xref: /openbmc/linux/fs/file.c (revision b96c0546)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/file.c
4  *
5  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6  *
7  *  Manage the dynamic fd arrays in the process files_struct.
8  */
9 
10 #include <linux/syscalls.h>
11 #include <linux/export.h>
12 #include <linux/fs.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/file.h>
18 #include <linux/fdtable.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/close_range.h>
23 #include <net/sock.h>
24 #include <linux/io_uring.h>
25 
26 unsigned int sysctl_nr_open __read_mostly = 1024*1024;
27 unsigned int sysctl_nr_open_min = BITS_PER_LONG;
28 /* our min() is unusable in constant expressions ;-/ */
29 #define __const_min(x, y) ((x) < (y) ? (x) : (y))
30 unsigned int sysctl_nr_open_max =
31 	__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
32 
33 static void __free_fdtable(struct fdtable *fdt)
34 {
35 	kvfree(fdt->fd);
36 	kvfree(fdt->open_fds);
37 	kfree(fdt);
38 }
39 
40 static void free_fdtable_rcu(struct rcu_head *rcu)
41 {
42 	__free_fdtable(container_of(rcu, struct fdtable, rcu));
43 }
44 
45 #define BITBIT_NR(nr)	BITS_TO_LONGS(BITS_TO_LONGS(nr))
46 #define BITBIT_SIZE(nr)	(BITBIT_NR(nr) * sizeof(long))
47 
48 /*
49  * Copy 'count' fd bits from the old table to the new table and clear the extra
50  * space if any.  This does not copy the file pointers.  Called with the files
51  * spinlock held for write.
52  */
53 static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
54 			    unsigned int count)
55 {
56 	unsigned int cpy, set;
57 
58 	cpy = count / BITS_PER_BYTE;
59 	set = (nfdt->max_fds - count) / BITS_PER_BYTE;
60 	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
61 	memset((char *)nfdt->open_fds + cpy, 0, set);
62 	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
63 	memset((char *)nfdt->close_on_exec + cpy, 0, set);
64 
65 	cpy = BITBIT_SIZE(count);
66 	set = BITBIT_SIZE(nfdt->max_fds) - cpy;
67 	memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy);
68 	memset((char *)nfdt->full_fds_bits + cpy, 0, set);
69 }
70 
71 /*
72  * Copy all file descriptors from the old table to the new, expanded table and
73  * clear the extra space.  Called with the files spinlock held for write.
74  */
75 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
76 {
77 	size_t cpy, set;
78 
79 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
80 
81 	cpy = ofdt->max_fds * sizeof(struct file *);
82 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
83 	memcpy(nfdt->fd, ofdt->fd, cpy);
84 	memset((char *)nfdt->fd + cpy, 0, set);
85 
86 	copy_fd_bitmaps(nfdt, ofdt, ofdt->max_fds);
87 }
88 
89 static struct fdtable * alloc_fdtable(unsigned int nr)
90 {
91 	struct fdtable *fdt;
92 	void *data;
93 
94 	/*
95 	 * Figure out how many fds we actually want to support in this fdtable.
96 	 * Allocation steps are keyed to the size of the fdarray, since it
97 	 * grows far faster than any of the other dynamic data. We try to fit
98 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
99 	 * and growing in powers of two from there on.
100 	 */
101 	nr /= (1024 / sizeof(struct file *));
102 	nr = roundup_pow_of_two(nr + 1);
103 	nr *= (1024 / sizeof(struct file *));
104 	/*
105 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
106 	 * had been set lower between the check in expand_files() and here.  Deal
107 	 * with that in caller, it's cheaper that way.
108 	 *
109 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
110 	 * bitmaps handling below becomes unpleasant, to put it mildly...
111 	 */
112 	if (unlikely(nr > sysctl_nr_open))
113 		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
114 
115 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
116 	if (!fdt)
117 		goto out;
118 	fdt->max_fds = nr;
119 	data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
120 	if (!data)
121 		goto out_fdt;
122 	fdt->fd = data;
123 
124 	data = kvmalloc(max_t(size_t,
125 				 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
126 				 GFP_KERNEL_ACCOUNT);
127 	if (!data)
128 		goto out_arr;
129 	fdt->open_fds = data;
130 	data += nr / BITS_PER_BYTE;
131 	fdt->close_on_exec = data;
132 	data += nr / BITS_PER_BYTE;
133 	fdt->full_fds_bits = data;
134 
135 	return fdt;
136 
137 out_arr:
138 	kvfree(fdt->fd);
139 out_fdt:
140 	kfree(fdt);
141 out:
142 	return NULL;
143 }
144 
145 /*
146  * Expand the file descriptor table.
147  * This function will allocate a new fdtable and both fd array and fdset, of
148  * the given size.
149  * Return <0 error code on error; 1 on successful completion.
150  * The files->file_lock should be held on entry, and will be held on exit.
