xref: /openbmc/linux/fs/file.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/file.c
4  *
5  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6  *
7  *  Manage the dynamic fd arrays in the process files_struct.
8  */
9 
10 #include <linux/syscalls.h>
11 #include <linux/export.h>
12 #include <linux/fs.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/file.h>
18 #include <linux/fdtable.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/close_range.h>
23 #include <net/sock.h>
24 
25 unsigned int sysctl_nr_open __read_mostly = 1024*1024;
26 unsigned int sysctl_nr_open_min = BITS_PER_LONG;
27 /* our min() is unusable in constant expressions ;-/ */
28 #define __const_min(x, y) ((x) < (y) ? (x) : (y))
29 unsigned int sysctl_nr_open_max =
30 	__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
31 
32 static void __free_fdtable(struct fdtable *fdt)
33 {
34 	kvfree(fdt->fd);
35 	kvfree(fdt->open_fds);
36 	kfree(fdt);
37 }
38 
39 static void free_fdtable_rcu(struct rcu_head *rcu)
40 {
41 	__free_fdtable(container_of(rcu, struct fdtable, rcu));
42 }
43 
44 #define BITBIT_NR(nr)	BITS_TO_LONGS(BITS_TO_LONGS(nr))
45 #define BITBIT_SIZE(nr)	(BITBIT_NR(nr) * sizeof(long))
46 
47 /*
48  * Copy 'count' fd bits from the old table to the new table and clear the extra
49  * space if any.  This does not copy the file pointers.  Called with the files
50  * spinlock held for write.
51  */
52 static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
53 			    unsigned int count)
54 {
55 	unsigned int cpy, set;
56 
57 	cpy = count / BITS_PER_BYTE;
58 	set = (nfdt->max_fds - count) / BITS_PER_BYTE;
59 	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
60 	memset((char *)nfdt->open_fds + cpy, 0, set);
61 	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
62 	memset((char *)nfdt->close_on_exec + cpy, 0, set);
63 
64 	cpy = BITBIT_SIZE(count);
65 	set = BITBIT_SIZE(nfdt->max_fds) - cpy;
66 	memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy);
67 	memset((char *)nfdt->full_fds_bits + cpy, 0, set);
68 }
69 
70 /*
71  * Copy all file descriptors from the old table to the new, expanded table and
72  * clear the extra space.  Called with the files spinlock held for write.
73  */
74 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
75 {
76 	size_t cpy, set;
77 
78 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
79 
80 	cpy = ofdt->max_fds * sizeof(struct file *);
81 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
82 	memcpy(nfdt->fd, ofdt->fd, cpy);
83 	memset((char *)nfdt->fd + cpy, 0, set);
84 
85 	copy_fd_bitmaps(nfdt, ofdt, ofdt->max_fds);
86 }
87 
88 static struct fdtable * alloc_fdtable(unsigned int nr)
89 {
90 	struct fdtable *fdt;
91 	void *data;
92 
93 	/*
94 	 * Figure out how many fds we actually want to support in this fdtable.
95 	 * Allocation steps are keyed to the size of the fdarray, since it
96 	 * grows far faster than any of the other dynamic data. We try to fit
97 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
98 	 * and growing in powers of two from there on.
99 	 */
100 	nr /= (1024 / sizeof(struct file *));
101 	nr = roundup_pow_of_two(nr + 1);
102 	nr *= (1024 / sizeof(struct file *));
103 	/*
104 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
105 	 * had been set lower between the check in expand_files() and here.  Deal
106 	 * with that in caller, it's cheaper that way.
107 	 *
108 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
109 	 * bitmaps handling below becomes unpleasant, to put it mildly...
110 	 */
111 	if (unlikely(nr > sysctl_nr_open))
112 		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
113 
114 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
115 	if (!fdt)
116 		goto out;
117 	fdt->max_fds = nr;
118 	data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
119 	if (!data)
120 		goto out_fdt;
121 	fdt->fd = data;
122 
123 	data = kvmalloc(max_t(size_t,
124 				 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
125 				 GFP_KERNEL_ACCOUNT);
126 	if (!data)
127 		goto out_arr;
128 	fdt->open_fds = data;
129 	data += nr / BITS_PER_BYTE;
130 	fdt->close_on_exec = data;
131 	data += nr / BITS_PER_BYTE;
132 	fdt->full_fds_bits = data;
133 
134 	return fdt;
135 
136 out_arr:
137 	kvfree(fdt->fd);
138 out_fdt:
139 	kfree(fdt);
140 out:
141 	return NULL;
142 }
143 
144 /*
145  * Expand the file descriptor table.
146  * This function will allocate a new fdtable and both fd array and fdset, of
147  * the given size.
148  * Return <0 error code on error; 1 on successful completion.
149  * The files->file_lock should be held on entry, and will be held on exit.
