1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/fcntl.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 #include <linux/syscalls.h> 9 #include <linux/init.h> 10 #include <linux/mm.h> 11 #include <linux/sched/task.h> 12 #include <linux/fs.h> 13 #include <linux/filelock.h> 14 #include <linux/file.h> 15 #include <linux/fdtable.h> 16 #include <linux/capability.h> 17 #include <linux/dnotify.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/pipe_fs_i.h> 21 #include <linux/security.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/rcupdate.h> 25 #include <linux/pid_namespace.h> 26 #include <linux/user_namespace.h> 27 #include <linux/memfd.h> 28 #include <linux/compat.h> 29 #include <linux/mount.h> 30 31 #include <linux/poll.h> 32 #include <asm/siginfo.h> 33 #include <linux/uaccess.h> 34 35 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME) 36 37 static int setfl(int fd, struct file * filp, unsigned int arg) 38 { 39 struct inode * inode = file_inode(filp); 40 int error = 0; 41 42 /* 43 * O_APPEND cannot be cleared if the file is marked as append-only 44 * and the file is open for write. 45 */ 46 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode)) 47 return -EPERM; 48 49 /* O_NOATIME can only be set by the owner or superuser */ 50 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME)) 51 if (!inode_owner_or_capable(file_mnt_idmap(filp), inode)) 52 return -EPERM; 53 54 /* required for strict SunOS emulation */ 55 if (O_NONBLOCK != O_NDELAY) 56 if (arg & O_NDELAY) 57 arg |= O_NONBLOCK; 58 59 /* Pipe packetized mode is controlled by O_DIRECT flag */ 60 if (!S_ISFIFO(inode->i_mode) && 61 (arg & O_DIRECT) && 62 !(filp->f_mode & FMODE_CAN_ODIRECT)) 63 return -EINVAL; 64 65 if (filp->f_op->check_flags) 66 error = filp->f_op->check_flags(arg); 67 if (error) 68 return error; 69 70 /* 71 * ->fasync() is responsible for setting the FASYNC bit. 72 */ 73 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) { 74 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0); 75 if (error < 0) 76 goto out; 77 if (error > 0) 78 error = 0; 79 } 80 spin_lock(&filp->f_lock); 81 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK); 82 filp->f_iocb_flags = iocb_flags(filp); 83 spin_unlock(&filp->f_lock); 84 85 out: 86 return error; 87 } 88 89 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type, 90 int force) 91 { 92 write_lock_irq(&filp->f_owner.lock); 93 if (force || !filp->f_owner.pid) { 94 put_pid(filp->f_owner.pid); 95 filp->f_owner.pid = get_pid(pid); 96 filp->f_owner.pid_type = type; 97 98 if (pid) { 99 const struct cred *cred = current_cred(); 100 security_file_set_fowner(filp); 101 filp->f_owner.uid = cred->uid; 102 filp->f_owner.euid = cred->euid; 103 } 104 } 105 write_unlock_irq(&filp->f_owner.lock); 106 } 107 EXPORT_SYMBOL(__f_setown); 108 109 int f_setown(struct file *filp, int who, int force) 110 { 111 enum pid_type type; 112 struct pid *pid = NULL; 113 int ret = 0; 114 115 type = PIDTYPE_TGID; 116 if (who < 0) { 117 /* avoid overflow below */ 118 if (who == INT_MIN) 119 return -EINVAL; 120 121 type = PIDTYPE_PGID; 122 who = -who; 123 } 124 125 rcu_read_lock(); 126 if (who) { 127 pid = find_vpid(who); 128 if (!pid) 129 ret = -ESRCH; 130 } 131 132 if (!ret) 133 __f_setown(filp, pid, type, force); 134 rcu_read_unlock(); 135 136 return ret; 137 } 138 EXPORT_SYMBOL(f_setown); 139 140 void f_delown(struct file *filp) 141 { 142 __f_setown(filp, NULL, PIDTYPE_TGID, 1); 143 } 144 145 pid_t f_getown(struct file *filp) 146 { 147 pid_t pid = 0; 148 149 read_lock_irq(&filp->f_owner.lock); 150 rcu_read_lock(); 151 if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) { 152 pid = pid_vnr(filp->f_owner.pid); 153 if (filp->f_owner.pid_type == PIDTYPE_PGID) 154 pid = -pid; 155 } 156 rcu_read_unlock(); 157 read_unlock_irq(&filp->f_owner.lock); 158 return pid; 159 } 160 161 static int f_setown_ex(struct file *filp, unsigned long arg) 162 { 163 struct f_owner_ex __user *owner_p = (void __user *)arg; 164 struct f_owner_ex owner; 165 struct pid *pid; 166 int type; 167 int ret; 168 169 ret = copy_from_user(&owner, owner_p, sizeof(owner)); 170 if (ret) 171 return -EFAULT; 172 173 switch (owner.type) { 174 case F_OWNER_TID: 175 type = PIDTYPE_PID; 176 break; 177 178 case F_OWNER_PID: 179 type = PIDTYPE_TGID; 180 break; 181 182 case F_OWNER_PGRP: 183 type = PIDTYPE_PGID; 184 break; 185 186 default: 187 return -EINVAL; 188 } 189 190 rcu_read_lock(); 191 pid = find_vpid(owner.pid); 192 if (owner.pid && !pid) 193 ret = -ESRCH; 194 else 195 __f_setown(filp, pid, type, 1); 196 rcu_read_unlock(); 197 198 return ret; 199 } 200 201 static int f_getown_ex(struct file *filp, unsigned long arg) 202 { 203 struct f_owner_ex __user *owner_p = (void __user *)arg; 204 struct f_owner_ex owner = {}; 205 int ret = 0; 206 207 read_lock_irq(&filp->f_owner.lock); 208 rcu_read_lock(); 209 if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) 210 owner.pid = pid_vnr(filp->f_owner.pid); 211 rcu_read_unlock(); 212 switch (filp->f_owner.pid_type) { 213 case PIDTYPE_PID: 214 owner.type = F_OWNER_TID; 215 break; 216 217 case PIDTYPE_TGID: 218 owner.type = F_OWNER_PID; 219 break; 220 221 case PIDTYPE_PGID: 222 owner.type = F_OWNER_PGRP; 223 break; 224 225 default: 226 WARN_ON(1); 227 ret = -EINVAL; 228 break; 229 } 230 read_unlock_irq(&filp->f_owner.lock); 231 232 if (!ret) { 233 ret = copy_to_user(owner_p, &owner, sizeof(owner)); 234 if (ret) 235 ret = -EFAULT; 236 } 237 return ret; 238 } 239 240 #ifdef CONFIG_CHECKPOINT_RESTORE 241 static int f_getowner_uids(struct file *filp, unsigned long arg) 242 { 243 struct user_namespace *user_ns = current_user_ns(); 244 uid_t __user *dst = (void __user *)arg; 245 uid_t src[2]; 246 int err; 247 248 read_lock_irq(&filp->f_owner.lock); 249 src[0] = from_kuid(user_ns, filp->f_owner.uid); 250 src[1] = from_kuid(user_ns, filp->f_owner.euid); 251 read_unlock_irq(&filp->f_owner.lock); 252 253 err = put_user(src[0], &dst[0]); 254 err |= put_user(src[1], &dst[1]); 255 256 return err; 257 } 258 #else 259 static int f_getowner_uids(struct file *filp, unsigned long arg) 260 { 261 return -EINVAL; 262 } 263 #endif 264 265 static bool rw_hint_valid(u64 hint) 266 { 267 switch (hint) { 268 case RWH_WRITE_LIFE_NOT_SET: 269 case RWH_WRITE_LIFE_NONE: 270 case RWH_WRITE_LIFE_SHORT: 271 case RWH_WRITE_LIFE_MEDIUM: 272 case RWH_WRITE_LIFE_LONG: 273 case RWH_WRITE_LIFE_EXTREME: 274 return true; 275 default: 276 return false; 277 } 278 } 279 280 static long fcntl_rw_hint(struct file *file, unsigned int cmd, 281 unsigned long arg) 282 { 283 struct inode *inode = file_inode(file); 284 u64 __user *argp = (u64 __user *)arg; 285 u64 hint; 286 287 switch (cmd) { 288 case F_GET_RW_HINT: 289 hint = inode->i_write_hint; 290 if (copy_to_user(argp, &hint, sizeof(*argp))) 291 return -EFAULT; 292 return 0; 293 case F_SET_RW_HINT: 294 if (copy_from_user(&hint, argp, sizeof(hint))) 295 return -EFAULT; 296 if (!rw_hint_valid(hint)) 297 return -EINVAL; 298 299 inode_lock(inode); 300 inode->i_write_hint = hint; 301 inode_unlock(inode); 302 return 0; 303 default: 304 return -EINVAL; 305 } 306 } 307 308 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg, 309 struct file *filp) 310 { 311 void __user *argp = (void __user *)arg; 312 int argi = (int)arg; 313 struct flock flock; 314 long err = -EINVAL; 315 316 switch (cmd) { 317 case F_DUPFD: 318 err = f_dupfd(argi, filp, 0); 319 break; 320 case F_DUPFD_CLOEXEC: 321 err = f_dupfd(argi, filp, O_CLOEXEC); 322 break; 323 case F_GETFD: 324 