151  */
152 static int expand_fdtable(struct files_struct *files, unsigned int nr)
153 	__releases(files->file_lock)
154 	__acquires(files->file_lock)
155 {
156 	struct fdtable *new_fdt, *cur_fdt;
157 
158 	spin_unlock(&files->file_lock);
159 	new_fdt = alloc_fdtable(nr);
160 
161 	/* make sure all __fd_install() have seen resize_in_progress
162 	 * or have finished their rcu_read_lock_sched() section.
163 	 */
164 	if (atomic_read(&files->count) > 1)
165 		synchronize_rcu();
166 
167 	spin_lock(&files->file_lock);
168 	if (!new_fdt)
169 		return -ENOMEM;
170 	/*
171 	 * extremely unlikely race - sysctl_nr_open decreased between the check in
172 	 * caller and alloc_fdtable().  Cheaper to catch it here...
173 	 */
174 	if (unlikely(new_fdt->max_fds <= nr)) {
175 		__free_fdtable(new_fdt);
176 		return -EMFILE;
177 	}
178 	cur_fdt = files_fdtable(files);
179 	BUG_ON(nr < cur_fdt->max_fds);
180 	copy_fdtable(new_fdt, cur_fdt);
181 	rcu_assign_pointer(files->fdt, new_fdt);
182 	if (cur_fdt != &files->fdtab)
183 		call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
184 	/* coupled with smp_rmb() in __fd_install() */
185 	smp_wmb();
186 	return 1;
187 }
188 
189 /*
190  * Expand files.
191  * This function will expand the file structures, if the requested size exceeds
192  * the current capacity and there is room for expansion.
193  * Return <0 error code on error; 0 when nothing done; 1 when files were
194  * expanded and execution may have blocked.
195  * The files->file_lock should be held on entry, and will be held on exit.
196  */
197 static int expand_files(struct files_struct *files, unsigned int nr)
198 	__releases(files->file_lock)
199 	__acquires(files->file_lock)
200 {
201 	struct fdtable *fdt;
202 	int expanded = 0;
203 
204 repeat:
205 	fdt = files_fdtable(files);
206 
207 	/* Do we need to expand? */
208 	if (nr < fdt->max_fds)
209 		return expanded;
210 
211 	/* Can we expand? */
212 	if (nr >= sysctl_nr_open)
213 		return -EMFILE;
214 
215 	if (unlikely(files->resize_in_progress)) {
216 		spin_unlock(&files->file_lock);
217 		expanded = 1;
218 		wait_event(files->resize_wait, !files->resize_in_progress);
219 		spin_lock(&files->file_lock);
220 		goto repeat;
221 	}
222 
223 	/* All good, so we try */
224 	files->resize_in_progress = true;
225 	expanded = expand_fdtable(files, nr);
226 	files->resize_in_progress = false;
227 
228 	wake_up_all(&files->resize_wait);
229 	return expanded;
230 }
231 
232 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt)
233 {
234 	__set_bit(fd, fdt->close_on_exec);
235 }
236 
237 static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt)
238 {
239 	if (test_bit(fd, fdt->close_on_exec))
240 		__clear_bit(fd, fdt->close_on_exec);
241 }
242 
243 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt)
244 {
245 	__set_bit(fd, fdt->open_fds);
246 	fd /= BITS_PER_LONG;
247 	if (!~fdt->open_fds[fd])
248 		__set_bit(fd, fdt->full_fds_bits);
249 }
250 
251 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
252 {
253 	__clear_bit(fd, fdt->open_fds);
254 	__clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
255 }
256 
257 static unsigned int count_open_files(struct fdtable *fdt)
258 {
259 	unsigned int size = fdt->max_fds;
260 	unsigned int i;
261 
262 	/* Find the last open fd */
263 	for (i = size / BITS_PER_LONG; i > 0; ) {
264 		if (fdt->open_fds[--i])
265 			break;
266 	}
267 	i = (i + 1) * BITS_PER_LONG;
268 	return i;
269 }
270 
271 static unsigned int sane_fdtable_size(struct fdtable *fdt, unsigned int max_fds)
272 {
273 	unsigned int count;
274 
275 	count = count_open_files(fdt);
276 	if (max_fds < NR_OPEN_DEFAULT)
277 		max_fds = NR_OPEN_DEFAULT;
278 	return min(count, max_fds);
279 }
280 
281 /*
282  * Allocate a new files structure and copy contents from the
283  * passed in files structure.
284  * errorp will be valid only when the returned files_struct is NULL.
