xref: /openbmc/linux/fs/file.c (revision 495311927ffbe3604e915aeafdf03325e9925b9d)
1 /*
2  *  linux/fs/file.c
3  *
4  *  Copyright (C) 1998-1999, Stephen Tweedie and Bill Hawes
5  *
6  *  Manage the dynamic fd arrays in the process files_struct.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/time.h>
13 #include <linux/sched.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/file.h>
17 #include <linux/fdtable.h>
18 #include <linux/bitops.h>
19 #include <linux/interrupt.h>
20 #include <linux/spinlock.h>
21 #include <linux/rcupdate.h>
22 #include <linux/workqueue.h>
23 
24 struct fdtable_defer {
25 	spinlock_t lock;
26 	struct work_struct wq;
27 	struct fdtable *next;
28 };
29 
30 int sysctl_nr_open __read_mostly = 1024*1024;
31 int sysctl_nr_open_min = BITS_PER_LONG;
32 int sysctl_nr_open_max = 1024 * 1024; /* raised later */
33 
34 /*
35  * We use this list to defer free fdtables that have vmalloced
36  * sets/arrays. By keeping a per-cpu list, we avoid having to embed
37  * the work_struct in fdtable itself which avoids a 64 byte (i386) increase in
38  * this per-task structure.
39  */
40 static DEFINE_PER_CPU(struct fdtable_defer, fdtable_defer_list);
41 
42 static inline void * alloc_fdmem(unsigned int size)
43 {
44 	if (size <= PAGE_SIZE)
45 		return kmalloc(size, GFP_KERNEL);
46 	else
47 		return vmalloc(size);
48 }
49 
50 static inline void free_fdarr(struct fdtable *fdt)
51 {
52 	if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *)))
53 		kfree(fdt->fd);
54 	else
55 		vfree(fdt->fd);
56 }
57 
58 static inline void free_fdset(struct fdtable *fdt)
59 {
60 	if (fdt->max_fds <= (PAGE_SIZE * BITS_PER_BYTE / 2))
61 		kfree(fdt->open_fds);
62 	else
63 		vfree(fdt->open_fds);
64 }
65 
66 static void free_fdtable_work(struct work_struct *work)
67 {
68 	struct fdtable_defer *f =
69 		container_of(work, struct fdtable_defer, wq);
70 	struct fdtable *fdt;
71 
72 	spin_lock_bh(&f->lock);
73 	fdt = f->next;
74 	f->next = NULL;
75 	spin_unlock_bh(&f->lock);
76 	while(fdt) {
77 		struct fdtable *next = fdt->next;
78 		vfree(fdt->fd);
79 		free_fdset(fdt);
80 		kfree(fdt);
81 		fdt = next;
82 	}
83 }
84 
85 void free_fdtable_rcu(struct rcu_head *rcu)
86 {
87 	struct fdtable *fdt = container_of(rcu, struct fdtable, rcu);
88 	struct fdtable_defer *fddef;
89 
90 	BUG_ON(!fdt);
91 
92 	if (fdt->max_fds <= NR_OPEN_DEFAULT) {
93 		/*
94 		 * This fdtable is embedded in the files structure and that
95 		 * structure itself is getting destroyed.
96 		 */
97 		kmem_cache_free(files_cachep,
98 				container_of(fdt, struct files_struct, fdtab));
99 		return;
100 	}
101 	if (fdt->max_fds <= (PAGE_SIZE / sizeof(struct file *))) {
102 		kfree(fdt->fd);
103 		kfree(fdt->open_fds);
104 		kfree(fdt);
105 	} else {
106 		fddef = &get_cpu_var(fdtable_defer_list);
107 		spin_lock(&fddef->lock);
108 		fdt->next = fddef->next;
109 		fddef->next = fdt;
110 		/* vmallocs are handled from the workqueue context */
111 		schedule_work(&fddef->wq);
112 		spin_unlock(&fddef->lock);
113 		put_cpu_var(fdtable_defer_list);
114 	}
115 }
116 
117 /*
118  * Expand the fdset in the files_struct.  Called with the files spinlock
119  * held for write.
