xref: /openbmc/linux/fs/fcntl.c (revision 80ecbd24)
1 /*
2  *  linux/fs/fcntl.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/syscalls.h>
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fs.h>
11 #include <linux/file.h>
12 #include <linux/fdtable.h>
13 #include <linux/capability.h>
14 #include <linux/dnotify.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/security.h>
19 #include <linux/ptrace.h>
20 #include <linux/signal.h>
21 #include <linux/rcupdate.h>
22 #include <linux/pid_namespace.h>
23 #include <linux/user_namespace.h>
24 
25 #include <asm/poll.h>
26 #include <asm/siginfo.h>
27 #include <asm/uaccess.h>
28 
29 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
30 
31 static int setfl(int fd, struct file * filp, unsigned long arg)
32 {
33 	struct inode * inode = file_inode(filp);
34 	int error = 0;
35 
36 	/*
37 	 * O_APPEND cannot be cleared if the file is marked as append-only
38 	 * and the file is open for write.
39 	 */
40 	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
41 		return -EPERM;
42 
43 	/* O_NOATIME can only be set by the owner or superuser */
44 	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
45 		if (!inode_owner_or_capable(inode))
46 			return -EPERM;
47 
48 	/* required for strict SunOS emulation */
49 	if (O_NONBLOCK != O_NDELAY)
50 	       if (arg & O_NDELAY)
51 		   arg |= O_NONBLOCK;
52 
53 	if (arg & O_DIRECT) {
54 		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
55 			!filp->f_mapping->a_ops->direct_IO)
56 				return -EINVAL;
57 	}
58 
59 	if (filp->f_op && filp->f_op->check_flags)
60 		error = filp->f_op->check_flags(arg);
61 	if (error)
62 		return error;
63 
64 	/*
65 	 * ->fasync() is responsible for setting the FASYNC bit.
66 	 */
67 	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op &&
68 			filp->f_op->fasync) {
69 		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
70 		if (error < 0)
71 			goto out;
72 		if (error > 0)
73 			error = 0;
74 	}
75 	spin_lock(&filp->f_lock);
76 	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
77 	spin_unlock(&filp->f_lock);
78 
79  out:
80 	return error;
81 }
82 
83 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
84                      int force)
85 {
86 	write_lock_irq(&filp->f_owner.lock);
87 	if (force || !filp->f_owner.pid) {
88 		put_pid(filp->f_owner.pid);
89 		filp->f_owner.pid = get_pid(pid);
90 		filp->f_owner.pid_type = type;
91 
92 		if (pid) {
93 			const struct cred *cred = current_cred();
94 			filp->f_owner.uid = cred->uid;
95 			filp->f_owner.euid = cred->euid;
96 		}
97 	}
98 	write_unlock_irq(&filp->f_owner.lock);
99 }
100 
101 int __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
102 		int force)
103 {
104 	int err;
105 
106 	err = security_file_set_fowner(filp);
107 	if (err)
108 		return err;
109 
110 	f_modown(filp, pid, type, force);
111 	return 0;
112 }
113 EXPORT_SYMBOL(__f_setown);
114 
115 int f_setown(struct file *filp, unsigned long arg, int force)
116 {
117 	enum pid_type type;
118 	struct pid *pid;
119 	int who = arg;
120 	int result;
121 	type = PIDTYPE_PID;
122 	if (who < 0) {
123 		type = PIDTYPE_PGID;
124 		who = -who;
125 	}
126 	rcu_read_lock();
127 	pid = find_vpid(who);
128 	result = __f_setown(filp, pid, type, force);
129 	rcu_read_unlock();
130 	return result;
131 }
132 EXPORT_SYMBOL(f_setown);
133 
134 void f_delown(struct file *filp)
135 {
136 	f_modown(filp, NULL, PIDTYPE_PID, 1);
137 }
138 
139 pid_t f_getown(struct file *filp)
140 {
141 	pid_t pid;
142 	read_lock(&filp->f_owner.lock);