285  */
286 struct files_struct *dup_fd(struct files_struct *oldf, unsigned int max_fds, int *errorp)
287 {
288 	struct files_struct *newf;
289 	struct file **old_fds, **new_fds;
290 	unsigned int open_files, i;
291 	struct fdtable *old_fdt, *new_fdt;
292 
293 	*errorp = -ENOMEM;
294 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
295 	if (!newf)
296 		goto out;
297 
298 	atomic_set(&newf->count, 1);
299 
300 	spin_lock_init(&newf->file_lock);
301 	newf->resize_in_progress = false;
302 	init_waitqueue_head(&newf->resize_wait);
303 	newf->next_fd = 0;
304 	new_fdt = &newf->fdtab;
305 	new_fdt->max_fds = NR_OPEN_DEFAULT;
306 	new_fdt->close_on_exec = newf->close_on_exec_init;
307 	new_fdt->open_fds = newf->open_fds_init;
308 	new_fdt->full_fds_bits = newf->full_fds_bits_init;
309 	new_fdt->fd = &newf->fd_array[0];
310 
311 	spin_lock(&oldf->file_lock);
312 	old_fdt = files_fdtable(oldf);
313 	open_files = sane_fdtable_size(old_fdt, max_fds);
314 
315 	/*
316 	 * Check whether we need to allocate a larger fd array and fd set.
317 	 */
318 	while (unlikely(open_files > new_fdt->max_fds)) {
319 		spin_unlock(&oldf->file_lock);
320 
321 		if (new_fdt != &newf->fdtab)
322 			__free_fdtable(new_fdt);
323 
324 		new_fdt = alloc_fdtable(open_files - 1);
325 		if (!new_fdt) {
326 			*errorp = -ENOMEM;
327 			goto out_release;
328 		}
329 
330 		/* beyond sysctl_nr_open; nothing to do */
331 		if (unlikely(new_fdt->max_fds < open_files)) {
332 			__free_fdtable(new_fdt);
333 			*errorp = -EMFILE;
334 			goto out_release;
335 		}
336 
337 		/*
338 		 * Reacquire the oldf lock and a pointer to its fd table
339 		 * who knows it may have a new bigger fd table. We need
340 		 * the latest pointer.
341 		 */
342 		spin_lock(&oldf->file_lock);
343 		old_fdt = files_fdtable(oldf);
344 		open_files = sane_fdtable_size(old_fdt, max_fds);
345 	}
346 
347 	copy_fd_bitmaps(new_fdt, old_fdt, open_files);
348 
349 	old_fds = old_fdt->fd;
350 	new_fds = new_fdt->fd;
351 
352 	for (i = open_files; i != 0; i--) {
353 		struct file *f = *old_fds++;
354 		if (f) {
355 			get_file(f);
356 		} else {
357 			/*
358 			 * The fd may be claimed in the fd bitmap but not yet
359 			 * instantiated in the files array if a sibling thread
360 			 * is partway through open().  So make sure that this
361 			 * fd is available to the new process.
362 			 */
363 			__clear_open_fd(open_files - i, new_fdt);
364 		}
365 		rcu_assign_pointer(*new_fds++, f);
366 	}
367 	spin_unlock(&oldf->file_lock);
368 
369 	/* clear the remainder */
370 	memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
371 
372 	rcu_assign_pointer(newf->fdt, new_fdt);
373 
374 	return newf;
375 
376 out_release:
377 	kmem_cache_free(files_cachep, newf);
378 out:
379 	return NULL;
380 }
381 
382 static struct fdtable *close_files(struct files_struct * files)
383 {
384 	/*
385 	 * It is safe to dereference the fd table without RCU or
386 	 * ->file_lock because this is the last reference to the
387 	 * files structure.
388 	 */
389 	struct fdtable *fdt = rcu_dereference_raw(files->fdt);
390 	unsigned int i, j = 0;
391 
392 	for (;;) {
393 		unsigned long set;
394 		i = j * BITS_PER_LONG;
395 		if (i >= fdt->max_fds)
396 			break;
397 		set = fdt->open_fds[j++];
398 		while (set) {
399 			if (set & 1) {
400 				struct file * file = xchg(&fdt->fd[i], NULL);
401 				if (file) {
402 					filp_close(file, files);
403 					cond_resched();
404 				}
405 			}
406 			i++;
407 			set >>= 1;
408 		}
409 	}
410 
411 	return fdt;
412 }
413 
414 struct files_struct *get_files_struct(struct task_struct *task)
415 {
416 	struct files_struct *files;
417 
418 	task_lock(task);
419 	files = task->files;
420 	if (files)
421 		atomic_inc(&files->count);
422 	task_unlock(task);
423 
424 	return files;
425 }
426 
427 void put_files_struct(struct files_struct *files)
428 {
429 	if (atomic_dec_and_test(&files->count)) {
430 		struct fdtable *fdt = close_files(files);
431 
432 		/* free the arrays if they are not embedded */
433 		if (fdt != &files->fdtab)
434 			__free_fdtable(fdt);
435 		kmem_cache_free(files_cachep, files);
436 	}
437 }
438 
439 void reset_files_struct(struct files_struct *files)
440 {
441 	struct task_struct *tsk = current;
