xref: /openbmc/linux/fs/file.c (revision f15cbe6f1a4b4d9df59142fc8e4abb973302cf44)
1 /*
2  *  linux/fs/file.c
3  *
4  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
5  *
6  *  Manage the dynamic fd arrays in the process files_struct.
7  */
8 
9 #include <linux/fs.h>
10 #include <linux/mm.h>
11 #include <linux/time.h>
12 #include <linux/slab.h>
13 #include <linux/vmalloc.h>
14 #include <linux/file.h>
15 #include <linux/fdtable.h>
16 #include <linux/bitops.h>
17 #include <linux/interrupt.h>
18 #include <linux/spinlock.h>
19 #include <linux/rcupdate.h>
20 #include <linux/workqueue.h>
21 
22 struct fdtable_defer {
23 	spinlock_t lock;
24 	struct work_struct wq;
25 	struct fdtable *next;
26 };
27 
28 int sysctl_nr_open __read_mostly = 1024*1024;
29 int sysctl_nr_open_min = BITS_PER_LONG;
30 int sysctl_nr_open_max = 1024 * 1024; /* raised later */
31 
32 /*
33  * We use this list to defer free fdtables that have vmalloced
34  * sets/arrays. By keeping a per-cpu list, we avoid having to embed
35  * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
36  * this per-task structure.
37  */
38 static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
39 
40 static inline void * alloc_fdmem(unsigned int size)
41 {
42 	if (size <= PAGE_SIZE)
43 		return kmalloc(size, GFP_KERNEL);
44 	else
45 		return vmalloc(size);
46 }
47 
48 static inline void free_fdarr(struct fdtable *fdt)
49 {
50 	if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *)))
51 		kfree(fdt->fd);
52 	else
53 		vfree(fdt->fd);
54 }
55 
56 static inline void free_fdset(struct fdtable *fdt)
57 {
58 	if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2))
59 		kfree(fdt->open_fds);
60 	else
61 		vfree(fdt->open_fds);
62 }
63 
64 static void free_fdtable_work(struct work_struct *work)
65 {
66 	struct fdtable_defer *f =
67 		container_of(work, struct fdtable_defer, wq);
68 	struct fdtable *fdt;
69 
70 	spin_lock_bh(&f->lock);
71 	fdt = f->next;
72 	f->next = NULL;
73 	spin_unlock_bh(&f->lock);
74 	while(fdt) {
75 		struct fdtable *next = fdt->next;
76 		vfree(fdt->fd);
77 		free_fdset(fdt);
78 		kfree(fdt);
79 		fdt = next;
80 	}
81 }
82 
83 void free_fdtable_rcu(struct rcu_head *rcu)
84 {
85 	struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
86 	struct fdtable_defer *fddef;
87 
88 	BUG_ON(!fdt);
89 
90 	if (fdt->max_fds <= NR_OPEN_DEFAULT) {
91 		/*
92 		 * This fdtable is embedded in the files structure and that
93 		 * structure itself is getting destroyed.
94 		 */
95 		kmem_cache_free(files_cachep,
96 				container_of(fdt, struct files_struct, fdtab));
97 		return;
98 	}
99 	if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) {
100 		kfree(fdt->fd);
101 		kfree(fdt->open_fds);
102 		kfree(fdt);
103 	} else {
104 		fddef = &get_cpu_var(fdtable_defer_list);
105 		spin_lock(&fddef->lock);
106 		fdt->next = fddef->next;
107 		fddef->next = fdt;
108 		/* vmallocs are handled from the workqueue context */
109 		schedule_work(&fddef->wq);
110 		spin_unlock(&fddef->lock);
111 		put_cpu_var(fdtable_defer_list);
112 	}
113 }
114 
115 /*
116  * Expand the fdset in the files_struct.  Called with the files spinlock
117  * held for write.
118  */
119 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
120 {
121 	unsigned int cpy, set;
122 
123 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
124 
125 	cpy = ofdt->max_fds * sizeof(struct file *);
126 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
127 	memcpy(nfdt->fd, ofdt->fd, cpy);
128 	memset((char *)(nfdt->fd) + cpy, 0, set);
129 
130 	cpy = ofdt->max_fds / BITS_PER_BYTE;
131 	set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
132 	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
133 	memset((char *)(nfdt->open_fds) + cpy, 0, set);
134 	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
135 	memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
136 }
137 
138 static struct fdtable * alloc_fdtable(unsigned int nr)
139 {
140 	struct fdtable *fdt;
141 	char *data;
142 
143 	/*
144 	 * Figure out how many fds we actually want to support in this fdtable.
145 	 * Allocation steps are keyed to the size of the fdarray, since it
146 	 * grows far faster than any of the other dynamic data. We try to fit
147 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
148 	 * and growing in powers of two from there on.
