1 /* 2 * linux/fs/fcntl.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/syscalls.h> 8 #include <linux/init.h> 9 #include <linux/mm.h> 10 #include <linux/fs.h> 11 #include <linux/file.h> 12 #include <linux/fdtable.h> 13 #include <linux/capability.h> 14 #include <linux/dnotify.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/pipe_fs_i.h> 18 #include <linux/security.h> 19 #include <linux/ptrace.h> 20 #include <linux/signal.h> 21 #include <linux/rcupdate.h> 22 #include <linux/pid_namespace.h> 23 #include <linux/user_namespace.h> 24 25 #include <asm/poll.h> 26 #include <asm/siginfo.h> 27 #include <asm/uaccess.h> 28 29 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME) 30 31 static int setfl(int fd, struct file * filp, unsigned long arg) 32 { 33 struct inode * inode = file_inode(filp); 34 int error = 0; 35 36 /* 37 * O_APPEND cannot be cleared if the file is marked as append-only 38 * and the file is open for write. 39 */ 40 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode)) 41 return -EPERM; 42 43 /* O_NOATIME can only be set by the owner or superuser */ 44 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME)) 45 if (!inode_owner_or_capable(inode)) 46 return -EPERM; 47 48 /* required for strict SunOS emulation */ 49 if (O_NONBLOCK != O_NDELAY) 50 if (arg & O_NDELAY) 51 arg |= O_NONBLOCK; 52 53 if (arg & O_DIRECT) { 54 if (!filp->f_mapping || !filp->f_mapping->a_ops || 55 !filp->f_mapping->a_ops->direct_IO) 56 return -EINVAL; 57 } 58 59 if (filp->f_op->check_flags) 60 error = filp->f_op->check_flags(arg); 61 if (error) 62 return error; 63 64 /* 65 * ->fasync() is responsible for setting the FASYNC bit. 66 */ 67 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) { 68 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0); 69 if (error < 0) 70 goto out; 71 if (error > 0) 72 error = 0; 73 } 74 spin_lock(&filp->f_lock); 75 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK); 76 spin_unlock(&filp->f_lock); 77 78 out: 79 return error; 80 } 81 82 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type, 83 int force) 84 { 85 write_lock_irq(&filp->f_owner.lock); 86 if (force || !filp->f_owner.pid) { 87 put_pid(filp->f_owner.pid); 88 filp->f_owner.pid = get_pid(pid); 89 filp->f_owner.pid_type = type; 90 91 if (pid) { 92 const struct cred *cred = current_cred(); 93 filp->f_owner.uid = cred->uid; 94 filp->f_owner.euid = cred->euid; 95 } 96 } 97 write_unlock_irq(&filp->f_owner.lock); 98 } 99 100 int __f_setown(struct file *filp, struct pid *pid, enum pid_type type, 101 int force) 102 { 103 int err; 104 105 err = security_file_set_fowner(filp); 106 if (err) 107 return err; 108 109 f_modown(filp, pid, type, force); 110 return 0; 111 } 112 EXPORT_SYMBOL(__f_setown); 113 114 int f_setown(struct file *filp, unsigned long arg, int force) 115 { 116 enum pid_type type; 117 struct pid *pid; 118 int who = arg; 119 int result; 120 type = PIDTYPE_PID; 121 if (who < 0) { 122 type = PIDTYPE_PGID; 123 who = -who; 124 } 125 rcu_read_lock(); 126 pid = find_vpid(who); 127 result = __f_setown(filp, pid, type, force); 128 rcu_read_unlock(); 129 return result; 130 } 131 EXPORT_SYMBOL(f_setown); 132 133 void f_delown(struct file *filp) 134 { 135 f_modown(filp, NULL, PIDTYPE_PID, 1); 136 } 137 138 pid_t f_getown(struct file *filp) 139 { 140 pid_t pid; 141 read_lock(&filp->f_owner.lock); 142 pid = pid_vnr(filp->f_owner.pid); 143 if (filp->f_owner.pid_type == PIDTYPE_PGID) 144 pid = -pid; 145 read_unlock(&filp->f_owner.lock); 146 return pid; 147 } 148 149 static int f_setown_ex(struct file *filp, unsigned long arg) 150 { 151 struct f_owner_ex __user *owner_p = (void __user *)arg; 152 