442 	struct files_struct *old;
443 
444 	old = tsk->files;
445 	task_lock(tsk);
446 	tsk->files = files;
447 	task_unlock(tsk);
448 	put_files_struct(old);
449 }
450 
451 void exit_files(struct task_struct *tsk)
452 {
453 	struct files_struct * files = tsk->files;
454 
455 	if (files) {
456 		io_uring_files_cancel(files);
457 		task_lock(tsk);
458 		tsk->files = NULL;
459 		task_unlock(tsk);
460 		put_files_struct(files);
461 	}
462 }
463 
464 struct files_struct init_files = {
465 	.count		= ATOMIC_INIT(1),
466 	.fdt		= &init_files.fdtab,
467 	.fdtab		= {
468 		.max_fds	= NR_OPEN_DEFAULT,
469 		.fd		= &init_files.fd_array[0],
470 		.close_on_exec	= init_files.close_on_exec_init,
471 		.open_fds	= init_files.open_fds_init,
472 		.full_fds_bits	= init_files.full_fds_bits_init,
473 	},
474 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
475 	.resize_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
476 };
477 
478 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
479 {
480 	unsigned int maxfd = fdt->max_fds;
481 	unsigned int maxbit = maxfd / BITS_PER_LONG;
482 	unsigned int bitbit = start / BITS_PER_LONG;
483 
484 	bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
485 	if (bitbit > maxfd)
486 		return maxfd;
487 	if (bitbit > start)
488 		start = bitbit;
489 	return find_next_zero_bit(fdt->open_fds, maxfd, start);
490 }
491 
492 /*
493  * allocate a file descriptor, mark it busy.
494  */
495 int __alloc_fd(struct files_struct *files,
496 	       unsigned start, unsigned end, unsigned flags)
497 {
498 	unsigned int fd;
499 	int error;
500 	struct fdtable *fdt;
501 
502 	spin_lock(&files->file_lock);
503 repeat:
504 	fdt = files_fdtable(files);
505 	fd = start;
506 	if (fd < files->next_fd)
507 		fd = files->next_fd;
508 
509 	if (fd < fdt->max_fds)
510 		fd = find_next_fd(fdt, fd);
511 
512 	/*
513 	 * N.B. For clone tasks sharing a files structure, this test
514 	 * will limit the total number of files that can be opened.
515 	 */
516 	error = -EMFILE;
517 	if (fd >= end)
518 		goto out;
519 
520 	error = expand_files(files, fd);
521 	if (error < 0)
522 		goto out;
523 
524 	/*
525 	 * If we needed to expand the fs array we
526 	 * might have blocked - try again.
527 	 */
528 	if (error)
529 		goto repeat;
530 
531 	if (start <= files->next_fd)
532 		files->next_fd = fd + 1;
533 
534 	__set_open_fd(fd, fdt);
535 	if (flags & O_CLOEXEC)
536 		__set_close_on_exec(fd, fdt);
537 	else
538 		__clear_close_on_exec(fd, fdt);
539 	error = fd;
540 #if 1
541 	/* Sanity check */
542 	if (rcu_access_pointer(fdt->fd[fd]) != NULL) {
543 		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
544 		rcu_assign_pointer(fdt->fd[fd], NULL);
545 	}
546 #endif
547 
548 out:
549 	spin_unlock(&files->file_lock);
550 	return error;
551 }
552 
553 static int alloc_fd(unsigned start, unsigned flags)
554 {
555 	return __alloc_fd(current->files, start, rlimit(RLIMIT_NOFILE), flags);
556 }
557 
558 int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
559 {
560 	return __alloc_fd(current->files, 0, nofile, flags);
561 }
562 
563 int get_unused_fd_flags(unsigned flags)
564 {
565 	return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
566 }
567 EXPORT_SYMBOL(get_unused_fd_flags);
568 
569 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
570 {
571 	struct fdtable *fdt = files_fdtable(files);
572 	__clear_open_fd(fd, fdt);
573 	if (fd < files->next_fd)
574 		files->next_fd = fd;
575 }
576 
577 void put_unused_fd(unsigned int fd)
578 {
579 	struct files_struct *files = current->files;
580 	spin_lock(&files->file_lock);
581 	__put_unused_fd(files, fd);
582 	spin_unlock(&files->file_lock);
583 }
584 
585 EXPORT_SYMBOL(put_unused_fd);
586 
587 /*
588  * Install a file pointer in the fd array.
589  *
590  * The VFS is full of places where we drop the files lock between
591  * setting the open_fds bitmap and installing the file in the file
592  * array.  At any such point, we are vulnerable to a dup2() race
593  * installing a file in the array before us.  We need to detect this and
594  * fput() the struct file we are about to overwrite in this case.
595  *
596  * It should never happen - if we allow dup2() do it, _really_ bad things
597  * will follow.
