xref: /openbmc/linux/fs/fcntl.c (revision c9933d49)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/fcntl.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/syscalls.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/fdtable.h>
15 #include <linux/capability.h>
16 #include <linux/dnotify.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/security.h>
21 #include <linux/ptrace.h>
22 #include <linux/signal.h>
23 #include <linux/rcupdate.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/user_namespace.h>
26 #include <linux/memfd.h>
27 #include <linux/compat.h>
28 #include <linux/mount.h>
29 
30 #include <linux/poll.h>
31 #include <asm/siginfo.h>
32 #include <linux/uaccess.h>
33 
34 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
35 
36 static int setfl(int fd, struct file * filp, unsigned long arg)
37 {
38 	struct inode * inode = file_inode(filp);
39 	int error = 0;
40 
41 	/*
42 	 * O_APPEND cannot be cleared if the file is marked as append-only
43 	 * and the file is open for write.
44 	 */
45 	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
46 		return -EPERM;
47 
48 	/* O_NOATIME can only be set by the owner or superuser */
49 	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
50 		if (!inode_owner_or_capable(file_mnt_user_ns(filp), inode))
51 			return -EPERM;
52 
53 	/* required for strict SunOS emulation */
54 	if (O_NONBLOCK != O_NDELAY)
55 	       if (arg & O_NDELAY)
56 		   arg |= O_NONBLOCK;
57 
58 	/* Pipe packetized mode is controlled by O_DIRECT flag */
59 	if (!S_ISFIFO(inode->i_mode) && (arg & O_DIRECT)) {
60 		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
61 			!filp->f_mapping->a_ops->direct_IO)
62 				return -EINVAL;
63 	}
64 
65 	if (filp->f_op->check_flags)
66 		error = filp->f_op->check_flags(arg);
67 	if (error)
68 		return error;
69 
70 	/*
71 	 * ->fasync() is responsible for setting the FASYNC bit.
72 	 */
73 	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
74 		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
75 		if (error < 0)
76 			goto out;
77 		if (error > 0)
78 			error = 0;
79 	}
80 	spin_lock(&filp->f_lock);
81 	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
82 	spin_unlock(&filp->f_lock);
83 
84  out:
85 	return error;
86 }
87 
88 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
89                      int force)
90 {
91 	write_lock_irq(&filp->f_owner.lock);
92 	if (force || !filp->f_owner.pid) {
93 		put_pid(filp->f_owner.pid);
94 		filp->f_owner.pid = get_pid(pid);
95 		filp->f_owner.pid_type = type;
96 
97 		if (pid) {
98 			const struct cred *cred = current_cred();
99 			filp->f_owner.uid = cred->uid;
100 			filp->f_owner.euid = cred->euid;
101 		}
102 	}
103 	write_unlock_irq(&filp->f_owner.lock);
104 }
105 
106 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
107 		int force)
108 {
109 	security_file_set_fowner(filp);
110 	f_modown(filp, pid, type, force);
111 }
112 EXPORT_SYMBOL(__f_setown);
113 
114 int f_setown(struct file *filp, unsigned long arg, int force)
115 {
116 	enum pid_type type;
