xref: /openbmc/linux/fs/file.c (revision 8b8f095b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/file.c
4  *
5  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
6  *
7  *  Manage the dynamic fd arrays in the process files_struct.
8  */
9 
10 #include <linux/syscalls.h>
11 #include <linux/export.h>
12 #include <linux/fs.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/file.h>
18 #include <linux/fdtable.h>
19 #include <linux/bitops.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/close_range.h>
23 #include <net/sock.h>
24 #include <linux/io_uring.h>
25 
26 unsigned int sysctl_nr_open __read_mostly = 1024*1024;
27 unsigned int sysctl_nr_open_min = BITS_PER_LONG;
28 /* our min() is unusable in constant expressions ;-/ */
29 #define __const_min(x, y) ((x) < (y) ? (x) : (y))
30 unsigned int sysctl_nr_open_max =
31 	__const_min(INT_MAX, ~(size_t)0/sizeof(void *)) & -BITS_PER_LONG;
32 
33 static void __free_fdtable(struct fdtable *fdt)
34 {
35 	kvfree(fdt->fd);
36 	kvfree(fdt->open_fds);
37 	kfree(fdt);
38 }
39 
40 static void free_fdtable_rcu(struct rcu_head *rcu)
41 {
42 	__free_fdtable(container_of(rcu, struct fdtable, rcu));
43 }
44 
45 #define BITBIT_NR(nr)	BITS_TO_LONGS(BITS_TO_LONGS(nr))
46 #define BITBIT_SIZE(nr)	(BITBIT_NR(nr) * sizeof(long))
47 
48 /*
49  * Copy 'count' fd bits from the old table to the new table and clear the extra
50  * space if any.  This does not copy the file pointers.  Called with the files
51  * spinlock held for write.
52  */
53 static void copy_fd_bitmaps(struct fdtable *nfdt, struct fdtable *ofdt,
54 			    unsigned int count)
55 {
56 	unsigned int cpy, set;
57 
58 	cpy = count / BITS_PER_BYTE;
59 	set = (nfdt->max_fds - count) / BITS_PER_BYTE;
60 	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
61 	memset((char *)nfdt->open_fds + cpy, 0, set);
62 	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
63 	memset((char *)nfdt->close_on_exec + cpy, 0, set);
64 
65 	cpy = BITBIT_SIZE(count);
66 	set = BITBIT_SIZE(nfdt->max_fds) - cpy;
67 	memcpy(nfdt->full_fds_bits, ofdt->full_fds_bits, cpy);
68 	memset((char *)nfdt->full_fds_bits + cpy, 0, set);
69 }
70 
71 /*
72  * Copy all file descriptors from the old table to the new, expanded table and
73  * clear the extra space.  Called with the files spinlock held for write.
74  */
75 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
76 {
77 	size_t cpy, set;
78 
79 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
80 
81 	cpy = ofdt->max_fds * sizeof(struct file *);
82 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
83 	memcpy(nfdt->fd, ofdt->fd, cpy);
84 	memset((char *)nfdt->fd + cpy, 0, set);
85 
86 	copy_fd_bitmaps(nfdt, ofdt, ofdt->max_fds);
87 }
88 
89 static struct fdtable * alloc_fdtable(unsigned int nr)
90 {
91 	struct fdtable *fdt;
92 	void *data;
93 
94 	/*
95 	 * Figure out how many fds we actually want to support in this fdtable.
96 	 * Allocation steps are keyed to the size of the fdarray, since it
97 	 * grows far faster than any of the other dynamic data. We try to fit
98 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
99 	 * and growing in powers of two from there on.
100 	 */
101 	nr /= (1024 / sizeof(struct file *));
102 	nr = roundup_pow_of_two(nr + 1);
103 	nr *= (1024 / sizeof(struct file *));
104 	/*
105 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
106 	 * had been set lower between the check in expand_files() and here.  Deal
107 	 * with that in caller, it's cheaper that way.
108 	 *
109 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
110 	 * bitmaps handling below becomes unpleasant, to put it mildly...
111 	 */
112 	if (unlikely(nr > sysctl_nr_open))
113 		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
114 
115 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL_ACCOUNT);
116 	if (!fdt)
117 		goto out;
118 	fdt->max_fds = nr;
119 	data = kvmalloc_array(nr, sizeof(struct file *), GFP_KERNEL_ACCOUNT);
120 	if (!data)
121 		goto out_fdt;
122 	fdt->fd = data;
123 
124 	data = kvmalloc(max_t(size_t,
125 				 2 * nr / BITS_PER_BYTE + BITBIT_SIZE(nr), L1_CACHE_BYTES),
126 				 GFP_KERNEL_ACCOUNT);
127 	if (!data)
128 		goto out_arr;
129 	fdt->open_fds = data;
130 	data += nr / BITS_PER_BYTE;
131 	fdt->close_on_exec = data;
132 	data += nr / BITS_PER_BYTE;
133 	fdt->full_fds_bits = data;
134 
135 	return fdt;
136 
137 out_arr:
138 	kvfree(fdt->fd);
139 out_fdt:
140 	kfree(fdt);
141 out:
142 	return NULL;
143 }
144 
145 /*
146  * Expand the file descriptor table.
