1 /* 2 * linux/fs/file.c 3 * 4 * Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes 5 * 6 * Manage the dynamic fd arrays in the process files_struct. 7 */ 8 9 #include <linux/syscalls.h> 10 #include <linux/export.h> 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/mmzone.h> 14 #include <linux/time.h> 15 #include <linux/sched.h> 16 #include <linux/slab.h> 17 #include <linux/vmalloc.h> 18 #include <linux/file.h> 19 #include <linux/fdtable.h> 20 #include <linux/bitops.h> 21 #include <linux/interrupt.h> 22 #include <linux/spinlock.h> 23 #include <linux/rcupdate.h> 24 #include <linux/workqueue.h> 25 26 int sysctl_nr_open __read_mostly = 1024*1024; 27 int sysctl_nr_open_min = BITS_PER_LONG; 28 /* our max() is unusable in constant expressions ;-/ */ 29 #define __const_max(x, y) ((x) < (y) ? (x) : (y)) 30 int sysctl_nr_open_max = __const_max(INT_MAX, ~(size_t)0/sizeof(void *)) & 31 -BITS_PER_LONG; 32 33 static void *alloc_fdmem(size_t size) 34 { 35 /* 36 * Very large allocations can stress page reclaim, so fall back to 37 * vmalloc() if the allocation size will be considered "large" by the VM. 38 */ 39 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER)) { 40 void *data = kmalloc(size, GFP_KERNEL|__GFP_NOWARN|__GFP_NORETRY); 41 if (data != NULL) 42 return data; 43 } 44 return vmalloc(size); 45 } 46 47 static void __free_fdtable(struct fdtable *fdt) 48 { 49 kvfree(fdt->fd); 50 kvfree(fdt->open_fds); 51 kfree(fdt); 52 } 53 54 static void free_fdtable_rcu(struct rcu_head *rcu) 55 { 56 __free_fdtable(container_of(rcu, struct fdtable, rcu)); 57 } 58 59 #define BITBIT_NR(nr) BITS_TO_LONGS(BITS_TO_LONGS(nr)) 60 #define BITBIT_SIZE(nr) (BITBIT_NR(nr) * sizeof(long)) 61 62 /* 63 * Copy 'count' fd bits from the old table to the new table and clear the extra 64 * space if any. This does not copy the file pointers. Called with the files 65 * spinlock held for write. 66 */ 67 static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt, 68 unsigned int count) 69 { 70 unsigned int cpy, set; 71 72 cpy = count / BITS_PER_BYTE; 73 set = (nfdt->max_fds - count) / BITS_PER_BYTE; 74 memcpy(nfdt->open_fds, ofdt->open_fds, cpy); 75 memset((char *)nfdt->open_fds + cpy, 0, set); 76 memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy); 77 memset((char *)nfdt->close_on_exec + cpy, 0, set); 78 79 cpy = BITBIT_SIZE(count); 80 set = BITBIT_SIZE(nfdt->max_fds) - cpy; 81 memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy); 82 memset((char *)nfdt->full_fds_bits + cpy, 0, set); 83 } 84 85 /* 86 * Copy all file descriptors from the old table to the new, expanded table and 87 * clear the extra space. Called with the files spinlock held for write. 88 */ 89 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt) 90 { 91 unsigned int cpy, set; 92 93 BUG_ON(nfdt->max_fds < ofdt->max_fds); 94 95 cpy = ofdt->max_fds * sizeof(struct file *); 96 set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *); 97 memcpy(nfdt->fd, ofdt->fd, cpy); 98 memset((char *)nfdt->fd + cpy, 0, set); 99 100 copy_fd_bitmaps(nfdt, ofdt, ofdt->max_fds); 101 } 102 103 static struct fdtable * alloc_fdtable(unsigned int nr) 104 { 105 struct fdtable *fdt; 106 void *data; 107 108 /* 109 * Figure out how many fds we actually want to support in this fdtable. 