1 /* 2 * linux/fs/file.c 3 * 4 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes 5 * 6 * Manage the dynamic fd arrays in the process files_struct. 7 */ 8 9 #include <linux/module.h> 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/time.h> 13 #include <linux/sched.h> 14 #include <linux/slab.h> 15 #include <linux/vmalloc.h> 16 #include <linux/file.h> 17 #include <linux/fdtable.h> 18 #include <linux/bitops.h> 19 #include <linux/interrupt.h> 20 #include <linux/spinlock.h> 21 #include <linux/rcupdate.h> 22 #include <linux/workqueue.h> 23 24 struct fdtable_defer { 25 spinlock_t lock; 26 struct work_struct wq; 27 struct fdtable *next; 28 }; 29 30 int sysctl_nr_open __read_mostly = 1024*1024; 31 int sysctl_nr_open_min = BITS_PER_LONG; 32 int sysctl_nr_open_max = 1024 * 1024; /* raised later */ 33 34 /* 35 * We use this list to defer free fdtables that have vmalloced 36 * sets/arrays. By keeping a per-cpu list, we avoid having to embed 37 * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in 38 * this per-task structure. 39 */ 40 static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list); 41 42 static inline void *alloc_fdmem(unsigned int size) 43 { 44 void *data; 45 46 data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN); 47 if (data != NULL) 48 return data; 49 50 return vmalloc(size); 51 } 52 53 static void free_fdmem(void *ptr) 54 { 55 is_vmalloc_addr(ptr) ? vfree(ptr) : kfree(ptr); 56 } 57 58 static void __free_fdtable(struct fdtable *fdt) 59 { 60 free_fdmem(fdt->fd); 61 free_fdmem(fdt->open_fds); 62 kfree(fdt); 63 } 64 65 static void free_fdtable_work(struct work_struct *work) 66 { 67 struct fdtable_defer *f = 68 container_of(work, struct fdtable_defer, wq); 69 struct fdtable *fdt; 70 71 spin_lock_bh(&f->lock); 72 fdt = f->next; 73 f->next = NULL; 74 spin_unlock_bh(&f->lock); 75 while(fdt) { 76 struct fdtable *next = fdt->next; 77 78 __free_fdtable(fdt); 79 fdt = next; 80 } 81 } 82 83 void free_fdtable_rcu(struct rcu_head *rcu) 84 { 85 struct fdtable *fdt = container_of(rcu, struct fdtable, rcu); 86 struct fdtable_defer *fddef; 87 88 BUG_ON(!fdt); 89 90 if (fdt->max_fds <= NR_OPEN_DEFAULT) { 91 /* 92 * This fdtable is embedded in the files structure and that 93 * structure itself is getting destroyed. 94 */ 95 kmem_cache_free(files_cachep, 96 container_of(fdt, struct files_struct, fdtab)); 97 return; 98 } 99 if (!is_vmalloc_addr(fdt->fd) && !is_vmalloc_addr(fdt->open_fds)) { 100 kfree(fdt->fd); 101 kfree(fdt->open_fds); 102 kfree(fdt); 103 } else { 104 fddef = &get_cpu_var(fdtable_defer_list); 105 spin_lock(&fddef->lock); 106 fdt->next = fddef->next; 107 fddef->next = fdt; 108 /* vmallocs are handled from the workqueue context */ 109 schedule_work(&fddef->wq); 110 spin_unlock(&fddef->lock); 111 put_cpu_var(fdtable_defer_list); 112 } 113 } 114 115 /* 116 * Expand the fdset in the files_struct. Called with the files spinlock 117 * held for write. 