147  * This function will allocate a new fdtable and both fd array and fdset, of
148  * the given size.
149  * Return <0 error code on error; 1 on successful completion.
150  * The files->file_lock should be held on entry, and will be held on exit.
151  */
152 static int expand_fdtable(struct files_struct *files, unsigned int nr)
153 	__releases(files->file_lock)
154 	__acquires(files->file_lock)
155 {
156 	struct fdtable *new_fdt, *cur_fdt;
157 
158 	spin_unlock(&files->file_lock);
159 	new_fdt = alloc_fdtable(nr);
160 
161 	/* make sure all fd_install() have seen resize_in_progress
162 	 * or have finished their rcu_read_lock_sched() section.
163 	 */
164 	if (atomic_read(&files->count) > 1)
165 		synchronize_rcu();
166 
167 	spin_lock(&files->file_lock);
168 	if (!new_fdt)
169 		return -ENOMEM;
170 	/*
171 	 * extremely unlikely race - sysctl_nr_open decreased between the check in
172 	 * caller and alloc_fdtable().  Cheaper to catch it here...
173 	 */
174 	if (unlikely(new_fdt->max_fds <= nr)) {
175 		__free_fdtable(new_fdt);
176 		return -EMFILE;
177 	}
178 	cur_fdt = files_fdtable(files);
179 	BUG_ON(nr < cur_fdt->max_fds);
180 	copy_fdtable(new_fdt, cur_fdt);
181 	rcu_assign_pointer(files->fdt, new_fdt);
182 	if (cur_fdt != &files->fdtab)
183 		call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
184 	/* coupled with smp_rmb() in fd_install() */
185 	smp_wmb();
186 	return 1;
187 }
188 
189 /*
190  * Expand files.
191  * This function will expand the file structures, if the requested size exceeds
192  * the current capacity and there is room for expansion.
193  * Return <0 error code on error; 0 when nothing done; 1 when files were
194  * expanded and execution may have blocked.
195  * The files->file_lock should be held on entry, and will be held on exit.
196  */
197 static int expand_files(struct files_struct *files, unsigned int nr)
198 	__releases(files->file_lock)
199 	__acquires(files->file_lock)
200 {
201 	struct fdtable *fdt;
202 	int expanded = 0;
203 
204 repeat:
205 	fdt = files_fdtable(files);
206 
207 	/* Do we need to expand? */
208 	if (nr < fdt->max_fds)
209 		return expanded;
210 
211 	/* Can we expand? */
212 	if (nr >= sysctl_nr_open)
213 		return -EMFILE;
214 
215 	if (unlikely(files->resize_in_progress)) {
216 		spin_unlock(&files->file_lock);
217 		expanded = 1;
218 		wait_event(files->resize_wait, !files->resize_in_progress);
219 		spin_lock(&files->file_lock);
220 		goto repeat;
221 	}
222 
223 	/* All good, so we try */
224 	files->resize_in_progress = true;
225 	expanded = expand_fdtable(files, nr);
226 	files->resize_in_progress = false;
227 
228 	wake_up_all(&files->resize_wait);
229 	return expanded;
230 }
231 
232 static inline void __set_close_on_exec(unsigned int fd, struct fdtable *fdt)
233 {
234 	__set_bit(fd, fdt->close_on_exec);
235 }
236 
237 static inline void __clear_close_on_exec(unsigned int fd, struct fdtable *fdt)
238 {
239 	if (test_bit(fd, fdt->close_on_exec))
240 		__clear_bit(fd, fdt->close_on_exec);
241 }
242 
243 static inline void __set_open_fd(unsigned int fd, struct fdtable *fdt)
244 {
245 	__set_bit(fd, fdt->open_fds);
246 	fd /= BITS_PER_LONG;
247 	if (!~fdt->open_fds[fd])
248 		__set_bit(fd, fdt->full_fds_bits);
249 }
250 
251 static inline void __clear_open_fd(unsigned int fd, struct fdtable *fdt)
252 {
253 	__clear_bit(fd, fdt->open_fds);
254 	__clear_bit(fd / BITS_PER_LONG, fdt->full_fds_bits);
255 }
256 
257 static unsigned int count_open_files(struct fdtable *fdt)
258 {
259 	unsigned int size = fdt->max_fds;
260 	unsigned int i;
261 
262 	/* Find the last open fd */
263 	for (i = size / BITS_PER_LONG; i > 0; ) {
264 		if (fdt->open_fds[--i])
265 			break;
266 	}
267 	i = (i + 1) * BITS_PER_LONG;
268 	return i;
269 }
270 
271 static unsigned int sane_fdtable_size(struct fdtable *fdt, unsigned int max_fds)
272 {
273 	unsigned int count;
274 
275 	count = count_open_files(fdt);
276 	if (max_fds < NR_OPEN_DEFAULT)
277 		max_fds = NR_OPEN_DEFAULT;
278 	return min(count, max_fds);
279 }
280 
281 /*
282  * Allocate a new files structure and copy contents from the
283  * passed in files structure.
284  * errorp will be valid only when the returned files_struct is NULL.