110 * Allocation steps are keyed to the size of the fdarray, since it 111 * grows far faster than any of the other dynamic data. We try to fit 112 * the fdarray into comfortable page-tuned chunks: starting at 1024B 113 * and growing in powers of two from there on. 114 */ 115 nr /= (1024 / sizeof(struct file *)); 116 nr = roundup_pow_of_two(nr + 1); 117 nr *= (1024 / sizeof(struct file *)); 118 /* 119 * Note that this can drive nr *below* what we had passed if sysctl_nr_open 120 * had been set lower between the check in expand_files() and here. Deal 121 * with that in caller, it's cheaper that way. 122 * 123 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise 124 * bitmaps handling below becomes unpleasant, to put it mildly... 125 */ 126 if (unlikely(nr > sysctl_nr_open)) 127 nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1; 128 129 fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL); 130 if (!fdt) 131 goto out; 132 fdt->max_fds = nr; 133 data = alloc_fdmem(nr * sizeof(struct file *)); 134 if (!data) 135 goto out_fdt; 136 fdt->fd = data; 137 138 data = alloc_fdmem(max_t(size_t, 139 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES)); 140 if (!data) 141 goto out_arr; 142 fdt->open_fds = data; 143 data += nr / BITS_PER_BYTE; 144 fdt->close_on_exec = data; 145 data += nr / BITS_PER_BYTE; 146 fdt->full_fds_bits = data; 147 148 return fdt; 149 150 out_arr: 151 kvfree(fdt->fd); 152 out_fdt: 153 kfree(fdt); 154 out: 155 return NULL; 156 } 157 158 /* 159 * Expand the file descriptor table. 160 * This function will allocate a new fdtable and both fd array and fdset, of 161 * the given size. 162 * Return <0 error code on error; 1 on successful completion. 163 * The files->file_lock should be held on entry, and will be held on exit. 164 */ 165 static int expand_fdtable(struct files_struct *files, int nr) 166 __releases(files->file_lock) 167 __acquires(files->file_lock) 168 { 169 struct fdtable *new_fdt, *cur_fdt; 170 171 spin_unlock(&files->file_lock); 172 new_fdt = alloc_fdtable(nr); 173 174 /* make sure all __fd_install() have seen resize_in_progress 175 * or have finished their rcu_read_lock_sched() section. 176 */ 177 if (atomic_read(&files->count) > 1) 178 synchronize_sched(); 179 180 spin_lock(&files->file_lock); 181 if (!new_fdt) 182 return -ENOMEM; 183 /* 184 * extremely unlikely race - sysctl_nr_open decreased between the check in 185 * caller and alloc_fdtable(). Cheaper to catch it here... 186 */ 187 if (unlikely(new_fdt->max_fds <= nr)) { 188 __free_fdtable(new_fdt); 189 return -EMFILE; 190 } 191 cur_fdt = files_fdtable(files); 192 BUG_ON(nr < cur_fdt->max_fds); 193 copy_fdtable(new_fdt, cur_fdt); 194 rcu_assign_pointer(files->fdt, new_fdt); 195 if (cur_fdt != &files->fdtab) 196 call_rcu(&cur_fdt->rcu, free_fdtable_rcu); 197 /* coupled with smp_rmb() in __fd_install() */ 198 smp_wmb(); 199 return 1; 200 } 201 202 /* 203 * Expand files. 204 * This function will expand the file structures, if the requested size exceeds 205 * the current capacity and there is room for expansion. 206 * Return <0 error code on error; 0 when nothing done; 1 when files were 207 * expanded and execution may have blocked. 