1 /* 2 * linux/fs/fcntl.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/syscalls.h> 8 #include <linux/init.h> 9 #include <linux/mm.h> 10 #include <linux/fs.h> 11 #include <linux/file.h> 12 #include <linux/fdtable.h> 13 #include <linux/capability.h> 14 #include <linux/dnotify.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/pipe_fs_i.h> 18 #include <linux/security.h> 19 #include <linux/ptrace.h> 20 #include <linux/signal.h> 21 #include <linux/rcupdate.h> 22 #include <linux/pid_namespace.h> 23 #include <linux/user_namespace.h> 24 25 #include <asm/poll.h> 26 #include <asm/siginfo.h> 27 #include <asm/uaccess.h> 28 29 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME) 30 31 static int setfl(int fd, struct file * filp, unsigned long arg) 32 { 33 struct inode * inode = file_inode(filp); 34 int error = 0; 35 36 /* 37 * O_APPEND cannot be cleared if the file is marked as append-only 38 * and the file is open for write. 39 */ 40 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode)) 41 return -EPERM; 42 43 /* O_NOATIME can only be set by the owner or superuser */ 44 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME)) 45 if (!inode_owner_or_capable(inode)) 46 return -EPERM; 47 48 /* required for strict SunOS emulation */ 49 if (O_NONBLOCK != O_NDELAY) 50 if (arg & O_NDELAY) 51 arg |= O_NONBLOCK; 52 53 if (arg & O_DIRECT) { 54 if (!filp->f_mapping || !filp->f_mapping->a_ops || 55 !filp->f_mapping->a_ops->direct_IO) 56 return -EINVAL; 57 } 58 59 if (filp->f_op->check_flags) 60 error = filp->f_op->check_flags(arg); 61 if (error) 62 return error; 63 64 /* 65 * ->fasync() is responsible for setting the FASYNC bit. 66 */ 67 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) { 68 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0); 69 if (error < 0) 70 goto out; 71 if (error > 0) 72 error = 0; 73 } 74 spin_lock(&filp->f_lock); 75 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK); 76 spin_unlock(&filp->f_lock); 77 78 out: 79 return error; 80 } 81 82 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type, 83 int force) 84 { 85 write_lock_irq(&filp->f_owner.lock); 86 if (force || !filp->f_owner.pid) { 87 put_pid(filp->f_owner.pid); 88 filp->f_owner.pid = get_pid(pid); 89 filp->f_owner.pid_type = type; 90 91 if (pid) { 92 const struct cred *cred = current_cred(); 93 filp->f_owner.uid = cred->uid; 94 filp->f_owner.euid = cred->euid; 95 } 96 } 97 write_unlock_irq(&filp->f_owner.lock); 98 } 99 100 int __f_setown(struct file *filp, struct pid *pid, enum pid_type type, 101 int force) 102 { 103 int err; 104 105 err = security_file_set_fowner(filp); 106 if (err) 107 return err; 108 109 f_modown(filp, pid, type, force); 110 return 0; 111 } 112 EXPORT_SYMBOL(__f_setown); 113 114 int f_setown(struct file *filp, unsigned long arg, int force) 115 { 116 enum pid_type type; 117 struct pid *pid; 118 int who = arg; 119 int result; 120 type = PIDTYPE_PID; 121 if (who < 0) { 122 type = PIDTYPE_PGID; 123 who = -who; 124 } 125 rcu_read_lock(); 126 pid = find_vpid(who); 127 result = __f_setown(filp, pid, type, force); 128 rcu_read_unlock(); 129 return result; 130 } 131 EXPORT_SYMBOL(f_setown); 132 133 void f_delown(struct file *filp) 134 { 135 f_modown(filp, NULL, PIDTYPE_PID, 1); 136 } 137 138 pid_t f_getown(struct file *filp) 139 { 140 pid_t pid; 141 read_lock(&filp->f_owner.lock); 142 pid = pid_vnr(filp->f_owner.pid); 143 if (filp->f_owner.pid_type == PIDTYPE_PGID) 144 pid = -pid; 145 read_unlock(&filp->f_owner.lock); 146 return pid; 147 } 148 149 static int f_setown_ex(struct file *filp, unsigned long arg) 150 { 151 struct f_owner_ex __user *owner_p = (void __user *)arg; 152 struct f_owner_ex owner; 153 struct pid *pid; 154 int type; 155 