1 /* 2 * linux/fs/file.c 3 * 4 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes 5 * 6 * Manage the dynamic fd arrays in the process files_struct. 7 */ 8 9 #include <linux/syscalls.h> 10 #include <linux/export.h> 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/mmzone.h> 14 #include <linux/time.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/vmalloc.h> 18 #include <linux/file.h> 19 #include <linux/fdtable.h> 20 #include <linux/bitops.h> 21 #include <linux/interrupt.h> 22 #include <linux/spinlock.h> 23 #include <linux/rcupdate.h> 24 #include <linux/workqueue.h> 25 26 int sysctl_nr_open __read_mostly = 1024*1024; 27 int sysctl_nr_open_min = BITS_PER_LONG; 28 /* our max() is unusable in constant expressions ;-/ */ 29 #define __const_max(x, y) ((x) < (y) ? (x) : (y)) 30 int sysctl_nr_open_max = __const_max(INT_MAX, ~(size_t)0/sizeof(void *)) & 31 -BITS_PER_LONG; 32 33 static void *alloc_fdmem(size_t size) 34 { 35 /* 36 * Very large allocations can stress page reclaim, so fall back to 37 * vmalloc() if the allocation size will be considered "large" by the VM. 38 */ 39 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) { 40 void *data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN|__GFP_NORETRY); 41 if (data != NULL) 42 return data; 43 } 44 return vmalloc(size); 45 } 46 47 static void free_fdmem(void *ptr) 48 { 49 is_vmalloc_addr(ptr) ? vfree(ptr) : kfree(ptr); 50 } 51 52 static void __free_fdtable(struct fdtable *fdt) 53 { 54 free_fdmem(fdt->fd); 55 free_fdmem(fdt->open_fds); 56 kfree(fdt); 57 } 58 59 static void free_fdtable_rcu(struct rcu_head *rcu) 60 { 61 __free_fdtable(container_of(rcu, struct fdtable, rcu)); 62 } 63 64 /* 65 * Expand the fdset in the files_struct. Called with the files spinlock 66 * held for write. 67 */ 68 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) 69 { 70 unsigned int cpy, set; 71 72 BUG_ON(nfdt->max_fds < ofdt->max_fds); 73 74 cpy = ofdt->max_fds * sizeof(struct file *); 75 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); 76 memcpy(nfdt->fd, ofdt->fd, cpy); 77 memset((char *)(nfdt->fd) + cpy, 0, set); 78 79 cpy = ofdt->max_fds / BITS_PER_BYTE; 80 set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE; 81 memcpy(nfdt->open_fds, ofdt->open_fds, cpy); 82 memset((char *)(nfdt->open_fds) + cpy, 0, set); 83 memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy); 84 memset((char *)(nfdt->close_on_exec) + cpy, 0, set); 85 } 86 87 static struct fdtable * alloc_fdtable(unsigned int nr) 88 { 89 struct fdtable *fdt; 90 void *data; 91 92 /* 93 * Figure out how many fds we actually want to support in this fdtable. 94 * Allocation steps are keyed to the size of the fdarray, since it 95 * grows far faster than any of the other dynamic data. We try to fit 96 * the fdarray into comfortable page-tuned chunks: starting at 1024B 97 * and growing in powers of two from there on. 98 */ 99 nr /= (1024 / sizeof(struct file *)); 100 nr = roundup_pow_of_two(nr + 1); 101 nr *= (1024 / sizeof(struct file *)); 102 /* 103 * Note that this can drive nr *below* what we had passed if sysctl_nr_open 104 * had been set lower between the check in expand_files() and here. Deal 105 * with that in caller, it's cheaper that way. 106 * 107 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise 108 * bitmaps handling below becomes unpleasant, to put it mildly... 