1 /* 2 * linux/fs/fcntl.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/syscalls.h> 8 #include <linux/init.h> 9 #include <linux/mm.h> 10 #include <linux/fs.h> 11 #include <linux/file.h> 12 #include <linux/fdtable.h> 13 #include <linux/capability.h> 14 #include <linux/dnotify.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/pipe_fs_i.h> 18 #include <linux/security.h> 19 #include <linux/ptrace.h> 20 #include <linux/signal.h> 21 #include <linux/rcupdate.h> 22 #include <linux/pid_namespace.h> 23 #include <linux/user_namespace.h> 24 25 #include <asm/poll.h> 26 #include <asm/siginfo.h> 27 #include <asm/uaccess.h> 28 29 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME) 30 31 static int setfl(int fd, struct file * filp, unsigned long arg) 32 { 33 struct inode * inode = file_inode(filp); 34 int error = 0; 35 36 /* 37 * O_APPEND cannot be cleared if the file is marked as append-only 38 * and the file is open for write. 39 */ 40 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode)) 41 return -EPERM; 42 43 /* O_NOATIME can only be set by the owner or superuser */ 44 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME)) 45 if (!inode_owner_or_capable(inode)) 46 return -EPERM; 47 48 /* required for strict SunOS emulation */ 49 if (O_NONBLOCK != O_NDELAY) 50 if (arg & O_NDELAY) 51 arg |= O_NONBLOCK; 52 53 if (arg & O_DIRECT) { 54 if (!filp->f_mapping || !filp->f_mapping->a_ops || 55 !filp->f_mapping->a_ops->direct_IO) 56 return -EINVAL; 57 } 58 59 if (filp->f_op && filp->f_op->check_flags) 60 error = filp->f_op->check_flags(arg); 61 if (error) 62 return error; 63 64 /* 65 * ->fasync() is responsible for setting the FASYNC bit. 66 */ 67 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op && 68 filp->f_op->fasync) { 69 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0); 70 if (error < 0) 71 goto out; 72 if (error > 0) 73 error = 0; 74 } 75 spin_lock(&filp->f_lock); 76 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK); 77 spin_unlock(&filp->f_lock); 78 79 out: 80 return error; 81 } 82 83 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type, 84 int force) 85 { 86 write_lock_irq(&filp->f_owner.lock); 87 if (force || !filp->f_owner.pid) { 88 put_pid(filp->f_owner.pid); 89 filp->f_owner.pid = get_pid(pid); 90 filp->f_owner.pid_type = type; 91 92 if (pid) { 93 const struct cred *cred = current_cred(); 94 filp->f_owner.uid = cred->uid; 95 filp->f_owner.euid = cred->euid; 96 } 97 } 98 write_unlock_irq(&filp->f_owner.lock); 99 } 100 101 int __f_setown(struct file *filp, struct pid *pid, enum pid_type type, 102 int force) 103 { 104 int err; 105 106 err = security_file_set_fowner(filp); 107 if (err) 108 return err; 109 110 f_modown(filp, pid, type, force); 111 return 0; 112 } 113 EXPORT_SYMBOL(__f_setown); 114 115 int f_setown(struct file *filp, unsigned long arg, int force) 116 { 117 enum pid_type type; 118 struct pid *pid; 119 int who = arg; 120 int result; 121 type = PIDTYPE_PID; 122 if (who < 0) { 123 type = PIDTYPE_PGID; 124 who = -who; 125 } 126 rcu_read_lock(); 127 pid = find_vpid(who); 128 result = __f_setown(filp, pid, type, force); 129 rcu_read_unlock(); 130 return result; 131 } 132 EXPORT_SYMBOL(f_setown); 133 134 void f_delown(struct file *filp) 135 { 136 f_modown(filp, NULL, PIDTYPE_PID, 1); 137 } 138 139 pid_t f_getown(struct file *filp) 140 { 141 pid_t pid; 142 read_lock(&filp->f_owner.lock); 143 pid = pid_vnr(filp->f_owner.pid); 144 if (filp->f_owner.pid_type == PIDTYPE_PGID) 145 pid = -pid; 146 read_unlock(&filp->f_owner.lock); 147 return pid; 148 } 149 150 static int f_setown_ex(struct file *filp, unsigned long arg) 151 { 152 struct f_owner_ex __user *owner_p = (void __user *)arg; 153 struct f_owner_ex owner; 154 struct pid *pid; 155 int type; 156 int ret; 157 158 ret = copy_from_user(&owner, owner_p, sizeof(owner)); 159 if (ret) 160 return -EFAULT; 161 162 switch (owner.type) { 163 case F_OWNER_TID: 164 type = PIDTYPE_MAX; 165 break; 166 167 case F_OWNER_PID: 168 type = PIDTYPE_PID; 169 break; 170 171 case F_OWNER_PGRP: 172 type = PIDTYPE_PGID; 173 break; 174 175 default: 176 return -EINVAL; 177 } 178 179 rcu_read_lock(); 180 pid = find_vpid(owner.pid); 181 if (owner.pid && !pid) 182 ret = -ESRCH; 183 else 184 ret = __f_setown(filp, pid, type, 1); 185 rcu_read_unlock(); 186 187 return ret; 188 } 189 190 static int f_getown_ex(struct file *filp, unsigned long arg) 191 { 192 struct f_owner_ex __user *owner_p = (void __user *)arg; 193 struct f_owner_ex owner; 194 int ret = 0; 195 196 read_lock(&filp->f_owner.lock); 197 owner.pid = pid_vnr(filp->f_owner.pid); 198 switch (filp->f_owner.pid_type) { 199 case PIDTYPE_MAX: 200 owner.type = F_OWNER_TID; 201 break; 202 203 case PIDTYPE_PID: 204 owner.type = F_OWNER_PID; 205 break; 206 207 case PIDTYPE_PGID: 208 owner.type = F_OWNER_PGRP; 209 break; 210 211 default: 212 WARN_ON(1); 213 ret = -EINVAL; 214 break; 215 } 216 read_unlock(&filp->f_owner.lock); 217 218 if (!ret) { 219 ret = copy_to_user(owner_p, &owner, sizeof(owner)); 220 if (ret) 221 ret = -EFAULT; 222 } 223 return ret; 224 } 225 226 #ifdef CONFIG_CHECKPOINT_RESTORE 227 static int f_getowner_uids(struct file *filp, unsigned long arg) 228 { 229 struct user_namespace *user_ns = current_user_ns(); 230 uid_t __user *dst = (void __user *)arg; 231 uid_t src[2]; 232 int err; 233 234 read_lock(&filp->f_owner.lock); 235 src[0] = from_kuid(user_ns, filp->f_owner.uid); 236 src[1] = from_kuid(user_ns, filp->f_owner.euid); 237 read_unlock(&filp->f_owner.lock); 238 239 err = put_user(src[0], &dst[0]); 240 err |= put_user(src[1], &dst[1]); 241 242 return err; 243 } 244 #else 245 static int f_getowner_uids(struct file *filp, unsigned long arg) 246 { 247 return -EINVAL; 248 } 249 #endif 250 251 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg, 252 struct file *filp) 253 { 254 long err = -EINVAL; 255 256 switch (cmd) { 257 case F_DUPFD: 258 err = f_dupfd(arg, filp, 0); 259 break; 260 case F_DUPFD_CLOEXEC: 261 err = f_dupfd(arg, filp, O_CLOEXEC); 262 break; 263 case F_GETFD: 264 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0; 265 break; 266 case F_SETFD: 267 err = 0; 268 set_close_on_exec(fd, arg & FD_CLOEXEC); 269 break; 270 case F_GETFL: 271 err = filp->f_flags; 272 break; 273 case F_SETFL: 274 err = setfl(fd, filp, arg); 275 break; 276 case F_GETLK: 277 err = fcntl_getlk(filp, (struct flock __user *) arg); 278 break; 279 case F_SETLK: 280 case F_SETLKW: 281 err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg); 282 break; 283 case F_GETOWN: 284 /* 285 * XXX If f_owner is a process group, the 286 * negative return value will get converted 287 * into an error. Oops. If we keep the 288 * current syscall conventions, the only way 289 * to fix this will be in libc. 290 */ 291 err = f_getown(filp); 292 force_successful_syscall_return(); 293 break; 294 case F_SETOWN: 295 err = f_setown(filp, arg, 1); 296 break; 297 case F_GETOWN_EX: 298 err = f_getown_ex(filp, arg); 299 break; 300 case F_SETOWN_EX: 301 err = f_setown_ex(filp, arg); 302 break; 303 case F_GETOWNER_UIDS: 304 err = f_getowner_uids(filp, arg); 305 break; 306 case F_GETSIG: 307 err = filp->f_owner.signum; 308 break; 309 case F_SETSIG: 310 /* arg == 0 restores default behaviour. */ 311 if (!valid_signal(arg)) { 312 break; 313 } 314 err = 0; 315 filp->f_owner.signum = arg; 316 