285  */
286 struct files_struct *dup_fd(struct files_struct *oldf, unsigned int max_fds, int *errorp)
287 {
288 	struct files_struct *newf;
289 	struct file **old_fds, **new_fds;
290 	unsigned int open_files, i;
291 	struct fdtable *old_fdt, *new_fdt;
292 
293 	*errorp = -ENOMEM;
294 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
295 	if (!newf)
296 		goto out;
297 
298 	atomic_set(&newf->count, 1);
299 
300 	spin_lock_init(&newf->file_lock);
301 	newf->resize_in_progress = false;
302 	init_waitqueue_head(&newf->resize_wait);
303 	newf->next_fd = 0;
304 	new_fdt = &newf->fdtab;
305 	new_fdt->max_fds = NR_OPEN_DEFAULT;
306 	new_fdt->close_on_exec = newf->close_on_exec_init;
307 	new_fdt->open_fds = newf->open_fds_init;
308 	new_fdt->full_fds_bits = newf->full_fds_bits_init;
309 	new_fdt->fd = &newf->fd_array[0];
310 
311 	spin_lock(&oldf->file_lock);
312 	old_fdt = files_fdtable(oldf);
313 	open_files = sane_fdtable_size(old_fdt, max_fds);
314 
315 	/*
316 	 * Check whether we need to allocate a larger fd array and fd set.
317 	 */
318 	while (unlikely(open_files > new_fdt->max_fds)) {
319 		spin_unlock(&oldf->file_lock);
320 
321 		if (new_fdt != &newf->fdtab)
322 			__free_fdtable(new_fdt);
323 
324 		new_fdt = alloc_fdtable(open_files - 1);
325 		if (!new_fdt) {
326 			*errorp = -ENOMEM;
327 			goto out_release;
328 		}
329 
330 		/* beyond sysctl_nr_open; nothing to do */
331 		if (unlikely(new_fdt->max_fds < open_files)) {
332 			__free_fdtable(new_fdt);
333 			*errorp = -EMFILE;
334 			goto out_release;
335 		}
336 
337 		/*
338 		 * Reacquire the oldf lock and a pointer to its fd table
339 		 * who knows it may have a new bigger fd table. We need
340 		 * the latest pointer.
341 		 */
342 		spin_lock(&oldf->file_lock);
343 		old_fdt = files_fdtable(oldf);
344 		open_files = sane_fdtable_size(old_fdt, max_fds);
345 	}
346 
347 	copy_fd_bitmaps(new_fdt, old_fdt, open_files);
348 
349 	old_fds = old_fdt->fd;
350 	new_fds = new_fdt->fd;
351 
352 	for (i = open_files; i != 0; i--) {
353 		struct file *f = *old_fds++;
354 		if (f) {
355 			get_file(f);
356 		} else {
357 			/*
358 			 * The fd may be claimed in the fd bitmap but not yet
359 			 * instantiated in the files array if a sibling thread
360 			 * is partway through open().  So make sure that this
361 			 * fd is available to the new process.
362 			 */
363 			__clear_open_fd(open_files - i, new_fdt);
364 		}
365 		rcu_assign_pointer(*new_fds++, f);
366 	}
367 	spin_unlock(&oldf->file_lock);
368 
369 	/* clear the remainder */
370 	memset(new_fds, 0, (new_fdt->max_fds - open_files) * sizeof(struct file *));
371 
372 	rcu_assign_pointer(newf->fdt, new_fdt);
373 
374 	return newf;
375 
376 out_release:
377 	kmem_cache_free(files_cachep, newf);
378 out:
379 	return NULL;
380 }
381 
382 static struct fdtable *close_files(struct files_struct * files)
383 {
384 	/*
385 	 * It is safe to dereference the fd table without RCU or
386 	 * ->file_lock because this is the last reference to the
387 	 * files structure.
388 	 */
389 	struct fdtable *fdt = rcu_dereference_raw(files->fdt);
390 	unsigned int i, j = 0;
391 
392 	for (;;) {
393 		unsigned long set;
394 		i = j * BITS_PER_LONG;
395 		if (i >= fdt->max_fds)
396 			break;
397 		set = fdt->open_fds[j++];
398 		while (set) {
399 			if (set & 1) {
400 				struct file * file = xchg(&fdt->fd[i], NULL);
401 				if (file) {
402 					filp_close(file, files);
403 					cond_resched();
404 				}
405 			}
406 			i++;
407 			set >>= 1;
408 		}
409 	}
410 
411 	return fdt;
412 }
413 
414 void put_files_struct(struct files_struct *files)
415 {
416 	if (atomic_dec_and_test(&files->count)) {
417 		struct fdtable *fdt = close_files(files);
418 
419 		/* free the arrays if they are not embedded */
420 		if (fdt != &files->fdtab)
421 			__free_fdtable(fdt);
422 		kmem_cache_free(files_cachep, files);
423 	}
424 }
425 
426 void exit_files(struct task_struct *tsk)
427 {
428 	struct files_struct * files = tsk->files;
429 
430 	if (files) {
431 		io_uring_files_cancel(files);
432 		task_lock(tsk);
433 		tsk->files = NULL;
434 		task_unlock(tsk);
435 		put_files_struct(files);
436 	}
437 }
438 
439 struct files_struct init_files = {
440 	.count		= ATOMIC_INIT(1),
441 	.fdt		= &init_files.fdtab,
442 	.fdtab		= {
443 		.max_fds	= NR_OPEN_DEFAULT,
444 		.fd		= &init_files.fd_array[0],
445 		.close_on_exec	= init_files.close_on_exec_init,
446 		.open_fds	= init_files.open_fds_init,
447 		.full_fds_bits	= init_files.full_fds_bits_init,
448 	},
449 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_files.file_lock),
450 	.resize_wait	= __WAIT_QUEUE_HEAD_INITIALIZER(init_files.resize_wait),
451 };
452 
453 static unsigned int find_next_fd(struct fdtable *fdt, unsigned int start)
454 {
455 	unsigned int maxfd = fdt->max_fds;
456 	unsigned int maxbit = maxfd / BITS_PER_LONG;
457 	unsigned int bitbit = start / BITS_PER_LONG;
458 
459 	bitbit = find_next_zero_bit(fdt->full_fds_bits, maxbit, bitbit) * BITS_PER_LONG;
460 	if (bitbit > maxfd)
461 		return maxfd;
462 	if (bitbit > start)
463 		start = bitbit;
464 	return find_next_zero_bit(fdt->open_fds, maxfd, start);
465 }
466 
467 /*
468  * allocate a file descriptor, mark it busy.