208 * The files->file_lock should be held on entry, and will be held on exit. 209 */ 210 static int expand_files(struct files_struct *files, int nr) 211 __releases(files->file_lock) 212 __acquires(files->file_lock) 213 { 214 struct fdtable *fdt; 215 int expanded = 0; 216 217 repeat: 218 fdt = files_fdtable(files); 219 220 /* Do we need to expand? */ 221 if (nr < fdt->max_fds) 222 return expanded; 223 224 /* Can we expand? */ 225 if (nr >= sysctl_nr_open) 226 return -EMFILE; 227 228 if (unlikely(files->resize_in_progress)) { 229 spin_unlock(&files->file_lock); 230 expanded = 1; 231 wait_event(files->resize_wait, !files->resize_in_progress); 232 spin_lock(&files->file_lock); 233 goto repeat; 234 } 235 236 /* All good, so we try */ 237 files->resize_in_progress = true; 238 expanded = expand_fdtable(files, nr); 239 files->resize_in_progress = false; 240 241 wake_up_all(&files->resize_wait); 242 return expanded; 243 } 244 245 static inline void __set_close_on_exec(int fd, struct fdtable *fdt) 246 { 247 __set_bit(fd, fdt->close_on_exec); 248 } 249 250 static inline void __clear_close_on_exec(int fd, struct fdtable *fdt) 251 { 252 if (test_bit(fd, fdt->close_on_exec)) 253 __clear_bit(fd, fdt->close_on_exec); 254 } 255 256 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt) 257 { 258 __set_bit(fd, fdt->open_fds); 259 fd /= BITS_PER_LONG; 260 if (!~fdt->open_fds[fd]) 261 __set_bit(fd, fdt->full_fds_bits); 262 } 263 264 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt) 265 { 266 __clear_bit(fd, fdt->open_fds); 267 __clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits); 268 } 269 270 static int count_open_files(struct fdtable *fdt) 271 { 272 int size = fdt->max_fds; 273 int i; 274 275 /* Find the last open fd */ 276 for (i = size / BITS_PER_LONG; i > 0; ) { 277 if (fdt->open_fds[--i]) 278 break; 279 } 280 i = (i + 1) * BITS_PER_LONG; 281 return i; 282 } 283 284 /* 285 * Allocate a new files structure and copy contents from the 286 * passed in files structure. 287 * errorp will be valid only when the returned files_struct is NULL. 288 */ 289 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp) 290 { 291 struct files_struct *newf; 292 struct file **old_fds, **new_fds; 293 int open_files, i; 294 struct fdtable *old_fdt, *new_fdt; 295 296 *errorp = -ENOMEM; 297 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL); 298 if (!newf) 299 goto out; 300 301 atomic_set(&newf->count, 1); 302 303 spin_lock_init(&newf->file_lock); 304 newf->resize_in_progress = false; 305 init_waitqueue_head(&newf->resize_wait); 306 newf->next_fd = 0; 307 new_fdt = &newf->fdtab; 308 new_fdt->max_fds = NR_OPEN_DEFAULT; 309 new_fdt->close_on_exec = newf->close_on_exec_init; 310 new_fdt->open_fds = newf->open_fds_init; 311 new_fdt->full_fds_bits = newf->full_fds_bits_init; 312 new_fdt->fd = &newf->fd_array[0]; 313 314 spin_lock(&oldf->file_lock); 315 old_fdt = files_fdtable(oldf); 316 open_files = count_open_files(old_fdt); 317 318 /* 319 * Check whether we need to allocate a larger fd array and fd set. 320 */ 321 while (unlikely(open_files > new_fdt->max_fds)) { 322 spin_unlock(&oldf->file_lock); 323 324 if (new_fdt != &newf->fdtab) 325 __free_fdtable(new_fdt); 326 327 new_fdt = alloc_fdtable(open_files - 1); 328 if (!new_fdt) { 329 *errorp = -ENOMEM; 330 goto out_release; 331 } 332 333 /* beyond sysctl_nr_open; nothing to do */ 334 if (unlikely(new_fdt->max_fds < open_files)) { 335 __free_fdtable(new_fdt); 336 *errorp = -EMFILE; 337 goto out_release; 338 } 339 340 /* 341 * Reacquire the oldf lock and a pointer to its fd table 342 * who knows it may have a new bigger fd table. We need 343 * the latest pointer. 