859 { 860 unsigned long wb_start = jiffies; 861 long nr_pages = work->nr_pages; 862 unsigned long oldest_jif; 863 struct inode *inode; 864 long progress; 865 866 oldest_jif = jiffies; 867 work->older_than_this = &oldest_jif; 868 869 spin_lock(&wb->list_lock); 870 for (;;) { 871 /* 872 * Stop writeback when nr_pages has been consumed 873 */ 874 if (work->nr_pages <= 0) 875 break; 876 877 /* 878 * Background writeout and kupdate-style writeback may 879 * run forever. Stop them if there is other work to do 880 * so that e.g. sync can proceed. They'll be restarted 881 * after the other works are all done. 882 */ 883 if ((work->for_background || work->for_kupdate) && 884 !list_empty(&wb->bdi->work_list)) 885 break; 886 887 /* 888 * For background writeout, stop when we are below the 889 * background dirty threshold 890 */ 891 if (work->for_background && !over_bground_thresh(wb->bdi)) 892 break; 893 894 /* 895 * Kupdate and background works are special and we want to 896 * include all inodes that need writing. Livelock avoidance is 897 * handled by these works yielding to any other work so we are 898 * safe. 899 */ 900 if (work->for_kupdate) { 901 oldest_jif = jiffies - 902 msecs_to_jiffies(dirty_expire_interval * 10); 903 } else if (work->for_background) 904 oldest_jif = jiffies; 905 906 trace_writeback_start(wb->bdi, work); 907 if (list_empty(&wb->b_io)) 908 queue_io(wb, work); 909 if (work->sb) 910 progress = writeback_sb_inodes(work->sb, wb, work); 911 else 912 progress = __writeback_inodes_wb(wb, work); 913 trace_writeback_written(wb->bdi, work); 914 915 wb_update_bandwidth(wb, wb_start); 916 917 /* 918 * Did we write something? Try for more 919 * 920 * Dirty inodes are moved to b_io for writeback in batches. 921 * The completion of the current batch does not necessarily 922 * mean the overall work is done. So we keep looping as long 923 * as made some progress on cleaning pages or inodes. 924 */ 925 if (progress) 926 continue; 927 /* 928 * No more inodes for IO, bail 929 */ 930 if (list_empty(&wb->b_more_io)) 931 break; 932 /* 933 * Nothing written. Wait for some inode to 934 * become available for writeback. Otherwise 935 * we'll just busyloop. 936 */ 937 if (!list_empty(&wb->b_more_io)) { 938 trace_writeback_wait(wb->bdi, work); 939 inode = wb_inode(wb->b_more_io.prev); 940 spin_lock(&inode->i_lock); 941 spin_unlock(&wb->list_lock); 942 /* This function drops i_lock... */ 943 inode_sleep_on_writeback(inode); 944 spin_lock(&wb->list_lock); 945 } 946 } 947 spin_unlock(&wb->list_lock); 948 949 return nr_pages - work->nr_pages; 950 } 951 952 /* 953 * Return the next wb_writeback_work struct that hasn't been processed yet. 954 */ 955 static struct wb_writeback_work * 956 get_next_work_item(struct backing_dev_info *bdi) 957 { 958 struct wb_writeback_work *work = NULL; 959 960 spin_lock_bh(&bdi->wb_lock); 961 if (!list_empty(&bdi->work_list)) { 962 work = list_entry(bdi->work_list.next, 963 struct wb_writeback_work, list); 964 list_del_init(&work->list); 965 } 966 spin_unlock_bh(&bdi->wb_lock); 967 return work; 968 } 969 970 /* 971 * Add in the number of potentially dirty inodes, because each inode 972 * write can dirty pagecache in the underlying blockdev. 973 */ 974 static unsigned long get_nr_dirty_pages(void) 975 { 976 return global_page_state(NR_FILE_DIRTY) + 977 global_page_state(NR_UNSTABLE_NFS) + 978 get_nr_dirty_inodes(); 979 } 980 981 static long wb_check_background_flush(struct bdi_writeback *wb) 982 { 983 if (over_bground_thresh(wb->bdi)) { 984 985 struct wb_writeback_work work = { 986 .nr_pages = LONG_MAX, 987 .sync_mode = WB_SYNC_NONE, 988 .for_background = 1, 989 .range_cyclic = 1, 990 .reason = WB_REASON_BACKGROUND, 991 }; 992 993 return wb_writeback(wb, &work); 994 } 995 996 return 0; 997 } 998 999 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1000 { 1001 unsigned long expired; 1002 long nr_pages; 1003 1004 /* 1005 * When