469  */
470 static int alloc_fd(unsigned start, unsigned end, unsigned flags)
471 {
472 	struct files_struct *files = current->files;
473 	unsigned int fd;
474 	int error;
475 	struct fdtable *fdt;
476 
477 	spin_lock(&files->file_lock);
478 repeat:
479 	fdt = files_fdtable(files);
480 	fd = start;
481 	if (fd < files->next_fd)
482 		fd = files->next_fd;
483 
484 	if (fd < fdt->max_fds)
485 		fd = find_next_fd(fdt, fd);
486 
487 	/*
488 	 * N.B. For clone tasks sharing a files structure, this test
489 	 * will limit the total number of files that can be opened.
490 	 */
491 	error = -EMFILE;
492 	if (fd >= end)
493 		goto out;
494 
495 	error = expand_files(files, fd);
496 	if (error < 0)
497 		goto out;
498 
499 	/*
500 	 * If we needed to expand the fs array we
501 	 * might have blocked - try again.
502 	 */
503 	if (error)
504 		goto repeat;
505 
506 	if (start <= files->next_fd)
507 		files->next_fd = fd + 1;
508 
509 	__set_open_fd(fd, fdt);
510 	if (flags & O_CLOEXEC)
511 		__set_close_on_exec(fd, fdt);
512 	else
513 		__clear_close_on_exec(fd, fdt);
514 	error = fd;
515 #if 1
516 	/* Sanity check */
517 	if (rcu_access_pointer(fdt->fd[fd]) != NULL) {
518 		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
519 		rcu_assign_pointer(fdt->fd[fd], NULL);
520 	}
521 #endif
522 
523 out:
524 	spin_unlock(&files->file_lock);
525 	return error;
526 }
527 
528 int __get_unused_fd_flags(unsigned flags, unsigned long nofile)
529 {
530 	return alloc_fd(0, nofile, flags);
531 }
532 
533 int get_unused_fd_flags(unsigned flags)
534 {
535 	return __get_unused_fd_flags(flags, rlimit(RLIMIT_NOFILE));
536 }
537 EXPORT_SYMBOL(get_unused_fd_flags);
538 
539 static void __put_unused_fd(struct files_struct *files, unsigned int fd)
540 {
541 	struct fdtable *fdt = files_fdtable(files);
542 	__clear_open_fd(fd, fdt);
543 	if (fd < files->next_fd)
544 		files->next_fd = fd;
545 }
546 
547 void put_unused_fd(unsigned int fd)
548 {
549 	struct files_struct *files = current->files;
550 	spin_lock(&files->file_lock);
551 	__put_unused_fd(files, fd);
552 	spin_unlock(&files->file_lock);
553 }
554 
555 EXPORT_SYMBOL(put_unused_fd);
556 
557 /*
558  * Install a file pointer in the fd array.
559  *
560  * The VFS is full of places where we drop the files lock between
561  * setting the open_fds bitmap and installing the file in the file
562  * array.  At any such point, we are vulnerable to a dup2() race
563  * installing a file in the array before us.  We need to detect this and
564  * fput() the struct file we are about to overwrite in this case.
565  *
566  * It should never happen - if we allow dup2() do it, _really_ bad things
567  * will follow.
568  *
569  * This consumes the "file" refcount, so callers should treat it
570  * as if they had called fput(file).