143 	pid = pid_vnr(filp->f_owner.pid);
144 	if (filp->f_owner.pid_type == PIDTYPE_PGID)
145 		pid = -pid;
146 	read_unlock(&filp->f_owner.lock);
147 	return pid;
148 }
149 
150 static int f_setown_ex(struct file *filp, unsigned long arg)
151 {
152 	struct f_owner_ex __user *owner_p = (void __user *)arg;
153 	struct f_owner_ex owner;
154 	struct pid *pid;
155 	int type;
156 	int ret;
157 
158 	ret = copy_from_user(&owner, owner_p, sizeof(owner));
159 	if (ret)
160 		return -EFAULT;
161 
162 	switch (owner.type) {
163 	case F_OWNER_TID:
164 		type = PIDTYPE_MAX;
165 		break;
166 
167 	case F_OWNER_PID:
168 		type = PIDTYPE_PID;
169 		break;
170 
171 	case F_OWNER_PGRP:
172 		type = PIDTYPE_PGID;
173 		break;
174 
175 	default:
176 		return -EINVAL;
177 	}
178 
179 	rcu_read_lock();
180 	pid = find_vpid(owner.pid);
181 	if (owner.pid && !pid)
182 		ret = -ESRCH;
183 	else
184 		ret = __f_setown(filp, pid, type, 1);
185 	rcu_read_unlock();
186 
187 	return ret;
188 }
189 
190 static int f_getown_ex(struct file *filp, unsigned long arg)
191 {
192 	struct f_owner_ex __user *owner_p = (void __user *)arg;
193 	struct f_owner_ex owner;
194 	int ret = 0;
195 
196 	read_lock(&filp->f_owner.lock);
197 	owner.pid = pid_vnr(filp->f_owner.pid);
198 	switch (filp->f_owner.pid_type) {
199 	case PIDTYPE_MAX:
200 		owner.type = F_OWNER_TID;
201 		break;
202 
203 	case PIDTYPE_PID:
204 		owner.type = F_OWNER_PID;
205 		break;
206 
207 	case PIDTYPE_PGID:
208 		owner.type = F_OWNER_PGRP;
209 		break;
210 
211 	default:
212 		WARN_ON(1);
213 		ret = -EINVAL;
214 		break;
215 	}
216 	read_unlock(&filp->f_owner.lock);
217 
218 	if (!ret) {
219 		ret = copy_to_user(owner_p, &owner, sizeof(owner));
220 		if (ret)
221 			ret = -EFAULT;
222 	}
223 	return ret;
224 }
225 
226 #ifdef CONFIG_CHECKPOINT_RESTORE
227 static int f_getowner_uids(struct file *filp, unsigned long arg)
228 {
229 	struct user_namespace *user_ns = current_user_ns();
230 	uid_t __user *dst = (void __user *)arg;
231 	uid_t src[2];
232 	int err;
233 
234 	read_lock(&filp->f_owner.lock);
235 	src[0] = from_kuid(user_ns, filp->f_owner.uid);
236 	src[1] = from_kuid(user_ns, filp->f_owner.euid);
237 	read_unlock(&filp->f_owner.lock);
238 
239 	err  = put_user(src[0], &dst[0]);
240 	err |= put_user(src[1], &dst[1]);
241 
242 	return err;
243 }
244 #else
245 static int f_getowner_uids(struct file *filp, unsigned long arg)
246 {
247 	return -EINVAL;
248 }
249 #endif
250 
251 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
252 		struct file *filp)
253 {
254 	long err = -EINVAL;
255 
256 	switch (cmd) {
257 	case F_DUPFD:
258 		err = f_dupfd(arg, filp, 0);
259 		break;
260 	case F_DUPFD_CLOEXEC:
261 		err = f_dupfd(arg, filp, O_CLOEXEC);
262 		break;
263 	case F_GETFD:
264 		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
265 		break;
266 	case F_SETFD:
267 		err = 0;
268 		set_close_on_exec(fd, arg & FD_CLOEXEC);
269 		break;
270 	case F_GETFL:
271 		err = filp->f_flags;
272 		break;
273 	case F_SETFL:
274 		err = setfl(fd, filp, arg);
275 		break;
276 	case F_GETLK:
277 		err = fcntl_getlk(filp, (struct flock __user *) arg);
278 		break;
279 	case F_SETLK:
280 	case F_SETLKW:
281 		err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
282 		break;
283 	case F_GETOWN:
284 		/*
285 		 * XXX If f_owner is a process group, the
286 		 * negative return value will get converted
287 		 * into an error.  Oops.  If we keep the
288 		 * current syscall conventions, the only way
289 		 * to fix this will be in libc.