150  */
151 static int expand_fdtable(struct files_struct *files, unsigned int nr)
152 	__releases(files->file_lock)
153 	__acquires(files->file_lock)
154 {
155 	struct fdtable *new_fdt, *cur_fdt;
156 
157 	spin_unlock(&files->file_lock);
158 	new_fdt = alloc_fdtable(nr);
159 
160 	/* make sure all __fd_install() have seen resize_in_progress
161 	 * or have finished their rcu_read_lock_sched() section.
162 	 */
163 	if (atomic_read(&files->count) > 1)
164 		synchronize_rcu();
165 
166 	spin_lock(&files->file_lock);
167 	if (!new_fdt)
168 		return -ENOMEM;
169 	/*
170 	 * extremely unlikely race - sysctl_nr_open decreased between the check in
171 	 * caller and alloc_fdtable().  Cheaper to catch it here...
172 	 */
173 	if (unlikely(new_fdt->max_fds <= nr)) {
174 		__free_fdtable(new_fdt);
175 		return -EMFILE;
176 	}
177 	cur_fdt = files_fdtable(files);
178 	BUG_ON(nr < cur_fdt->max_fds);
179 	copy_fdtable(new_fdt, cur_fdt);
180 	rcu_assign_pointer(files->fdt, new_fdt);
181 	if (cur_fdt != &files->fdtab)
182 		call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
183 	/* coupled with smp_rmb() in __fd_install() */
184 	smp_wmb();
185 	return 1;
186 }
187 
188 /*
189  * Expand files.
190  * This function will expand the file structures, if the requested size exceeds
191  * the current capacity and there is room for expansion.
192  * Return <0 error code on error; 0 when nothing done; 1 when files were
193  * expanded and execution may have blocked.
194  * The files->file_lock should be held on entry, and will be held on exit.
195  */
196 static int expand_files(struct files_struct *files, unsigned int nr)
197 	__releases(files->file_lock)
198 	__acquires(files->file_lock)
199 {
200 	struct fdtable *fdt;
201 	int expanded = 0;
202 
203 repeat:
204 	fdt = files_fdtable(files);
205 
206 	/* Do we need to expand? */
207 	if (nr < fdt->max_fds)
208 		return expanded;
209 
210 	/* Can we expand? */
211 	if (nr >= sysctl_nr_open)
212 		return -EMFILE;
213 
214 	if (unlikely(files->resize_in_progress)) {
215 		spin_unlock(&files->file_lock);
216 		expanded = 1;
217 		wait_event(files->resize_wait, !files->resize_in_progress);
218 		spin_lock(&files->file_lock);
219 		goto repeat;
220 	}
221 
222 	/* All good, so we try */
223 	files->resize_in_progress = true;
224 	expanded = expand_fdtable(files, nr);
225 	files->resize_in_progress = false;
226 
227 	wake_up_all(&files->resize_wait);
228 	return expanded;
229 }
230 
231 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt)
232 {
233 	__set_bit(fd, fdt->close_on_exec);
234 }
235 
236 static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt)
237 {
238 	if (test_bit(fd, fdt->close_on_exec))
239 		__clear_bit(fd, fdt->close_on_exec);
240 }
241 
242 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt)
243 {
244 	__set_bit(fd, fdt->open_fds);
245 	fd /= BITS_PER_LONG;
246 	if (!~fdt->open_fds[fd])
247 		__set_bit(fd, fdt->full_fds_bits);
248 }
249 
250 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
251 {
252 	__clear_bit(fd, fdt->open_fds);
253 	__clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
254 }
255 
256 static unsigned int count_open_files(struct fdtable *fdt)
257 {
258 	unsigned int size = fdt->max_fds;
259 	unsigned int i;
260 
261 	/* Find the last open fd */
262 	for (i = size / BITS_PER_LONG; i > 0; ) {
263 		if (fdt->open_fds[--i])
264 			break;
265 	}
266 	i = (i + 1) * BITS_PER_LONG;
267 	return i;
268 }
269 
270 static unsigned int sane_fdtable_size(struct fdtable *fdt, unsigned int max_fds)
271 {
272 	unsigned int count;
273 
274 	count = count_open_files(fdt);
275 	if (max_fds < NR_OPEN_DEFAULT)
276 		max_fds = NR_OPEN_DEFAULT;
277 	return min(count, max_fds);
278 }
279 
280 /*
281  * Allocate a new files structure and copy contents from the
282  * passed in files structure.
283  * errorp will be valid only when the returned files_struct is NULL.