int ret; 156 157 ret = copy_from_user(&owner, owner_p, sizeof(owner)); 158 if (ret) 159 return -EFAULT; 160 161 switch (owner.type) { 162 case F_OWNER_TID: 163 type = PIDTYPE_MAX; 164 break; 165 166 case F_OWNER_PID: 167 type = PIDTYPE_PID; 168 break; 169 170 case F_OWNER_PGRP: 171 type = PIDTYPE_PGID; 172 break; 173 174 default: 175 return -EINVAL; 176 } 177 178 rcu_read_lock(); 179 pid = find_vpid(owner.pid); 180 if (owner.pid && !pid) 181 ret = -ESRCH; 182 else 183 ret = __f_setown(filp, pid, type, 1); 184 rcu_read_unlock(); 185 186 return ret; 187 } 188 189 static int f_getown_ex(struct file *filp, unsigned long arg) 190 { 191 struct f_owner_ex __user *owner_p = (void __user *)arg; 192 struct f_owner_ex owner; 193 int ret = 0; 194 195 read_lock(&filp->f_owner.lock); 196 owner.pid = pid_vnr(filp->f_owner.pid); 197 switch (filp->f_owner.pid_type) { 198 case PIDTYPE_MAX: 199 owner.type = F_OWNER_TID; 200 break; 201 202 case PIDTYPE_PID: 203 owner.type = F_OWNER_PID; 204 break; 205 206 case PIDTYPE_PGID: 207 owner.type = F_OWNER_PGRP; 208 break; 209 210 default: 211 WARN_ON(1); 212 ret = -EINVAL; 213 break; 214 } 215 read_unlock(&filp->f_owner.lock); 216 217 if (!ret) { 218 ret = copy_to_user(owner_p, &owner, sizeof(owner)); 219 if (ret) 220 ret = -EFAULT; 221 } 222 return ret; 223 } 224 225 #ifdef CONFIG_CHECKPOINT_RESTORE 226 static int f_getowner_uids(struct file *filp, unsigned long arg) 227 { 228 struct user_namespace *user_ns = current_user_ns(); 229 uid_t __user *dst = (void __user *)arg; 230 uid_t src[2]; 231 int err; 232 233 read_lock(&filp->f_owner.lock); 234 src[0] = from_kuid(user_ns, filp->f_owner.uid); 235 src[1] = from_kuid(user_ns, filp->f_owner.euid); 236 read_unlock(&filp->f_owner.lock); 237 238 err = put_user(src[0], &dst[0]); 239 err |= put_user(src[1], &dst[1]); 240 241 return err; 242 } 243 #else 244 static int f_getowner_uids(struct file *filp, unsigned long arg) 245 { 246 return -EINVAL; 247 } 248 #endif 249 250 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg, 251 struct file *filp) 252 { 253 long err = -EINVAL; 254 255 switch (cmd) { 256 case F_DUPFD: 257 err = f_dupfd(arg, filp, 0); 258 break; 259 case F_DUPFD_CLOEXEC: 260 err = f_dupfd(arg, filp, O_CLOEXEC); 261 break; 262 case F_GETFD: 263 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0; 264 break; 265 case F_SETFD: 266 err = 0; 267 set_close_on_exec(fd, arg & FD_CLOEXEC); 268 break; 269 case F_GETFL: 270 err = filp->f_flags; 271 break; 272 case F_SETFL: 273 err = setfl(fd, filp, arg); 274 break; 275 #if BITS_PER_LONG != 32 276 /* 32-bit arches must use fcntl64() */ 277 case F_OFD_GETLK: 278 #endif 279 case F_GETLK: 280 err = fcntl_getlk(filp, cmd, (struct flock __user *) arg); 281 break; 282 #if BITS_PER_LONG != 32 283 /* 32-bit arches must use fcntl64() */ 284 case F_OFD_SETLK: 285 case F_OFD_SETLKW: 286 #endif 287 /* Fallthrough */ 288 case F_SETLK: 289 case F_SETLKW: 290 err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg); 291 break; 292 case F_GETOWN: 293 /* 294 * XXX If f_owner is a process group, the 295 * negative return value will get converted 296 * into an error. Oops. If we keep the 297 * current syscall conventions, the only way 298 * to fix this will be in libc. 299 */ 300 err = f_getown(filp); 301 force_successful_syscall_return(); 302 break; 303 case F_SETOWN: 304 err = f_setown(filp, arg, 1); 305 break; 306 case F_GETOWN_EX: 307 err = f_getown_ex(filp, arg); 308 break; 309 case F_SETOWN_EX: 310 err = f_setown_ex(filp, arg); 311 break; 312 case F_GETOWNER_UIDS: 313 err = f_getowner_uids(filp, arg); 314 break; 315 case F_GETSIG: 316 err = filp->f_owner.signum; 317 break; 318 case F_SETSIG: 319 /* arg == 0 restores default behaviour. */ 