set to zero, disable periodic writeback 1006 */ 1007 if (!dirty_writeback_interval) 1008 return 0; 1009 1010 expired = wb->last_old_flush + 1011 msecs_to_jiffies(dirty_writeback_interval * 10); 1012 if (time_before(jiffies, expired)) 1013 return 0; 1014 1015 wb->last_old_flush = jiffies; 1016 nr_pages = get_nr_dirty_pages(); 1017 1018 if (nr_pages) { 1019 struct wb_writeback_work work = { 1020 .nr_pages = nr_pages, 1021 .sync_mode = WB_SYNC_NONE, 1022 .for_kupdate = 1, 1023 .range_cyclic = 1, 1024 .reason = WB_REASON_PERIODIC, 1025 }; 1026 1027 return wb_writeback(wb, &work); 1028 } 1029 1030 return 0; 1031 } 1032 1033 /* 1034 * Retrieve work items and do the writeback they describe 1035 */ 1036 static long wb_do_writeback(struct bdi_writeback *wb) 1037 { 1038 struct backing_dev_info *bdi = wb->bdi; 1039 struct wb_writeback_work *work; 1040 long wrote = 0; 1041 1042 set_bit(BDI_writeback_running, &wb->bdi->state); 1043 while ((work = get_next_work_item(bdi)) != NULL) { 1044 1045 trace_writeback_exec(bdi, work); 1046 1047 wrote += wb_writeback(wb, work); 1048 1049 /* 1050 * Notify the caller of completion if this is a synchronous 1051 * work item, otherwise just free it. 1052 */ 1053 if (work->done) 1054 complete(work->done); 1055 else 1056 kfree(work); 1057 } 1058 1059 /* 1060 * Check for periodic writeback, kupdated() style 1061 */ 1062 wrote += wb_check_old_data_flush(wb); 1063 wrote += wb_check_background_flush(wb); 1064 clear_bit(BDI_writeback_running, &wb->bdi->state); 1065 1066 return wrote; 1067 } 1068 1069 /* 1070 * Handle writeback of dirty data for the device backed by this bdi. Also 1071 * reschedules periodically and does kupdated style flushing. 1072 */ 1073 void bdi_writeback_workfn(struct work_struct *work) 1074 { 1075 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1076 struct bdi_writeback, dwork); 1077 struct backing_dev_info *bdi = wb->bdi; 1078 long pages_written; 1079 1080 set_worker_desc("flush-%s", dev_name(bdi->dev)); 1081 current->flags |= PF_SWAPWRITE; 1082 1083 if (likely(!current_is_workqueue_rescuer() || 1084 !test_bit(BDI_registered, &bdi->state))) { 1085 /* 1086 * The normal path. Keep writing back @bdi until its 1087 * work_list is empty. Note that this path is also taken 1088 * if @bdi is shutting down even when we're running off the 1089 * rescuer as work_list needs to be drained. 1090 */ 1091 do { 1092 pages_written = wb_do_writeback(wb); 1093 trace_writeback_pages_written(pages_written); 1094 } while (!list_empty(&bdi->work_list)); 1095 } else { 1096 /* 1097 * bdi_wq can't get enough workers and we're running off 1098 * the emergency worker. Don't hog it. Hopefully, 1024 is 1099 * enough for efficient IO. 1100 */ 1101 pages_written = writeback_inodes_wb(&bdi->wb, 1024, 1102 WB_REASON_FORKER_THREAD); 1103 trace_writeback_pages_written(pages_written); 1104 } 1105 1106 if (!list_empty(&bdi->work_list)) 1107 mod_delayed_work(bdi_wq, &wb->dwork, 0); 1108 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1109 bdi_wakeup_thread_delayed(bdi); 1110 1111 current->flags &= ~PF_SWAPWRITE; 1112 } 1113 1114 /* 1115 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1116 * the whole world. 1117 */ 1118 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 1119 { 1120 struct backing_dev_info *bdi; 1121 1122 if (!nr_pages) 1123 nr_pages = get_nr_dirty_pages(); 1124 1125 rcu_read_lock(); 1126 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1127 if (!bdi_has_dirty_io(bdi)) 1128 continue; 1129 __bdi_start_writeback(bdi, nr_pages, false, reason); 1130 } 1131 rcu_read_unlock(); 1132 } 1133 1134 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1135 { 1136 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1137 struct dentry *dentry; 1138 const char *name = "?"; 1139 1140 dentry = d_find_alias(inode); 1141 if (dentry) { 1142 spin_lock(&dentry->d_lock); 1143 name = (const char *) dentry->d_name.name; 1144 } 1145 printk(KERN_DEBUG 1146 "%s(%d): dirtied inode %lu (%s) on %s\n", 1147 current->comm, task_pid_nr(current), inode->i_ino, 1148 name, inode->i_sb->s_id); 1149 if (dentry) { 1150 spin_unlock(&dentry->d_lock); 1151 dput(dentry); 1152 } 1153 } 1154 } 1155 1156 /** 1157 * __mark_inode_dirty - internal function 1158 * @inode: inode to mark 1159 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1160 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1161 * mark_inode_dirty_sync. 1162 * 1163 * Put the inode on the super block's dirty list. 1164 * 1165 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1166 * dirty list only if it is hashed or if it refers to a blockdev. 1167 * If it was not hashed, it will never be added to the dirty list 1168 * even if it is later hashed, as it will have been marked dirty already. 1169 * 1170 * In short, make sure you hash any inodes _before_ you start marking 1171 * them dirty. 1172 * 1173 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1174 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1175 * the kernel-internal blockdev inode represents the dirtying time of the 1176 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1177 * page->mapping->host, so the page-dirtying time is recorded in the internal 1178 * blockdev inode. 1179 */ 1180 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 1181 void __mark_inode_dirty(struct inode *inode, int flags) 1182 { 1183 struct super_block *sb = inode->i_sb; 1184 struct backing_dev_info *bdi = NULL; 1185 int dirtytime; 1186 1187 trace_writeback_mark_inode_dirty(inode, flags); 1188 1189 /* 1190 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1191 * dirty the inode itself 1192 */ 1193 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) { 1194 trace_writeback_dirty_inode_start(inode, flags); 1195 1196 if (sb->s_op->dirty_inode) 1197 sb->s_op->dirty_inode(inode, flags); 1198 1199 trace_writeback_dirty_inode(inode, flags); 1200 } 1201 if (flags & I_DIRTY_INODE) 1202 flags &= ~I_DIRTY_TIME; 1203 dirtytime = flags & I_DIRTY_TIME; 1204 1205 /* 1206 * Paired with smp_mb() in __writeback_single_inode() for the 1207 * following lockless i_state test. See there for details. 1208 */ 1209 smp_mb(); 1210 1211 if (((inode->i_state & flags) == flags) || 1212 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 1213 return; 1214 1215 if (unlikely(block_dump)) 1216 block_dump___mark_inode_dirty(inode); 1217 1218 spin_lock(&inode->i_lock); 1219 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 1220 goto out_unlock_inode; 1221 if ((inode->i_state & flags) != flags) { 1222 const int was_dirty = inode->i_state & I_DIRTY; 1223 1224 if (flags & I_DIRTY_INODE) 1225 inode->i_state &= ~I_DIRTY_TIME; 1226 inode->i_state |= flags; 1227 1228 /* 1229 * If the inode is being synced, just update its dirty state. 1230 * The unlocker will place the inode on the appropriate 1231 * superblock list, based upon its state. 1232 */ 1233 if (inode->i_state & I_SYNC) 1234 goto out_unlock_inode; 1235 1236 /* 1237 * Only add valid (hashed) inodes to the superblock's 1238 * dirty list. Add blockdev inodes as well. 1239 */ 1240 if (!S_ISBLK(inode->i_mode)) { 1241 if (inode_unhashed(inode)) 1242 goto out_unlock_inode; 1243 } 1244 if (inode->i_state & I_FREEING) 1245 goto out_unlock_inode; 1246 1247 /* 1248 * If the inode was already on b_dirty/b_io/b_more_io, don't 1249 * reposition it (that would break b_dirty time-ordering). 1250 */ 1251 if (!was_dirty) { 1252 bool wakeup_bdi = false; 1253 bdi = inode_to_bdi(inode); 1254 1255 spin_unlock(&inode->i_lock); 1256 spin_lock(&bdi->wb.list_lock); 1257 if (bdi_cap_writeback_dirty(bdi)) { 1258 WARN(!test_bit(BDI_registered, &bdi->state), 1259 "bdi-%s not registered\n", bdi->name); 1260 1261 /* 1262 * If this is the first dirty inode for this 1263 * bdi, we have to wake-up the corresponding 1264 * bdi thread to make sure background 1265 * write-back happens later. 