284  */
285 struct files_struct *dup_fd(struct files_struct *oldf, unsigned int max_fds, int *errorp)
286 {
287 	struct files_struct *newf;
288 	struct file **old_fds, **new_fds;
289 	unsigned int open_files, i;
290 	struct fdtable *old_fdt, *new_fdt;
291 
292 	*errorp = -ENOMEM;
293 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
294 	if (!newf)
295 		goto out;
296 
297 	atomic_set(&newf->count, 1);
298 
299 	spin_lock_init(&newf->file_lock);
300 	newf->resize_in_progress = false;
301 	init_waitqueue_head(&newf->resize_wait);
302 	newf->next_fd = 0;
303 	new_fdt = &newf->fdtab;
304 	new_fdt->max_fds = NR_OPEN_DEFAULT;
305 	new_fdt->close_on_exec = newf->close_on_exec_init;
306 	new_fdt->open_fds = newf->open_fds_init;
307 	new_fdt->full_fds_bits = newf->full_fds_bits_init;
308 	new_fdt->fd = &newf->fd_array[0];
309 
310 	spin_lock(&oldf->file_lock);
311 	old_fdt = files_fdtable(oldf);
312 	open_files = sane_fdtable_size(old_fdt, max_fds);
313 
314 	/*
315 	 * Check whether we need to allocate a larger fd array and fd set.
316 	 */
317 	while (unlikely(open_files > new_fdt->max_fds)) {
318 		spin_unlock(&oldf->file_lock);
319 
320 		if (new_fdt != &newf->fdtab)
321 			__free_fdtable(new_fdt);
322 
323 		new_fdt = alloc_fdtable(open_files - 1);
324 		if (!new_fdt) {
325 			*errorp = -ENOMEM;
326 			goto out_release;
327 		}
328 
329 		/* beyond sysctl_nr_open; nothing to do */
330 		if (unlikely(new_fdt->max_fds < open_files)) {
331 			__free_fdtable(new_fdt);
332 			*errorp = -EMFILE;
333 			goto out_release;
334 		}
335 
336 		/*
337 		 * Reacquire the oldf lock and a pointer to its fd table
338 		 * who knows it may have a new bigger fd table. We need
339 		 * the latest pointer.
340 		 */
341 		spin_lock(&oldf->file_lock);
342 		old_fdt = files_fdtable(oldf);
343 		open_files = sane_fdtable_size(old_fdt, max_fds);
344 	}
345 
346 	copy_fd_bitmaps(new_fdt, old_fdt, open_files);
347 
348 	old_fds = old_fdt->fd;
349 	new_fds = new_fdt->fd;
350 
351 	for (i = open_files; i != 0; i--) {
352 		struct file *f = *old_fds++;
353 		if (f) {
354 			get_file(f);
355 		} else {
356 			/*
357 			 * The fd may be claimed in the fd bitmap but not yet
358 			 * instantiated in the files array if a sibling thread
359 			 * is partway through open().  So make sure that this
360 			 * fd is available to the new process.
361 			 */
362 			__clear_open_fd(open_files - i, new_fdt);
363 		}
364 		rcu_assign_pointer(*new_fds++, f);
365 	}
366 	spin_unlock(&oldf->file_lock);
367 
368 	/* clear the remainder */
369 	memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
370 
371 	rcu_assign_pointer(newf->fdt, new_fdt);
372 
373 	return newf;
374 
375 out_release:
376 	kmem_cache_free(files_cachep, newf);
377 out:
378 	return NULL;
379 }
380 
381 static struct fdtable *close_files(struct files_struct * files)
382 {
383 	/*
384 	 * It is safe to dereference the fd table without RCU or
385 	 * ->file_lock because this is the last reference to the
386 	 * files structure.
387 	 */
388 	struct fdtable *fdt = rcu_dereference_raw(files->fdt);
389 	unsigned int i, j = 0;
390 
391 	for (;;) {
392 		unsigned long set;
393 		i = j * BITS_PER_LONG;
394 		if (i >= fdt->max_fds)
395 			break;
396 		set = fdt->open_fds[j++];
397 		while (set) {
398 			if (set & 1) {
399 				struct file * file = xchg(&fdt->fd[i], NULL);
400 				if (file) {
401 					filp_close(file, files);
402 					cond_resched();
403 				}
404 			}
405 			i++;
406 			set >>= 1;
407 		}
408 	}
409 
410 	return fdt;
411 }
412 
413 struct files_struct *get_files_struct(struct task_struct *task)
414 {
415 	struct files_struct *files;
416 
417 	task_lock(task);
418 	files = task->files;
419 	if (files)
420 		atomic_inc(&files->count);
421 	task_unlock(task);
422 
423 	return files;
424 }
425 
426 void put_files_struct(struct files_struct *files)
427 {
428 	if (atomic_dec_and_test(&files->count)) {
429 		struct fdtable *fdt = close_files(files);
430 
431 		/* free the arrays if they are not embedded */
432 		if (fdt != &files->fdtab)
433 			__free_fdtable(fdt);
434 		kmem_cache_free(files_cachep, files);
435 	}
436 }
437 
438 void reset_files_struct(struct files_struct *files)
439 {