117 	struct pid *pid = NULL;
118 	int who = arg, ret = 0;
119 
120 	type = PIDTYPE_TGID;
121 	if (who < 0) {
122 		/* avoid overflow below */
123 		if (who == INT_MIN)
124 			return -EINVAL;
125 
126 		type = PIDTYPE_PGID;
127 		who = -who;
128 	}
129 
130 	rcu_read_lock();
131 	if (who) {
132 		pid = find_vpid(who);
133 		if (!pid)
134 			ret = -ESRCH;
135 	}
136 
137 	if (!ret)
138 		__f_setown(filp, pid, type, force);
139 	rcu_read_unlock();
140 
141 	return ret;
142 }
143 EXPORT_SYMBOL(f_setown);
144 
145 void f_delown(struct file *filp)
146 {
147 	f_modown(filp, NULL, PIDTYPE_TGID, 1);
148 }
149 
150 pid_t f_getown(struct file *filp)
151 {
152 	pid_t pid = 0;
153 
154 	read_lock_irq(&filp->f_owner.lock);
155 	rcu_read_lock();
156 	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) {
157 		pid = pid_vnr(filp->f_owner.pid);
158 		if (filp->f_owner.pid_type == PIDTYPE_PGID)
159 			pid = -pid;
160 	}
161 	rcu_read_unlock();
162 	read_unlock_irq(&filp->f_owner.lock);
163 	return pid;
164 }
165 
166 static int f_setown_ex(struct file *filp, unsigned long arg)
167 {
168 	struct f_owner_ex __user *owner_p = (void __user *)arg;
169 	struct f_owner_ex owner;
170 	struct pid *pid;
171 	int type;
172 	int ret;
173 
174 	ret = copy_from_user(&owner, owner_p, sizeof(owner));
175 	if (ret)
176 		return -EFAULT;
177 
178 	switch (owner.type) {
179 	case F_OWNER_TID:
180 		type = PIDTYPE_PID;
181 		break;
182 
183 	case F_OWNER_PID:
184 		type = PIDTYPE_TGID;
185 		break;
186 
187 	case F_OWNER_PGRP:
188 		type = PIDTYPE_PGID;
189 		break;
190 
191 	default:
192 		return -EINVAL;
193 	}
194 
195 	rcu_read_lock();
196 	pid = find_vpid(owner.pid);
197 	if (owner.pid && !pid)
198 		ret = -ESRCH;
199 	else
200 		 __f_setown(filp, pid, type, 1);
201 	rcu_read_unlock();
202 
203 	return ret;
204 }
205 
206 static int f_getown_ex(struct file *filp, unsigned long arg)
207 {
208 	struct f_owner_ex __user *owner_p = (void __user *)arg;
209 	struct f_owner_ex owner = {};
210 	int ret = 0;
211 
212 	read_lock_irq(&filp->f_owner.lock);
213 	rcu_read_lock();
214 	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type))
215 		owner.pid = pid_vnr(filp->f_owner.pid);
216 	rcu_read_unlock();
217 	switch (filp->f_owner.pid_type) {
218 	case PIDTYPE_PID:
219 		owner.type = F_OWNER_TID;
220 		break;
221 
222 	case PIDTYPE_TGID:
223 		owner.type = F_OWNER_PID;
224 		break;
225 
226 	case PIDTYPE_PGID:
227 		owner.type = F_OWNER_PGRP;
228 		break;
229 
230 	default:
231 		WARN_ON(1);
232 		ret = -EINVAL;
233 		break;
234 	}
235 	read_unlock_irq(&filp->f_owner.lock);
236 
237 	if (!ret) {
238 		ret = copy_to_user(owner_p, &owner, sizeof(owner));
239 		if (ret)
240 			ret = -EFAULT;
241 	}
242 	return ret;
243 }
244 
245 #ifdef CONFIG_CHECKPOINT_RESTORE
246 static int f_getowner_uids(struct file *filp, unsigned long arg)
247 {
248 	struct user_namespace *user_ns = current_user_ns();
249 	uid_t __user *dst = (void __user *)arg;
250 	uid_t src[2];
251 	int err;
252 
253 	read_lock_irq(&filp->f_owner.lock);