320 if (!valid_signal(arg)) { 321 break; 322 } 323 err = 0; 324 filp->f_owner.signum = arg; 325 break; 326 case F_GETLEASE: 327 err = fcntl_getlease(filp); 328 break; 329 case F_SETLEASE: 330 err = fcntl_setlease(fd, filp, arg); 331 break; 332 case F_NOTIFY: 333 err = fcntl_dirnotify(fd, filp, arg); 334 break; 335 case F_SETPIPE_SZ: 336 case F_GETPIPE_SZ: 337 err = pipe_fcntl(filp, cmd, arg); 338 break; 339 default: 340 break; 341 } 342 return err; 343 } 344 345 static int check_fcntl_cmd(unsigned cmd) 346 { 347 switch (cmd) { 348 case F_DUPFD: 349 case F_DUPFD_CLOEXEC: 350 case F_GETFD: 351 case F_SETFD: 352 case F_GETFL: 353 return 1; 354 } 355 return 0; 356 } 357 358 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg) 359 { 360 struct fd f = fdget_raw(fd); 361 long err = -EBADF; 362 363 if (!f.file) 364 goto out; 365 366 if (unlikely(f.file->f_mode & FMODE_PATH)) { 367 if (!check_fcntl_cmd(cmd)) 368 goto out1; 369 } 370 371 err = security_file_fcntl(f.file, cmd, arg); 372 if (!err) 373 err = do_fcntl(fd, cmd, arg, f.file); 374 375 out1: 376 fdput(f); 377 out: 378 return err; 379 } 380 381 #if BITS_PER_LONG == 32 382 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, 383 unsigned long, arg) 384 { 385 struct fd f = fdget_raw(fd); 386 long err = -EBADF; 387 388 if (!f.file) 389 goto out; 390 391 if (unlikely(f.file->f_mode & FMODE_PATH)) { 392 if (!check_fcntl_cmd(cmd)) 393 goto out1; 394 } 395 396 err = security_file_fcntl(f.file, cmd, arg); 397 if (err) 398 goto out1; 399 400 switch (cmd) { 401 case F_GETLK64: 402 case F_OFD_GETLK: 403 err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg); 404 break; 405 case F_SETLK64: 406 case F_SETLKW64: 407 case F_OFD_SETLK: 408 case F_OFD_SETLKW: 409 err = fcntl_setlk64(fd, f.file, cmd, 410 (struct flock64 __user *) arg); 411 break; 412 default: 413 err = do_fcntl(fd, cmd, arg, f.file); 414 break; 415 } 416 out1: 417 fdput(f); 418 out: 419 return err; 420 } 421 #endif 422 423 /* Table to convert sigio signal codes into poll band bitmaps */ 424 425 static const long band_table[NSIGPOLL] = { 426 POLLIN | POLLRDNORM, /* POLL_IN */ 427 POLLOUT | POLLWRNORM | POLLWRBAND, /* POLL_OUT */ 428 POLLIN | POLLRDNORM | POLLMSG, /* POLL_MSG */ 429 POLLERR, /* POLL_ERR */ 430 POLLPRI | POLLRDBAND, /* POLL_PRI */ 431 POLLHUP | POLLERR /* POLL_HUP */ 432 }; 433 434 static inline int sigio_perm(struct task_struct *p, 435 struct fown_struct *fown, int sig) 436 { 437 const struct cred *cred; 438 int ret; 439 440 rcu_read_lock(); 441 cred = __task_cred(p); 442 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) || 443 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) || 444 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) && 445 !security_file_send_sigiotask(p, fown, sig)); 446 rcu_read_unlock(); 447 return ret; 448 } 449 450 static void send_sigio_to_task(struct task_struct *p, 451 struct fown_struct *fown, 452 int fd, int reason, int group) 453 { 454 /* 455 * F_SETSIG can change ->signum lockless in parallel, make 456 * sure we read it once and use the same value throughout. 457 */ 458 int signum = ACCESS_ONCE(fown->signum); 459 460 if (!sigio_perm(p, fown, signum)) 461 return; 462 463 switch (signum) { 464 siginfo_t si; 465 default: 466 /* Queue a rt signal with the appropriate fd as its 467 value. We use SI_SIGIO as the source, not 468 SI_KERNEL, since kernel signals always get 469 delivered even if we can't queue. Failure to 470 queue in this case _should_ be reported; we fall 471 back to SIGIO in that case. --sct */ 472 si.si_signo = signum; 473 si.si_errno = 0; 474 si.si_code = reason; 475 /* Make sure we are called with one of the POLL_* 476 reasons, otherwise we could leak kernel stack