149 	 */
150 	nr /= (1024 / sizeof(struct file *));
151 	nr = roundup_pow_of_two(nr + 1);
152 	nr *= (1024 / sizeof(struct file *));
153 	/*
154 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
155 	 * had been set lower between the check in expand_files() and here.  Deal
156 	 * with that in caller, it's cheaper that way.
157 	 *
158 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
159 	 * bitmaps handling below becomes unpleasant, to put it mildly...
160 	 */
161 	if (unlikely(nr > sysctl_nr_open))
162 		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
163 
164 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
165 	if (!fdt)
166 		goto out;
167 	fdt->max_fds = nr;
168 	data = alloc_fdmem(nr * sizeof(struct file *));
169 	if (!data)
170 		goto out_fdt;
171 	fdt->fd = (struct file **)data;
172 	data = alloc_fdmem(max_t(unsigned int,
173 				 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
174 	if (!data)
175 		goto out_arr;
176 	fdt->open_fds = (fd_set *)data;
177 	data += nr / BITS_PER_BYTE;
178 	fdt->close_on_exec = (fd_set *)data;
179 	INIT_RCU_HEAD(&fdt->rcu);
180 	fdt->next = NULL;
181 
182 	return fdt;
183 
184 out_arr:
185 	free_fdarr(fdt);
186 out_fdt:
187 	kfree(fdt);
188 out:
189 	return NULL;
190 }
191 
192 /*
193  * Expand the file descriptor table.
194  * This function will allocate a new fdtable and both fd array and fdset, of
195  * the given size.
196  * Return <0 error code on error; 1 on successful completion.
197  * The files->file_lock should be held on entry, and will be held on exit.
198  */
199 static int expand_fdtable(struct files_struct *files, int nr)
200 	__releases(files->file_lock)
201 	__acquires(files->file_lock)
202 {
203 	struct fdtable *new_fdt, *cur_fdt;
204 
205 	spin_unlock(&files->file_lock);
206 	new_fdt = alloc_fdtable(nr);
207 	spin_lock(&files->file_lock);
208 	if (!new_fdt)
209 		return -ENOMEM;
210 	/*
211 	 * extremely unlikely race - sysctl_nr_open decreased between the check in
212 	 * caller and alloc_fdtable().  Cheaper to catch it here...
213 	 */
214 	if (unlikely(new_fdt->max_fds <= nr)) {
215 		free_fdarr(new_fdt);
216 		free_fdset(new_fdt);
217 		kfree(new_fdt);
218 		return -EMFILE;
219 	}
220 	/*
221 	 * Check again since another task may have expanded the fd table while
222 	 * we dropped the lock
223 	 */
224 	cur_fdt = files_fdtable(files);
225 	if (nr >= cur_fdt->max_fds) {
226 		/* Continue as planned */
227 		copy_fdtable(new_fdt, cur_fdt);
228 		rcu_assign_pointer(files->fdt, new_fdt);
229 		if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
230 			free_fdtable(cur_fdt);
231 	} else {
232 		/* Somebody else expanded, so undo our attempt */
233 		free_fdarr(new_fdt);
234 		free_fdset(new_fdt);
235 		kfree(new_fdt);
236 	}
237 	return 1;
238 }
239 
240 /*
241  * Expand files.
242  * This function will expand the file structures, if the requested size exceeds
243  * the current capacity and there is room for expansion.
244  * Return <0 error code on error; 0 when nothing done; 1 when files were
245  * expanded and execution may have blocked.
246  * The files->file_lock should be held on entry, and will be held on exit.
247  */
248 int expand_files(struct files_struct *files, int nr)
249 {
250 	struct fdtable *fdt;
251 
252 	fdt = files_fdtable(files);
253 
254 	/*
255 	 * N.B. For clone tasks sharing a files structure, this test
256 	 * will limit the total number of files that can be opened.
257 	 */
258 	if (nr >= current->signal->rlim[RLIMIT_NOFILE].rlim_cur)
259 		return -EMFILE;
260 
261 	/* Do we need to expand? */
262 	if (nr < fdt->max_fds)
263 		return 0;
264 
265 	/* Can we expand? */
266 	if (nr >= sysctl_nr_open)
267 		return -EMFILE;
268 
269 	/* All good, so we try */
270 	return expand_fdtable(files, nr);
271 }
272 
273 static int count_open_files(struct fdtable *fdt)
274 {
275 	int size = fdt->max_fds;
276 	int i;
277 
278 	/* Find the last open fd */
279 	for (i = size/(8*sizeof(long)); i > 0; ) {
280 		if (fdt->open_fds->fds_bits[--i])
281 			break;
282 	}
283 	i = (i+1) * 8 * sizeof(long);
284 	return i;
285 }
286 
287 /*
288  * Allocate a new files structure and copy contents from the
289  * passed in files structure.
290  * errorp will be valid only when the returned files_struct is NULL.