120  */
121 static void copy_fdtable(struct fdtable *nfdt, struct fdtable *ofdt)
122 {
123 	unsigned int cpy, set;
124 
125 	BUG_ON(nfdt->max_fds < ofdt->max_fds);
126 
127 	cpy = ofdt->max_fds * sizeof(struct file *);
128 	set = (nfdt->max_fds - ofdt->max_fds) * sizeof(struct file *);
129 	memcpy(nfdt->fd, ofdt->fd, cpy);
130 	memset((char *)(nfdt->fd) + cpy, 0, set);
131 
132 	cpy = ofdt->max_fds / BITS_PER_BYTE;
133 	set = (nfdt->max_fds - ofdt->max_fds) / BITS_PER_BYTE;
134 	memcpy(nfdt->open_fds, ofdt->open_fds, cpy);
135 	memset((char *)(nfdt->open_fds) + cpy, 0, set);
136 	memcpy(nfdt->close_on_exec, ofdt->close_on_exec, cpy);
137 	memset((char *)(nfdt->close_on_exec) + cpy, 0, set);
138 }
139 
140 static struct fdtable * alloc_fdtable(unsigned int nr)
141 {
142 	struct fdtable *fdt;
143 	char *data;
144 
145 	/*
146 	 * Figure out how many fds we actually want to support in this fdtable.
147 	 * Allocation steps are keyed to the size of the fdarray, since it
148 	 * grows far faster than any of the other dynamic data. We try to fit
149 	 * the fdarray into comfortable page-tuned chunks: starting at 1024B
150 	 * and growing in powers of two from there on.
151 	 */
152 	nr /= (1024 / sizeof(struct file *));
153 	nr = roundup_pow_of_two(nr + 1);
154 	nr *= (1024 / sizeof(struct file *));
155 	/*
156 	 * Note that this can drive nr *below* what we had passed if sysctl_nr_open
157 	 * had been set lower between the check in expand_files() and here.  Deal
158 	 * with that in caller, it's cheaper that way.
159 	 *
160 	 * We make sure that nr remains a multiple of BITS_PER_LONG - otherwise
161 	 * bitmaps handling below becomes unpleasant, to put it mildly...
162 	 */
163 	if (unlikely(nr > sysctl_nr_open))
164 		nr = ((sysctl_nr_open - 1) | (BITS_PER_LONG - 1)) + 1;
165 
166 	fdt = kmalloc(sizeof(struct fdtable), GFP_KERNEL);
167 	if (!fdt)
168 		goto out;
169 	fdt->max_fds = nr;
170 	data = alloc_fdmem(nr * sizeof(struct file *));
171 	if (!data)
172 		goto out_fdt;
173 	fdt->fd = (struct file **)data;
174 	data = alloc_fdmem(max_t(unsigned int,
175 				 2 * nr / BITS_PER_BYTE, L1_CACHE_BYTES));
176 	if (!data)
177 		goto out_arr;
178 	fdt->open_fds = (fd_set *)data;
179 	data += nr / BITS_PER_BYTE;
180 	fdt->close_on_exec = (fd_set *)data;
181 	fdt->next = NULL;
182 
183 	return fdt;
184 
185 out_arr:
186 	free_fdarr(fdt);
187 out_fdt:
188 	kfree(fdt);
189 out:
190 	return NULL;
191 }
192 
193 /*
194  * Expand the file descriptor table.
195  * This function will allocate a new fdtable and both fd array and fdset, of
196  * the given size.
197  * Return <0 error code on error; 1 on successful completion.
198  * The files->file_lock should be held on entry, and will be held on exit.
199  */
200 static int expand_fdtable(struct files_struct *files, int nr)
201 	__releases(files->file_lock)
202 	__acquires(files->file_lock)
203 {
204 	struct fdtable *new_fdt, *cur_fdt;
205 
206 	spin_unlock(&files->file_lock);
207 	new_fdt = alloc_fdtable(nr);
208 	spin_lock(&files->file_lock);
209 	if (!new_fdt)
210 		return -ENOMEM;
211 	/*
212 	 * extremely unlikely race - sysctl_nr_open decreased between the check in
213 	 * caller and alloc_fdtable().  Cheaper to catch it here...
214 	 */
215 	if (unlikely(new_fdt->max_fds <= nr)) {
216 		free_fdarr(new_fdt);
217 		free_fdset(new_fdt);
218 		kfree(new_fdt);
219 		return -EMFILE;
220 	}
221 	/*
222 	 * Check again since another task may have expanded the fd table while
223 	 * we dropped the lock
224 	 */
225 	cur_fdt = files_fdtable(files);
226 	if (nr >= cur_fdt->max_fds) {
227 		/* Continue as planned */
228 		copy_fdtable(new_fdt, cur_fdt);
229 		rcu_assign_pointer(files->fdt, new_fdt);
230 		if (cur_fdt->max_fds > NR_OPEN_DEFAULT)
231 			free_fdtable(cur_fdt);
232 	} else {
233 		/* Somebody else expanded, so undo our attempt */
234 		free_fdarr(new_fdt);
235 		free_fdset(new_fdt);
236 		kfree(new_fdt);
237 	}
238 	return 1;
239 }
240 
241 /*
242  * Expand files.