109 */ 110 if (unlikely(nr > sysctl_nr_open)) 111 nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; 112 113 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL); 114 if (!fdt) 115 goto out; 116 fdt->max_fds = nr; 117 data = alloc_fdmem(nr * sizeof(struct file *)); 118 if (!data) 119 goto out_fdt; 120 fdt->fd = data; 121 122 data = alloc_fdmem(max_t(size_t, 123 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES)); 124 if (!data) 125 goto out_arr; 126 fdt->open_fds = data; 127 data += nr / BITS_PER_BYTE; 128 fdt->close_on_exec = data; 129 130 return fdt; 131 132 out_arr: 133 free_fdmem(fdt->fd); 134 out_fdt: 135 kfree(fdt); 136 out: 137 return NULL; 138 } 139 140 /* 141 * Expand the file descriptor table. 142 * This function will allocate a new fdtable and both fd array and fdset, of 143 * the given size. 144 * Return <0 error code on error; 1 on successful completion. 145 * The files->file_lock should be held on entry, and will be held on exit. 146 */ 147 static int expand_fdtable(struct files_struct *files, int nr) 148 __releases(files->file_lock) 149 __acquires(files->file_lock) 150 { 151 struct fdtable *new_fdt, *cur_fdt; 152 153 spin_unlock(&files->file_lock); 154 new_fdt = alloc_fdtable(nr); 155 spin_lock(&files->file_lock); 156 if (!new_fdt) 157 return -ENOMEM; 158 /* 159 * extremely unlikely race - sysctl_nr_open decreased between the check in 160 * caller and alloc_fdtable(). Cheaper to catch it here... 161 */ 162 if (unlikely(new_fdt->max_fds <= nr)) { 163 __free_fdtable(new_fdt); 164 return -EMFILE; 165 } 166 /* 167 * Check again since another task may have expanded the fd table while 168 * we dropped the lock 169 */ 170 cur_fdt = files_fdtable(files); 171 if (nr >= cur_fdt->max_fds) { 172 /* Continue as planned */ 173 copy_fdtable(new_fdt, cur_fdt); 174 rcu_assign_pointer(files->fdt, new_fdt); 175 if (cur_fdt != &files->fdtab) 176 call_rcu(&cur_fdt->rcu, free_fdtable_rcu); 177 } else { 178 /* Somebody else expanded, so undo our attempt */ 179 __free_fdtable(new_fdt); 180 } 181 return 1; 182 } 183 184 /* 185 * Expand files. 186 * This function will expand the file structures, if the requested size exceeds 187 * the current capacity and there is room for expansion. 188 * Return <0 error code on error; 0 when nothing done; 1 when files were 189 * expanded and execution may have blocked. 190 * The files->file_lock should be held on entry, and will be held on exit. 191 */ 192 static int expand_files(struct files_struct *files, int nr) 193 { 194 struct fdtable *fdt; 195 196 fdt = files_fdtable(files); 197 198 /* Do we need to expand? */ 199 if (nr < fdt->max_fds) 200 return 0; 201 202 /* Can we expand? */ 203 if (nr >= sysctl_nr_open) 204 return -EMFILE; 205 206 /* All good, so we try */ 207 return expand_fdtable(files, nr); 208 } 209 210 static inline void __set_close_on_exec(int fd, struct fdtable *fdt) 211 { 212 __set_bit(fd, fdt->close_on_exec); 213 } 214 215 static inline void __clear_close_on_exec(int fd, struct fdtable *fdt) 216 { 217 __clear_bit(fd, fdt->close_on_exec); 218 } 219 220 static inline void __set_open_fd(int fd, struct fdtable *fdt) 221 { 222 __set_bit(fd, fdt->open_fds); 223 } 224 225 static inline void __clear_open_fd(int fd, struct fdtable *fdt) 226 { 227 __clear_bit(fd, fdt->open_fds); 228 } 229 230 static int count_open_files(struct fdtable *fdt) 231 { 232 int size = fdt->max_fds; 233 int i; 234 235 /* Find the last open fd */ 236 for (i = size / BITS_PER_LONG; i > 0; ) { 237 if (fdt->open_fds[--i]) 238 break; 239 } 240 i = (i + 1) * BITS_PER_LONG; 241 return i; 242 } 243 244 /* 245 * Allocate a new files structure and copy contents from the 246 * passed in files structure. 