344 */ 345 spin_lock(&oldf->file_lock); 346 old_fdt = files_fdtable(oldf); 347 open_files = count_open_files(old_fdt); 348 } 349 350 copy_fd_bitmaps(new_fdt, old_fdt, open_files); 351 352 old_fds = old_fdt->fd; 353 new_fds = new_fdt->fd; 354 355 for (i = open_files; i != 0; i--) { 356 struct file *f = *old_fds++; 357 if (f) { 358 get_file(f); 359 } else { 360 /* 361 * The fd may be claimed in the fd bitmap but not yet 362 * instantiated in the files array if a sibling thread 363 * is partway through open(). So make sure that this 364 * fd is available to the new process. 365 */ 366 __clear_open_fd(open_files - i, new_fdt); 367 } 368 rcu_assign_pointer(*new_fds++, f); 369 } 370 spin_unlock(&oldf->file_lock); 371 372 /* clear the remainder */ 373 memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *)); 374 375 rcu_assign_pointer(newf->fdt, new_fdt); 376 377 return newf; 378 379 out_release: 380 kmem_cache_free(files_cachep, newf); 381 out: 382 return NULL; 383 } 384 385 static struct fdtable *close_files(struct files_struct * files) 386 { 387 /* 388 * It is safe to dereference the fd table without RCU or 389 * ->file_lock because this is the last reference to the 390 * files structure. 391 */ 392 struct fdtable *fdt = rcu_dereference_raw(files->fdt); 393 int i, j = 0; 394 395 for (;;) { 396 unsigned long set; 397 i = j * BITS_PER_LONG; 398 if (i >= fdt->max_fds) 399 break; 400 set = fdt->open_fds[j++]; 401 while (set) { 402 if (set & 1) { 403 struct file * file = xchg(&fdt->fd[i], NULL); 404 if (file) { 405 filp_close(file, files); 406 cond_resched_rcu_qs(); 407 } 408 } 409 i++; 410 set >>= 1; 411 } 412 } 413 414 return fdt; 415 } 416 417 struct files_struct *get_files_struct(struct task_struct *task) 418 { 419 struct files_struct *files; 420 421 task_lock(task); 422 files = task->files; 423 if (files) 424 atomic_inc(&files->count); 425 task_unlock(task); 426 427 return files; 428 } 429 430 void put_files_struct(struct files_struct *files) 431 { 432 if (atomic_dec_and_test(&files->count)) { 433 struct fdtable *fdt = close_files(files); 434 435 /* free the arrays if they are not embedded */ 436 if (fdt != &files->fdtab) 437 __free_fdtable(fdt); 438 kmem_cache_free(files_cachep, files); 439 } 440 } 441 442 void reset_files_struct(struct files_struct *files) 443 { 444 struct task_struct *tsk = current; 445 struct files_struct *old; 446 447 old = tsk->files; 448 task_lock(tsk); 449 tsk->files = files; 450 task_unlock(tsk); 451 put_files_struct(old); 452 } 453 454 void exit_files(struct task_struct *tsk) 455 { 456 struct files_struct * files = tsk->files; 457 458 if (files) { 459 task_lock(tsk); 460 tsk->files = NULL; 461 task_unlock(tsk); 462 put_files_struct(files); 463 } 464 } 465 466 struct files_struct init_files = { 467 .count = ATOMIC_INIT(1), 468 .fdt = &init_files.fdtab, 469 .fdtab = { 470 .max_fds = NR_OPEN_DEFAULT, 471 .fd = &init_files.fd_array[0], 472 .close_on_exec = init_files.close_on_exec_init, 473 .open_fds = init_files.open_fds_init, 474 .full_fds_bits = init_files.full_fds_bits_init, 475 }, 476 .file_lock = __SPIN_LOCK_UNLOCKED(init_files.file_lock), 477 }; 478 479 static