440 	struct task_struct *tsk = current;
441 	struct files_struct *old;
442 
443 	old = tsk->files;
444 	task_lock(tsk);
445 	tsk->files = files;
446 	task_unlock(tsk);
447 	put_files_struct(old);
448 }
449 
450 void exit_files(struct task_struct *tsk)
451 {
452 	struct files_struct * files = tsk->files;
453 
454 	if (files) {
455 		task_lock(tsk);
456 		tsk->files = NULL;
457 		task_unlock(tsk);
458 		put_files_struct(files);
459 	}
460 }
461 
462 struct files_struct init_files = {
463 	.count		= ATOMIC_INIT(1),
464 	.fdt		= &init_files.fdtab,
465 	.fdtab		= {
466 		.max_fds	= NR_OPEN_DEFAULT,
467 		.fd		= &init_files.fd_array[0],
468 		.close_on_exec	= init_files.close_on_exec_init,
469 		.open_fds	= init_files.open_fds_init,
470 		.full_fds_bits	= init_files.full_fds_bits_init,
471 	},
472 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
473 	.resize_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
474 };
475 
476 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
477 {
478 	unsigned int maxfd = fdt->max_fds;
479 	unsigned int maxbit = maxfd / BITS_PER_LONG;
480 	unsigned int bitbit = start / BITS_PER_LONG;
481 
482 	bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
483 	if (bitbit > maxfd)
484 		return maxfd;
485 	if (bitbit > start)
486 		start = bitbit;
487 	return find_next_zero_bit(fdt->open_fds, maxfd, start);
488 }
489 
490 /*
491  * allocate a file descriptor, mark it busy.
492  */
493 int __alloc_fd(struct files_struct *files,
494 	       unsigned start, unsigned end, unsigned flags)
495 {
496 	unsigned int fd;
497 	int error;
498 	struct fdtable *fdt;
499 
500 	spin_lock(&files->file_lock);
501 repeat:
502 	fdt = files_fdtable(files);
503 	fd = start;
504 	if (fd < files->next_fd)
505 		fd = files->next_fd;
506 
507 	if (fd < fdt->max_fds)
508 		fd = find_next_fd(fdt, fd);
509 
510 	/*
511 	 * N.B. For clone tasks sharing a files structure, this test
512 	 * will limit the total number of files that can be opened.
513 	 */
514 	error = -EMFILE;
515 	if (fd >= end)
516 		goto out;
517 
518 	error = expand_files(files, fd);
519 	if (error < 0)
520 		goto out;
521 
522 	/*
523 	 * If we needed to expand the fs array we
524 	 * might have blocked - try again.
525 	 */
526 	if (error)
527 		goto repeat;
528 
529 	if (start <= files->next_fd)
530 		files->next_fd = fd + 1;
531 
532 	__set_open_fd(fd, fdt);
533 	if (flags & O_CLOEXEC)
534 		__set_close_on_exec(fd, fdt);
535 	else
536 		__clear_close_on_exec(fd, fdt);
537 	error = fd;
538 #if 1
539 	/* Sanity check */
540 	if (rcu_access_pointer(fdt->fd[fd]) != NULL) {
541 		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
542 		rcu_assign_pointer(fdt->fd[fd], NULL);
543 	}
544 #endif
545 
546 out:
547 	spin_unlock(&files->file_lock);
548 	return error;
549 }
550 
551 static int alloc_fd(unsigned start, unsigned flags)
552 {
553 	return __alloc_fd(current->files, start, rlimit(RLIMIT_NOFILE), flags);
554 }
555 
556 int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
557 {
558 	return __alloc_fd(current->files, 0, nofile, flags);
559 }
560 
561 int get_unused_fd_flags(unsigned flags)
562 {
563 	return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
564 }
565 EXPORT_SYMBOL(get_unused_fd_flags);
566 
567 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
568 {
569 	struct fdtable *fdt = files_fdtable(files);
570 	__clear_open_fd(fd, fdt);
571 	if (fd < files->next_fd)
572 		files->next_fd = fd;
573 }
574 
575 void put_unused_fd(unsigned int fd)
576 {
577 	struct files_struct *files = current->files;
578 	spin_lock(&files->file_lock);
579 	__put_unused_fd(files, fd);
580 	spin_unlock(&files->file_lock);
581 }
582 
583 EXPORT_SYMBOL(put_unused_fd);
584 
585 /*
586  * Install a file pointer in the fd array.
587  *
588  * The VFS is full of places where we drop the files lock between
589  * setting the open_fds bitmap and installing the file in the file
590  * array.  At any such point, we are vulnerable to a dup2() race
591  * installing a file in the array before us.  We need to detect this and
592  * fput() the struct file we are about to overwrite in this case.
593  *
594  * It should never happen - if we allow dup2() do it, _really_ bad things
595  * will follow.