571  */
572 
573 void fd_install(unsigned int fd, struct file *file)
574 {
575 	struct files_struct *files = current->files;
576 	struct fdtable *fdt;
577 
578 	rcu_read_lock_sched();
579 
580 	if (unlikely(files->resize_in_progress)) {
581 		rcu_read_unlock_sched();
582 		spin_lock(&files->file_lock);
583 		fdt = files_fdtable(files);
584 		BUG_ON(fdt->fd[fd] != NULL);
585 		rcu_assign_pointer(fdt->fd[fd], file);
586 		spin_unlock(&files->file_lock);
587 		return;
588 	}
589 	/* coupled with smp_wmb() in expand_fdtable() */
590 	smp_rmb();
591 	fdt = rcu_dereference_sched(files->fdt);
592 	BUG_ON(fdt->fd[fd] != NULL);
593 	rcu_assign_pointer(fdt->fd[fd], file);
594 	rcu_read_unlock_sched();
595 }
596 
597 EXPORT_SYMBOL(fd_install);
598 
599 static struct file *pick_file(struct files_struct *files, unsigned fd)
600 {
601 	struct file *file = NULL;
602 	struct fdtable *fdt;
603 
604 	spin_lock(&files->file_lock);
605 	fdt = files_fdtable(files);
606 	if (fd >= fdt->max_fds)
607 		goto out_unlock;
608 	file = fdt->fd[fd];
609 	if (!file)
610 		goto out_unlock;
611 	rcu_assign_pointer(fdt->fd[fd], NULL);
612 	__put_unused_fd(files, fd);
613 
614 out_unlock:
615 	spin_unlock(&files->file_lock);
616 	return file;
617 }
618 
619 int close_fd(unsigned fd)
620 {
621 	struct files_struct *files = current->files;
622 	struct file *file;
623 
624 	file = pick_file(files, fd);
625 	if (!file)
626 		return -EBADF;
627 
628 	return filp_close(file, files);
629 }
630 EXPORT_SYMBOL(close_fd); /* for ksys_close() */
631 
632 static inline void __range_cloexec(struct files_struct *cur_fds,
633 				   unsigned int fd, unsigned int max_fd)
634 {
635 	struct fdtable *fdt;
636 
637 	if (fd > max_fd)
638 		return;
639 
640 	spin_lock(&cur_fds->file_lock);
641 	fdt = files_fdtable(cur_fds);
642 	bitmap_set(fdt->close_on_exec, fd, max_fd - fd + 1);
643 	spin_unlock(&cur_fds->file_lock);
644 }
645 
646 static inline void __range_close(struct files_struct *cur_fds, unsigned int fd,
647 				 unsigned int max_fd)
648 {
649 	while (fd <= max_fd) {
650 		struct file *file;
651 
652 		file = pick_file(cur_fds, fd++);
653 		if (!file)
654 			continue;
655 
656 		filp_close(file, cur_fds);
657 		cond_resched();
658 	}
659 }
660 
661 /**
662  * __close_range() - Close all file descriptors in a given range.
663  *
664  * @fd:     starting file descriptor to close
665  * @max_fd: last file descriptor to close
666  *
667  * This closes a range of file descriptors. All file descriptors
668  * from @fd up to and including @max_fd are closed.
669  */
670 int __close_range(unsigned fd, unsigned max_fd, unsigned int flags)
671 {
672 	unsigned int cur_max;
673 	struct task_struct *me = current;
674 	struct files_struct *cur_fds = me->files, *fds = NULL;
675 
676 	if (flags & ~(CLOSE_RANGE_UNSHARE | CLOSE_RANGE_CLOEXEC))
677 		return -EINVAL;
678 
679 	if (fd > max_fd)
680 		return -EINVAL;
681 
682 	rcu_read_lock();
683 	cur_max = files_fdtable(cur_fds)->max_fds;
684 	rcu_read_unlock();
685 
686 	/* cap to last valid index into fdtable */
687 	cur_max--;
688 
689 	if (flags & CLOSE_RANGE_UNSHARE) {
690 		int ret;
691 		unsigned int max_unshare_fds = NR_OPEN_MAX;
692 
693 		/*
694 		 * If the requested range is greater than the current maximum,
695 		 * we're closing everything so only copy all file descriptors
696 		 * beneath the lowest file descriptor.
697 		 * If the caller requested all fds to be made cloexec copy all
698 		 * of the file descriptors since they still want to use them.
699 		 */
700 		if (!(flags & CLOSE_RANGE_CLOEXEC) && (max_fd >= cur_max))
701 			max_unshare_fds = fd;
702 
703 		ret = unshare_fd(CLONE_FILES, max_unshare_fds, &fds);
704 		if (ret)
705 			return ret;
706 
707 		/*
708 		 * We used to share our file descriptor table, and have now
709 		 * created a private one, make sure we're using it below.
710 		 */
711 		if (fds)
712 			swap(cur_fds, fds);
713 	}
714 
715 	max_fd = min(max_fd, cur_max);
716 
717 	if (flags & CLOSE_RANGE_CLOEXEC)
718 		__range_cloexec(cur_fds, fd, max_fd);
719 	else
720 		__range_close(cur_fds, fd, max_fd);
721 
722 	if (fds) {
723 		/*
724 		 * We're done closing the files we were supposed to. Time to install
725 		 * the new file descriptor table and drop the old one.
726 		 */
727 		task_lock(me);
728 		me->files = cur_fds;
729 		task_unlock(me);
730 		put_files_struct(fds);
731 	}
732 
733 	return 0;
734 }
735 
736 /*
737  * variant of close_fd that gets a ref on the file for later fput.
738  * The caller must ensure that filp_close() called on the file, and then
739  * an fput().