290 		 */
291 		err = f_getown(filp);
292 		force_successful_syscall_return();
293 		break;
294 	case F_SETOWN:
295 		err = f_setown(filp, arg, 1);
296 		break;
297 	case F_GETOWN_EX:
298 		err = f_getown_ex(filp, arg);
299 		break;
300 	case F_SETOWN_EX:
301 		err = f_setown_ex(filp, arg);
302 		break;
303 	case F_GETOWNER_UIDS:
304 		err = f_getowner_uids(filp, arg);
305 		break;
306 	case F_GETSIG:
307 		err = filp->f_owner.signum;
308 		break;
309 	case F_SETSIG:
310 		/* arg == 0 restores default behaviour. */
311 		if (!valid_signal(arg)) {
312 			break;
313 		}
314 		err = 0;
315 		filp->f_owner.signum = arg;
316 		break;
317 	case F_GETLEASE:
318 		err = fcntl_getlease(filp);
319 		break;
320 	case F_SETLEASE:
321 		err = fcntl_setlease(fd, filp, arg);
322 		break;
323 	case F_NOTIFY:
324 		err = fcntl_dirnotify(fd, filp, arg);
325 		break;
326 	case F_SETPIPE_SZ:
327 	case F_GETPIPE_SZ:
328 		err = pipe_fcntl(filp, cmd, arg);
329 		break;
330 	default:
331 		break;
332 	}
333 	return err;
334 }
335 
336 static int check_fcntl_cmd(unsigned cmd)
337 {
338 	switch (cmd) {
339 	case F_DUPFD:
340 	case F_DUPFD_CLOEXEC:
341 	case F_GETFD:
342 	case F_SETFD:
343 	case F_GETFL:
344 		return 1;
345 	}
346 	return 0;
347 }
348 
349 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
350 {
351 	struct fd f = fdget_raw(fd);
352 	long err = -EBADF;
353 
354 	if (!f.file)
355 		goto out;
356 
357 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
358 		if (!check_fcntl_cmd(cmd))
359 			goto out1;
360 	}
361 
362 	err = security_file_fcntl(f.file, cmd, arg);
363 	if (!err)
364 		err = do_fcntl(fd, cmd, arg, f.file);
365 
366 out1:
367  	fdput(f);
368 out:
369 	return err;
370 }
371 
372 #if BITS_PER_LONG == 32
373 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
374 		unsigned long, arg)
375 {
376 	struct fd f = fdget_raw(fd);
377 	long err = -EBADF;
378 
379 	if (!f.file)
380 		goto out;
381 
382 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
383 		if (!check_fcntl_cmd(cmd))
384 			goto out1;
385 	}
386 
387 	err = security_file_fcntl(f.file, cmd, arg);
388 	if (err)
389 		goto out1;
390 
391 	switch (cmd) {
392 		case F_GETLK64:
393 			err = fcntl_getlk64(f.file, (struct flock64 __user *) arg);
394 			break;
395 		case F_SETLK64:
396 		case F_SETLKW64:
397 			err = fcntl_setlk64(fd, f.file, cmd,
398 					(struct flock64 __user *) arg);
399 			break;
400 		default:
401 			err = do_fcntl(fd, cmd, arg, f.file);
402 			break;
403 	}
404 out1:
405 	fdput(f);
406 out:
407 	return err;
408 }
409 #endif
410 
411 /* Table to convert sigio signal codes into poll band bitmaps */
412 
413 static const long band_table[NSIGPOLL] = {
414 	POLLIN | POLLRDNORM,			/* POLL_IN */
415 	POLLOUT | POLLWRNORM | POLLWRBAND,	/* POLL_OUT */
416 	POLLIN | POLLRDNORM | POLLMSG,		/* POLL_MSG */
417 	POLLERR,				/* POLL_ERR */
418 	POLLPRI | POLLRDBAND,			/* POLL_PRI */
419 	POLLHUP | POLLERR			/* POLL_HUP */
420 };
421 
422 static inline int sigio_perm(struct task_struct *p,
423                              struct fown_struct *fown, int sig)