254 	src[0] = from_kuid(user_ns, filp->f_owner.uid);
255 	src[1] = from_kuid(user_ns, filp->f_owner.euid);
256 	read_unlock_irq(&filp->f_owner.lock);
257 
258 	err  = put_user(src[0], &dst[0]);
259 	err |= put_user(src[1], &dst[1]);
260 
261 	return err;
262 }
263 #else
264 static int f_getowner_uids(struct file *filp, unsigned long arg)
265 {
266 	return -EINVAL;
267 }
268 #endif
269 
270 static bool rw_hint_valid(enum rw_hint hint)
271 {
272 	switch (hint) {
273 	case RWH_WRITE_LIFE_NOT_SET:
274 	case RWH_WRITE_LIFE_NONE:
275 	case RWH_WRITE_LIFE_SHORT:
276 	case RWH_WRITE_LIFE_MEDIUM:
277 	case RWH_WRITE_LIFE_LONG:
278 	case RWH_WRITE_LIFE_EXTREME:
279 		return true;
280 	default:
281 		return false;
282 	}
283 }
284 
285 static long fcntl_rw_hint(struct file *file, unsigned int cmd,
286 			  unsigned long arg)
287 {
288 	struct inode *inode = file_inode(file);
289 	u64 __user *argp = (u64 __user *)arg;
290 	enum rw_hint hint;
291 	u64 h;
292 
293 	switch (cmd) {
294 	case F_GET_RW_HINT:
295 		h = inode->i_write_hint;
296 		if (copy_to_user(argp, &h, sizeof(*argp)))
297 			return -EFAULT;
298 		return 0;
299 	case F_SET_RW_HINT:
300 		if (copy_from_user(&h, argp, sizeof(h)))
301 			return -EFAULT;
302 		hint = (enum rw_hint) h;
303 		if (!rw_hint_valid(hint))
304 			return -EINVAL;
305 
306 		inode_lock(inode);
307 		inode->i_write_hint = hint;
308 		inode_unlock(inode);
309 		return 0;
310 	default:
311 		return -EINVAL;
312 	}
313 }
314 
315 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
316 		struct file *filp)
317 {
318 	void __user *argp = (void __user *)arg;
319 	struct flock flock;
320 	long err = -EINVAL;
321 
322 	switch (cmd) {
323 	case F_DUPFD:
324 		err = f_dupfd(arg, filp, 0);
325 		break;
326 	case F_DUPFD_CLOEXEC:
327 		err = f_dupfd(arg, filp, O_CLOEXEC);
328 		break;
329 	case F_GETFD:
330 		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
331 		break;
332 	case F_SETFD:
333 		err = 0;
334 		set_close_on_exec(fd, arg & FD_CLOEXEC);
335 		break;
336 	case F_GETFL:
337 		err = filp->f_flags;
338 		break;
339 	case F_SETFL:
340 		err = setfl(fd, filp, arg);
341 		break;
342 #if BITS_PER_LONG != 32
343 	/* 32-bit arches must use fcntl64() */
344 	case F_OFD_GETLK:
345 #endif
346 	case F_GETLK:
347 		if (copy_from_user(&flock, argp, sizeof(flock)))
348 			return -EFAULT;
349 		err = fcntl_getlk(filp, cmd, &flock);
350 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
351 			return -EFAULT;
352 		break;
353 #if BITS_PER_LONG != 32
354 	/* 32-bit arches must use fcntl64() */
355 	case F_OFD_SETLK:
356 	case F_OFD_SETLKW:
357 		fallthrough;
358 #endif
359 	case F_SETLK:
360 	case F_SETLKW:
361 		if (copy_from_user(&flock, argp, sizeof(flock)))
362 			return -EFAULT;
363 		err = fcntl_setlk(fd, filp, cmd, &flock);
364 		break;
365 	case F_GETOWN:
366 		/*
367 		 * XXX If f_owner is a process group, the
368 		 * negative return value will get converted
369 		 * into an error.  Oops.  If we keep the
370 		 * current syscall conventions, the only way
371 		 * to fix this will be in libc.