247 * errorp will be valid only when the returned files_struct is NULL. 248 */ 249 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp) 250 { 251 struct files_struct *newf; 252 struct file **old_fds, **new_fds; 253 int open_files, size, i; 254 struct fdtable *old_fdt, *new_fdt; 255 256 *errorp = -ENOMEM; 257 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); 258 if (!newf) 259 goto out; 260 261 atomic_set(&newf->count, 1); 262 263 spin_lock_init(&newf->file_lock); 264 newf->next_fd = 0; 265 new_fdt = &newf->fdtab; 266 new_fdt->max_fds = NR_OPEN_DEFAULT; 267 new_fdt->close_on_exec = newf->close_on_exec_init; 268 new_fdt->open_fds = newf->open_fds_init; 269 new_fdt->fd = &newf->fd_array[0]; 270 271 spin_lock(&oldf->file_lock); 272 old_fdt = files_fdtable(oldf); 273 open_files = count_open_files(old_fdt); 274 275 /* 276 * Check whether we need to allocate a larger fd array and fd set. 277 */ 278 while (unlikely(open_files > new_fdt->max_fds)) { 279 spin_unlock(&oldf->file_lock); 280 281 if (new_fdt != &newf->fdtab) 282 __free_fdtable(new_fdt); 283 284 new_fdt = alloc_fdtable(open_files - 1); 285 if (!new_fdt) { 286 *errorp = -ENOMEM; 287 goto out_release; 288 } 289 290 /* beyond sysctl_nr_open; nothing to do */ 291 if (unlikely(new_fdt->max_fds < open_files)) { 292 __free_fdtable(new_fdt); 293 *errorp = -EMFILE; 294 goto out_release; 295 } 296 297 /* 298 * Reacquire the oldf lock and a pointer to its fd table 299 * who knows it may have a new bigger fd table. We need 300 * the latest pointer. 301 */ 302 spin_lock(&oldf->file_lock); 303 old_fdt = files_fdtable(oldf); 304 open_files = count_open_files(old_fdt); 305 } 306 307 old_fds = old_fdt->fd; 308 new_fds = new_fdt->fd; 309 310 memcpy(new_fdt->open_fds, old_fdt->open_fds, open_files / 8); 311 memcpy(new_fdt->close_on_exec, old_fdt->close_on_exec, open_files / 8); 312 313 for (i = open_files; i != 0; i--) { 314 struct file *f = *old_fds++; 315 if (f) { 316 get_file(f); 317 } else { 318 /* 319 * The fd may be claimed in the fd bitmap but not yet 320 * instantiated in the files array if a sibling thread 321 * is partway through open(). So make sure that this 322 * fd is available to the new process. 323 */ 324 __clear_open_fd(open_files - i, new_fdt); 325 } 326 rcu_assign_pointer(*new_fds++, f); 327 } 328 spin_unlock(&oldf->file_lock); 329 330 /* compute the remainder to be cleared */ 331 size = (new_fdt->max_fds - open_files) * sizeof(struct file *); 332 333 /* This is long word aligned thus could use a optimized version */ 334 memset(new_fds, 0, size); 335 336 if (new_fdt->max_fds > open_files) { 337 int left = (new_fdt->max_fds - open_files) / 8; 338 int start = open_files / BITS_PER_LONG; 339 340 memset(&new_fdt->open_fds[start], 0, left); 341 memset(&new_fdt->close_on_exec[start], 0, left); 342 } 343 344 rcu_assign_pointer(newf->fdt, new_fdt); 345 346 return newf; 347 348 out_release: 349 kmem_cache_free(files_cachep, newf); 350 out: 351 return NULL; 352 } 353 354 static struct fdtable *close_files(struct files_struct * files) 355 { 356 /* 357 * It is safe to dereference the fd table without RCU or 358 * ->file_lock because this is the last reference to the 359 * files structure. 