740  */
741 int close_fd_get_file(unsigned int fd, struct file **res)
742 {
743 	struct files_struct *files = current->files;
744 	struct file *file;
745 	struct fdtable *fdt;
746 
747 	spin_lock(&files->file_lock);
748 	fdt = files_fdtable(files);
749 	if (fd >= fdt->max_fds)
750 		goto out_unlock;
751 	file = fdt->fd[fd];
752 	if (!file)
753 		goto out_unlock;
754 	rcu_assign_pointer(fdt->fd[fd], NULL);
755 	__put_unused_fd(files, fd);
756 	spin_unlock(&files->file_lock);
757 	get_file(file);
758 	*res = file;
759 	return 0;
760 
761 out_unlock:
762 	spin_unlock(&files->file_lock);
763 	*res = NULL;
764 	return -ENOENT;
765 }
766 
767 void do_close_on_exec(struct files_struct *files)
768 {
769 	unsigned i;
770 	struct fdtable *fdt;
771 
772 	/* exec unshares first */
773 	spin_lock(&files->file_lock);
774 	for (i = 0; ; i++) {
775 		unsigned long set;
776 		unsigned fd = i * BITS_PER_LONG;
777 		fdt = files_fdtable(files);
778 		if (fd >= fdt->max_fds)
779 			break;
780 		set = fdt->close_on_exec[i];
781 		if (!set)
782 			continue;
783 		fdt->close_on_exec[i] = 0;
784 		for ( ; set ; fd++, set >>= 1) {
785 			struct file *file;
786 			if (!(set & 1))
787 				continue;
788 			file = fdt->fd[fd];
789 			if (!file)
790 				continue;
791 			rcu_assign_pointer(fdt->fd[fd], NULL);
792 			__put_unused_fd(files, fd);
793 			spin_unlock(&files->file_lock);
794 			filp_close(file, files);
795 			cond_resched();
796 			spin_lock(&files->file_lock);
797 		}
798 
799 	}
800 	spin_unlock(&files->file_lock);
801 }
802 
803 static struct file *__fget_files(struct files_struct *files, unsigned int fd,
804 				 fmode_t mask, unsigned int refs)
805 {
806 	struct file *file;
807 
808 	rcu_read_lock();
809 loop:
810 	file = files_lookup_fd_rcu(files, fd);
811 	if (file) {
812 		/* File object ref couldn't be taken.
813 		 * dup2() atomicity guarantee is the reason
814 		 * we loop to catch the new file (or NULL pointer)
815 		 */
816 		if (file->f_mode & mask)
817 			file = NULL;
818 		else if (!get_file_rcu_many(file, refs))
819 			goto loop;
820 	}
821 	rcu_read_unlock();
822 
823 	return file;
824 }
825 
826 static inline struct file *__fget(unsigned int fd, fmode_t mask,
827 				  unsigned int refs)
828 {
829 	return __fget_files(current->files, fd, mask, refs);
830 }
831 
832 struct file *fget_many(unsigned int fd, unsigned int refs)
833 {
834 	return __fget(fd, FMODE_PATH, refs);
835 }
836 
837 struct file *fget(unsigned int fd)
838 {
839 	return __fget(fd, FMODE_PATH, 1);
840 }
841 EXPORT_SYMBOL(fget);
842 
843 struct file *fget_raw(unsigned int fd)
844 {
845 	return __fget(fd, 0, 1);
846 }
847 EXPORT_SYMBOL(fget_raw);
848 
849 struct file *fget_task(struct task_struct *task, unsigned int fd)
850 {
851 	struct file *file = NULL;
852 
853 	task_lock(task);
854 	if (task->files)
855 		file = __fget_files(task->files, fd, 0, 1);
856 	task_unlock(task);
857 
858 	return file;
859 }
860 
861 struct file *task_lookup_fd_rcu(struct task_struct *task, unsigned int fd)
862 {
863 	/* Must be called with rcu_read_lock held */
864 	struct files_struct *files;
865 	struct file *file = NULL;
866 
867 	task_lock(task);
868 	files = task->files;
869 	if (files)
870 		file = files_lookup_fd_rcu(files, fd);
871 	task_unlock(task);
872 
873 	return file;
874 }
875 
876 struct file *task_lookup_next_fd_rcu(struct task_struct *task, unsigned int *ret_fd)
877 {
878 	/* Must be called with rcu_read_lock held */
879 	struct files_struct *files;
880 	unsigned int fd = *ret_fd;
881 	struct file *file = NULL;
882 
883 	task_lock(task);
884 	files = task->files;
885 	if (files) {
886 		for (; fd < files_fdtable(files)->max_fds; fd++) {
887 			file = files_lookup_fd_rcu(files, fd);
888 			if (file)
889 				break;
890 		}
891 	}
892 	task_unlock(task);
893 	*ret_fd = fd;
894 	return file;
895 }
896 
897 /*
898  * Lightweight file lookup - no refcnt increment if fd table isn't shared.
899  *
900  * You can use this instead of fget if you satisfy all of the following
901  * conditions:
902  * 1) You must call fput_light before exiting the syscall and returning control
903  *    to userspace (i.e. you cannot remember the returned struct file * after
904  *    returning to userspace).
905  * 2) You must not call filp_close on the returned struct file * in between
906  *    calls to fget_light and fput_light.
907  * 3) You must not clone the current task in between the calls to fget_light
908  *    and fput_light.