243  * This function will expand the file structures, if the requested size exceeds
244  * the current capacity and there is room for expansion.
245  * Return <0 error code on error; 0 when nothing done; 1 when files were
246  * expanded and execution may have blocked.
247  * The files->file_lock should be held on entry, and will be held on exit.
248  */
249 int expand_files(struct files_struct *files, int nr)
250 {
251 	struct fdtable *fdt;
252 
253 	fdt = files_fdtable(files);
254 
255 	/*
256 	 * N.B. For clone tasks sharing a files structure, this test
257 	 * will limit the total number of files that can be opened.
258 	 */
259 	if (nr >= rlimit(RLIMIT_NOFILE))
260 		return -EMFILE;
261 
262 	/* Do we need to expand? */
263 	if (nr < fdt->max_fds)
264 		return 0;
265 
266 	/* Can we expand? */
267 	if (nr >= sysctl_nr_open)
268 		return -EMFILE;
269 
270 	/* All good, so we try */
271 	return expand_fdtable(files, nr);
272 }
273 
274 static int count_open_files(struct fdtable *fdt)
275 {
276 	int size = fdt->max_fds;
277 	int i;
278 
279 	/* Find the last open fd */
280 	for (i = size/(8*sizeof(long)); i > 0; ) {
281 		if (fdt->open_fds->fds_bits[--i])
282 			break;
283 	}
284 	i = (i+1) * 8 * sizeof(long);
285 	return i;
286 }
287 
288 /*
289  * Allocate a new files structure and copy contents from the
290  * passed in files structure.
291  * errorp will be valid only when the returned files_struct is NULL.
292  */
293 struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
294 {
295 	struct files_struct *newf;
296 	struct file **old_fds, **new_fds;
297 	int open_files, size, i;
298 	struct fdtable *old_fdt, *new_fdt;
299 
300 	*errorp = -ENOMEM;
301 	newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
302 	if (!newf)
303 		goto out;
304 
305 	atomic_set(&newf->count, 1);
306 
307 	spin_lock_init(&newf->file_lock);
308 	newf->next_fd = 0;
309 	new_fdt = &newf->fdtab;
310 	new_fdt->max_fds = NR_OPEN_DEFAULT;
311 	new_fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
312 	new_fdt->open_fds = (fd_set *)&newf->open_fds_init;
313 	new_fdt->fd = &newf->fd_array[0];
314 	new_fdt->next = NULL;
315 
316 	spin_lock(&oldf->file_lock);
317 	old_fdt = files_fdtable(oldf);
318 	open_files = count_open_files(old_fdt);
319 
320 	/*
321 	 * Check whether we need to allocate a larger fd array and fd set.
322 	 */
323 	while (unlikely(open_files > new_fdt->max_fds)) {
324 		spin_unlock(&oldf->file_lock);
325 
326 		if (new_fdt != &newf->fdtab) {
327 			free_fdarr(new_fdt);
328 			free_fdset(new_fdt);
329 			kfree(new_fdt);
330 		}
331 
332 		new_fdt = alloc_fdtable(open_files - 1);
333 		if (!new_fdt) {
334 			*errorp = -ENOMEM;
335 			goto out_release;
336 		}
337 
338 		/* beyond sysctl_nr_open; nothing to do */
339 		if (unlikely(new_fdt->max_fds < open_files)) {
340 			free_fdarr(new_fdt);
341 			free_fdset(new_fdt);
342 			kfree(new_fdt);
343 			*errorp = -EMFILE;
344 			goto out_release;
345 		}
346 
347 		/*
348 		 * Reacquire the oldf lock and a pointer to its fd table
349 		 * who knows it may have a new bigger fd table. We need
350 		 * the latest pointer.
351 		 */
352 		spin_lock(&oldf->file_lock);
353 		old_fdt = files_fdtable(oldf);
354 		open_files = count_open_files(old_fdt);
355 	}
356 
357 	old_fds = old_fdt->fd;
358 	new_fds = new_fdt->fd;
359 
360 	memcpy(new_fdt->open_fds->fds_bits,
361 		old_fdt->open_fds->fds_bits, open_files/8);
362 	memcpy(new_fdt->close_on_exec->fds_bits,
363 		old_fdt->close_on_exec->fds_bits, open_files/8);
364 
365 	for (i = open_files; i != 0; i--) {
366 		struct file *f = *old_fds++;
367 		if (f) {
368 			get_file(f);
369 		} else {
370 			/*
371 			 * The fd may be claimed in the fd bitmap but not yet
372 			 * instantiated in the files array if a sibling thread
373 			 * is partway through open().  So make sure that this
374 			 * fd is available to the new process.