struct f_owner_ex owner; 153 struct pid *pid; 154 int type; 155 int ret; 156 157 ret = copy_from_user(&owner, owner_p, sizeof(owner)); 158 if (ret) 159 return -EFAULT; 160 161 switch (owner.type) { 162 case F_OWNER_TID: 163 type = PIDTYPE_MAX; 164 break; 165 166 case F_OWNER_PID: 167 type = PIDTYPE_PID; 168 break; 169 170 case F_OWNER_PGRP: 171 type = PIDTYPE_PGID; 172 break; 173 174 default: 175 return -EINVAL; 176 } 177 178 rcu_read_lock(); 179 pid = find_vpid(owner.pid); 180 if (owner.pid && !pid) 181 ret = -ESRCH; 182 else 183 ret = __f_setown(filp, pid, type, 1); 184 rcu_read_unlock(); 185 186 return ret; 187 } 188 189 static int f_getown_ex(struct file *filp, unsigned long arg) 190 { 191 struct f_owner_ex __user *owner_p = (void __user *)arg; 192 struct f_owner_ex owner; 193 int ret = 0; 194 195 read_lock(&filp->f_owner.lock); 196 owner.pid = pid_vnr(filp->f_owner.pid); 197 switch (filp->f_owner.pid_type) { 198 case PIDTYPE_MAX: 199 owner.type = F_OWNER_TID; 200 break; 201 202 case PIDTYPE_PID: 203 owner.type = F_OWNER_PID; 204 break; 205 206 case PIDTYPE_PGID: 207 owner.type = F_OWNER_PGRP; 208 break; 209 210 default: 211 WARN_ON(1); 212 ret = -EINVAL; 213 break; 214 } 215 read_unlock(&filp->f_owner.lock); 216 217 if (!ret) { 218 ret = copy_to_user(owner_p, &owner, sizeof(owner)); 219 if (ret) 220 ret = -EFAULT; 221 } 222 return ret; 223 } 224 225 #ifdef CONFIG_CHECKPOINT_RESTORE 226 static int f_getowner_uids(struct file *filp, unsigned long arg) 227 { 228 struct user_namespace *user_ns = current_user_ns(); 229 uid_t __user *dst = (void __user *)arg; 230 uid_t src[2]; 231 int err; 232 233 read_lock(&filp->f_owner.lock); 234 src[0] = from_kuid(user_ns, filp->f_owner.uid); 235 src[1] = from_kuid(user_ns, filp->f_owner.euid); 236 read_unlock(&filp->f_owner.lock); 237 238 err = put_user(src[0], &dst[0]); 239 err |= put_user(src[1], &dst[1]); 240 241 return err; 242 } 243 #else 244 static int f_getowner_uids(struct file *filp, unsigned long arg) 245 { 246 return -EINVAL; 247 } 248 #endif 249 250 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg, 251 struct file *filp) 252 { 253 long err = -EINVAL; 254 255 switch (cmd) { 256 case F_DUPFD: 257 err = f_dupfd(arg, filp, 0); 258 break; 259 case F_DUPFD_CLOEXEC: 260 err = f_dupfd(arg, filp, O_CLOEXEC); 261 break; 262 case F_GETFD: 263 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0; 264 break; 265 case F_SETFD: 266 err = 0; 267 set_close_on_exec(fd, arg & FD_CLOEXEC); 268 break; 269 case F_GETFL: 270 err = filp->f_flags; 271 break; 272 case F_SETFL: 273 err = setfl(fd, filp, arg); 274 break; 275 case F_GETLK: 276 err = fcntl_getlk(filp, (struct flock __user *) arg); 277 break; 278 case F_SETLK: 279 case F_SETLKW: 280 err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg); 281 break; 282 case F_GETOWN: 283 /* 284 * XXX If f_owner is a process group, the 285 * negative return value will get converted 286 * into an error. Oops. If we keep the 287 * current syscall conventions, the only way 288 * to fix this will be in libc. 289 */ 290 err = f_getown(filp); 291 force_successful_syscall_return(); 292 break; 293 case F_SETOWN: 294 err = f_setown(filp, arg, 1); 295 break; 296 case F_GETOWN_EX: 297 err = f_getown_ex(filp, arg); 298 break; 299 case F_SETOWN_EX: 300 err = f_setown_ex(filp, arg); 301 break; 302 case F_GETOWNER_UIDS: 303 err = f_getowner_uids(filp, arg); 304 break; 305 case F_GETSIG: 306 err = filp->f_owner.signum; 307 break; 308 case F_SETSIG: 309 /* arg == 0 restores default behaviour. */ 310 if (!valid_signal(arg)) { 311 break; 312 } 313 err = 0; 314 filp->f_owner.signum = arg; 315 break; 316 case F_GETLEASE: 