372 		 */
373 		err = f_getown(filp);
374 		force_successful_syscall_return();
375 		break;
376 	case F_SETOWN:
377 		err = f_setown(filp, arg, 1);
378 		break;
379 	case F_GETOWN_EX:
380 		err = f_getown_ex(filp, arg);
381 		break;
382 	case F_SETOWN_EX:
383 		err = f_setown_ex(filp, arg);
384 		break;
385 	case F_GETOWNER_UIDS:
386 		err = f_getowner_uids(filp, arg);
387 		break;
388 	case F_GETSIG:
389 		err = filp->f_owner.signum;
390 		break;
391 	case F_SETSIG:
392 		/* arg == 0 restores default behaviour. */
393 		if (!valid_signal(arg)) {
394 			break;
395 		}
396 		err = 0;
397 		filp->f_owner.signum = arg;
398 		break;
399 	case F_GETLEASE:
400 		err = fcntl_getlease(filp);
401 		break;
402 	case F_SETLEASE:
403 		err = fcntl_setlease(fd, filp, arg);
404 		break;
405 	case F_NOTIFY:
406 		err = fcntl_dirnotify(fd, filp, arg);
407 		break;
408 	case F_SETPIPE_SZ:
409 	case F_GETPIPE_SZ:
410 		err = pipe_fcntl(filp, cmd, arg);
411 		break;
412 	case F_ADD_SEALS:
413 	case F_GET_SEALS:
414 		err = memfd_fcntl(filp, cmd, arg);
415 		break;
416 	case F_GET_RW_HINT:
417 	case F_SET_RW_HINT:
418 		err = fcntl_rw_hint(filp, cmd, arg);
419 		break;
420 	default:
421 		break;
422 	}
423 	return err;
424 }
425 
426 static int check_fcntl_cmd(unsigned cmd)
427 {
428 	switch (cmd) {
429 	case F_DUPFD:
430 	case F_DUPFD_CLOEXEC:
431 	case F_GETFD:
432 	case F_SETFD:
433 	case F_GETFL:
434 		return 1;
435 	}
436 	return 0;
437 }
438 
439 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
440 {
441 	struct fd f = fdget_raw(fd);
442 	long err = -EBADF;
443 
444 	if (!f.file)
445 		goto out;
446 
447 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
448 		if (!check_fcntl_cmd(cmd))
449 			goto out1;
450 	}
451 
452 	err = security_file_fcntl(f.file, cmd, arg);
453 	if (!err)
454 		err = do_fcntl(fd, cmd, arg, f.file);
455 
456 out1:
457  	fdput(f);
458 out:
459 	return err;
460 }
461 
462 #if BITS_PER_LONG == 32
463 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
464 		unsigned long, arg)
465 {
466 	void __user *argp = (void __user *)arg;
467 	struct fd f = fdget_raw(fd);
468 	struct flock64 flock;
469 	long err = -EBADF;
470 
471 	if (!f.file)
472 		goto out;
473 
474 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
475 		if (!check_fcntl_cmd(cmd))
476 			goto out1;
477 	}
478 
479 	err = security_file_fcntl(f.file, cmd, arg);
480 	if (err)
481 		goto out1;
482 
483 	switch (cmd) {
484 	case F_GETLK64:
485 	case F_OFD_GETLK:
486 		err = -EFAULT;
487 		if (copy_from_user(&flock, argp, sizeof(flock)))
488 			break;
489 		err = fcntl_getlk64(f.file, cmd, &flock);
490 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
491 			err = -EFAULT;
492 		break;
493 	case F_SETLK64:
494 	case F_SETLKW64:
495 	case F_OFD_SETLK:
496 	case F_OFD_SETLKW:
497 		err = -EFAULT;
498 		if (copy_from_user(&flock, argp, sizeof(flock)))
499 			break;
500 		err = fcntl_setlk64(fd, f.file, cmd, &flock);
501 		break;
502 	default:
503 		err = do_fcntl(fd, cmd, arg, f.file);
504 		break;
505 	}
506 out1:
507 	fdput(f);
508 out:
509 	return err;
510 }
511 #endif
512 
513 #ifdef CONFIG_COMPAT
514 /* careful - don't use anywhere else */
515 #define copy_flock_fields(dst, src)		\
516 	(dst)->l_type = (src)->l_type;		\
517 	(dst)->l_whence = (src)->l_whence;	\
518 	(dst)->l_start = (src)->l_start;	\
519 	(dst)->l_len = (src)->l_len;		\
520 	(dst)->l_pid = (src)->l_pid;
521 
522 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
523 {
524 	struct compat_flock fl;
525 
526 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
527 		return -EFAULT;