291  */
292 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
293 {
294 	struct files_struct *newf;
295 	struct file **old_fds, **new_fds;
296 	int open_files, size, i;
297 	struct fdtable *old_fdt, *new_fdt;
298 
299 	*errorp = -ENOMEM;
300 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
301 	if (!newf)
302 		goto out;
303 
304 	atomic_set(&newf->count, 1);
305 
306 	spin_lock_init(&newf->file_lock);
307 	newf->next_fd = 0;
308 	new_fdt = &newf->fdtab;
309 	new_fdt->max_fds = NR_OPEN_DEFAULT;
310 	new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
311 	new_fdt->open_fds = (fd_set *)&newf->open_fds_init;
312 	new_fdt->fd = &newf->fd_array[0];
313 	INIT_RCU_HEAD(&new_fdt->rcu);
314 	new_fdt->next = NULL;
315 
316 	spin_lock(&oldf->file_lock);
317 	old_fdt = files_fdtable(oldf);
318 	open_files = count_open_files(old_fdt);
319 
320 	/*
321 	 * Check whether we need to allocate a larger fd array and fd set.
322 	 */
323 	while (unlikely(open_files > new_fdt->max_fds)) {
324 		spin_unlock(&oldf->file_lock);
325 
326 		if (new_fdt != &newf->fdtab) {
327 			free_fdarr(new_fdt);
328 			free_fdset(new_fdt);
329 			kfree(new_fdt);
330 		}
331 
332 		new_fdt = alloc_fdtable(open_files - 1);
333 		if (!new_fdt) {
334 			*errorp = -ENOMEM;
335 			goto out_release;
336 		}
337 
338 		/* beyond sysctl_nr_open; nothing to do */
339 		if (unlikely(new_fdt->max_fds < open_files)) {
340 			free_fdarr(new_fdt);
341 			free_fdset(new_fdt);
342 			kfree(new_fdt);
343 			*errorp = -EMFILE;
344 			goto out_release;
345 		}
346 
347 		/*
348 		 * Reacquire the oldf lock and a pointer to its fd table
349 		 * who knows it may have a new bigger fd table. We need
350 		 * the latest pointer.
351 		 */
352 		spin_lock(&oldf->file_lock);
353 		old_fdt = files_fdtable(oldf);
354 		open_files = count_open_files(old_fdt);
355 	}
356 
357 	old_fds = old_fdt->fd;
358 	new_fds = new_fdt->fd;
359 
360 	memcpy(new_fdt->open_fds->fds_bits,
361 		old_fdt->open_fds->fds_bits, open_files/8);
362 	memcpy(new_fdt->close_on_exec->fds_bits,
363 		old_fdt->close_on_exec->fds_bits, open_files/8);
364 
365 	for (i = open_files; i != 0; i--) {
366 		struct file *f = *old_fds++;
367 		if (f) {
368 			get_file(f);
369 		} else {
370 			/*
371 			 * The fd may be claimed in the fd bitmap but not yet
372 			 * instantiated in the files array if a sibling thread
373 			 * is partway through open().  So make sure that this
374 			 * fd is available to the new process.
375 			 */
376 			FD_CLR(open_files - i, new_fdt->open_fds);
377 		}
378 		rcu_assign_pointer(*new_fds++, f);
379 	}
380 	spin_unlock(&oldf->file_lock);
381 
382 	/* compute the remainder to be cleared */
383 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
384 
385 	/* This is long word aligned thus could use a optimized version */
386 	memset(new_fds, 0, size);
387 
388 	if (new_fdt->max_fds > open_files) {
389 		int left = (new_fdt->max_fds-open_files)/8;
390 		int start = open_files / (8 * sizeof(unsigned long));
391 
392 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
393 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
394 	}
395 
396 	rcu_assign_pointer(newf->fdt, new_fdt);
397 
398 	return newf;
399 
400 out_release:
401 	kmem_cache_free(files_cachep, newf);
402 out:
403 	return NULL;
404 }
405 
406 static void __devinit fdtable_defer_list_init(int cpu)
407 {
408 	struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
409 	spin_lock_init(&fddef->lock);
410 	INIT_WORK(&fddef->wq, free_fdtable_work);
411 	fddef->next = NULL;
412 }
413 
414 void __init files_defer_init(void)
415 {
416 	int i;
417 	for_each_possible_cpu(i)
418 		fdtable_defer_list_init(i);
419 	sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
420 			     -BITS_PER_LONG;
421 }
422 
423 struct files_struct init_files = {
424 	.count		= ATOMIC_INIT(1),
425 	.fdt		= &init_files.fdtab,
426 	.fdtab		= {
427 		.max_fds	= NR_OPEN_DEFAULT,
428 		.fd		= &init_files.fd_array[0],
429 		.close_on_exec	= (fd_set *)&init_files.close_on_exec_init,
430 		.open_fds	= (fd_set *)&init_files.open_fds_init,
431 		.rcu		= RCU_HEAD_INIT,
432 	},
433 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_task.file_lock),
434 };
435