360 */ 361 struct fdtable *fdt = rcu_dereference_raw(files->fdt); 362 int i, j = 0; 363 364 for (;;) { 365 unsigned long set; 366 i = j * BITS_PER_LONG; 367 if (i >= fdt->max_fds) 368 break; 369 set = fdt->open_fds[j++]; 370 while (set) { 371 if (set & 1) { 372 struct file * file = xchg(&fdt->fd[i], NULL); 373 if (file) { 374 filp_close(file, files); 375 cond_resched(); 376 } 377 } 378 i++; 379 set >>= 1; 380 } 381 } 382 383 return fdt; 384 } 385 386 struct files_struct *get_files_struct(struct task_struct *task) 387 { 388 struct files_struct *files; 389 390 task_lock(task); 391 files = task->files; 392 if (files) 393 atomic_inc(&files->count); 394 task_unlock(task); 395 396 return files; 397 } 398 399 void put_files_struct(struct files_struct *files) 400 { 401 if (atomic_dec_and_test(&files->count)) { 402 struct fdtable *fdt = close_files(files); 403 404 /* free the arrays if they are not embedded */ 405 if (fdt != &files->fdtab) 406 __free_fdtable(fdt); 407 kmem_cache_free(files_cachep, files); 408 } 409 } 410 411 void reset_files_struct(struct files_struct *files) 412 { 413 struct task_struct *tsk = current; 414 struct files_struct *old; 415 416 old = tsk->files; 417 task_lock(tsk); 418 tsk->files = files; 419 task_unlock(tsk); 420 put_files_struct(old); 421 } 422 423 void exit_files(struct task_struct *tsk) 424 { 425 struct files_struct * files = tsk->files; 426 427 if (files) { 428 task_lock(tsk); 429 tsk->files = NULL; 430 task_unlock(tsk); 431 put_files_struct(files); 432 } 433 } 434 435 struct files_struct init_files = { 436 .count = ATOMIC_INIT(1), 437 .fdt = &init_files.fdtab, 438 .fdtab = { 439 .max_fds = NR_OPEN_DEFAULT, 440 .fd = &init_files.fd_array[0], 441 .close_on_exec = init_files.close_on_exec_init, 442 .open_fds = init_files.open_fds_init, 443 }, 444 .file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock), 445 }; 446 447 /* 448 * allocate a file descriptor, mark it busy. 449 */ 450 int __alloc_fd(struct files_struct *files, 451 unsigned start, unsigned end, unsigned flags) 452 { 453 unsigned int fd; 454 int error; 455 struct fdtable *fdt; 456 457 spin_lock(&files->file_lock); 458 repeat: 459 fdt = files_fdtable(files); 460 fd = start; 461 if (fd < files->next_fd) 462 fd = files->next_fd; 463 464 if (fd < fdt->max_fds) 465 fd = find_next_zero_bit(fdt->open_fds, fdt->max_fds, fd); 466 467 /* 468 * N.B. For clone tasks sharing a files structure, this test 469 * will limit the total number of files that can be opened. 470 */ 471 error = -EMFILE; 472 if (fd >= end) 473 goto out; 474 475 error = expand_files(files, fd); 476 if (error < 0) 477 goto out; 478 479 /* 480 * If we needed to expand the fs array we 481 * might have blocked - try again. 482 */ 483 if (error) 484 goto repeat; 485 486 if (start <= files->next_fd) 487 files->next_fd = fd + 1; 488 489 __set_open_fd(fd, fdt); 490 if (flags & O_CLOEXEC) 491 __set_close_on_exec(fd, fdt); 492 else 493 __clear_close_on_exec(fd, fdt); 494 error = fd; 495 #if 1 496 /* Sanity check */ 497 if (rcu_access_pointer(fdt->fd[fd]) != NULL) { 498 printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd); 499 rcu_assign_pointer(fdt->fd[fd], NULL); 500 } 501 #endif 502 503 out: 504 spin_unlock(&files->file_lock); 505 return error; 506 } 507 508 static int alloc_fd(unsigned start, unsigned flags) 509 { 510 return __alloc_fd(current->files, start, rlimit(RLIMIT_NOFILE), flags); 511 } 512 513 int get_unused_fd_flags(unsigned flags) 514 { 515 return __alloc_fd(current->files, 0, rlimit(RLIMIT_NOFILE), flags); 516 } 517 EXPORT_SYMBOL(get_unused_fd_flags); 518 519 static void __put_unused_fd(struct files_struct *files, unsigned int fd) 520 { 521 struct fdtable *fdt = files_fdtable(files); 522 __clear_open_fd(fd, fdt); 523 if (fd < files->next_fd) 524 files->next_fd = fd; 525 } 526 527 void put_unused_fd(unsigned int fd) 528 { 529 struct files_struct *files = current->files; 530 spin_lock(&files->file_lock); 531 __put_unused_fd(files, fd); 532 spin_unlock(&files->file_lock); 533 } 534 535 EXPORT_SYMBOL(put_unused_fd); 536 537 /* 538 * Install a file pointer in the fd array. 