909  *
910  * The fput_needed flag returned by fget_light should be passed to the
911  * corresponding fput_light.
912  */
913 static unsigned long __fget_light(unsigned int fd, fmode_t mask)
914 {
915 	struct files_struct *files = current->files;
916 	struct file *file;
917 
918 	if (atomic_read(&files->count) == 1) {
919 		file = files_lookup_fd_raw(files, fd);
920 		if (!file || unlikely(file->f_mode & mask))
921 			return 0;
922 		return (unsigned long)file;
923 	} else {
924 		file = __fget(fd, mask, 1);
925 		if (!file)
926 			return 0;
927 		return FDPUT_FPUT | (unsigned long)file;
928 	}
929 }
930 unsigned long __fdget(unsigned int fd)
931 {
932 	return __fget_light(fd, FMODE_PATH);
933 }
934 EXPORT_SYMBOL(__fdget);
935 
936 unsigned long __fdget_raw(unsigned int fd)
937 {
938 	return __fget_light(fd, 0);
939 }
940 
941 unsigned long __fdget_pos(unsigned int fd)
942 {
943 	unsigned long v = __fdget(fd);
944 	struct file *file = (struct file *)(v & ~3);
945 
946 	if (file && (file->f_mode & FMODE_ATOMIC_POS)) {
947 		if (file_count(file) > 1) {
948 			v |= FDPUT_POS_UNLOCK;
949 			mutex_lock(&file->f_pos_lock);
950 		}
951 	}
952 	return v;
953 }
954 
955 void __f_unlock_pos(struct file *f)
956 {
957 	mutex_unlock(&f->f_pos_lock);
958 }
959 
960 /*
961  * We only lock f_pos if we have threads or if the file might be
962  * shared with another process. In both cases we'll have an elevated
963  * file count (done either by fdget() or by fork()).
964  */
965 
966 void set_close_on_exec(unsigned int fd, int flag)
967 {
968 	struct files_struct *files = current->files;
969 	struct fdtable *fdt;
970 	spin_lock(&files->file_lock);
971 	fdt = files_fdtable(files);
972 	if (flag)
973 		__set_close_on_exec(fd, fdt);
974 	else
975 		__clear_close_on_exec(fd, fdt);
976 	spin_unlock(&files->file_lock);
977 }
978 
979 bool get_close_on_exec(unsigned int fd)
980 {
981 	struct files_struct *files = current->files;
982 	struct fdtable *fdt;
983 	bool res;
984 	rcu_read_lock();
985 	fdt = files_fdtable(files);
986 	res = close_on_exec(fd, fdt);
987 	rcu_read_unlock();
988 	return res;
989 }
990 
991 static int do_dup2(struct files_struct *files,
992 	struct file *file, unsigned fd, unsigned flags)
993 __releases(&files->file_lock)
994 {
995 	struct file *tofree;
996 	struct fdtable *fdt;
997 
998 	/*
999 	 * We need to detect attempts to do dup2() over allocated but still
1000 	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
1001 	 * extra work in their equivalent of fget() - they insert struct
1002 	 * file immediately after grabbing descriptor, mark it larval if
1003 	 * more work (e.g. actual opening) is needed and make sure that
1004 	 * fget() treats larval files as absent.  Potentially interesting,
1005 	 * but while extra work in fget() is trivial, locking implications
1006 	 * and amount of surgery on open()-related paths in VFS are not.
1007 	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
1008 	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
1009 	 * scope of POSIX or SUS, since neither considers shared descriptor
1010 	 * tables and this condition does not arise without those.
1011 	 */
1012 	fdt = files_fdtable(files);
1013 	tofree = fdt->fd[fd];
1014 	if (!tofree && fd_is_open(fd, fdt))
1015 		goto Ebusy;
1016 	get_file(file);
1017 	rcu_assign_pointer(fdt->fd[fd], file);
1018 	__set_open_fd(fd, fdt);
1019 	if (flags & O_CLOEXEC)
1020 		__set_close_on_exec(fd, fdt);
1021 	else
1022 		__clear_close_on_exec(fd, fdt);
1023 	spin_unlock(&files->file_lock);
1024 
1025 	if (tofree)
1026 		filp_close(tofree, files);
1027 
1028 	return fd;
1029 
1030 Ebusy:
1031 	spin_unlock(&files->file_lock);
1032 	return -EBUSY;
1033 }
1034 
1035 int replace_fd(unsigned fd, struct file *file, unsigned flags)
1036 {
1037 	int err;
1038 	struct files_struct *files = current->files;
1039 
1040 	if (!file)
1041 		return close_fd(fd);
1042 
1043 	if (fd >= rlimit(RLIMIT_NOFILE))
1044 		return -EBADF;
1045 
1046 	spin_lock(&files->file_lock);
1047 	err = expand_files(files, fd);
1048 	if (unlikely(err < 0))
1049 		goto out_unlock;
1050 	return do_dup2(files, file, fd, flags);
1051 
1052 out_unlock:
1053 	spin_unlock(&files->file_lock);
1054 	return err;
1055 }
1056 
1057 /**
1058  * __receive_fd() - Install received file into file descriptor table
1059  *
1060  * @fd: fd to install into (if negative, a new fd will be allocated)
1061  * @file: struct file that was received from another process
1062  * @ufd: __user pointer to write new fd number to
1063  * @o_flags: the O_* flags to apply to the new fd entry
1064  *
1065  * Installs a received file into the file descriptor table, with appropriate
1066  * checks and count updates. Optionally writes the fd number to userspace, if
1067  * @ufd is non-NULL.