unsigned long find_next_fd(struct fdtable *fdt, unsigned long start) 480 { 481 unsigned long maxfd = fdt->max_fds; 482 unsigned long maxbit = maxfd / BITS_PER_LONG; 483 unsigned long bitbit = start / BITS_PER_LONG; 484 485 bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG; 486 if (bitbit > maxfd) 487 return maxfd; 488 if (bitbit > start) 489 start = bitbit; 490 return find_next_zero_bit(fdt->open_fds, maxfd, start); 491 } 492 493 /* 494 * allocate a file descriptor, mark it busy. 495 */ 496 int __alloc_fd(struct files_struct *files, 497 unsigned start, unsigned end, unsigned flags) 498 { 499 unsigned int fd; 500 int error; 501 struct fdtable *fdt; 502 503 spin_lock(&files->file_lock); 504 repeat: 505 fdt = files_fdtable(files); 506 fd = start; 507 if (fd < files->next_fd) 508 fd = files->next_fd; 509 510 if (fd < fdt->max_fds) 511 fd = find_next_fd(fdt, fd); 512 513 /* 514 * N.B. For clone tasks sharing a files structure, this test 515 * will limit the total number of files that can be opened. 516 */ 517 error = -EMFILE; 518 if (fd >= end) 519 goto out; 520 521 error = expand_files(files, fd); 522 if (error < 0) 523 goto out; 524 525 /* 526 * If we needed to expand the fs array we 527 * might have blocked - try again. 528 */ 529 if (error) 530 goto repeat; 531 532 if (start <= files->next_fd) 533 files->next_fd = fd + 1; 534 535 __set_open_fd(fd, fdt); 536 if (flags & O_CLOEXEC) 537 __set_close_on_exec(fd, fdt); 538 else 539 __clear_close_on_exec(fd, fdt); 540 error = fd; 541 #if 1 542 /* Sanity check */ 543 if (rcu_access_pointer(fdt->fd[fd]) != NULL) { 544 printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd); 545 rcu_assign_pointer(fdt->fd[fd], NULL); 546 } 547 #endif 548 549 out: 550 spin_unlock(&files->file_lock); 551 return error; 552 } 553 554 static int alloc_fd(unsigned start, unsigned flags) 555 { 556 return __alloc_fd(current->files, start, rlimit(RLIMIT_NOFILE), flags); 557 } 558 559 int get_unused_fd_flags(unsigned flags) 560 { 561 return __alloc_fd(current->files, 0, rlimit(RLIMIT_NOFILE), flags); 562 } 563 EXPORT_SYMBOL(get_unused_fd_flags); 564 565 static void __put_unused_fd(struct files_struct *files, unsigned int fd) 566 { 567 struct fdtable *fdt = files_fdtable(files); 568 __clear_open_fd(fd, fdt); 569 if (fd < files->next_fd) 570 files->next_fd = fd; 571 } 572 573 void put_unused_fd(unsigned int fd) 574 { 575 struct files_struct *files = current->files; 576 spin_lock(&files->file_lock); 577 __put_unused_fd(files, fd); 578 spin_unlock(&files->file_lock); 579 } 580 581 EXPORT_SYMBOL(put_unused_fd); 582 583 /* 584 * Install a file pointer in the fd array. 585 * 586 * The VFS is full of places where we drop the files lock between 587 * setting the open_fds bitmap and installing the file in the file 588 * array. At any such point, we are vulnerable to a dup2() race 589 * installing a file in the array before us. We need to detect this and 590 * fput() the struct file we are about to overwrite in this case. 591 * 592 * It should never happen - if we allow dup2() do it, _really_ bad things 593 * will follow. 594 * 595 * NOTE: __fd_install() variant is really, really low-level; don't 596 * use it unless you are forced to by truly lousy API shoved down 597 * your throat. 