break; 317 case F_GETLEASE: 318 err = fcntl_getlease(filp); 319 break; 320 case F_SETLEASE: 321 err = fcntl_setlease(fd, filp, arg); 322 break; 323 case F_NOTIFY: 324 err = fcntl_dirnotify(fd, filp, arg); 325 break; 326 case F_SETPIPE_SZ: 327 case F_GETPIPE_SZ: 328 err = pipe_fcntl(filp, cmd, arg); 329 break; 330 default: 331 break; 332 } 333 return err; 334 } 335 336 static int check_fcntl_cmd(unsigned cmd) 337 { 338 switch (cmd) { 339 case F_DUPFD: 340 case F_DUPFD_CLOEXEC: 341 case F_GETFD: 342 case F_SETFD: 343 case F_GETFL: 344 return 1; 345 } 346 return 0; 347 } 348 349 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg) 350 { 351 struct fd f = fdget_raw(fd); 352 long err = -EBADF; 353 354 if (!f.file) 355 goto out; 356 357 if (unlikely(f.file->f_mode & FMODE_PATH)) { 358 if (!check_fcntl_cmd(cmd)) 359 goto out1; 360 } 361 362 err = security_file_fcntl(f.file, cmd, arg); 363 if (!err) 364 err = do_fcntl(fd, cmd, arg, f.file); 365 366 out1: 367 fdput(f); 368 out: 369 return err; 370 } 371 372 #if BITS_PER_LONG == 32 373 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, 374 unsigned long, arg) 375 { 376 struct fd f = fdget_raw(fd); 377 long err = -EBADF; 378 379 if (!f.file) 380 goto out; 381 382 if (unlikely(f.file->f_mode & FMODE_PATH)) { 383 if (!check_fcntl_cmd(cmd)) 384 goto out1; 385 } 386 387 err = security_file_fcntl(f.file, cmd, arg); 388 if (err) 389 goto out1; 390 391 switch (cmd) { 392 case F_GETLK64: 393 err = fcntl_getlk64(f.file, (struct flock64 __user *) arg); 394 break; 395 case F_SETLK64: 396 case F_SETLKW64: 397 err = fcntl_setlk64(fd, f.file, cmd, 398 (struct flock64 __user *) arg); 399 break; 400 default: 401 err = do_fcntl(fd, cmd, arg, f.file); 402 break; 403 } 404 out1: 405 fdput(f); 406 out: 407 return err; 408 } 409 #endif 410 411 /* Table to convert sigio signal codes into poll band bitmaps */ 412 413 static const long band_table[NSIGPOLL] = { 414 POLLIN | POLLRDNORM, /* POLL_IN */ 415 POLLOUT | POLLWRNORM | POLLWRBAND, /* POLL_OUT */ 416 POLLIN | POLLRDNORM | POLLMSG, /* POLL_MSG */ 417 POLLERR, /* POLL_ERR */ 418 POLLPRI | POLLRDBAND, /* POLL_PRI */ 419 POLLHUP | POLLERR /* POLL_HUP */ 420 }; 421 422 static inline int sigio_perm(struct task_struct *p, 423 struct fown_struct *fown, int sig) 424 { 425 const struct cred *cred; 426 int ret; 427 428 rcu_read_lock(); 429 cred = __task_cred(p); 430 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) || 431 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) || 432 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) && 433 !security_file_send_sigiotask(p, fown, sig)); 434 rcu_read_unlock(); 435 return ret; 436 } 437 438 static void send_sigio_to_task(struct task_struct *p, 439 struct fown_struct *fown, 440 int fd, int reason, int group) 441 { 442 /* 443 * F_SETSIG can change ->signum lockless in parallel, make 444 * sure we read it once and use the same value throughout. 445 */ 446 int signum = ACCESS_ONCE(fown->signum); 447 448 if (!sigio_perm(p, fown, signum)) 449 return; 450 451 switch (signum) { 452 siginfo_t si; 453 default: 454 /* Queue a rt signal with the appropriate fd as its 455 value. We use SI_SIGIO as the source, not 456 SI_KERNEL, since kernel signals always get 457 delivered even if we can't queue. Failure to 458 queue in this case _should_ be reported; we fall 459 back to SIGIO in that case. --sct */ 460 si.si_signo = signum; 461 si.si_errno = 0; 462 si.si_code = reason; 463 /* Make sure we are called with one of the POLL_* 464 reasons, otherwise we could leak kernel stack into 465 userspace. */ 466 BUG_ON((reason & __SI_MASK) != __SI_POLL); 467 if (reason - POLL_IN >= NSIGPOLL) 468 