1266 */ 1267 if (!wb_has_dirty_io(&bdi->wb)) 1268 wakeup_bdi = true; 1269 } 1270 1271 inode->dirtied_when = jiffies; 1272 list_move(&inode->i_wb_list, dirtytime ? 1273 &bdi->wb.b_dirty_time : &bdi->wb.b_dirty); 1274 spin_unlock(&bdi->wb.list_lock); 1275 trace_writeback_dirty_inode_enqueue(inode); 1276 1277 if (wakeup_bdi) 1278 bdi_wakeup_thread_delayed(bdi); 1279 return; 1280 } 1281 } 1282 out_unlock_inode: 1283 spin_unlock(&inode->i_lock); 1284 1285 } 1286 EXPORT_SYMBOL(__mark_inode_dirty); 1287 1288 static void wait_sb_inodes(struct super_block *sb) 1289 { 1290 struct inode *inode, *old_inode = NULL; 1291 1292 /* 1293 * We need to be protected against the filesystem going from 1294 * r/o to r/w or vice versa. 1295 */ 1296 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1297 1298 spin_lock(&inode_sb_list_lock); 1299 1300 /* 1301 * Data integrity sync. Must wait for all pages under writeback, 1302 * because there may have been pages dirtied before our sync 1303 * call, but which had writeout started before we write it out. 1304 * In which case, the inode may not be on the dirty list, but 1305 * we still have to wait for that writeout. 1306 */ 1307 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1308 struct address_space *mapping = inode->i_mapping; 1309 1310 spin_lock(&inode->i_lock); 1311 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1312 (mapping->nrpages == 0)) { 1313 spin_unlock(&inode->i_lock); 1314 continue; 1315 } 1316 __iget(inode); 1317 spin_unlock(&inode->i_lock); 1318 spin_unlock(&inode_sb_list_lock); 1319 1320 /* 1321 * We hold a reference to 'inode' so it couldn't have been 1322 * removed from s_inodes list while we dropped the 1323 * inode_sb_list_lock. We cannot iput the inode now as we can 1324 * be holding the last reference and we cannot iput it under 1325 * inode_sb_list_lock. So we keep the reference and iput it 1326 * later. 1327 */ 1328 iput(old_inode); 1329 old_inode = inode; 1330 1331 filemap_fdatawait(mapping); 1332 1333 cond_resched(); 1334 1335 spin_lock(&inode_sb_list_lock); 1336 } 1337 spin_unlock(&inode_sb_list_lock); 1338 iput(old_inode); 1339 } 1340 1341 /** 1342 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1343 * @sb: the superblock 1344 * @nr: the number of pages to write 1345 * @reason: reason why some writeback work initiated 1346 * 1347 * Start writeback on some inodes on this super_block. No guarantees are made 1348 * on how many (if any) will be written, and this function does not wait 1349 * for IO completion of submitted IO. 1350 */ 1351 void writeback_inodes_sb_nr(struct super_block *sb, 1352 unsigned long nr, 1353 enum wb_reason reason) 1354 { 1355 DECLARE_COMPLETION_ONSTACK(done); 1356 struct wb_writeback_work work = { 1357 .sb = sb, 1358 .sync_mode = WB_SYNC_NONE, 1359 .tagged_writepages = 1, 1360 .done = &done, 1361 .nr_pages = nr, 1362 .reason = reason, 1363 }; 1364 1365 if (sb->s_bdi == &noop_backing_dev_info) 1366 return; 1367 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1368 bdi_queue_work(sb->s_bdi, &work); 1369 wait_for_completion(&done); 1370 } 1371 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1372 1373 /** 1374 * writeback_inodes_sb - writeback dirty inodes from given super_block 1375 * @sb: the superblock 1376 * @reason: reason why some writeback work was initiated 1377 * 1378 * Start writeback on some inodes on this super_block. No guarantees are made 1379 * on how many (if any) will be written, and this function does not wait 1380 * for IO completion of submitted IO. 1381 */ 1382 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1383 { 1384 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1385 } 1386 EXPORT_SYMBOL(writeback_inodes_sb); 1387 1388 /** 1389 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway 1390 * @sb: the superblock 1391 * @nr: the number of pages to write 1392 * @reason: the reason of writeback 1393 * 1394 * Invoke writeback_inodes_sb_nr if no writeback is currently underway. 