'files' *MUST* be either current->files or obtained 598 * by get_files_struct(current) done by whoever had given it to you, 599 * or really bad things will happen. Normally you want to use 600 * fd_install() instead. 601 */ 602 603 void __fd_install(struct files_struct *files, unsigned int fd, 604 struct file *file) 605 { 606 struct fdtable *fdt; 607 608 might_sleep(); 609 rcu_read_lock_sched(); 610 611 while (unlikely(files->resize_in_progress)) { 612 rcu_read_unlock_sched(); 613 wait_event(files->resize_wait, !files->resize_in_progress); 614 rcu_read_lock_sched(); 615 } 616 /* coupled with smp_wmb() in expand_fdtable() */ 617 smp_rmb(); 618 fdt = rcu_dereference_sched(files->fdt); 619 BUG_ON(fdt->fd[fd] != NULL); 620 rcu_assign_pointer(fdt->fd[fd], file); 621 rcu_read_unlock_sched(); 622 } 623 624 void fd_install(unsigned int fd, struct file *file) 625 { 626 __fd_install(current->files, fd, file); 627 } 628 629 EXPORT_SYMBOL(fd_install); 630 631 /* 632 * The same warnings as for __alloc_fd()/__fd_install() apply here... 633 */ 634 int __close_fd(struct files_struct *files, unsigned fd) 635 { 636 struct file *file; 637 struct fdtable *fdt; 638 639 spin_lock(&files->file_lock); 640 fdt = files_fdtable(files); 641 if (fd >= fdt->max_fds) 642 goto out_unlock; 643 file = fdt->fd[fd]; 644 if (!file) 645 goto out_unlock; 646 rcu_assign_pointer(fdt->fd[fd], NULL); 647 __clear_close_on_exec(fd, fdt); 648 __put_unused_fd(files, fd); 649 spin_unlock(&files->file_lock); 650 return filp_close(file, files); 651 652 out_unlock: 653 spin_unlock(&files->file_lock); 654 return -EBADF; 655 } 656 657 void do_close_on_exec(struct files_struct *files) 658 { 659 unsigned i; 660 struct fdtable *fdt; 661 662 /* exec unshares first */ 663 spin_lock(&files->file_lock); 664 for (i = 0; ; i++) { 665 unsigned long set; 666 unsigned fd = i * BITS_PER_LONG; 667 fdt = files_fdtable(files); 668 if (fd >= fdt->max_fds) 669 break; 670 set = fdt->close_on_exec[i]; 671 if (!set) 672 continue; 673 fdt->close_on_exec[i] = 0; 674 for ( ; set ; fd++, set >>= 1) { 675 struct file *file; 676 if (!(set & 1)) 677 continue; 678 file = fdt->fd[fd]; 679 if (!file) 680 continue; 681 rcu_assign_pointer(fdt->fd[fd], NULL); 682 __put_unused_fd(files, fd); 683 spin_unlock(&files->file_lock); 684 filp_close(file, files); 685 cond_resched(); 686 spin_lock(&files->file_lock); 687 } 688 689 } 690 spin_unlock(&files->file_lock); 691 } 692 693 static struct file *__fget(unsigned int fd, fmode_t mask) 694 { 695 struct files_struct *files = current->files; 696 struct file *file; 697 698 rcu_read_lock(); 699 loop: 700 file = fcheck_files(files, fd); 701 if (file) { 702 /* File object ref couldn't be taken. 703 * dup2() atomicity guarantee is the reason 704 * we loop to catch the new file (or NULL pointer) 705 */ 706 if (file->f_mode & mask) 707 file = NULL; 708 else if (!get_file_rcu(file)) 709 goto loop; 710 } 711 rcu_read_unlock(); 712 713 return file; 714 } 715 716 struct file *fget(unsigned int fd) 717 { 718 return __fget(fd, FMODE_PATH); 719 } 720 EXPORT_SYMBOL(fget); 721 722 struct file *fget_raw(unsigned int fd) 723 { 724 return __fget(fd, 0); 725 } 726 EXPORT_SYMBOL(fget_raw); 727 728 /* 729 * Lightweight file lookup - no refcnt increment if fd table isn't shared. 