317 err = fcntl_getlease(filp); 318 break; 319 case F_SETLEASE: 320 err = fcntl_setlease(fd, filp, arg); 321 break; 322 case F_NOTIFY: 323 err = fcntl_dirnotify(fd, filp, arg); 324 break; 325 case F_SETPIPE_SZ: 326 case F_GETPIPE_SZ: 327 err = pipe_fcntl(filp, cmd, arg); 328 break; 329 default: 330 break; 331 } 332 return err; 333 } 334 335 static int check_fcntl_cmd(unsigned cmd) 336 { 337 switch (cmd) { 338 case F_DUPFD: 339 case F_DUPFD_CLOEXEC: 340 case F_GETFD: 341 case F_SETFD: 342 case F_GETFL: 343 return 1; 344 } 345 return 0; 346 } 347 348 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg) 349 { 350 struct fd f = fdget_raw(fd); 351 long err = -EBADF; 352 353 if (!f.file) 354 goto out; 355 356 if (unlikely(f.file->f_mode & FMODE_PATH)) { 357 if (!check_fcntl_cmd(cmd)) 358 goto out1; 359 } 360 361 err = security_file_fcntl(f.file, cmd, arg); 362 if (!err) 363 err = do_fcntl(fd, cmd, arg, f.file); 364 365 out1: 366 fdput(f); 367 out: 368 return err; 369 } 370 371 #if BITS_PER_LONG == 32 372 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, 373 unsigned long, arg) 374 { 375 struct fd f = fdget_raw(fd); 376 long err = -EBADF; 377 378 if (!f.file) 379 goto out; 380 381 if (unlikely(f.file->f_mode & FMODE_PATH)) { 382 if (!check_fcntl_cmd(cmd)) 383 goto out1; 384 } 385 386 err = security_file_fcntl(f.file, cmd, arg); 387 if (err) 388 goto out1; 389 390 switch (cmd) { 391 case F_GETLK64: 392 err = fcntl_getlk64(f.file, (struct flock64 __user *) arg); 393 break; 394 case F_SETLK64: 395 case F_SETLKW64: 396 err = fcntl_setlk64(fd, f.file, cmd, 397 (struct flock64 __user *) arg); 398 break; 399 default: 400 err = do_fcntl(fd, cmd, arg, f.file); 401 break; 402 } 403 out1: 404 fdput(f); 405 out: 406 return err; 407 } 408 #endif 409 410 /* Table to convert sigio signal codes into poll band bitmaps */ 411 412 static const long band_table[NSIGPOLL] = { 413 POLLIN | POLLRDNORM, /* POLL_IN */ 414 POLLOUT | POLLWRNORM | POLLWRBAND, /* POLL_OUT */ 415 POLLIN | POLLRDNORM | POLLMSG, /* POLL_MSG */ 416 POLLERR, /* POLL_ERR */ 417 POLLPRI | POLLRDBAND, /* POLL_PRI */ 418 POLLHUP | POLLERR /* POLL_HUP */ 419 }; 420 421 static inline int sigio_perm(struct task_struct *p, 422 struct fown_struct *fown, int sig) 423 { 424 const struct cred *cred; 425 int ret; 426 427 rcu_read_lock(); 428 cred = __task_cred(p); 429 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) || 430 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) || 431 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) && 432 !security_file_send_sigiotask(p, fown, sig)); 433 rcu_read_unlock(); 434 return ret; 435 } 436 437 static void send_sigio_to_task(struct task_struct *p, 438 struct fown_struct *fown, 439 int fd, int reason, int group) 440 { 441 /* 442 * F_SETSIG can change ->signum lockless in parallel, make 443 * sure we read it once and use the same value throughout. 444 */ 445 int signum = ACCESS_ONCE(fown->signum); 446 447 if (!sigio_perm(p, fown, signum)) 448 return; 449 450 switch (signum) { 451 siginfo_t si; 452 default: 453 /* Queue a rt signal with the appropriate fd as its 454 value. We use SI_SIGIO as the source, not 455 SI_KERNEL, since kernel signals always get 456 delivered even if we can't queue. Failure to 457 queue in this case _should_ be reported; we fall 458 back to SIGIO in that case. --sct */ 459 si.si_signo = signum; 460 si.si_errno = 0; 461 si.si_code = reason; 462 /* Make sure we are called with one of the POLL_* 463 reasons, otherwise we could leak kernel stack into 464 userspace. */ 465 BUG_ON((reason & __SI_MASK) != __SI_POLL); 466 if (reason - POLL_IN >= NSIGPOLL) 467 si.si_band = ~0L; 