375 			 */
376 			FD_CLR(open_files - i, new_fdt->open_fds);
377 		}
378 		rcu_assign_pointer(*new_fds++, f);
379 	}
380 	spin_unlock(&oldf->file_lock);
381 
382 	/* compute the remainder to be cleared */
383 	size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
384 
385 	/* This is long word aligned thus could use a optimized version */
386 	memset(new_fds, 0, size);
387 
388 	if (new_fdt->max_fds > open_files) {
389 		int left = (new_fdt->max_fds-open_files)/8;
390 		int start = open_files / (8 * sizeof(unsigned long));
391 
392 		memset(&new_fdt->open_fds->fds_bits[start], 0, left);
393 		memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
394 	}
395 
396 	rcu_assign_pointer(newf->fdt, new_fdt);
397 
398 	return newf;
399 
400 out_release:
401 	kmem_cache_free(files_cachep, newf);
402 out:
403 	return NULL;
404 }
405 
406 static void __devinit fdtable_defer_list_init(int cpu)
407 {
408 	struct fdtable_defer *fddef = &per_cpu(fdtable_defer_list, cpu);
409 	spin_lock_init(&fddef->lock);
410 	INIT_WORK(&fddef->wq, free_fdtable_work);
411 	fddef->next = NULL;
412 }
413 
414 void __init files_defer_init(void)
415 {
416 	int i;
417 	for_each_possible_cpu(i)
418 		fdtable_defer_list_init(i);
419 	sysctl_nr_open_max = min((size_t)INT_MAX, ~(size_t)0/sizeof(void *)) &
420 			     -BITS_PER_LONG;
421 }
422 
423 struct files_struct init_files = {
424 	.count		= ATOMIC_INIT(1),
425 	.fdt		= &init_files.fdtab,
426 	.fdtab		= {
427 		.max_fds	= NR_OPEN_DEFAULT,
428 		.fd		= &init_files.fd_array[0],
429 		.close_on_exec	= (fd_set *)&init_files.close_on_exec_init,
430 		.open_fds	= (fd_set *)&init_files.open_fds_init,
431 	},
432 	.file_lock	= __SPIN_LOCK_UNLOCKED(init_task.file_lock),
433 };
434 
435 /*
436  * allocate a file descriptor, mark it busy.
437  */
438 int alloc_fd(unsigned start, unsigned flags)
439 {
440 	struct files_struct *files = current->files;
441 	unsigned int fd;
442 	int error;
443 	struct fdtable *fdt;
444 
445 	spin_lock(&files->file_lock);
446 repeat:
447 	fdt = files_fdtable(files);
448 	fd = start;
449 	if (fd < files->next_fd)
450 		fd = files->next_fd;
451 
452 	if (fd < fdt->max_fds)
453 		fd = find_next_zero_bit(fdt->open_fds->fds_bits,
454 					   fdt->max_fds, fd);
455 
456 	error = expand_files(files, fd);
457 	if (error < 0)
458 		goto out;
459 
460 	/*
461 	 * If we needed to expand the fs array we
462 	 * might have blocked - try again.
463 	 */
464 	if (error)
465 		goto repeat;
466 
467 	if (start <= files->next_fd)
468 		files->next_fd = fd + 1;
469 
470 	FD_SET(fd, fdt->open_fds);
471 	if (flags & O_CLOEXEC)
472 		FD_SET(fd, fdt->close_on_exec);
473 	else
474 		FD_CLR(fd, fdt->close_on_exec);
475 	error = fd;
476 #if 1
477 	/* Sanity check */
478 	if (rcu_dereference_raw(fdt->fd[fd]) != NULL) {
479 		printk(KERN_WARNING "alloc_fd: slot %d not NULL!\n", fd);
480 		rcu_assign_pointer(fdt->fd[fd], NULL);
481 	}
482 #endif
483 
484 out:
485 	spin_unlock(&files->file_lock);
486 	return error;
487 }
488 
489 int get_unused_fd(void)
490 {
491 	return alloc_fd(0, 0);
492 }
493 EXPORT_SYMBOL(get_unused_fd);
494