si.si_band = ~0L; 469 else 470 si.si_band = band_table[reason - POLL_IN]; 471 si.si_fd = fd; 472 if (!do_send_sig_info(signum, &si, p, group)) 473 break; 474 /* fall-through: fall back on the old plain SIGIO signal */ 475 case 0: 476 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group); 477 } 478 } 479 480 void send_sigio(struct fown_struct *fown, int fd, int band) 481 { 482 struct task_struct *p; 483 enum pid_type type; 484 struct pid *pid; 485 int group = 1; 486 487 read_lock(&fown->lock); 488 489 type = fown->pid_type; 490 if (type == PIDTYPE_MAX) { 491 group = 0; 492 type = PIDTYPE_PID; 493 } 494 495 pid = fown->pid; 496 if (!pid) 497 goto out_unlock_fown; 498 499 read_lock(&tasklist_lock); 500 do_each_pid_task(pid, type, p) { 501 send_sigio_to_task(p, fown, fd, band, group); 502 } while_each_pid_task(pid, type, p); 503 read_unlock(&tasklist_lock); 504 out_unlock_fown: 505 read_unlock(&fown->lock); 506 } 507 508 static void send_sigurg_to_task(struct task_struct *p, 509 struct fown_struct *fown, int group) 510 { 511 if (sigio_perm(p, fown, SIGURG)) 512 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group); 513 } 514 515 int send_sigurg(struct fown_struct *fown) 516 { 517 struct task_struct *p; 518 enum pid_type type; 519 struct pid *pid; 520 int group = 1; 521 int ret = 0; 522 523 read_lock(&fown->lock); 524 525 type = fown->pid_type; 526 if (type == PIDTYPE_MAX) { 527 group = 0; 528 type = PIDTYPE_PID; 529 } 530 531 pid = fown->pid; 532 if (!pid) 533 goto out_unlock_fown; 534 535 ret = 1; 536 537 read_lock(&tasklist_lock); 538 do_each_pid_task(pid, type, p) { 539 send_sigurg_to_task(p, fown, group); 540 } while_each_pid_task(pid, type, p); 541 read_unlock(&tasklist_lock); 542 out_unlock_fown: 543 read_unlock(&fown->lock); 544 return ret; 545 } 546 547 static DEFINE_SPINLOCK(fasync_lock); 548 static struct kmem_cache *fasync_cache __read_mostly; 549 550 static void fasync_free_rcu(struct rcu_head *head) 551 { 552 kmem_cache_free(fasync_cache, 553 container_of(head, struct fasync_struct, fa_rcu)); 554 } 555 556 /* 557 * Remove a fasync entry. If successfully removed, return 558 * positive and clear the FASYNC flag. If no entry exists, 559 * do nothing and return 0. 560 * 561 * NOTE! It is very important that the FASYNC flag always 562 * match the state "is the filp on a fasync list". 563 * 564 */ 565 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp) 566 { 567 struct fasync_struct *fa, **fp; 568 int result = 0; 569 570 spin_lock(&filp->f_lock); 571 spin_lock(&fasync_lock); 572 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 573 if (fa->fa_file != filp) 574 continue; 575 576 spin_lock_irq(&fa->fa_lock); 577 fa->fa_file = NULL; 578 spin_unlock_irq(&fa->fa_lock); 579 580 *fp = fa->fa_next; 581 call_rcu(&fa->fa_rcu, fasync_free_rcu); 582 filp->f_flags &= ~FASYNC; 583 result = 1; 584 break; 585 } 586 spin_unlock(&fasync_lock); 587 spin_unlock(&filp->f_lock); 588 return result; 589 } 590 591 struct fasync_struct *fasync_alloc(void) 592 { 593 return kmem_cache_alloc(fasync_cache, GFP_KERNEL); 594 } 595 596 /* 597 * NOTE! This can be used only for unused fasync entries: 598 * entries that actually got inserted on the fasync list 599 * need to be released by rcu - see fasync_remove_entry. 600 */ 601 void fasync_free(struct fasync_struct *new) 602 { 603 kmem_cache_free(fasync_cache, new); 604 } 605 606 /* 607 * Insert a new entry into the fasync list. Return the pointer to the 608 * old one if we didn't use the new one. 609 * 610 * NOTE! It is very important that the FASYNC flag always 611 * match the state "is the filp on a fasync list". 