528 	copy_flock_fields(kfl, &fl);
529 	return 0;
530 }
531 
532 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
533 {
534 	struct compat_flock64 fl;
535 
536 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
537 		return -EFAULT;
538 	copy_flock_fields(kfl, &fl);
539 	return 0;
540 }
541 
542 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
543 {
544 	struct compat_flock fl;
545 
546 	memset(&fl, 0, sizeof(struct compat_flock));
547 	copy_flock_fields(&fl, kfl);
548 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
549 		return -EFAULT;
550 	return 0;
551 }
552 
553 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
554 {
555 	struct compat_flock64 fl;
556 
557 	BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
558 	BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
559 
560 	memset(&fl, 0, sizeof(struct compat_flock64));
561 	copy_flock_fields(&fl, kfl);
562 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
563 		return -EFAULT;
564 	return 0;
565 }
566 #undef copy_flock_fields
567 
568 static unsigned int
569 convert_fcntl_cmd(unsigned int cmd)
570 {
571 	switch (cmd) {
572 	case F_GETLK64:
573 		return F_GETLK;
574 	case F_SETLK64:
575 		return F_SETLK;
576 	case F_SETLKW64:
577 		return F_SETLKW;
578 	}
579 
580 	return cmd;
581 }
582 
583 /*
584  * GETLK was successful and we need to return the data, but it needs to fit in
585  * the compat structure.
586  * l_start shouldn't be too big, unless the original start + end is greater than
587  * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
588  * -EOVERFLOW in that case.  l_len could be too big, in which case we just
589  * truncate it, and only allow the app to see that part of the conflicting lock
590  * that might make sense to it anyway
591  */
592 static int fixup_compat_flock(struct flock *flock)
593 {
594 	if (flock->l_start > COMPAT_OFF_T_MAX)
595 		return -EOVERFLOW;
596 	if (flock->l_len > COMPAT_OFF_T_MAX)
597 		flock->l_len = COMPAT_OFF_T_MAX;
598 	return 0;
599 }
600 
601 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
602 			     compat_ulong_t arg)
603 {
604 	struct fd f = fdget_raw(fd);
605 	struct flock flock;
606 	long err = -EBADF;
607 
608 	if (!f.file)
609 		return err;
610 
611 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
612 		if (!check_fcntl_cmd(cmd))
613 			goto out_put;
614 	}
615 
616 	err = security_file_fcntl(f.file, cmd, arg);
617 	if (err)
618 		goto out_put;
619 
620 	switch (cmd) {
621 	case F_GETLK:
622 		err = get_compat_flock(&flock, compat_ptr(arg));
623 		if (err)
624 			break;
625 		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
626 		if (err)
627 			break;
628 		err = fixup_compat_flock(&flock);
629 		if (!err)
630 			err = put_compat_flock(&flock, compat_ptr(arg));
631 		break;
632 	case F_GETLK64:
633 	case F_OFD_GETLK:
634 		err = get_compat_flock64(&flock, compat_ptr(arg));
635 		if (err)
636 			break;
637 		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
638 		if (!err)
639 			err = put_compat_flock64(&flock, compat_ptr(arg));
640 		break;
641 	case F_SETLK:
642 	case F_SETLKW:
643 		err = get_compat_flock(&flock, compat_ptr(arg));
644 		if (err)
645 			break;
646 		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
647 		break;
648 	case F_SETLK64:
649 	case F_SETLKW64:
650 	case F_OFD_SETLK:
651 	case F_OFD_SETLKW:
652 		err = get_compat_flock64(&flock, compat_ptr(arg));
653 		if (err)
654 			break;
655 		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
656 		break;
657 	default:
658 		err = do_fcntl(fd, cmd, arg, f.file);
659 		break;
660 	}
661 out_put:
662 	fdput(f);
663 	return err;