539 * 540 * The VFS is full of places where we drop the files lock between 541 * setting the open_fds bitmap and installing the file in the file 542 * array. At any such point, we are vulnerable to a dup2() race 543 * installing a file in the array before us. We need to detect this and 544 * fput() the struct file we are about to overwrite in this case. 545 * 546 * It should never happen - if we allow dup2() do it, _really_ bad things 547 * will follow. 548 * 549 * NOTE: __fd_install() variant is really, really low-level; don't 550 * use it unless you are forced to by truly lousy API shoved down 551 * your throat. 'files' *MUST* be either current->files or obtained 552 * by get_files_struct(current) done by whoever had given it to you, 553 * or really bad things will happen. Normally you want to use 554 * fd_install() instead. 555 */ 556 557 void __fd_install(struct files_struct *files, unsigned int fd, 558 struct file *file) 559 { 560 struct fdtable *fdt; 561 spin_lock(&files->file_lock); 562 fdt = files_fdtable(files); 563 BUG_ON(fdt->fd[fd] != NULL); 564 rcu_assign_pointer(fdt->fd[fd], file); 565 spin_unlock(&files->file_lock); 566 } 567 568 void fd_install(unsigned int fd, struct file *file) 569 { 570 __fd_install(current->files, fd, file); 571 } 572 573 EXPORT_SYMBOL(fd_install); 574 575 /* 576 * The same warnings as for __alloc_fd()/__fd_install() apply here... 577 */ 578 int __close_fd(struct files_struct *files, unsigned fd) 579 { 580 struct file *file; 581 struct fdtable *fdt; 582 583 spin_lock(&files->file_lock); 584 fdt = files_fdtable(files); 585 if (fd >= fdt->max_fds) 586 goto out_unlock; 587 file = fdt->fd[fd]; 588 if (!file) 589 goto out_unlock; 590 rcu_assign_pointer(fdt->fd[fd], NULL); 591 __clear_close_on_exec(fd, fdt); 592 __put_unused_fd(files, fd); 593 spin_unlock(&files->file_lock); 594 return filp_close(file, files); 595 596 out_unlock: 597 spin_unlock(&files->file_lock); 598 return -EBADF; 599 } 600 601 void do_close_on_exec(struct files_struct *files) 602 { 603 unsigned i; 604 struct fdtable *fdt; 605 606 /* exec unshares first */ 607 spin_lock(&files->file_lock); 608 for (i = 0; ; i++) { 609 unsigned long set; 610 unsigned fd = i * BITS_PER_LONG; 611 fdt = files_fdtable(files); 612 if (fd >= fdt->max_fds) 613 break; 614 set = fdt->close_on_exec[i]; 615 if (!set) 616 continue; 617 fdt->close_on_exec[i] = 0; 618 for ( ; set ; fd++, set >>= 1) { 619 struct file *file; 620 if (!(set & 1)) 621 continue; 622 file = fdt->fd[fd]; 623 if (!file) 624 continue; 625 rcu_assign_pointer(fdt->fd[fd], NULL); 626 __put_unused_fd(files, fd); 627 spin_unlock(&files->file_lock); 628 filp_close(file, files); 629 cond_resched(); 630 spin_lock(&files->file_lock); 631 } 632 633 } 634 spin_unlock(&files->file_lock); 635 } 636 637 static struct file *__fget(unsigned int fd, fmode_t mask) 638 { 639 struct files_struct *files = current->files; 640 struct file *file; 641 642 rcu_read_lock(); 643 file = fcheck_files(files, fd); 644 if (file) { 645 /* File object ref couldn't be taken */ 646 if ((file->f_mode & mask) || 647 !atomic_long_inc_not_zero(&file->f_count)) 648 file = NULL; 649 } 650 rcu_read_unlock(); 651 652 return file; 653 } 654 655 struct file *fget(unsigned int fd) 656 { 657 return __fget(fd, FMODE_PATH); 658 } 659 EXPORT_SYMBOL(fget); 660 661 struct file *fget_raw(unsigned int fd) 662 { 663 return __fget(fd, 0); 664 } 665 EXPORT_SYMBOL(fget_raw); 666 667 /* 668 * Lightweight file lookup - no refcnt increment if fd table isn't shared. 