598  *
599  * NOTE: __fd_install() variant is really, really low-level; don't
600  * use it unless you are forced to by truly lousy API shoved down
601  * your throat.  'files' *MUST* be either current->files or obtained
602  * by get_files_struct(current) done by whoever had given it to you,
603  * or really bad things will happen.  Normally you want to use
604  * fd_install() instead.
605  */
606 
607 void __fd_install(struct files_struct *files, unsigned int fd,
608 		struct file *file)
609 {
610 	struct fdtable *fdt;
611 
612 	rcu_read_lock_sched();
613 
614 	if (unlikely(files->resize_in_progress)) {
615 		rcu_read_unlock_sched();
616 		spin_lock(&files->file_lock);
617 		fdt = files_fdtable(files);
618 		BUG_ON(fdt->fd[fd] != NULL);
619 		rcu_assign_pointer(fdt->fd[fd], file);
620 		spin_unlock(&files->file_lock);
621 		return;
622 	}
623 	/* coupled with smp_wmb() in expand_fdtable() */
624 	smp_rmb();
625 	fdt = rcu_dereference_sched(files->fdt);
626 	BUG_ON(fdt->fd[fd] != NULL);
627 	rcu_assign_pointer(fdt->fd[fd], file);
628 	rcu_read_unlock_sched();
629 }
630 
631 /*
632  * This consumes the "file" refcount, so callers should treat it
633  * as if they had called fput(file).
634  */
635 void fd_install(unsigned int fd, struct file *file)
636 {
637 	__fd_install(current->files, fd, file);
638 }
639 
640 EXPORT_SYMBOL(fd_install);
641 
642 static struct file *pick_file(struct files_struct *files, unsigned fd)
643 {
644 	struct file *file = NULL;
645 	struct fdtable *fdt;
646 
647 	spin_lock(&files->file_lock);
648 	fdt = files_fdtable(files);
649 	if (fd >= fdt->max_fds)
650 		goto out_unlock;
651 	file = fdt->fd[fd];
652 	if (!file)
653 		goto out_unlock;
654 	rcu_assign_pointer(fdt->fd[fd], NULL);
655 	__put_unused_fd(files, fd);
656 
657 out_unlock:
658 	spin_unlock(&files->file_lock);
659 	return file;
660 }
661 
662 /*
663  * The same warnings as for __alloc_fd()/__fd_install() apply here...
664  */
665 int __close_fd(struct files_struct *files, unsigned fd)
666 {
667 	struct file *file;
668 
669 	file = pick_file(files, fd);
670 	if (!file)
671 		return -EBADF;
672 
673 	return filp_close(file, files);
674 }
675 EXPORT_SYMBOL(__close_fd); /* for ksys_close() */
676 
677 /**
678  * __close_range() - Close all file descriptors in a given range.
679  *
680  * @fd:     starting file descriptor to close
681  * @max_fd: last file descriptor to close
682  *
683  * This closes a range of file descriptors. All file descriptors
684  * from @fd up to and including @max_fd are closed.
685  */
686 int __close_range(unsigned fd, unsigned max_fd, unsigned int flags)
687 {
688 	unsigned int cur_max;
689 	struct task_struct *me = current;
690 	struct files_struct *cur_fds = me->files, *fds = NULL;
691 
692 	if (flags & ~CLOSE_RANGE_UNSHARE)
693 		return -EINVAL;
694 
695 	if (fd > max_fd)
696 		return -EINVAL;
697 
698 	rcu_read_lock();
699 	cur_max = files_fdtable(cur_fds)->max_fds;
700 	rcu_read_unlock();
701 
702 	/* cap to last valid index into fdtable */
703 	cur_max--;
704 
705 	if (flags & CLOSE_RANGE_UNSHARE) {
706 		int ret;
707 		unsigned int max_unshare_fds = NR_OPEN_MAX;
708 
709 		/*
710 		 * If the requested range is greater than the current maximum,
711 		 * we're closing everything so only copy all file descriptors
712 		 * beneath the lowest file descriptor.
713 		 */
714 		if (max_fd >= cur_max)
715 			max_unshare_fds = fd;
716 
717 		ret = unshare_fd(CLONE_FILES, max_unshare_fds, &fds);
718 		if (ret)
719 			return ret;
720 
721 		/*
722 		 * We used to share our file descriptor table, and have now
723 		 * created a private one, make sure we're using it below.
724 		 */
725 		if (fds)
726 			swap(cur_fds, fds);
727 	}
728 
729 	max_fd = min(max_fd, cur_max);
730 	while (fd <= max_fd) {
731 		struct file *file;
732 
733 		file = pick_file(cur_fds, fd++);
734 		if (!file)
735 			continue;
736 
737 		filp_close(file, cur_fds);
738 		cond_resched();
739 	}
740 
741 	if (fds) {
742 		/*
743 		 * We're done closing the files we were supposed to. Time to install
744 		 * the new file descriptor table and drop the old one.