596  *
597  * NOTE: __fd_install() variant is really, really low-level; don't
598  * use it unless you are forced to by truly lousy API shoved down
599  * your throat.  'files' *MUST* be either current->files or obtained
600  * by get_files_struct(current) done by whoever had given it to you,
601  * or really bad things will happen.  Normally you want to use
602  * fd_install() instead.
603  */
604 
605 void __fd_install(struct files_struct *files, unsigned int fd,
606 		struct file *file)
607 {
608 	struct fdtable *fdt;
609 
610 	rcu_read_lock_sched();
611 
612 	if (unlikely(files->resize_in_progress)) {
613 		rcu_read_unlock_sched();
614 		spin_lock(&files->file_lock);
615 		fdt = files_fdtable(files);
616 		BUG_ON(fdt->fd[fd] != NULL);
617 		rcu_assign_pointer(fdt->fd[fd], file);
618 		spin_unlock(&files->file_lock);
619 		return;
620 	}
621 	/* coupled with smp_wmb() in expand_fdtable() */
622 	smp_rmb();
623 	fdt = rcu_dereference_sched(files->fdt);
624 	BUG_ON(fdt->fd[fd] != NULL);
625 	rcu_assign_pointer(fdt->fd[fd], file);
626 	rcu_read_unlock_sched();
627 }
628 
629 /*
630  * This consumes the "file" refcount, so callers should treat it
631  * as if they had called fput(file).
632  */
633 void fd_install(unsigned int fd, struct file *file)
634 {
635 	__fd_install(current->files, fd, file);
636 }
637 
638 EXPORT_SYMBOL(fd_install);
639 
640 static struct file *pick_file(struct files_struct *files, unsigned fd)
641 {
642 	struct file *file = NULL;
643 	struct fdtable *fdt;
644 
645 	spin_lock(&files->file_lock);
646 	fdt = files_fdtable(files);
647 	if (fd >= fdt->max_fds)
648 		goto out_unlock;
649 	file = fdt->fd[fd];
650 	if (!file)
651 		goto out_unlock;
652 	rcu_assign_pointer(fdt->fd[fd], NULL);
653 	__put_unused_fd(files, fd);
654 
655 out_unlock:
656 	spin_unlock(&files->file_lock);
657 	return file;
658 }
659 
660 /*
661  * The same warnings as for __alloc_fd()/__fd_install() apply here...
662  */
663 int __close_fd(struct files_struct *files, unsigned fd)
664 {
665 	struct file *file;
666 
667 	file = pick_file(files, fd);
668 	if (!file)
669 		return -EBADF;
670 
671 	return filp_close(file, files);
672 }
673 EXPORT_SYMBOL(__close_fd); /* for ksys_close() */
674 
675 /**
676  * __close_range() - Close all file descriptors in a given range.
677  *
678  * @fd:     starting file descriptor to close
679  * @max_fd: last file descriptor to close
680  *
681  * This closes a range of file descriptors. All file descriptors
682  * from @fd up to and including @max_fd are closed.
683  */
684 int __close_range(unsigned fd, unsigned max_fd, unsigned int flags)
685 {
686 	unsigned int cur_max;
687 	struct task_struct *me = current;
688 	struct files_struct *cur_fds = me->files, *fds = NULL;
689 
690 	if (flags & ~CLOSE_RANGE_UNSHARE)
691 		return -EINVAL;
692 
693 	if (fd > max_fd)
694 		return -EINVAL;
695 
696 	rcu_read_lock();
697 	cur_max = files_fdtable(cur_fds)->max_fds;
698 	rcu_read_unlock();
699 
700 	/* cap to last valid index into fdtable */
701 	cur_max--;
702 
703 	if (flags & CLOSE_RANGE_UNSHARE) {
704 		int ret;
705 		unsigned int max_unshare_fds = NR_OPEN_MAX;
706 
707 		/*
708 		 * If the requested range is greater than the current maximum,
709 		 * we're closing everything so only copy all file descriptors
710 		 * beneath the lowest file descriptor.
711 		 */
712 		if (max_fd >= cur_max)
713 			max_unshare_fds = fd;
714 
715 		ret = unshare_fd(CLONE_FILES, max_unshare_fds, &fds);
716 		if (ret)
717 			return ret;
718 
719 		/*
720 		 * We used to share our file descriptor table, and have now
721 		 * created a private one, make sure we're using it below.
722 		 */
723 		if (fds)
724 			swap(cur_fds, fds);
725 	}
726 
727 	max_fd = min(max_fd, cur_max);
728 	while (fd <= max_fd) {
729 		struct file *file;
730 
731 		file = pick_file(cur_fds, fd++);
732 		if (!file)
733 			continue;
734 
735 		filp_close(file, cur_fds);
736 		cond_resched();
737 	}
738 
739 	if (fds) {
740 		/*
741 		 * We're done closing the files we were supposed to. Time to install
742 		 * the new file descriptor table and drop the old one.