730 * 731 * You can use this instead of fget if you satisfy all of the following 732 * conditions: 733 * 1) You must call fput_light before exiting the syscall and returning control 734 * to userspace (i.e. you cannot remember the returned struct file * after 735 * returning to userspace). 736 * 2) You must not call filp_close on the returned struct file * in between 737 * calls to fget_light and fput_light. 738 * 3) You must not clone the current task in between the calls to fget_light 739 * and fput_light. 740 * 741 * The fput_needed flag returned by fget_light should be passed to the 742 * corresponding fput_light. 743 */ 744 static unsigned long __fget_light(unsigned int fd, fmode_t mask) 745 { 746 struct files_struct *files = current->files; 747 struct file *file; 748 749 if (atomic_read(&files->count) == 1) { 750 file = __fcheck_files(files, fd); 751 if (!file || unlikely(file->f_mode & mask)) 752 return 0; 753 return (unsigned long)file; 754 } else { 755 file = __fget(fd, mask); 756 if (!file) 757 return 0; 758 return FDPUT_FPUT | (unsigned long)file; 759 } 760 } 761 unsigned long __fdget(unsigned int fd) 762 { 763 return __fget_light(fd, FMODE_PATH); 764 } 765 EXPORT_SYMBOL(__fdget); 766 767 unsigned long __fdget_raw(unsigned int fd) 768 { 769 return __fget_light(fd, 0); 770 } 771 772 unsigned long __fdget_pos(unsigned int fd) 773 { 774 unsigned long v = __fdget(fd); 775 struct file *file = (struct file *)(v & ~3); 776 777 if (file && (file->f_mode & FMODE_ATOMIC_POS)) { 778 if (file_count(file) > 1) { 779 v |= FDPUT_POS_UNLOCK; 780 mutex_lock(&file->f_pos_lock); 781 } 782 } 783 return v; 784 } 785 786 /* 787 * We only lock f_pos if we have threads or if the file might be 788 * shared with another process. In both cases we'll have an elevated 789 * file count (done either by fdget() or by fork()). 790 */ 791 792 void set_close_on_exec(unsigned int fd, int flag) 793 { 794 struct files_struct *files = current->files; 795 struct fdtable *fdt; 796 spin_lock(&files->file_lock); 797 fdt = files_fdtable(files); 798 if (flag) 799 __set_close_on_exec(fd, fdt); 800 else 801 __clear_close_on_exec(fd, fdt); 802 spin_unlock(&files->file_lock); 803 } 804 805 bool get_close_on_exec(unsigned int fd) 806 { 807 struct files_struct *files = current->files; 808 struct fdtable *fdt; 809 bool res; 810 rcu_read_lock(); 811 fdt = files_fdtable(files); 812 res = close_on_exec(fd, fdt); 813 rcu_read_unlock(); 814 return res; 815 } 816 817 static int do_dup2(struct files_struct *files, 818 struct file *file, unsigned fd, unsigned flags) 819 __releases(&files->file_lock) 820 { 821 struct file *tofree; 822 struct fdtable *fdt; 823 824 /* 825 * We need to detect attempts to do dup2() over allocated but still 826 * not finished descriptor. NB: OpenBSD avoids that at the price of 827 * extra work in their equivalent of fget() - they insert struct 828 * file immediately after grabbing descriptor, mark it larval if 829 * more work (e.g. actual opening) is needed and make sure that 830 * fget() treats larval files as absent. Potentially interesting, 831 * but while extra work in fget() is trivial, locking implications 832 * and amount of surgery on open()-related paths in VFS are not. 833 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution" 834 * deadlocks in rather amusing ways, AFAICS. All of that is out of 835 * scope of POSIX or SUS, since neither considers shared descriptor 836 * tables and this condition does not arise without those. 