118 */ 119 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) 120 { 121 unsigned int cpy, set; 122 123 BUG_ON(nfdt->max_fds < ofdt->max_fds); 124 125 cpy = ofdt->max_fds * sizeof(struct file *); 126 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); 127 memcpy(nfdt->fd, ofdt->fd, cpy); 128 memset((char *)(nfdt->fd) + cpy, 0, set); 129 130 cpy = ofdt->max_fds / BITS_PER_BYTE; 131 set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE; 132 memcpy(nfdt->open_fds, ofdt->open_fds, cpy); 133 memset((char *)(nfdt->open_fds) + cpy, 0, set); 134 memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy); 135 memset((char *)(nfdt->close_on_exec) + cpy, 0, set); 136 } 137 138 static struct fdtable * alloc_fdtable(unsigned int nr) 139 { 140 struct fdtable *fdt; 141 char *data; 142 143 /* 144 * Figure out how many fds we actually want to support in this fdtable. 145 * Allocation steps are keyed to the size of the fdarray, since it 146 * grows far faster than any of the other dynamic data. We try to fit 147 * the fdarray into comfortable page-tuned chunks: starting at 1024B 148 * and growing in powers of two from there on. 149 */ 150 nr /= (1024 / sizeof(struct file *)); 151 nr = roundup_pow_of_two(nr + 1); 152 nr *= (1024 / sizeof(struct file *)); 153 /* 154 * Note that this can drive nr *below* what we had passed if sysctl_nr_open 155 * had been set lower between the check in expand_files() and here. Deal 156 * with that in caller, it's cheaper that way. 157 * 158 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise 159 * bitmaps handling below becomes unpleasant, to put it mildly... 160 */ 161 if (unlikely(nr > sysctl_nr_open)) 162 nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; 163 164 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL); 165 if (!fdt) 166 goto out; 167 fdt->max_fds = nr; 168 data = alloc_fdmem(nr * sizeof(struct file *)); 169 if (!data) 170 goto out_fdt; 171 fdt->fd = (struct file **)data; 172 data = alloc_fdmem(max_t(unsigned int, 173 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES)); 174 if (!data) 175 goto out_arr; 176 fdt->open_fds = (fd_set *)data; 177 data += nr / BITS_PER_BYTE; 178 fdt->close_on_exec = (fd_set *)data; 179 fdt->next = NULL; 180 181 return fdt; 182 183 out_arr: 184 free_fdmem(fdt->fd); 185 out_fdt: 186 kfree(fdt); 187 out: 188 return NULL; 189 } 190 191 /* 192 * Expand the file descriptor table. 193 * This function will allocate a new fdtable and both fd array and fdset, of 194 * the given size. 195 * Return <0 error code on error; 1 on successful completion. 196 * The files->file_lock should be held on entry, and will be held on exit. 197 */ 198 static int expand_fdtable(struct files_struct *files, int nr) 199 __releases(files->file_lock) 200 __acquires(files->file_lock) 201 { 202 struct fdtable *new_fdt, *cur_fdt; 203 204 spin_unlock(&files->file_lock); 205 new_fdt = alloc_fdtable(nr); 206 spin_lock(&files->file_lock); 207 if (!new_fdt) 208 return -ENOMEM; 209 /* 210 * extremely unlikely race - sysctl_nr_open decreased between the check in 211 * caller and alloc_fdtable(). Cheaper to catch it here... 212 */ 213 if (unlikely(new_fdt->max_fds <= nr)) { 214 __free_fdtable(new_fdt); 215 return -EMFILE; 216 } 217 /* 218 * Check again since another task may have expanded the fd table while 219 * we dropped the lock 220 */ 221 cur_fdt = files_fdtable(files); 222 if (nr >= cur_fdt->max_fds) { 223 /* Continue as planned */ 224 copy_fdtable(new_fdt, cur_fdt); 225 rcu_assign_pointer(files->fdt, new_fdt); 226 if (cur_fdt->max_fds > NR_OPEN_DEFAULT) 227 free_fdtable(cur_fdt); 228 } else { 229 /* Somebody else expanded, so undo our attempt */ 230 __free_fdtable(new_fdt); 231 } 232 return 1; 233 } 234 235 /* 236 * Expand files. 