1068  *
1069  * This helper handles its own reference counting of the incoming
1070  * struct file.
1071  *
1072  * Returns newly install fd or -ve on error.
1073  */
1074 int __receive_fd(int fd, struct file *file, int __user *ufd, unsigned int o_flags)
1075 {
1076 	int new_fd;
1077 	int error;
1078 
1079 	error = security_file_receive(file);
1080 	if (error)
1081 		return error;
1082 
1083 	if (fd < 0) {
1084 		new_fd = get_unused_fd_flags(o_flags);
1085 		if (new_fd < 0)
1086 			return new_fd;
1087 	} else {
1088 		new_fd = fd;
1089 	}
1090 
1091 	if (ufd) {
1092 		error = put_user(new_fd, ufd);
1093 		if (error) {
1094 			if (fd < 0)
1095 				put_unused_fd(new_fd);
1096 			return error;
1097 		}
1098 	}
1099 
1100 	if (fd < 0) {
1101 		fd_install(new_fd, get_file(file));
1102 	} else {
1103 		error = replace_fd(new_fd, file, o_flags);
1104 		if (error)
1105 			return error;
1106 	}
1107 
1108 	/* Bump the sock usage counts, if any. */
1109 	__receive_sock(file);
1110 	return new_fd;
1111 }
1112 
1113 static int ksys_dup3(unsigned int oldfd, unsigned int newfd, int flags)
1114 {
1115 	int err = -EBADF;
1116 	struct file *file;
1117 	struct files_struct *files = current->files;
1118 
1119 	if ((flags & ~O_CLOEXEC) != 0)
1120 		return -EINVAL;
1121 
1122 	if (unlikely(oldfd == newfd))
1123 		return -EINVAL;
1124 
1125 	if (newfd >= rlimit(RLIMIT_NOFILE))
1126 		return -EBADF;
1127 
1128 	spin_lock(&files->file_lock);
1129 	err = expand_files(files, newfd);
1130 	file = files_lookup_fd_locked(files, oldfd);
1131 	if (unlikely(!file))
1132 		goto Ebadf;
1133 	if (unlikely(err < 0)) {
1134 		if (err == -EMFILE)
1135 			goto Ebadf;
1136 		goto out_unlock;
1137 	}
1138 	return do_dup2(files, file, newfd, flags);
1139 
1140 Ebadf:
1141 	err = -EBADF;
1142 out_unlock:
1143 	spin_unlock(&files->file_lock);
1144 	return err;
1145 }
1146 
1147 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
1148 {
1149 	return ksys_dup3(oldfd, newfd, flags);
1150 }
1151 
1152 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
1153 {
1154 	if (unlikely(newfd == oldfd)) { /* corner case */
1155 		struct files_struct *files = current->files;
1156 		int retval = oldfd;
1157 
1158 		rcu_read_lock();
1159 		if (!files_lookup_fd_rcu(files, oldfd))
1160 			retval = -EBADF;
1161 		rcu_read_unlock();
1162 		return retval;
1163 	}
1164 	return ksys_dup3(oldfd, newfd, 0);
1165 }
1166 
1167 SYSCALL_DEFINE1(dup, unsigned int, fildes)
1168 {
1169 	int ret = -EBADF;
1170 	struct file *file = fget_raw(fildes);
1171 
1172 	if (file) {
1173 		ret = get_unused_fd_flags(0);
1174 		if (ret >= 0)
1175 			fd_install(ret, file);
1176 		else
1177 			fput(file);
1178 	}
1179 	return ret;
1180 }
1181 
1182 int f_dupfd(unsigned int from, struct file *file, unsigned flags)
1183 {
1184 	unsigned long nofile = rlimit(RLIMIT_NOFILE);
1185 	int err;
1186 	if (from >= nofile)
1187 		return -EINVAL;
1188 	err = alloc_fd(from, nofile, flags);
1189 	if (err >= 0) {
1190 		get_file(file);
1191 		fd_install(err, file);
1192 	}
1193 	return err;
1194 }
1195 
1196 int iterate_fd(struct files_struct *files, unsigned n,
1197 		int (*f)(const void *, struct file *, unsigned),
1198 		const void *p)
1199 {
1200 	struct fdtable *fdt;
1201 	int res = 0;
1202 	if (!files)
1203 		return 0;
1204 	spin_lock(&files->file_lock);
1205 	for (fdt = files_fdtable(files); n < fdt->max_fds; n++) {
1206 		struct file *file;
1207 		file = rcu_dereference_check_fdtable(files, fdt->fd[n]);
1208 		if (!file)
1209 			continue;
1210 		res = f(p, file, n);
1211 		if (res)
1212 			break;
1213 	}
1214 	spin_unlock(&files->file_lock);
1215 	return res;
1216 }
1217 EXPORT_SYMBOL(iterate_fd);
1218