743 		 */
744 		task_lock(me);
745 		me->files = cur_fds;
746 		task_unlock(me);
747 		put_files_struct(fds);
748 	}
749 
750 	return 0;
751 }
752 
753 /*
754  * variant of __close_fd that gets a ref on the file for later fput.
755  * The caller must ensure that filp_close() called on the file, and then
756  * an fput().
757  */
758 int __close_fd_get_file(unsigned int fd, struct file **res)
759 {
760 	struct files_struct *files = current->files;
761 	struct file *file;
762 	struct fdtable *fdt;
763 
764 	spin_lock(&files->file_lock);
765 	fdt = files_fdtable(files);
766 	if (fd >= fdt->max_fds)
767 		goto out_unlock;
768 	file = fdt->fd[fd];
769 	if (!file)
770 		goto out_unlock;
771 	rcu_assign_pointer(fdt->fd[fd], NULL);
772 	__put_unused_fd(files, fd);
773 	spin_unlock(&files->file_lock);
774 	get_file(file);
775 	*res = file;
776 	return 0;
777 
778 out_unlock:
779 	spin_unlock(&files->file_lock);
780 	*res = NULL;
781 	return -ENOENT;
782 }
783 
784 void do_close_on_exec(struct files_struct *files)
785 {
786 	unsigned i;
787 	struct fdtable *fdt;
788 
789 	/* exec unshares first */
790 	spin_lock(&files->file_lock);
791 	for (i = 0; ; i++) {
792 		unsigned long set;
793 		unsigned fd = i * BITS_PER_LONG;
794 		fdt = files_fdtable(files);
795 		if (fd >= fdt->max_fds)
796 			break;
797 		set = fdt->close_on_exec[i];
798 		if (!set)
799 			continue;
800 		fdt->close_on_exec[i] = 0;
801 		for ( ; set ; fd++, set >>= 1) {
802 			struct file *file;
803 			if (!(set & 1))
804 				continue;
805 			file = fdt->fd[fd];
806 			if (!file)
807 				continue;
808 			rcu_assign_pointer(fdt->fd[fd], NULL);
809 			__put_unused_fd(files, fd);
810 			spin_unlock(&files->file_lock);
811 			filp_close(file, files);
812 			cond_resched();
813 			spin_lock(&files->file_lock);
814 		}
815 
816 	}
817 	spin_unlock(&files->file_lock);
818 }
819 
820 static struct file *__fget_files(struct files_struct *files, unsigned int fd,
821 				 fmode_t mask, unsigned int refs)
822 {
823 	struct file *file;
824 
825 	rcu_read_lock();
826 loop:
827 	file = fcheck_files(files, fd);
828 	if (file) {
829 		/* File object ref couldn't be taken.
830 		 * dup2() atomicity guarantee is the reason
831 		 * we loop to catch the new file (or NULL pointer)
832 		 */
833 		if (file->f_mode & mask)
834 			file = NULL;
835 		else if (!get_file_rcu_many(file, refs))
836 			goto loop;
837 	}
838 	rcu_read_unlock();
839 
840 	return file;
841 }
842 
843 static inline struct file *__fget(unsigned int fd, fmode_t mask,
844 				  unsigned int refs)
845 {
846 	return __fget_files(current->files, fd, mask, refs);
847 }
848 
849 struct file *fget_many(unsigned int fd, unsigned int refs)
850 {
851 	return __fget(fd, FMODE_PATH, refs);
852 }
853 
854 struct file *fget(unsigned int fd)
855 {
856 	return __fget(fd, FMODE_PATH, 1);
857 }
858 EXPORT_SYMBOL(fget);
859 
860 struct file *fget_raw(unsigned int fd)
861 {
862 	return __fget(fd, 0, 1);
863 }
864 EXPORT_SYMBOL(fget_raw);
865 
866 struct file *fget_task(struct task_struct *task, unsigned int fd)
867 {
868 	struct file *file = NULL;
869 
870 	task_lock(task);
871 	if (task->files)
872 		file = __fget_files(task->files, fd, 0, 1);
873 	task_unlock(task);
874 
875 	return file;
876 }
877 
878 /*
879  * Lightweight file lookup - no refcnt increment if fd table isn't shared.
880  *
881  * You can use this instead of fget if you satisfy all of the following
882  * conditions:
883  * 1) You must call fput_light before exiting the syscall and returning control
884  *    to userspace (i.e. you cannot remember the returned struct file * after
885  *    returning to userspace).
886  * 2) You must not call filp_close on the returned struct file * in between
887  *    calls to fget_light and fput_light.
888  * 3) You must not clone the current task in between the calls to fget_light
889  *    and fput_light.
890  *
891  * The fput_needed flag returned by fget_light should be passed to the
892  * corresponding fput_light.