237 * This function will expand the file structures, if the requested size exceeds 238 * the current capacity and there is room for expansion. 239 * Return <0 error code on error; 0 when nothing done; 1 when files were 240 * expanded and execution may have blocked. 241 * The files->file_lock should be held on entry, and will be held on exit. 242 */ 243 int expand_files(struct files_struct *files, int nr) 244 { 245 struct fdtable *fdt; 246 247 fdt = files_fdtable(files); 248 249 /* 250 * N.B. For clone tasks sharing a files structure, this test 251 * will limit the total number of files that can be opened. 252 */ 253 if (nr >= rlimit(RLIMIT_NOFILE)) 254 return -EMFILE; 255 256 /* Do we need to expand? */ 257 if (nr < fdt->max_fds) 258 return 0; 259 260 /* Can we expand? */ 261 if (nr >= sysctl_nr_open) 262 return -EMFILE; 263 264 /* All good, so we try */ 265 return expand_fdtable(files, nr); 266 } 267 268 static int count_open_files(struct fdtable *fdt) 269 { 270 int size = fdt->max_fds; 271 int i; 272 273 /* Find the last open fd */ 274 for (i = size/(8*sizeof(long)); i > 0; ) { 275 if (fdt->open_fds->fds_bits[--i]) 276 break; 277 } 278 i = (i+1) * 8 * sizeof(long); 279 return i; 280 } 281 282 /* 283 * Allocate a new files structure and copy contents from the 284 * passed in files structure. 285 * errorp will be valid only when the returned files_struct is NULL. 286 */ 287 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp) 288 { 289 struct files_struct *newf; 290 struct file **old_fds, **new_fds; 291 int open_files, size, i; 292 struct fdtable *old_fdt, *new_fdt; 293 294 *errorp = -ENOMEM; 295 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); 296 if (!newf) 297 goto out; 298 299 atomic_set(&newf->count, 1); 300 301 spin_lock_init(&newf->file_lock); 302 newf->next_fd = 0; 303 new_fdt = &newf->fdtab; 304 new_fdt->max_fds = NR_OPEN_DEFAULT; 305 new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init; 306 new_fdt->open_fds = (fd_set *)&newf->open_fds_init; 307 new_fdt->fd = &newf->fd_array[0]; 308 new_fdt->next = NULL; 309 310 spin_lock(&oldf->file_lock); 311 old_fdt = files_fdtable(oldf); 312 open_files = count_open_files(old_fdt); 313 314 /* 315 * Check whether we need to allocate a larger fd array and fd set. 316 */ 317 while (unlikely(open_files > new_fdt->max_fds)) { 318 spin_unlock(&oldf->file_lock); 319 320 if (new_fdt != &newf->fdtab) 321 __free_fdtable(new_fdt); 322 323 new_fdt = alloc_fdtable(open_files - 1); 324 if (!new_fdt) { 325 *errorp = -ENOMEM; 326 goto out_release; 327 } 328 329 /* beyond sysctl_nr_open; nothing to do */ 330 if (unlikely(new_fdt->max_fds < open_files)) { 331 __free_fdtable(new_fdt); 332 *errorp = -EMFILE; 333 goto out_release; 334 } 335 336 /* 337 * Reacquire the oldf lock and a pointer to its fd table 338 * who knows it may have a new bigger fd table. We need 339 * the latest pointer. 340 */ 341 spin_lock(&oldf->file_lock); 342 old_fdt = files_fdtable(oldf); 343 open_files = count_open_files(old_fdt); 344 } 345 346 old_fds = old_fdt->fd; 347 new_fds = new_fdt->fd; 348 349 memcpy(new_fdt->open_fds->fds_bits, 350 old_fdt->open_fds->fds_bits, open_files/8); 351 memcpy(new_fdt->close_on_exec->fds_bits, 352 old_fdt->close_on_exec->fds_bits, open_files/8); 353 354 for (i = open_files; i != 0; i--) { 355 struct file *f = *old_fds++; 356 if (f) { 357 get_file(f); 358 } else { 359 /* 360 * The fd may be claimed in the fd bitmap but not yet 361 * instantiated in the files array if a sibling thread 362 * is partway through open(). So make sure that this 363 * fd is available to the new process. 