into 477 userspace. */ 478 BUG_ON((reason & __SI_MASK) != __SI_POLL); 479 if (reason - POLL_IN >= NSIGPOLL) 480 si.si_band = ~0L; 481 else 482 si.si_band = band_table[reason - POLL_IN]; 483 si.si_fd = fd; 484 if (!do_send_sig_info(signum, &si, p, group)) 485 break; 486 /* fall-through: fall back on the old plain SIGIO signal */ 487 case 0: 488 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group); 489 } 490 } 491 492 void send_sigio(struct fown_struct *fown, int fd, int band) 493 { 494 struct task_struct *p; 495 enum pid_type type; 496 struct pid *pid; 497 int group = 1; 498 499 read_lock(&fown->lock); 500 501 type = fown->pid_type; 502 if (type == PIDTYPE_MAX) { 503 group = 0; 504 type = PIDTYPE_PID; 505 } 506 507 pid = fown->pid; 508 if (!pid) 509 goto out_unlock_fown; 510 511 read_lock(&tasklist_lock); 512 do_each_pid_task(pid, type, p) { 513 send_sigio_to_task(p, fown, fd, band, group); 514 } while_each_pid_task(pid, type, p); 515 read_unlock(&tasklist_lock); 516 out_unlock_fown: 517 read_unlock(&fown->lock); 518 } 519 520 static void send_sigurg_to_task(struct task_struct *p, 521 struct fown_struct *fown, int group) 522 { 523 if (sigio_perm(p, fown, SIGURG)) 524 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group); 525 } 526 527 int send_sigurg(struct fown_struct *fown) 528 { 529 struct task_struct *p; 530 enum pid_type type; 531 struct pid *pid; 532 int group = 1; 533 int ret = 0; 534 535 read_lock(&fown->lock); 536 537 type = fown->pid_type; 538 if (type == PIDTYPE_MAX) { 539 group = 0; 540 type = PIDTYPE_PID; 541 } 542 543 pid = fown->pid; 544 if (!pid) 545 goto out_unlock_fown; 546 547 ret = 1; 548 549 read_lock(&tasklist_lock); 550 do_each_pid_task(pid, type, p) { 551 send_sigurg_to_task(p, fown, group); 552 } while_each_pid_task(pid, type, p); 553 read_unlock(&tasklist_lock); 554 out_unlock_fown: 555 read_unlock(&fown->lock); 556 return ret; 557 } 558 559 static DEFINE_SPINLOCK(fasync_lock); 560 static struct kmem_cache *fasync_cache __read_mostly; 561 562 static void fasync_free_rcu(struct rcu_head *head) 563 { 564 kmem_cache_free(fasync_cache, 565 container_of(head, struct fasync_struct, fa_rcu)); 566 } 567 568 /* 569 * Remove a fasync entry. If successfully removed, return 570 * positive and clear the FASYNC flag. If no entry exists, 571 * do nothing and return 0. 572 * 573 * NOTE! It is very important that the FASYNC flag always 574 * match the state "is the filp on a fasync list". 575 * 576 */ 577 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp) 578 { 579 struct fasync_struct *fa, **fp; 580 int result = 0; 581 582 spin_lock(&filp->f_lock); 583 spin_lock(&fasync_lock); 584 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 585 if (fa->fa_file != filp) 586 continue; 587 588 spin_lock_irq(&fa->fa_lock); 589 fa->fa_file = NULL; 590 spin_unlock_irq(&fa->fa_lock); 591 592 *fp = fa->fa_next; 593 call_rcu(&fa->fa_rcu, fasync_free_rcu); 594 filp->f_flags &= ~FASYNC; 595 result = 1; 596 break; 597 } 598 spin_unlock(&fasync_lock); 599 spin_unlock(&filp->f_lock); 600 return result; 601 } 602 603 struct fasync_struct *fasync_alloc(void) 604 { 605 return kmem_cache_alloc(fasync_cache, GFP_KERNEL); 606 } 607 608 /* 609 * NOTE! This can be used only for unused fasync entries: 610 * entries that actually got inserted on the fasync list 611 * need to be released by rcu - see fasync_remove_entry. 612 */ 613 void fasync_free(struct fasync_struct *new) 614 { 615 kmem_cache_free(fasync_cache, new); 616 } 617 618 /* 619 * Insert a new entry into the fasync list. Return the pointer to the 620 * old one if we didn't use the new one. 621 * 622 * NOTE! It is very important that the FASYNC flag always 623 * match the state "is the filp on a fasync list". 