893  */
894 static unsigned long __fget_light(unsigned int fd, fmode_t mask)
895 {
896 	struct files_struct *files = current->files;
897 	struct file *file;
898 
899 	if (atomic_read(&files->count) == 1) {
900 		file = __fcheck_files(files, fd);
901 		if (!file || unlikely(file->f_mode & mask))
902 			return 0;
903 		return (unsigned long)file;
904 	} else {
905 		file = __fget(fd, mask, 1);
906 		if (!file)
907 			return 0;
908 		return FDPUT_FPUT | (unsigned long)file;
909 	}
910 }
911 unsigned long __fdget(unsigned int fd)
912 {
913 	return __fget_light(fd, FMODE_PATH);
914 }
915 EXPORT_SYMBOL(__fdget);
916 
917 unsigned long __fdget_raw(unsigned int fd)
918 {
919 	return __fget_light(fd, 0);
920 }
921 
922 unsigned long __fdget_pos(unsigned int fd)
923 {
924 	unsigned long v = __fdget(fd);
925 	struct file *file = (struct file *)(v & ~3);
926 
927 	if (file && (file->f_mode & FMODE_ATOMIC_POS)) {
928 		if (file_count(file) > 1) {
929 			v |= FDPUT_POS_UNLOCK;
930 			mutex_lock(&file->f_pos_lock);
931 		}
932 	}
933 	return v;
934 }
935 
936 void __f_unlock_pos(struct file *f)
937 {
938 	mutex_unlock(&f->f_pos_lock);
939 }
940 
941 /*
942  * We only lock f_pos if we have threads or if the file might be
943  * shared with another process. In both cases we'll have an elevated
944  * file count (done either by fdget() or by fork()).
945  */
946 
947 void set_close_on_exec(unsigned int fd, int flag)
948 {
949 	struct files_struct *files = current->files;
950 	struct fdtable *fdt;
951 	spin_lock(&files->file_lock);
952 	fdt = files_fdtable(files);
953 	if (flag)
954 		__set_close_on_exec(fd, fdt);
955 	else
956 		__clear_close_on_exec(fd, fdt);
957 	spin_unlock(&files->file_lock);
958 }
959 
960 bool get_close_on_exec(unsigned int fd)
961 {
962 	struct files_struct *files = current->files;
963 	struct fdtable *fdt;
964 	bool res;
965 	rcu_read_lock();
966 	fdt = files_fdtable(files);
967 	res = close_on_exec(fd, fdt);
968 	rcu_read_unlock();
969 	return res;
970 }
971 
972 static int do_dup2(struct files_struct *files,
973 	struct file *file, unsigned fd, unsigned flags)
974 __releases(&files->file_lock)
975 {
976 	struct file *tofree;
977 	struct fdtable *fdt;
978 
979 	/*
980 	 * We need to detect attempts to do dup2() over allocated but still
981 	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
982 	 * extra work in their equivalent of fget() - they insert struct
983 	 * file immediately after grabbing descriptor, mark it larval if
984 	 * more work (e.g. actual opening) is needed and make sure that
985 	 * fget() treats larval files as absent.  Potentially interesting,
986 	 * but while extra work in fget() is trivial, locking implications
987 	 * and amount of surgery on open()-related paths in VFS are not.
988 	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
989 	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
990 	 * scope of POSIX or SUS, since neither considers shared descriptor
991 	 * tables and this condition does not arise without those.
992 	 */
993 	fdt = files_fdtable(files);
994 	tofree = fdt->fd[fd];
995 	if (!tofree && fd_is_open(fd, fdt))
996 		goto Ebusy;
997 	get_file(file);
998 	rcu_assign_pointer(fdt->fd[fd], file);
999 	__set_open_fd(fd, fdt);
1000 	if (flags & O_CLOEXEC)
1001 		__set_close_on_exec(fd, fdt);
1002 	else
1003 		__clear_close_on_exec(fd, fdt);
1004 	spin_unlock(&files->file_lock);
1005 
1006 	if (tofree)
1007 		filp_close(tofree, files);
1008 
1009 	return fd;
1010 
1011 Ebusy:
1012 	spin_unlock(&files->file_lock);
1013 	return -EBUSY;
1014 }
1015 
1016 int replace_fd(unsigned fd, struct file *file, unsigned flags)
1017 {
1018 	int err;
1019 	struct files_struct *files = current->files;
1020 
1021 	if (!file)
1022 		return __close_fd(files, fd);
1023 
1024 	if (fd >= rlimit(RLIMIT_NOFILE))
1025 		return -EBADF;
1026 
1027 	spin_lock(&files->file_lock);
1028 	err = expand_files(files, fd);
1029 	if (unlikely(err < 0))
1030 		goto out_unlock;
1031 	return do_dup2(files, file, fd, flags);
1032 
1033 out_unlock:
1034 	spin_unlock(&files->file_lock);
1035 	return err;
1036 }
1037 
1038 /**
1039  * __receive_fd() - Install received file into file descriptor table
1040  *
1041  * @fd: fd to install into (if negative, a new fd will be allocated)
1042  * @file: struct file that was received from another process
1043  * @ufd: __user pointer to write new fd number to
1044  * @o_flags: the O_* flags to apply to the new fd entry
1045  *
1046  * Installs a received file into the file descriptor table, with appropriate
1047  * checks and count updates. Optionally writes the fd number to userspace, if
1048  * @ufd is non-NULL.