664 }
665 
666 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
667 		       compat_ulong_t, arg)
668 {
669 	return do_compat_fcntl64(fd, cmd, arg);
670 }
671 
672 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
673 		       compat_ulong_t, arg)
674 {
675 	switch (cmd) {
676 	case F_GETLK64:
677 	case F_SETLK64:
678 	case F_SETLKW64:
679 	case F_OFD_GETLK:
680 	case F_OFD_SETLK:
681 	case F_OFD_SETLKW:
682 		return -EINVAL;
683 	}
684 	return do_compat_fcntl64(fd, cmd, arg);
685 }
686 #endif
687 
688 /* Table to convert sigio signal codes into poll band bitmaps */
689 
690 static const __poll_t band_table[NSIGPOLL] = {
691 	EPOLLIN | EPOLLRDNORM,			/* POLL_IN */
692 	EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND,	/* POLL_OUT */
693 	EPOLLIN | EPOLLRDNORM | EPOLLMSG,		/* POLL_MSG */
694 	EPOLLERR,				/* POLL_ERR */
695 	EPOLLPRI | EPOLLRDBAND,			/* POLL_PRI */
696 	EPOLLHUP | EPOLLERR			/* POLL_HUP */
697 };
698 
699 static inline int sigio_perm(struct task_struct *p,
700                              struct fown_struct *fown, int sig)
701 {
702 	const struct cred *cred;
703 	int ret;
704 
705 	rcu_read_lock();
706 	cred = __task_cred(p);
707 	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
708 		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
709 		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
710 	       !security_file_send_sigiotask(p, fown, sig));
711 	rcu_read_unlock();
712 	return ret;
713 }
714 
715 static void send_sigio_to_task(struct task_struct *p,
716 			       struct fown_struct *fown,
717 			       int fd, int reason, enum pid_type type)
718 {
719 	/*
720 	 * F_SETSIG can change ->signum lockless in parallel, make
721 	 * sure we read it once and use the same value throughout.
722 	 */
723 	int signum = READ_ONCE(fown->signum);
724 
725 	if (!sigio_perm(p, fown, signum))
726 		return;
727 
728 	switch (signum) {
729 		default: {
730 			kernel_siginfo_t si;
731 
732 			/* Queue a rt signal with the appropriate fd as its
733 			   value.  We use SI_SIGIO as the source, not
734 			   SI_KERNEL, since kernel signals always get
735 			   delivered even if we can't queue.  Failure to
736 			   queue in this case _should_ be reported; we fall
737 			   back to SIGIO in that case. --sct */
738 			clear_siginfo(&si);
739 			si.si_signo = signum;
740 			si.si_errno = 0;
741 		        si.si_code  = reason;
742 			/*
743 			 * Posix definies POLL_IN and friends to be signal
744 			 * specific si_codes for SIG_POLL.  Linux extended
745 			 * these si_codes to other signals in a way that is
746 			 * ambiguous if other signals also have signal
747 			 * specific si_codes.  In that case use SI_SIGIO instead
748 			 * to remove the ambiguity.
749 			 */
750 			if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
751 				si.si_code = SI_SIGIO;
752 
753 			/* Make sure we are called with one of the POLL_*
754 			   reasons, otherwise we could leak kernel stack into
755 			   userspace.  */
756 			BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
757 			if (reason - POLL_IN >= NSIGPOLL)
758 				si.si_band  = ~0L;
759 			else
760 				si.si_band = mangle_poll(band_table[reason - POLL_IN]);
761 			si.si_fd    = fd;
762 			if (!do_send_sig_info(signum, &si, p, type))
763 				break;
764 		}
765 			fallthrough;	/* fall back on the old plain SIGIO signal */
766 		case 0:
767 			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
768 	}
769 }
770 
771 void send_sigio(struct fown_struct *fown, int fd, int band)
772 {
773 	struct task_struct *p;
774 	enum pid_type type;
775 	unsigned long flags;