745 		 */
746 		task_lock(me);
747 		me->files = cur_fds;
748 		task_unlock(me);
749 		put_files_struct(fds);
750 	}
751 
752 	return 0;
753 }
754 
755 /*
756  * variant of __close_fd that gets a ref on the file for later fput.
757  * The caller must ensure that filp_close() called on the file, and then
758  * an fput().
759  */
760 int __close_fd_get_file(unsigned int fd, struct file **res)
761 {
762 	struct files_struct *files = current->files;
763 	struct file *file;
764 	struct fdtable *fdt;
765 
766 	spin_lock(&files->file_lock);
767 	fdt = files_fdtable(files);
768 	if (fd >= fdt->max_fds)
769 		goto out_unlock;
770 	file = fdt->fd[fd];
771 	if (!file)
772 		goto out_unlock;
773 	rcu_assign_pointer(fdt->fd[fd], NULL);
774 	__put_unused_fd(files, fd);
775 	spin_unlock(&files->file_lock);
776 	get_file(file);
777 	*res = file;
778 	return 0;
779 
780 out_unlock:
781 	spin_unlock(&files->file_lock);
782 	*res = NULL;
783 	return -ENOENT;
784 }
785 
786 void do_close_on_exec(struct files_struct *files)
787 {
788 	unsigned i;
789 	struct fdtable *fdt;
790 
791 	/* exec unshares first */
792 	spin_lock(&files->file_lock);
793 	for (i = 0; ; i++) {
794 		unsigned long set;
795 		unsigned fd = i * BITS_PER_LONG;
796 		fdt = files_fdtable(files);
797 		if (fd >= fdt->max_fds)
798 			break;
799 		set = fdt->close_on_exec[i];
800 		if (!set)
801 			continue;
802 		fdt->close_on_exec[i] = 0;
803 		for ( ; set ; fd++, set >>= 1) {
804 			struct file *file;
805 			if (!(set & 1))
806 				continue;
807 			file = fdt->fd[fd];
808 			if (!file)
809 				continue;
810 			rcu_assign_pointer(fdt->fd[fd], NULL);
811 			__put_unused_fd(files, fd);
812 			spin_unlock(&files->file_lock);
813 			filp_close(file, files);
814 			cond_resched();
815 			spin_lock(&files->file_lock);
816 		}
817 
818 	}
819 	spin_unlock(&files->file_lock);
820 }
821 
822 static struct file *__fget_files(struct files_struct *files, unsigned int fd,
823 				 fmode_t mask, unsigned int refs)
824 {
825 	struct file *file;
826 
827 	rcu_read_lock();
828 loop:
829 	file = fcheck_files(files, fd);
830 	if (file) {
831 		/* File object ref couldn't be taken.
832 		 * dup2() atomicity guarantee is the reason
833 		 * we loop to catch the new file (or NULL pointer)
834 		 */
835 		if (file->f_mode & mask)
836 			file = NULL;
837 		else if (!get_file_rcu_many(file, refs))
838 			goto loop;
839 	}
840 	rcu_read_unlock();
841 
842 	return file;
843 }
844 
845 static inline struct file *__fget(unsigned int fd, fmode_t mask,
846 				  unsigned int refs)
847 {
848 	return __fget_files(current->files, fd, mask, refs);
849 }
850 
851 struct file *fget_many(unsigned int fd, unsigned int refs)
852 {
853 	return __fget(fd, FMODE_PATH, refs);
854 }
855 
856 struct file *fget(unsigned int fd)
857 {
858 	return __fget(fd, FMODE_PATH, 1);
859 }
860 EXPORT_SYMBOL(fget);
861 
862 struct file *fget_raw(unsigned int fd)
863 {
864 	return __fget(fd, 0, 1);
865 }
866 EXPORT_SYMBOL(fget_raw);
867 
868 struct file *fget_task(struct task_struct *task, unsigned int fd)
869 {
870 	struct file *file = NULL;
871 
872 	task_lock(task);
873 	if (task->files)
874 		file = __fget_files(task->files, fd, 0, 1);
875 	task_unlock(task);
876 
877 	return file;
878 }
879 
880 /*
881  * Lightweight file lookup - no refcnt increment if fd table isn't shared.
882  *
883  * You can use this instead of fget if you satisfy all of the following
884  * conditions:
885  * 1) You must call fput_light before exiting the syscall and returning control
886  *    to userspace (i.e. you cannot remember the returned struct file * after
887  *    returning to userspace).
888  * 2) You must not call filp_close on the returned struct file * in between
889  *    calls to fget_light and fput_light.
890  * 3) You must not clone the current task in between the calls to fget_light
891  *    and fput_light.
892  *
893  * The fput_needed flag returned by fget_light should be passed to the
894  * corresponding fput_light.