669 * 670 * You can use this instead of fget if you satisfy all of the following 671 * conditions: 672 * 1) You must call fput_light before exiting the syscall and returning control 673 * to userspace (i.e. you cannot remember the returned struct file * after 674 * returning to userspace). 675 * 2) You must not call filp_close on the returned struct file * in between 676 * calls to fget_light and fput_light. 677 * 3) You must not clone the current task in between the calls to fget_light 678 * and fput_light. 679 * 680 * The fput_needed flag returned by fget_light should be passed to the 681 * corresponding fput_light. 682 */ 683 static unsigned long __fget_light(unsigned int fd, fmode_t mask) 684 { 685 struct files_struct *files = current->files; 686 struct file *file; 687 688 if (atomic_read(&files->count) == 1) { 689 file = __fcheck_files(files, fd); 690 if (!file || unlikely(file->f_mode & mask)) 691 return 0; 692 return (unsigned long)file; 693 } else { 694 file = __fget(fd, mask); 695 if (!file) 696 return 0; 697 return FDPUT_FPUT | (unsigned long)file; 698 } 699 } 700 unsigned long __fdget(unsigned int fd) 701 { 702 return __fget_light(fd, FMODE_PATH); 703 } 704 EXPORT_SYMBOL(__fdget); 705 706 unsigned long __fdget_raw(unsigned int fd) 707 { 708 return __fget_light(fd, 0); 709 } 710 711 unsigned long __fdget_pos(unsigned int fd) 712 { 713 unsigned long v = __fdget(fd); 714 struct file *file = (struct file *)(v & ~3); 715 716 if (file && (file->f_mode & FMODE_ATOMIC_POS)) { 717 if (file_count(file) > 1) { 718 v |= FDPUT_POS_UNLOCK; 719 mutex_lock(&file->f_pos_lock); 720 } 721 } 722 return v; 723 } 724 725 /* 726 * We only lock f_pos if we have threads or if the file might be 727 * shared with another process. In both cases we'll have an elevated 728 * file count (done either by fdget() or by fork()). 729 */ 730 731 void set_close_on_exec(unsigned int fd, int flag) 732 { 733 struct files_struct *files = current->files; 734 struct fdtable *fdt; 735 spin_lock(&files->file_lock); 736 fdt = files_fdtable(files); 737 if (flag) 738 __set_close_on_exec(fd, fdt); 739 else 740 __clear_close_on_exec(fd, fdt); 741 spin_unlock(&files->file_lock); 742 } 743 744 bool get_close_on_exec(unsigned int fd) 745 { 746 struct files_struct *files = current->files; 747 struct fdtable *fdt; 748 bool res; 749 rcu_read_lock(); 750 fdt = files_fdtable(files); 751 res = close_on_exec(fd, fdt); 752 rcu_read_unlock(); 753 return res; 754 } 755 756 static int do_dup2(struct files_struct *files, 757 struct file *file, unsigned fd, unsigned flags) 758 { 759 struct file *tofree; 760 struct fdtable *fdt; 761 762 /* 763 * We need to detect attempts to do dup2() over allocated but still 764 * not finished descriptor. NB: OpenBSD avoids that at the price of 765 * extra work in their equivalent of fget() - they insert struct 766 * file immediately after grabbing descriptor, mark it larval if 767 * more work (e.g. actual opening) is needed and make sure that 768 * fget() treats larval files as absent. Potentially interesting, 769 * but while extra work in fget() is trivial, locking implications 770 * and amount of surgery on open()-related paths in VFS are not. 771 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution" 772 * deadlocks in rather amusing ways, AFAICS. All of that is out of 773 * scope of POSIX or SUS, since neither considers shared descriptor 774 * tables and this condition does not arise without those. 