776 	struct pid *pid;
777 
778 	read_lock_irqsave(&fown->lock, flags);
779 
780 	type = fown->pid_type;
781 	pid = fown->pid;
782 	if (!pid)
783 		goto out_unlock_fown;
784 
785 	if (type <= PIDTYPE_TGID) {
786 		rcu_read_lock();
787 		p = pid_task(pid, PIDTYPE_PID);
788 		if (p)
789 			send_sigio_to_task(p, fown, fd, band, type);
790 		rcu_read_unlock();
791 	} else {
792 		read_lock(&tasklist_lock);
793 		do_each_pid_task(pid, type, p) {
794 			send_sigio_to_task(p, fown, fd, band, type);
795 		} while_each_pid_task(pid, type, p);
796 		read_unlock(&tasklist_lock);
797 	}
798  out_unlock_fown:
799 	read_unlock_irqrestore(&fown->lock, flags);
800 }
801 
802 static void send_sigurg_to_task(struct task_struct *p,
803 				struct fown_struct *fown, enum pid_type type)
804 {
805 	if (sigio_perm(p, fown, SIGURG))
806 		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
807 }
808 
809 int send_sigurg(struct fown_struct *fown)
810 {
811 	struct task_struct *p;
812 	enum pid_type type;
813 	struct pid *pid;
814 	unsigned long flags;
815 	int ret = 0;
816 
817 	read_lock_irqsave(&fown->lock, flags);
818 
819 	type = fown->pid_type;
820 	pid = fown->pid;
821 	if (!pid)
822 		goto out_unlock_fown;
823 
824 	ret = 1;
825 
826 	if (type <= PIDTYPE_TGID) {
827 		rcu_read_lock();
828 		p = pid_task(pid, PIDTYPE_PID);
829 		if (p)
830 			send_sigurg_to_task(p, fown, type);
831 		rcu_read_unlock();
832 	} else {
833 		read_lock(&tasklist_lock);
834 		do_each_pid_task(pid, type, p) {
835 			send_sigurg_to_task(p, fown, type);
836 		} while_each_pid_task(pid, type, p);
837 		read_unlock(&tasklist_lock);
838 	}
839  out_unlock_fown:
840 	read_unlock_irqrestore(&fown->lock, flags);
841 	return ret;
842 }
843 
844 static DEFINE_SPINLOCK(fasync_lock);
845 static struct kmem_cache *fasync_cache __read_mostly;
846 
847 static void fasync_free_rcu(struct rcu_head *head)
848 {
849 	kmem_cache_free(fasync_cache,
850 			container_of(head, struct fasync_struct, fa_rcu));
851 }
852 
853 /*
854  * Remove a fasync entry. If successfully removed, return
855  * positive and clear the FASYNC flag. If no entry exists,
856  * do nothing and return 0.
857  *
858  * NOTE! It is very important that the FASYNC flag always
859  * match the state "is the filp on a fasync list".
860  *
861  */
862 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
863 {
864 	struct fasync_struct *fa, **fp;
865 	int result = 0;
866 
867 	spin_lock(&filp->f_lock);
868 	spin_lock(&fasync_lock);
869 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
870 		if (fa->fa_file != filp)
871 			continue;
872 
873 		write_lock_irq(&fa->fa_lock);
874 		fa->fa_file = NULL;
875 		write_unlock_irq(&fa->fa_lock);
876 
877 		*fp = fa->fa_next;
878 		call_rcu(&fa->fa_rcu, fasync_free_rcu);
879 		filp->f_flags &= ~FASYNC;
880 		result = 1;
881 		break;
882 	}
883 	spin_unlock(&fasync_lock);
884 	spin_unlock(&filp->f_lock);
885 	return result;
886 }
887 
888 struct fasync_struct *fasync_alloc(void)
889 {
890 	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
891 }
892 
893 /*
894  * NOTE! This can be used only for unused fasync entries:
895  * entries that actually got inserted on the fasync list
896  * need to be released by rcu - see fasync_remove_entry.
897  */
898 void fasync_free(struct fasync_struct *new)
899 {
900 	kmem_cache_free(fasync_cache, new);
901 }
902 
903 /*
904  * Insert a new entry into the fasync list.  Return the pointer to the
905  * old one if we didn't use the new one.
906  *
907  * NOTE! It is very important that the FASYNC flag always
908  * match the state "is the filp on a fasync list".