424 {
425 	const struct cred *cred;
426 	int ret;
427 
428 	rcu_read_lock();
429 	cred = __task_cred(p);
430 	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
431 		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
432 		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
433 	       !security_file_send_sigiotask(p, fown, sig));
434 	rcu_read_unlock();
435 	return ret;
436 }
437 
438 static void send_sigio_to_task(struct task_struct *p,
439 			       struct fown_struct *fown,
440 			       int fd, int reason, int group)
441 {
442 	/*
443 	 * F_SETSIG can change ->signum lockless in parallel, make
444 	 * sure we read it once and use the same value throughout.
445 	 */
446 	int signum = ACCESS_ONCE(fown->signum);
447 
448 	if (!sigio_perm(p, fown, signum))
449 		return;
450 
451 	switch (signum) {
452 		siginfo_t si;
453 		default:
454 			/* Queue a rt signal with the appropriate fd as its
455 			   value.  We use SI_SIGIO as the source, not
456 			   SI_KERNEL, since kernel signals always get
457 			   delivered even if we can't queue.  Failure to
458 			   queue in this case _should_ be reported; we fall
459 			   back to SIGIO in that case. --sct */
460 			si.si_signo = signum;
461 			si.si_errno = 0;
462 		        si.si_code  = reason;
463 			/* Make sure we are called with one of the POLL_*
464 			   reasons, otherwise we could leak kernel stack into
465 			   userspace.  */
466 			BUG_ON((reason & __SI_MASK) != __SI_POLL);
467 			if (reason - POLL_IN >= NSIGPOLL)
468 				si.si_band  = ~0L;
469 			else
470 				si.si_band = band_table[reason - POLL_IN];
471 			si.si_fd    = fd;
472 			if (!do_send_sig_info(signum, &si, p, group))
473 				break;
474 		/* fall-through: fall back on the old plain SIGIO signal */
475 		case 0:
476 			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
477 	}
478 }
479 
480 void send_sigio(struct fown_struct *fown, int fd, int band)
481 {
482 	struct task_struct *p;
483 	enum pid_type type;
484 	struct pid *pid;
485 	int group = 1;
486 
487 	read_lock(&fown->lock);
488 
489 	type = fown->pid_type;
490 	if (type == PIDTYPE_MAX) {
491 		group = 0;
492 		type = PIDTYPE_PID;
493 	}
494 
495 	pid = fown->pid;
496 	if (!pid)
497 		goto out_unlock_fown;
498 
499 	read_lock(&tasklist_lock);
500 	do_each_pid_task(pid, type, p) {
501 		send_sigio_to_task(p, fown, fd, band, group);
502 	} while_each_pid_task(pid, type, p);
503 	read_unlock(&tasklist_lock);
504  out_unlock_fown:
505 	read_unlock(&fown->lock);
506 }
507 
508 static void send_sigurg_to_task(struct task_struct *p,
509 				struct fown_struct *fown, int group)
510 {
511 	if (sigio_perm(p, fown, SIGURG))
512 		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
513 }
514 
515 int send_sigurg(struct fown_struct *fown)
516 {
517 	struct task_struct *p;
518 	enum pid_type type;
519 	struct pid *pid;
520 	int group = 1;
521 	int ret = 0;
522 
523 	read_lock(&fown->lock);
524 
525 	type = fown->pid_type;
526 	if (type == PIDTYPE_MAX) {
527 		group = 0;
528 		type = PIDTYPE_PID;
529 	}
530 
531 	pid = fown->pid;
532 	if (!pid)