468 else 469 si.si_band = band_table[reason - POLL_IN]; 470 si.si_fd = fd; 471 if (!do_send_sig_info(signum, &si, p, group)) 472 break; 473 /* fall-through: fall back on the old plain SIGIO signal */ 474 case 0: 475 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group); 476 } 477 } 478 479 void send_sigio(struct fown_struct *fown, int fd, int band) 480 { 481 struct task_struct *p; 482 enum pid_type type; 483 struct pid *pid; 484 int group = 1; 485 486 read_lock(&fown->lock); 487 488 type = fown->pid_type; 489 if (type == PIDTYPE_MAX) { 490 group = 0; 491 type = PIDTYPE_PID; 492 } 493 494 pid = fown->pid; 495 if (!pid) 496 goto out_unlock_fown; 497 498 read_lock(&tasklist_lock); 499 do_each_pid_task(pid, type, p) { 500 send_sigio_to_task(p, fown, fd, band, group); 501 } while_each_pid_task(pid, type, p); 502 read_unlock(&tasklist_lock); 503 out_unlock_fown: 504 read_unlock(&fown->lock); 505 } 506 507 static void send_sigurg_to_task(struct task_struct *p, 508 struct fown_struct *fown, int group) 509 { 510 if (sigio_perm(p, fown, SIGURG)) 511 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group); 512 } 513 514 int send_sigurg(struct fown_struct *fown) 515 { 516 struct task_struct *p; 517 enum pid_type type; 518 struct pid *pid; 519 int group = 1; 520 int ret = 0; 521 522 read_lock(&fown->lock); 523 524 type = fown->pid_type; 525 if (type == PIDTYPE_MAX) { 526 group = 0; 527 type = PIDTYPE_PID; 528 } 529 530 pid = fown->pid; 531 if (!pid) 532 goto out_unlock_fown; 533 534 ret = 1; 535 536 read_lock(&tasklist_lock); 537 do_each_pid_task(pid, type, p) { 538 send_sigurg_to_task(p, fown, group); 539 } while_each_pid_task(pid, type, p); 540 read_unlock(&tasklist_lock); 541 out_unlock_fown: 542 read_unlock(&fown->lock); 543 return ret; 544 } 545 546 static DEFINE_SPINLOCK(fasync_lock); 547 static struct kmem_cache *fasync_cache __read_mostly; 548 549 static void fasync_free_rcu(struct rcu_head *head) 550 { 551 kmem_cache_free(fasync_cache, 552 container_of(head, struct fasync_struct, fa_rcu)); 553 } 554 555 /* 556 * Remove a fasync entry. If successfully removed, return 557 * positive and clear the FASYNC flag. If no entry exists, 558 * do nothing and return 0. 559 * 560 * NOTE! It is very important that the FASYNC flag always 561 * match the state "is the filp on a fasync list". 562 * 563 */ 564 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp) 565 { 566 struct fasync_struct *fa, **fp; 567 int result = 0; 568 569 spin_lock(&filp->f_lock); 570 spin_lock(&fasync_lock); 571 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 572 if (fa->fa_file != filp) 573 continue; 574 575 spin_lock_irq(&fa->fa_lock); 576 fa->fa_file = NULL; 577 spin_unlock_irq(&fa->fa_lock); 578 579 *fp = fa->fa_next; 580 call_rcu(&fa->fa_rcu, fasync_free_rcu); 581 filp->f_flags &= ~FASYNC; 582 result = 1; 583 break; 584 } 585 spin_unlock(&fasync_lock); 586 spin_unlock(&filp->f_lock); 587 return result; 588 } 589 590 struct fasync_struct *fasync_alloc(void) 591 { 592 return kmem_cache_alloc(fasync_cache, GFP_KERNEL); 593 } 594 595 /* 596 * NOTE! This can be used only for unused fasync entries: 597 * entries that actually got inserted on the fasync list 598 * need to be released by rcu - see fasync_remove_entry. 599 */ 600 void fasync_free(struct fasync_struct *new) 601 { 602 kmem_cache_free(fasync_cache, new); 603 } 604 605 /* 606 * Insert a new entry into the fasync list. Return the pointer to the 607 * old one if we didn't use the new one. 608 * 609 * NOTE! It is very important that the FASYNC flag always 610 * match the state "is the filp on a fasync list". 