1049  *
1050  * This helper handles its own reference counting of the incoming
1051  * struct file.
1052  *
1053  * Returns newly install fd or -ve on error.
1054  */
1055 int __receive_fd(int fd, struct file *file, int __user *ufd, unsigned int o_flags)
1056 {
1057 	int new_fd;
1058 	int error;
1059 
1060 	error = security_file_receive(file);
1061 	if (error)
1062 		return error;
1063 
1064 	if (fd < 0) {
1065 		new_fd = get_unused_fd_flags(o_flags);
1066 		if (new_fd < 0)
1067 			return new_fd;
1068 	} else {
1069 		new_fd = fd;
1070 	}
1071 
1072 	if (ufd) {
1073 		error = put_user(new_fd, ufd);
1074 		if (error) {
1075 			if (fd < 0)
1076 				put_unused_fd(new_fd);
1077 			return error;
1078 		}
1079 	}
1080 
1081 	if (fd < 0) {
1082 		fd_install(new_fd, get_file(file));
1083 	} else {
1084 		error = replace_fd(new_fd, file, o_flags);
1085 		if (error)
1086 			return error;
1087 	}
1088 
1089 	/* Bump the sock usage counts, if any. */
1090 	__receive_sock(file);
1091 	return new_fd;
1092 }
1093 
1094 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1095 {
1096 	int err = -EBADF;
1097 	struct file *file;
1098 	struct files_struct *files = current->files;
1099 
1100 	if ((flags & ~O_CLOEXEC) != 0)
1101 		return -EINVAL;
1102 
1103 	if (unlikely(oldfd == newfd))
1104 		return -EINVAL;
1105 
1106 	if (newfd >= rlimit(RLIMIT_NOFILE))
1107 		return -EBADF;
1108 
1109 	spin_lock(&files->file_lock);
1110 	err = expand_files(files, newfd);
1111 	file = fcheck(oldfd);
1112 	if (unlikely(!file))
1113 		goto Ebadf;
1114 	if (unlikely(err < 0)) {
1115 		if (err == -EMFILE)
1116 			goto Ebadf;
1117 		goto out_unlock;
1118 	}
1119 	return do_dup2(files, file, newfd, flags);
1120 
1121 Ebadf:
1122 	err = -EBADF;
1123 out_unlock:
1124 	spin_unlock(&files->file_lock);
1125 	return err;
1126 }
1127 
1128 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1129 {
1130 	return ksys_dup3(oldfd, newfd, flags);
1131 }
1132 
1133 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1134 {
1135 	if (unlikely(newfd == oldfd)) { /* corner case */
1136 		struct files_struct *files = current->files;
1137 		int retval = oldfd;
1138 
1139 		rcu_read_lock();
1140 		if (!fcheck_files(files, oldfd))
1141 			retval = -EBADF;
1142 		rcu_read_unlock();
1143 		return retval;
1144 	}
1145 	return ksys_dup3(oldfd, newfd, 0);
1146 }
1147 
1148 SYSCALL_DEFINE1(dup, unsigned int, fildes)
1149 {
1150 	int ret = -EBADF;
1151 	struct file *file = fget_raw(fildes);
1152 
1153 	if (file) {
1154 		ret = get_unused_fd_flags(0);
1155 		if (ret >= 0)
1156 			fd_install(ret, file);
1157 		else
1158 			fput(file);
1159 	}
1160 	return ret;
1161 }
1162 
1163 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1164 {
1165 	int err;
1166 	if (from >= rlimit(RLIMIT_NOFILE))
1167 		return -EINVAL;
1168 	err = alloc_fd(from, flags);
1169 	if (err >= 0) {
1170 		get_file(file);
1171 		fd_install(err, file);
1172 	}
1173 	return err;
1174 }
1175 
1176 int iterate_fd(struct files_struct *files, unsigned n,
1177 		int (*f)(const void *, struct file *, unsigned),
1178 		const void *p)
1179 {
1180 	struct fdtable *fdt;
1181 	int res = 0;
1182 	if (!files)
1183 		return 0;
1184 	spin_lock(&files->file_lock);
1185 	for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1186 		struct file *file;
1187 		file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1188 		if (!file)
1189 			continue;
1190 		res = f(p, file, n);
1191 		if (res)
1192 			break;
1193 	}
1194 	spin_unlock(&files->file_lock);
1195 	return res;
1196 }
1197 EXPORT_SYMBOL(iterate_fd);
1198