533 		goto out_unlock_fown;
534 
535 	ret = 1;
536 
537 	read_lock(&tasklist_lock);
538 	do_each_pid_task(pid, type, p) {
539 		send_sigurg_to_task(p, fown, group);
540 	} while_each_pid_task(pid, type, p);
541 	read_unlock(&tasklist_lock);
542  out_unlock_fown:
543 	read_unlock(&fown->lock);
544 	return ret;
545 }
546 
547 static DEFINE_SPINLOCK(fasync_lock);
548 static struct kmem_cache *fasync_cache __read_mostly;
549 
550 static void fasync_free_rcu(struct rcu_head *head)
551 {
552 	kmem_cache_free(fasync_cache,
553 			container_of(head, struct fasync_struct, fa_rcu));
554 }
555 
556 /*
557  * Remove a fasync entry. If successfully removed, return
558  * positive and clear the FASYNC flag. If no entry exists,
559  * do nothing and return 0.
560  *
561  * NOTE! It is very important that the FASYNC flag always
562  * match the state "is the filp on a fasync list".
563  *
564  */
565 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
566 {
567 	struct fasync_struct *fa, **fp;
568 	int result = 0;
569 
570 	spin_lock(&filp->f_lock);
571 	spin_lock(&fasync_lock);
572 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
573 		if (fa->fa_file != filp)
574 			continue;
575 
576 		spin_lock_irq(&fa->fa_lock);
577 		fa->fa_file = NULL;
578 		spin_unlock_irq(&fa->fa_lock);
579 
580 		*fp = fa->fa_next;
581 		call_rcu(&fa->fa_rcu, fasync_free_rcu);
582 		filp->f_flags &= ~FASYNC;
583 		result = 1;
584 		break;
585 	}
586 	spin_unlock(&fasync_lock);
587 	spin_unlock(&filp->f_lock);
588 	return result;
589 }
590 
591 struct fasync_struct *fasync_alloc(void)
592 {
593 	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
594 }
595 
596 /*
597  * NOTE! This can be used only for unused fasync entries:
598  * entries that actually got inserted on the fasync list
599  * need to be released by rcu - see fasync_remove_entry.
600  */
601 void fasync_free(struct fasync_struct *new)
602 {
603 	kmem_cache_free(fasync_cache, new);
604 }
605 
606 /*
607  * Insert a new entry into the fasync list.  Return the pointer to the
608  * old one if we didn't use the new one.
609  *
610  * NOTE! It is very important that the FASYNC flag always
611  * match the state "is the filp on a fasync list".
612  */
613 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
614 {
615         struct fasync_struct *fa, **fp;
616 
617 	spin_lock(&filp->f_lock);
618 	spin_lock(&fasync_lock);
619 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
620 		if (fa->fa_file != filp)
621 			continue;
622 
623 		spin_lock_irq(&fa->fa_lock);
624 		fa->fa_fd = fd;
625 		spin_unlock_irq(&fa->fa_lock);
626 		goto out;
627 	}
628 
629 	spin_lock_init(&new->fa_lock);
630 	new->magic = FASYNC_MAGIC;
631 	new->fa_file = filp;
632 	new->fa_fd = fd;
633 	new->fa_next = *fapp;
634 	rcu_assign_pointer(*fapp, new);
635 	filp->f_flags |= FASYNC;
636 
637 out:
638 	spin_unlock(&fasync_lock);
639 	spin_unlock(&filp->f_lock);
640 	return fa;
641 }
642 
643 /*
644  * Add a fasync entry. Return negative on error, positive if
645  * added, and zero if did nothing but change an existing one.