895  */
896 static unsigned long __fget_light(unsigned int fd, fmode_t mask)
897 {
898 	struct files_struct *files = current->files;
899 	struct file *file;
900 
901 	if (atomic_read(&files->count) == 1) {
902 		file = __fcheck_files(files, fd);
903 		if (!file || unlikely(file->f_mode & mask))
904 			return 0;
905 		return (unsigned long)file;
906 	} else {
907 		file = __fget(fd, mask, 1);
908 		if (!file)
909 			return 0;
910 		return FDPUT_FPUT | (unsigned long)file;
911 	}
912 }
913 unsigned long __fdget(unsigned int fd)
914 {
915 	return __fget_light(fd, FMODE_PATH);
916 }
917 EXPORT_SYMBOL(__fdget);
918 
919 unsigned long __fdget_raw(unsigned int fd)
920 {
921 	return __fget_light(fd, 0);
922 }
923 
924 unsigned long __fdget_pos(unsigned int fd)
925 {
926 	unsigned long v = __fdget(fd);
927 	struct file *file = (struct file *)(v & ~3);
928 
929 	if (file && (file->f_mode & FMODE_ATOMIC_POS)) {
930 		if (file_count(file) > 1) {
931 			v |= FDPUT_POS_UNLOCK;
932 			mutex_lock(&file->f_pos_lock);
933 		}
934 	}
935 	return v;
936 }
937 
938 void __f_unlock_pos(struct file *f)
939 {
940 	mutex_unlock(&f->f_pos_lock);
941 }
942 
943 /*
944  * We only lock f_pos if we have threads or if the file might be
945  * shared with another process. In both cases we'll have an elevated
946  * file count (done either by fdget() or by fork()).
947  */
948 
949 void set_close_on_exec(unsigned int fd, int flag)
950 {
951 	struct files_struct *files = current->files;
952 	struct fdtable *fdt;
953 	spin_lock(&files->file_lock);
954 	fdt = files_fdtable(files);
955 	if (flag)
956 		__set_close_on_exec(fd, fdt);
957 	else
958 		__clear_close_on_exec(fd, fdt);
959 	spin_unlock(&files->file_lock);
960 }
961 
962 bool get_close_on_exec(unsigned int fd)
963 {
964 	struct files_struct *files = current->files;
965 	struct fdtable *fdt;
966 	bool res;
967 	rcu_read_lock();
968 	fdt = files_fdtable(files);
969 	res = close_on_exec(fd, fdt);
970 	rcu_read_unlock();
971 	return res;
972 }
973 
974 static int do_dup2(struct files_struct *files,
975 	struct file *file, unsigned fd, unsigned flags)
976 __releases(&files->file_lock)
977 {
978 	struct file *tofree;
979 	struct fdtable *fdt;
980 
981 	/*
982 	 * We need to detect attempts to do dup2() over allocated but still
983 	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
984 	 * extra work in their equivalent of fget() - they insert struct
985 	 * file immediately after grabbing descriptor, mark it larval if
986 	 * more work (e.g. actual opening) is needed and make sure that
987 	 * fget() treats larval files as absent.  Potentially interesting,
988 	 * but while extra work in fget() is trivial, locking implications
989 	 * and amount of surgery on open()-related paths in VFS are not.
990 	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
991 	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
992 	 * scope of POSIX or SUS, since neither considers shared descriptor
993 	 * tables and this condition does not arise without those.
994 	 */
995 	fdt = files_fdtable(files);
996 	tofree = fdt->fd[fd];
997 	if (!tofree && fd_is_open(fd, fdt))
998 		goto Ebusy;
999 	get_file(file);
1000 	rcu_assign_pointer(fdt->fd[fd], file);
1001 	__set_open_fd(fd, fdt);
1002 	if (flags & O_CLOEXEC)
1003 		__set_close_on_exec(fd, fdt);
1004 	else
1005 		__clear_close_on_exec(fd, fdt);
1006 	spin_unlock(&files->file_lock);
1007 
1008 	if (tofree)
1009 		filp_close(tofree, files);
1010 
1011 	return fd;
1012 
1013 Ebusy:
1014 	spin_unlock(&files->file_lock);
1015 	return -EBUSY;
1016 }
1017 
1018 int replace_fd(unsigned fd, struct file *file, unsigned flags)
1019 {
1020 	int err;
1021 	struct files_struct *files = current->files;
1022 
1023 	if (!file)
1024 		return __close_fd(files, fd);
1025 
1026 	if (fd >= rlimit(RLIMIT_NOFILE))
1027 		return -EBADF;
1028 
1029 	spin_lock(&files->file_lock);
1030 	err = expand_files(files, fd);
1031 	if (unlikely(err < 0))
1032 		goto out_unlock;
1033 	return do_dup2(files, file, fd, flags);
1034 
1035 out_unlock:
1036 	spin_unlock(&files->file_lock);
1037 	return err;
1038 }
1039 
1040 /**
1041  * __receive_fd() - Install received file into file descriptor table
1042  *
1043  * @fd: fd to install into (if negative, a new fd will be allocated)
1044  * @file: struct file that was received from another process
1045  * @ufd: __user pointer to write new fd number to
1046  * @o_flags: the O_* flags to apply to the new fd entry
1047  *
1048  * Installs a received file into the file descriptor table, with appropriate
1049  * checks and count updates. Optionally writes the fd number to userspace, if
1050  * @ufd is non-NULL.