1395 * Returns 1 if writeback was started, 0 if not. 1396 */ 1397 int try_to_writeback_inodes_sb_nr(struct super_block *sb, 1398 unsigned long nr, 1399 enum wb_reason reason) 1400 { 1401 if (writeback_in_progress(sb->s_bdi)) 1402 return 1; 1403 1404 if (!down_read_trylock(&sb->s_umount)) 1405 return 0; 1406 1407 writeback_inodes_sb_nr(sb, nr, reason); 1408 up_read(&sb->s_umount); 1409 return 1; 1410 } 1411 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr); 1412 1413 /** 1414 * try_to_writeback_inodes_sb - try to start writeback if none underway 1415 * @sb: the superblock 1416 * @reason: reason why some writeback work was initiated 1417 * 1418 * Implement by try_to_writeback_inodes_sb_nr() 1419 * Returns 1 if writeback was started, 0 if not. 1420 */ 1421 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1422 { 1423 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1424 } 1425 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 1426 1427 /** 1428 * sync_inodes_sb - sync sb inode pages 1429 * @sb: the superblock 1430 * 1431 * This function writes and waits on any dirty inode belonging to this 1432 * super_block. 1433 */ 1434 void sync_inodes_sb(struct super_block *sb) 1435 { 1436 DECLARE_COMPLETION_ONSTACK(done); 1437 struct wb_writeback_work work = { 1438 .sb = sb, 1439 .sync_mode = WB_SYNC_ALL, 1440 .nr_pages = LONG_MAX, 1441 .range_cyclic = 0, 1442 .done = &done, 1443 .reason = WB_REASON_SYNC, 1444 .for_sync = 1, 1445 }; 1446 1447 /* Nothing to do? */ 1448 if (sb->s_bdi == &noop_backing_dev_info) 1449 return; 1450 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1451 1452 bdi_queue_work(sb->s_bdi, &work); 1453 wait_for_completion(&done); 1454 1455 wait_sb_inodes(sb); 1456 } 1457 EXPORT_SYMBOL(sync_inodes_sb); 1458 1459 /** 1460 * write_inode_now - write an inode to disk 1461 * @inode: inode to write to disk 1462 * @sync: whether the write should be synchronous or not 1463 * 1464 * This function commits an inode to disk immediately if it is dirty. This is 1465 * primarily needed by knfsd. 1466 * 1467 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1468 */ 1469 int write_inode_now(struct inode *inode, int sync) 1470 { 1471 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1472 struct writeback_control wbc = { 1473 .nr_to_write = LONG_MAX, 1474 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1475 .range_start = 0, 1476 .range_end = LLONG_MAX, 1477 }; 1478 1479 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1480 wbc.nr_to_write = 0; 1481 1482 might_sleep(); 1483 return writeback_single_inode(inode, wb, &wbc); 1484 } 1485 EXPORT_SYMBOL(write_inode_now); 1486 1487 /** 1488 * sync_inode - write an inode and its pages to disk. 1489 * @inode: the inode to sync 1490 * @wbc: controls the writeback mode 1491 * 1492 * sync_inode() will write an inode and its pages to disk. It will also 1493 * correctly update the inode on its superblock's dirty inode lists and will 1494 * update inode->i_state. 1495 * 1496 * The caller must have a ref on the inode. 1497 */ 1498 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1499 { 1500 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc); 1501 } 1502 EXPORT_SYMBOL(sync_inode); 1503 1504 /** 1505 * sync_inode_metadata - write an inode to disk 1506 * @inode: the inode to sync 1507 * @wait: wait for I/O to complete. 1508 * 1509 * Write an inode to disk and adjust its dirty state after completion. 1510 * 1511 * Note: only writes the actual inode, no associated data or other metadata. 1512 */ 1513 int sync_inode_metadata(struct inode *inode, int wait) 1514 { 1515 struct writeback_control wbc = { 1516 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1517 .nr_to_write = 0, /* metadata-only */ 1518 }; 1519 1520 return sync_inode(inode, &wbc); 1521 } 1522 EXPORT_SYMBOL(sync_inode_metadata); 1523