611 */ 612 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new) 613 { 614 struct fasync_struct *fa, **fp; 615 616 spin_lock(&filp->f_lock); 617 spin_lock(&fasync_lock); 618 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 619 if (fa->fa_file != filp) 620 continue; 621 622 spin_lock_irq(&fa->fa_lock); 623 fa->fa_fd = fd; 624 spin_unlock_irq(&fa->fa_lock); 625 goto out; 626 } 627 628 spin_lock_init(&new->fa_lock); 629 new->magic = FASYNC_MAGIC; 630 new->fa_file = filp; 631 new->fa_fd = fd; 632 new->fa_next = *fapp; 633 rcu_assign_pointer(*fapp, new); 634 filp->f_flags |= FASYNC; 635 636 out: 637 spin_unlock(&fasync_lock); 638 spin_unlock(&filp->f_lock); 639 return fa; 640 } 641 642 /* 643 * Add a fasync entry. Return negative on error, positive if 644 * added, and zero if did nothing but change an existing one. 645 */ 646 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp) 647 { 648 struct fasync_struct *new; 649 650 new = fasync_alloc(); 651 if (!new) 652 return -ENOMEM; 653 654 /* 655 * fasync_insert_entry() returns the old (update) entry if 656 * it existed. 657 * 658 * So free the (unused) new entry and return 0 to let the 659 * caller know that we didn't add any new fasync entries. 660 */ 661 if (fasync_insert_entry(fd, filp, fapp, new)) { 662 fasync_free(new); 663 return 0; 664 } 665 666 return 1; 667 } 668 669 /* 670 * fasync_helper() is used by almost all character device drivers 671 * to set up the fasync queue, and for regular files by the file 672 * lease code. It returns negative on error, 0 if it did no changes 673 * and positive if it added/deleted the entry. 674 */ 675 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp) 676 { 677 if (!on) 678 return fasync_remove_entry(filp, fapp); 679 return fasync_add_entry(fd, filp, fapp); 680 } 681 682 EXPORT_SYMBOL(fasync_helper); 683 684 /* 685 * rcu_read_lock() is held 686 */ 687 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band) 688 { 689 while (fa) { 690 struct fown_struct *fown; 691 unsigned long flags; 692 693 if (fa->magic != FASYNC_MAGIC) { 694 printk(KERN_ERR "kill_fasync: bad magic number in " 695 "fasync_struct!\n"); 696 return; 697 } 698 spin_lock_irqsave(&fa->fa_lock, flags); 699 if (fa->fa_file) { 700 fown = &fa->fa_file->f_owner; 701 /* Don't send SIGURG to processes which have not set a 702 queued signum: SIGURG has its own default signalling 703 mechanism. */ 704 if (!(sig == SIGURG && fown->signum == 0)) 705 send_sigio(fown, fa->fa_fd, band); 706 } 707 spin_unlock_irqrestore(&fa->fa_lock, flags); 708 fa = rcu_dereference(fa->fa_next); 709 } 710 } 711 712 void kill_fasync(struct fasync_struct **fp, int sig, int band) 713 { 714 /* First a quick test without locking: usually 715 * the list is empty. 716 */ 717 if (*fp) { 718 rcu_read_lock(); 719 kill_fasync_rcu(rcu_dereference(*fp), sig, band); 720 rcu_read_unlock(); 721 } 722 } 723 EXPORT_SYMBOL(kill_fasync); 724 725 static int __init fcntl_init(void) 726 { 727 /* 728 * Please add new bits here to ensure allocation uniqueness. 729 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY 730 * is defined as O_NONBLOCK on some platforms and not on others. 731 */ 732 BUILD_BUG_ON(20 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32( 733 O_RDONLY | O_WRONLY | O_RDWR | 734 O_CREAT | O_EXCL | O_NOCTTY | 735 O_TRUNC | O_APPEND | /* O_NONBLOCK | */ 736 __O_SYNC | O_DSYNC | FASYNC | 737 O_DIRECT | O_LARGEFILE | O_DIRECTORY | 738 O_NOFOLLOW | O_NOATIME | O_CLOEXEC | 739 __FMODE_EXEC | O_PATH | __O_TMPFILE 740 )); 741 742 fasync_cache = kmem_cache_create("fasync_cache", 743 sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL); 744 return 0; 745 } 746 747 module_init(fcntl_init) 748