837 */ 838 fdt = files_fdtable(files); 839 tofree = fdt->fd[fd]; 840 if (!tofree && fd_is_open(fd, fdt)) 841 goto Ebusy; 842 get_file(file); 843 rcu_assign_pointer(fdt->fd[fd], file); 844 __set_open_fd(fd, fdt); 845 if (flags & O_CLOEXEC) 846 __set_close_on_exec(fd, fdt); 847 else 848 __clear_close_on_exec(fd, fdt); 849 spin_unlock(&files->file_lock); 850 851 if (tofree) 852 filp_close(tofree, files); 853 854 return fd; 855 856 Ebusy: 857 spin_unlock(&files->file_lock); 858 return -EBUSY; 859 } 860 861 int replace_fd(unsigned fd, struct file *file, unsigned flags) 862 { 863 int err; 864 struct files_struct *files = current->files; 865 866 if (!file) 867 return __close_fd(files, fd); 868 869 if (fd >= rlimit(RLIMIT_NOFILE)) 870 return -EBADF; 871 872 spin_lock(&files->file_lock); 873 err = expand_files(files, fd); 874 if (unlikely(err < 0)) 875 goto out_unlock; 876 return do_dup2(files, file, fd, flags); 877 878 out_unlock: 879 spin_unlock(&files->file_lock); 880 return err; 881 } 882 883 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags) 884 { 885 int err = -EBADF; 886 struct file *file; 887 struct files_struct *files = current->files; 888 889 if ((flags & ~O_CLOEXEC) != 0) 890 return -EINVAL; 891 892 if (unlikely(oldfd == newfd)) 893 return -EINVAL; 894 895 if (newfd >= rlimit(RLIMIT_NOFILE)) 896 return -EBADF; 897 898 spin_lock(&files->file_lock); 899 err = expand_files(files, newfd); 900 file = fcheck(oldfd); 901 if (unlikely(!file)) 902 goto Ebadf; 903 if (unlikely(err < 0)) { 904 if (err == -EMFILE) 905 goto Ebadf; 906 goto out_unlock; 907 } 908 return do_dup2(files, file, newfd, flags); 909 910 Ebadf: 911 err = -EBADF; 912 out_unlock: 913 spin_unlock(&files->file_lock); 914 return err; 915 } 916 917 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd) 918 { 919 if (unlikely(newfd == oldfd)) { /* corner case */ 920 struct files_struct *files = current->files; 921 int retval = oldfd; 922 923 rcu_read_lock(); 924 if (!fcheck_files(files, oldfd)) 925 retval = -EBADF; 926 rcu_read_unlock(); 927 return retval; 928 } 929 return sys_dup3(oldfd, newfd, 0); 930 } 931 932 SYSCALL_DEFINE1(dup, unsigned int, fildes) 933 { 934 int ret = -EBADF; 935 struct file *file = fget_raw(fildes); 936 937 if (file) { 938 ret = get_unused_fd_flags(0); 939 if (ret >= 0) 940 fd_install(ret, file); 941 else 942 fput(file); 943 } 944 return ret; 945 } 946 947 int f_dupfd(unsigned int from, struct file *file, unsigned flags) 948 { 949 int err; 950 if (from >= rlimit(RLIMIT_NOFILE)) 951 return -EINVAL; 952 err = alloc_fd(from, flags); 953 if (err >= 0) { 954 get_file(file); 955 fd_install(err, file); 956 } 957 return err; 958 } 959 960 int iterate_fd(struct files_struct *files, unsigned n, 961 int (*f)(const void *, struct file *, unsigned), 962 const void *p) 963 { 964 struct fdtable *fdt; 965 int res = 0; 966 if (!files) 967 return 0; 968 spin_lock(&files->file_lock); 969 for (fdt = files_fdtable(files); n < fdt->max_fds; n++) { 970 struct file *file; 971 file = rcu_dereference_check_fdtable(files, fdt->fd[n]); 972 if (!file) 973 continue; 974 res = f(p, file, n); 975 if (res) 976 break; 977 } 978 spin_unlock(&files->file_lock); 979 return res; 980 } 981 EXPORT_SYMBOL(iterate_fd); 982