612 */ 613 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new) 614 { 615 struct fasync_struct *fa, **fp; 616 617 spin_lock(&filp->f_lock); 618 spin_lock(&fasync_lock); 619 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 620 if (fa->fa_file != filp) 621 continue; 622 623 spin_lock_irq(&fa->fa_lock); 624 fa->fa_fd = fd; 625 spin_unlock_irq(&fa->fa_lock); 626 goto out; 627 } 628 629 spin_lock_init(&new->fa_lock); 630 new->magic = FASYNC_MAGIC; 631 new->fa_file = filp; 632 new->fa_fd = fd; 633 new->fa_next = *fapp; 634 rcu_assign_pointer(*fapp, new); 635 filp->f_flags |= FASYNC; 636 637 out: 638 spin_unlock(&fasync_lock); 639 spin_unlock(&filp->f_lock); 640 return fa; 641 } 642 643 /* 644 * Add a fasync entry. Return negative on error, positive if 645 * added, and zero if did nothing but change an existing one. 646 */ 647 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp) 648 { 649 struct fasync_struct *new; 650 651 new = fasync_alloc(); 652 if (!new) 653 return -ENOMEM; 654 655 /* 656 * fasync_insert_entry() returns the old (update) entry if 657 * it existed. 658 * 659 * So free the (unused) new entry and return 0 to let the 660 * caller know that we didn't add any new fasync entries. 661 */ 662 if (fasync_insert_entry(fd, filp, fapp, new)) { 663 fasync_free(new); 664 return 0; 665 } 666 667 return 1; 668 } 669 670 /* 671 * fasync_helper() is used by almost all character device drivers 672 * to set up the fasync queue, and for regular files by the file 673 * lease code. It returns negative on error, 0 if it did no changes 674 * and positive if it added/deleted the entry. 675 */ 676 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp) 677 { 678 if (!on) 679 return fasync_remove_entry(filp, fapp); 680 return fasync_add_entry(fd, filp, fapp); 681 } 682 683 EXPORT_SYMBOL(fasync_helper); 684 685 /* 686 * rcu_read_lock() is held 687 */ 688 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band) 689 { 690 while (fa) { 691 struct fown_struct *fown; 692 unsigned long flags; 693 694 if (fa->magic != FASYNC_MAGIC) { 695 printk(KERN_ERR "kill_fasync: bad magic number in " 696 "fasync_struct!\n"); 697 return; 698 } 699 spin_lock_irqsave(&fa->fa_lock, flags); 700 if (fa->fa_file) { 701 fown = &fa->fa_file->f_owner; 702 /* Don't send SIGURG to processes which have not set a 703 queued signum: SIGURG has its own default signalling 704 mechanism. */ 705 if (!(sig == SIGURG && fown->signum == 0)) 706 send_sigio(fown, fa->fa_fd, band); 707 } 708 spin_unlock_irqrestore(&fa->fa_lock, flags); 709 fa = rcu_dereference(fa->fa_next); 710 } 711 } 712 713 void kill_fasync(struct fasync_struct **fp, int sig, int band) 714 { 715 /* First a quick test without locking: usually 716 * the list is empty. 717 */ 718 if (*fp) { 719 rcu_read_lock(); 720 kill_fasync_rcu(rcu_dereference(*fp), sig, band); 721 rcu_read_unlock(); 722 } 723 } 724 EXPORT_SYMBOL(kill_fasync); 725 726 static int __init fcntl_init(void) 727 { 728 /* 729 * Please add new bits here to ensure allocation uniqueness. 730 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY 731 * is defined as O_NONBLOCK on some platforms and not on others. 732 */ 733 BUILD_BUG_ON(20 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32( 734 O_RDONLY | O_WRONLY | O_RDWR | 735 O_CREAT | O_EXCL | O_NOCTTY | 736 O_TRUNC | O_APPEND | /* O_NONBLOCK | */ 737 __O_SYNC | O_DSYNC | FASYNC | 738 O_DIRECT | O_LARGEFILE | O_DIRECTORY | 739 O_NOFOLLOW | O_NOATIME | O_CLOEXEC | 740 __FMODE_EXEC | O_PATH | __O_TMPFILE 741 )); 742 743 fasync_cache = kmem_cache_create("fasync_cache", 744 sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL); 745 return 0; 746 } 747 748 module_init(fcntl_init) 749