775 */ 776 fdt = files_fdtable(files); 777 tofree = fdt->fd[fd]; 778 if (!tofree && fd_is_open(fd, fdt)) 779 goto Ebusy; 780 get_file(file); 781 rcu_assign_pointer(fdt->fd[fd], file); 782 __set_open_fd(fd, fdt); 783 if (flags & O_CLOEXEC) 784 __set_close_on_exec(fd, fdt); 785 else 786 __clear_close_on_exec(fd, fdt); 787 spin_unlock(&files->file_lock); 788 789 if (tofree) 790 filp_close(tofree, files); 791 792 return fd; 793 794 Ebusy: 795 spin_unlock(&files->file_lock); 796 return -EBUSY; 797 } 798 799 int replace_fd(unsigned fd, struct file *file, unsigned flags) 800 { 801 int err; 802 struct files_struct *files = current->files; 803 804 if (!file) 805 return __close_fd(files, fd); 806 807 if (fd >= rlimit(RLIMIT_NOFILE)) 808 return -EBADF; 809 810 spin_lock(&files->file_lock); 811 err = expand_files(files, fd); 812 if (unlikely(err < 0)) 813 goto out_unlock; 814 return do_dup2(files, file, fd, flags); 815 816 out_unlock: 817 spin_unlock(&files->file_lock); 818 return err; 819 } 820 821 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags) 822 { 823 int err = -EBADF; 824 struct file *file; 825 struct files_struct *files = current->files; 826 827 if ((flags & ~O_CLOEXEC) != 0) 828 return -EINVAL; 829 830 if (unlikely(oldfd == newfd)) 831 return -EINVAL; 832 833 if (newfd >= rlimit(RLIMIT_NOFILE)) 834 return -EBADF; 835 836 spin_lock(&files->file_lock); 837 err = expand_files(files, newfd); 838 file = fcheck(oldfd); 839 if (unlikely(!file)) 840 goto Ebadf; 841 if (unlikely(err < 0)) { 842 if (err == -EMFILE) 843 goto Ebadf; 844 goto out_unlock; 845 } 846 return do_dup2(files, file, newfd, flags); 847 848 Ebadf: 849 err = -EBADF; 850 out_unlock: 851 spin_unlock(&files->file_lock); 852 return err; 853 } 854 855 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd) 856 { 857 if (unlikely(newfd == oldfd)) { /* corner case */ 858 struct files_struct *files = current->files; 859 int retval = oldfd; 860 861 rcu_read_lock(); 862 if (!fcheck_files(files, oldfd)) 863 retval = -EBADF; 864 rcu_read_unlock(); 865 return retval; 866 } 867 return sys_dup3(oldfd, newfd, 0); 868 } 869 870 SYSCALL_DEFINE1(dup, unsigned int, fildes) 871 { 872 int ret = -EBADF; 873 struct file *file = fget_raw(fildes); 874 875 if (file) { 876 ret = get_unused_fd(); 877 if (ret >= 0) 878 fd_install(ret, file); 879 else 880 fput(file); 881 } 882 return ret; 883 } 884 885 int f_dupfd(unsigned int from, struct file *file, unsigned flags) 886 { 887 int err; 888 if (from >= rlimit(RLIMIT_NOFILE)) 889 return -EINVAL; 890 err = alloc_fd(from, flags); 891 if (err >= 0) { 892 get_file(file); 893 fd_install(err, file); 894 } 895 return err; 896 } 897 898 int iterate_fd(struct files_struct *files, unsigned n, 899 int (*f)(const void *, struct file *, unsigned), 900 const void *p) 901 { 902 struct fdtable *fdt; 903 int res = 0; 904 if (!files) 905 return 0; 906 spin_lock(&files->file_lock); 907 for (fdt = files_fdtable(files); n < fdt->max_fds; n++) { 908 struct file *file; 909 file = rcu_dereference_check_fdtable(files, fdt->fd[n]); 910 if (!file) 911 continue; 912 res = f(p, file, n); 913 if (res) 914 break; 915 } 916 spin_unlock(&files->file_lock); 917 return res; 918 } 919 EXPORT_SYMBOL(iterate_fd); 920