1051  *
1052  * This helper handles its own reference counting of the incoming
1053  * struct file.
1054  *
1055  * Returns newly install fd or -ve on error.
1056  */
1057 int __receive_fd(int fd, struct file *file, int __user *ufd, unsigned int o_flags)
1058 {
1059 	int new_fd;
1060 	int error;
1061 
1062 	error = security_file_receive(file);
1063 	if (error)
1064 		return error;
1065 
1066 	if (fd < 0) {
1067 		new_fd = get_unused_fd_flags(o_flags);
1068 		if (new_fd < 0)
1069 			return new_fd;
1070 	} else {
1071 		new_fd = fd;
1072 	}
1073 
1074 	if (ufd) {
1075 		error = put_user(new_fd, ufd);
1076 		if (error) {
1077 			if (fd < 0)
1078 				put_unused_fd(new_fd);
1079 			return error;
1080 		}
1081 	}
1082 
1083 	if (fd < 0) {
1084 		fd_install(new_fd, get_file(file));
1085 	} else {
1086 		error = replace_fd(new_fd, file, o_flags);
1087 		if (error)
1088 			return error;
1089 	}
1090 
1091 	/* Bump the sock usage counts, if any. */
1092 	__receive_sock(file);
1093 	return new_fd;
1094 }
1095 
1096 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1097 {
1098 	int err = -EBADF;
1099 	struct file *file;
1100 	struct files_struct *files = current->files;
1101 
1102 	if ((flags & ~O_CLOEXEC) != 0)
1103 		return -EINVAL;
1104 
1105 	if (unlikely(oldfd == newfd))
1106 		return -EINVAL;
1107 
1108 	if (newfd >= rlimit(RLIMIT_NOFILE))
1109 		return -EBADF;
1110 
1111 	spin_lock(&files->file_lock);
1112 	err = expand_files(files, newfd);
1113 	file = fcheck(oldfd);
1114 	if (unlikely(!file))
1115 		goto Ebadf;
1116 	if (unlikely(err < 0)) {
1117 		if (err == -EMFILE)
1118 			goto Ebadf;
1119 		goto out_unlock;
1120 	}
1121 	return do_dup2(files, file, newfd, flags);
1122 
1123 Ebadf:
1124 	err = -EBADF;
1125 out_unlock:
1126 	spin_unlock(&files->file_lock);
1127 	return err;
1128 }
1129 
1130 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1131 {
1132 	return ksys_dup3(oldfd, newfd, flags);
1133 }
1134 
1135 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1136 {
1137 	if (unlikely(newfd == oldfd)) { /* corner case */
1138 		struct files_struct *files = current->files;
1139 		int retval = oldfd;
1140 
1141 		rcu_read_lock();
1142 		if (!fcheck_files(files, oldfd))
1143 			retval = -EBADF;
1144 		rcu_read_unlock();
1145 		return retval;
1146 	}
1147 	return ksys_dup3(oldfd, newfd, 0);
1148 }
1149 
1150 SYSCALL_DEFINE1(dup, unsigned int, fildes)
1151 {
1152 	int ret = -EBADF;
1153 	struct file *file = fget_raw(fildes);
1154 
1155 	if (file) {
1156 		ret = get_unused_fd_flags(0);
1157 		if (ret >= 0)
1158 			fd_install(ret, file);
1159 		else
1160 			fput(file);
1161 	}
1162 	return ret;
1163 }
1164 
1165 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1166 {
1167 	int err;
1168 	if (from >= rlimit(RLIMIT_NOFILE))
1169 		return -EINVAL;
1170 	err = alloc_fd(from, flags);
1171 	if (err >= 0) {
1172 		get_file(file);
1173 		fd_install(err, file);
1174 	}
1175 	return err;
1176 }
1177 
1178 int iterate_fd(struct files_struct *files, unsigned n,
1179 		int (*f)(const void *, struct file *, unsigned),
1180 		const void *p)
1181 {
1182 	struct fdtable *fdt;
1183 	int res = 0;
1184 	if (!files)
1185 		return 0;
1186 	spin_lock(&files->file_lock);
1187 	for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1188 		struct file *file;
1189 		file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1190 		if (!file)
1191 			continue;
1192 		res = f(p, file, n);
1193 		if (res)
1194 			break;
1195 	}
1196 	spin_unlock(&files->file_lock);
1197 	return res;
1198 }
1199 EXPORT_SYMBOL(iterate_fd);
1200