909  */
910 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
911 {
912         struct fasync_struct *fa, **fp;
913 
914 	spin_lock(&filp->f_lock);
915 	spin_lock(&fasync_lock);
916 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
917 		if (fa->fa_file != filp)
918 			continue;
919 
920 		write_lock_irq(&fa->fa_lock);
921 		fa->fa_fd = fd;
922 		write_unlock_irq(&fa->fa_lock);
923 		goto out;
924 	}
925 
926 	rwlock_init(&new->fa_lock);
927 	new->magic = FASYNC_MAGIC;
928 	new->fa_file = filp;
929 	new->fa_fd = fd;
930 	new->fa_next = *fapp;
931 	rcu_assign_pointer(*fapp, new);
932 	filp->f_flags |= FASYNC;
933 
934 out:
935 	spin_unlock(&fasync_lock);
936 	spin_unlock(&filp->f_lock);
937 	return fa;
938 }
939 
940 /*
941  * Add a fasync entry. Return negative on error, positive if
942  * added, and zero if did nothing but change an existing one.
943  */
944 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
945 {
946 	struct fasync_struct *new;
947 
948 	new = fasync_alloc();
949 	if (!new)
950 		return -ENOMEM;
951 
952 	/*
953 	 * fasync_insert_entry() returns the old (update) entry if
954 	 * it existed.
955 	 *
956 	 * So free the (unused) new entry and return 0 to let the
957 	 * caller know that we didn't add any new fasync entries.
958 	 */
959 	if (fasync_insert_entry(fd, filp, fapp, new)) {
960 		fasync_free(new);
961 		return 0;
962 	}
963 
964 	return 1;
965 }
966 
967 /*
968  * fasync_helper() is used by almost all character device drivers
969  * to set up the fasync queue, and for regular files by the file
970  * lease code. It returns negative on error, 0 if it did no changes
971  * and positive if it added/deleted the entry.
972  */
973 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
974 {
975 	if (!on)
976 		return fasync_remove_entry(filp, fapp);
977 	return fasync_add_entry(fd, filp, fapp);
978 }
979 
980 EXPORT_SYMBOL(fasync_helper);
981 
982 /*
983  * rcu_read_lock() is held
984  */
985 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
986 {
987 	while (fa) {
988 		struct fown_struct *fown;
989 		unsigned long flags;
990 
991 		if (fa->magic != FASYNC_MAGIC) {
992 			printk(KERN_ERR "kill_fasync: bad magic number in "
993 			       "fasync_struct!\n");
994 			return;
995 		}
996 		read_lock_irqsave(&fa->fa_lock, flags);
997 		if (fa->fa_file) {
998 			fown = &fa->fa_file->f_owner;
999 			/* Don't send SIGURG to processes which have not set a
1000 			   queued signum: SIGURG has its own default signalling
1001 			   mechanism. */
1002 			if (!(sig == SIGURG && fown->signum == 0))
1003 				send_sigio(fown, fa->fa_fd, band);
1004 		}
1005 		read_unlock_irqrestore(&fa->fa_lock, flags);
1006 		fa = rcu_dereference(fa->fa_next);
1007 	}
1008 }
1009 
1010 void kill_fasync(struct fasync_struct **fp, int sig, int band)
1011 {
1012 	/* First a quick test without locking: usually
1013 	 * the list is empty.
1014 	 */
1015 	if (*fp) {
1016 		rcu_read_lock();
1017 		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1018 		rcu_read_unlock();
1019 	}
1020 }
1021 EXPORT_SYMBOL(kill_fasync);
1022 
1023 static int __init fcntl_init(void)
1024 {
1025 	/*
1026 	 * Please add new bits here to ensure allocation uniqueness.
1027 	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1028 	 * is defined as O_NONBLOCK on some platforms and not on others.
1029 	 */
1030 	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1031 		HWEIGHT32(
1032 			(VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1033 			__FMODE_EXEC | __FMODE_NONOTIFY));
1034 
1035 	fasync_cache = kmem_cache_create("fasync_cache",
1036 					 sizeof(struct fasync_struct), 0,
1037 					 SLAB_PANIC | SLAB_ACCOUNT, NULL);
1038 	return 0;
1039 }
1040 
1041 module_init(fcntl_init)
1042