624 */ 625 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new) 626 { 627 struct fasync_struct *fa, **fp; 628 629 spin_lock(&filp->f_lock); 630 spin_lock(&fasync_lock); 631 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 632 if (fa->fa_file != filp) 633 continue; 634 635 spin_lock_irq(&fa->fa_lock); 636 fa->fa_fd = fd; 637 spin_unlock_irq(&fa->fa_lock); 638 goto out; 639 } 640 641 spin_lock_init(&new->fa_lock); 642 new->magic = FASYNC_MAGIC; 643 new->fa_file = filp; 644 new->fa_fd = fd; 645 new->fa_next = *fapp; 646 rcu_assign_pointer(*fapp, new); 647 filp->f_flags |= FASYNC; 648 649 out: 650 spin_unlock(&fasync_lock); 651 spin_unlock(&filp->f_lock); 652 return fa; 653 } 654 655 /* 656 * Add a fasync entry. Return negative on error, positive if 657 * added, and zero if did nothing but change an existing one. 658 */ 659 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp) 660 { 661 struct fasync_struct *new; 662 663 new = fasync_alloc(); 664 if (!new) 665 return -ENOMEM; 666 667 /* 668 * fasync_insert_entry() returns the old (update) entry if 669 * it existed. 670 * 671 * So free the (unused) new entry and return 0 to let the 672 * caller know that we didn't add any new fasync entries. 673 */ 674 if (fasync_insert_entry(fd, filp, fapp, new)) { 675 fasync_free(new); 676 return 0; 677 } 678 679 return 1; 680 } 681 682 /* 683 * fasync_helper() is used by almost all character device drivers 684 * to set up the fasync queue, and for regular files by the file 685 * lease code. It returns negative on error, 0 if it did no changes 686 * and positive if it added/deleted the entry. 687 */ 688 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp) 689 { 690 if (!on) 691 return fasync_remove_entry(filp, fapp); 692 return fasync_add_entry(fd, filp, fapp); 693 } 694 695 EXPORT_SYMBOL(fasync_helper); 696 697 /* 698 * rcu_read_lock() is held 699 */ 700 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band) 701 { 702 while (fa) { 703 struct fown_struct *fown; 704 unsigned long flags; 705 706 if (fa->magic != FASYNC_MAGIC) { 707 printk(KERN_ERR "kill_fasync: bad magic number in " 708 "fasync_struct!\n"); 709 return; 710 } 711 spin_lock_irqsave(&fa->fa_lock, flags); 712 if (fa->fa_file) { 713 fown = &fa->fa_file->f_owner; 714 /* Don't send SIGURG to processes which have not set a 715 queued signum: SIGURG has its own default signalling 716 mechanism. */ 717 if (!(sig == SIGURG && fown->signum == 0)) 718 send_sigio(fown, fa->fa_fd, band); 719 } 720 spin_unlock_irqrestore(&fa->fa_lock, flags); 721 fa = rcu_dereference(fa->fa_next); 722 } 723 } 724 725 void kill_fasync(struct fasync_struct **fp, int sig, int band) 726 { 727 /* First a quick test without locking: usually 728 * the list is empty. 729 */ 730 if (*fp) { 731 rcu_read_lock(); 732 kill_fasync_rcu(rcu_dereference(*fp), sig, band); 733 rcu_read_unlock(); 734 } 735 } 736 EXPORT_SYMBOL(kill_fasync); 737 738 static int __init fcntl_init(void) 739 { 740 /* 741 * Please add new bits here to ensure allocation uniqueness. 742 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY 743 * is defined as O_NONBLOCK on some platforms and not on others. 744 */ 745 BUILD_BUG_ON(20 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32( 746 O_RDONLY | O_WRONLY | O_RDWR | 747 O_CREAT | O_EXCL | O_NOCTTY | 748 O_TRUNC | O_APPEND | /* O_NONBLOCK | */ 749 __O_SYNC | O_DSYNC | FASYNC | 750 O_DIRECT | O_LARGEFILE | O_DIRECTORY | 751 O_NOFOLLOW | O_NOATIME | O_CLOEXEC | 752 __FMODE_EXEC | O_PATH | __O_TMPFILE 753 )); 754 755 fasync_cache = kmem_cache_create("fasync_cache", 756 sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL); 757 return 0; 758 } 759 760 module_init(fcntl_init) 761