646  */
647 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
648 {
649 	struct fasync_struct *new;
650 
651 	new = fasync_alloc();
652 	if (!new)
653 		return -ENOMEM;
654 
655 	/*
656 	 * fasync_insert_entry() returns the old (update) entry if
657 	 * it existed.
658 	 *
659 	 * So free the (unused) new entry and return 0 to let the
660 	 * caller know that we didn't add any new fasync entries.
661 	 */
662 	if (fasync_insert_entry(fd, filp, fapp, new)) {
663 		fasync_free(new);
664 		return 0;
665 	}
666 
667 	return 1;
668 }
669 
670 /*
671  * fasync_helper() is used by almost all character device drivers
672  * to set up the fasync queue, and for regular files by the file
673  * lease code. It returns negative on error, 0 if it did no changes
674  * and positive if it added/deleted the entry.
675  */
676 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
677 {
678 	if (!on)
679 		return fasync_remove_entry(filp, fapp);
680 	return fasync_add_entry(fd, filp, fapp);
681 }
682 
683 EXPORT_SYMBOL(fasync_helper);
684 
685 /*
686  * rcu_read_lock() is held
687  */
688 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
689 {
690 	while (fa) {
691 		struct fown_struct *fown;
692 		unsigned long flags;
693 
694 		if (fa->magic != FASYNC_MAGIC) {
695 			printk(KERN_ERR "kill_fasync: bad magic number in "
696 			       "fasync_struct!\n");
697 			return;
698 		}
699 		spin_lock_irqsave(&fa->fa_lock, flags);
700 		if (fa->fa_file) {
701 			fown = &fa->fa_file->f_owner;
702 			/* Don't send SIGURG to processes which have not set a
703 			   queued signum: SIGURG has its own default signalling
704 			   mechanism. */
705 			if (!(sig == SIGURG && fown->signum == 0))
706 				send_sigio(fown, fa->fa_fd, band);
707 		}
708 		spin_unlock_irqrestore(&fa->fa_lock, flags);
709 		fa = rcu_dereference(fa->fa_next);
710 	}
711 }
712 
713 void kill_fasync(struct fasync_struct **fp, int sig, int band)
714 {
715 	/* First a quick test without locking: usually
716 	 * the list is empty.
717 	 */
718 	if (*fp) {
719 		rcu_read_lock();
720 		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
721 		rcu_read_unlock();
722 	}
723 }
724 EXPORT_SYMBOL(kill_fasync);
725 
726 static int __init fcntl_init(void)
727 {
728 	/*
729 	 * Please add new bits here to ensure allocation uniqueness.
730 	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
731 	 * is defined as O_NONBLOCK on some platforms and not on others.
732 	 */
733 	BUILD_BUG_ON(20 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32(
734 		O_RDONLY	| O_WRONLY	| O_RDWR	|
735 		O_CREAT		| O_EXCL	| O_NOCTTY	|
736 		O_TRUNC		| O_APPEND	| /* O_NONBLOCK	| */
737 		__O_SYNC	| O_DSYNC	| FASYNC	|
738 		O_DIRECT	| O_LARGEFILE	| O_DIRECTORY	|
739 		O_NOFOLLOW	| O_NOATIME	| O_CLOEXEC	|
740 		__FMODE_EXEC	| O_PATH	| __O_TMPFILE
741 		));
742 
743 	fasync_cache = kmem_cache_create("fasync_cache",
744 		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
745 	return 0;
746 }
747 
748 module_init(fcntl_init)
749