364 */ 365 FD_CLR(open_files - i, new_fdt->open_fds); 366 } 367 rcu_assign_pointer(*new_fds++, f); 368 } 369 spin_unlock(&oldf->file_lock); 370 371 /* compute the remainder to be cleared */ 372 size = (new_fdt->max_fds - open_files) * sizeof(struct file *); 373 374 /* This is long word aligned thus could use a optimized version */ 375 memset(new_fds, 0, size); 376 377 if (new_fdt->max_fds > open_files) { 378 int left = (new_fdt->max_fds-open_files)/8; 379 int start = open_files / (8 * sizeof(unsigned long)); 380 381 memset(&new_fdt->open_fds->fds_bits[start], 0, left); 382 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left); 383 } 384 385 rcu_assign_pointer(newf->fdt, new_fdt); 386 387 return newf; 388 389 out_release: 390 kmem_cache_free(files_cachep, newf); 391 out: 392 return NULL; 393 } 394 395 static void __devinit fdtable_defer_list_init(int cpu) 396 { 397 struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu); 398 spin_lock_init(&fddef->lock); 399 INIT_WORK(&fddef->wq, free_fdtable_work); 400 fddef->next = NULL; 401 } 402 403 void __init files_defer_init(void) 404 { 405 int i; 406 for_each_possible_cpu(i) 407 fdtable_defer_list_init(i); 408 sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) & 409 -BITS_PER_LONG; 410 } 411 412 struct files_struct init_files = { 413 .count = ATOMIC_INIT(1), 414 .fdt = &init_files.fdtab, 415 .fdtab = { 416 .max_fds = NR_OPEN_DEFAULT, 417 .fd = &init_files.fd_array[0], 418 .close_on_exec = (fd_set *)&init_files.close_on_exec_init, 419 .open_fds = (fd_set *)&init_files.open_fds_init, 420 }, 421 .file_lock = __SPIN_LOCK_UNLOCKED(init_task.file_lock), 422 }; 423 424 /* 425 * allocate a file descriptor, mark it busy. 426 */ 427 int alloc_fd(unsigned start, unsigned flags) 428 { 429 struct files_struct *files = current->files; 430 unsigned int fd; 431 int error; 432 struct fdtable *fdt; 433 434 spin_lock(&files->file_lock); 435 repeat: 436 fdt = files_fdtable(files); 437 fd = start; 438 if (fd < files->next_fd) 439 fd = files->next_fd; 440 441 if (fd < fdt->max_fds) 442 fd = find_next_zero_bit(fdt->open_fds->fds_bits, 443 fdt->max_fds, fd); 444 445 error = expand_files(files, fd); 446 if (error < 0) 447 goto out; 448 449 /* 450 * If we needed to expand the fs array we 451 * might have blocked - try again. 452 */ 453 if (error) 454 goto repeat; 455 456 if (start <= files->next_fd) 457 files->next_fd = fd + 1; 458 459 FD_SET(fd, fdt->open_fds); 460 if (flags & O_CLOEXEC) 461 FD_SET(fd, fdt->close_on_exec); 462 else 463 FD_CLR(fd, fdt->close_on_exec); 464 error = fd; 465 #if 1 466 /* Sanity check */ 467 if (rcu_dereference_raw(fdt->fd[fd]) != NULL) { 468 printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd); 469 rcu_assign_pointer(fdt->fd[fd], NULL); 470 } 471 #endif 472 473 out: 474 spin_unlock(&files->file_lock); 475 return error; 476 } 477 478 int get_unused_fd(void) 479 { 480 return alloc_fd(0, 0); 481 } 482 EXPORT_SYMBOL(get_unused_fd); 483