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0; 325 break; 326 case F_SETFD: 327 err = 0; 328 set_close_on_exec(fd, argi & FD_CLOEXEC); 329 break; 330 case F_GETFL: 331 err = filp->f_flags; 332 break; 333 case F_SETFL: 334 err = setfl(fd, filp, argi); 335 break; 336 #if BITS_PER_LONG != 32 337 /* 32-bit arches must use fcntl64() */ 338 case F_OFD_GETLK: 339 #endif 340 case F_GETLK: 341 if (copy_from_user(&flock, argp, sizeof(flock))) 342 return -EFAULT; 343 err = fcntl_getlk(filp, cmd, &flock); 344 if (!err && copy_to_user(argp, &flock, sizeof(flock))) 345 return -EFAULT; 346 break; 347 #if BITS_PER_LONG != 32 348 /* 32-bit arches must use fcntl64() */ 349 case F_OFD_SETLK: 350 case F_OFD_SETLKW: 351 fallthrough; 352 #endif 353 case F_SETLK: 354 case F_SETLKW: 355 if (copy_from_user(&flock, argp, sizeof(flock))) 356 return -EFAULT; 357 err = fcntl_setlk(fd, filp, cmd, &flock); 358 break; 359 case F_GETOWN: 360 /* 361 * XXX If f_owner is a process group, the 362 * negative return value will get converted 363 * into an error. Oops. If we keep the 364 * current syscall conventions, the only way 365 * to fix this will be in libc. 366 */ 367 err = f_getown(filp); 368 force_successful_syscall_return(); 369 break; 370 case F_SETOWN: 371 err = f_setown(filp, argi, 1); 372 break; 373 case F_GETOWN_EX: 374 err = f_getown_ex(filp, arg); 375 break; 376 case F_SETOWN_EX: 377 err = f_setown_ex(filp, arg); 378 break; 379 case F_GETOWNER_UIDS: 380 err = f_getowner_uids(filp, arg); 381 break; 382 case F_GETSIG: 383 err = filp->f_owner.signum; 384 break; 385 case F_SETSIG: 386 /* arg == 0 restores default behaviour. */ 387 if (!valid_signal(argi)) { 388 break; 389 } 390 err = 0; 391 filp->f_owner.signum = argi; 392 break; 393 case F_GETLEASE: 394 err = fcntl_getlease(filp); 395 break; 396 case F_SETLEASE: 397 err = fcntl_setlease(fd, filp, argi); 398 break; 399 case F_NOTIFY: 400 err = fcntl_dirnotify(fd, filp, argi); 401 break; 402 case F_SETPIPE_SZ: 403 case F_GETPIPE_SZ: 404 err = pipe_fcntl(filp, cmd, argi); 405 break; 406 case F_ADD_SEALS: 407 case F_GET_SEALS: 408 err = memfd_fcntl(filp, cmd, argi); 409 break; 410 case F_GET_RW_HINT: 411 case F_SET_RW_HINT: 412 err = fcntl_rw_hint(filp, cmd, arg); 413 break; 414 default: 415 break; 416 } 417 return err; 418 } 419 420 static int check_fcntl_cmd(unsigned cmd) 421 { 422 switch (cmd) { 423 case F_DUPFD: 424 case F_DUPFD_CLOEXEC: 425 case F_GETFD: 426 case F_SETFD: 427 case F_GETFL: 428 return 1; 429 } 430 return 0; 431 } 432 433 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg) 434 { 435 struct fd f = fdget_raw(fd); 436 long err = -EBADF; 437 438 if (!f.file) 439 goto out; 440 441 if (unlikely(f.file->f_mode & FMODE_PATH)) { 442 if (!check_fcntl_cmd(cmd)) 443 goto out1; 444 } 445 446 err = security_file_fcntl(f.file, cmd, arg); 447 if (!err) 448 err = do_fcntl(fd, cmd, arg, f.file); 449 450 out1: 451 fdput(f); 452 out: 453 return err; 454 } 455 456 #if BITS_PER_LONG == 32 457 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, 458 unsigned long, arg) 459 { 460 void __user *argp = (void __user *)arg; 461 struct fd f = fdget_raw(fd); 462 struct flock64 flock; 463 long err = -EBADF; 464 465 if (!f.file) 466 goto out; 467 468 if (unlikely(f.file->f_mode & FMODE_PATH)) { 469 if (!check_fcntl_cmd(cmd)) 470 goto out1; 471 } 472 473 err = security_file_fcntl(f.file, cmd, arg); 474 if (err) 475 goto out1; 476 477 switch (cmd) { 478 case F_GETLK64: 479 case F_OFD_GETLK: 480 err = -EFAULT; 481 if (copy_from_user(&flock, argp, sizeof(flock))) 482 break; 483 err = fcntl_getlk64(f.file, cmd, &flock); 484 if (!err && copy_to_user(argp, &flock, sizeof(flock))) 485 err = -EFAULT; 486 break; 487 case F_SETLK64: 488 case F_SETLKW64: 489 case F_OFD_SETLK: 490 case F_OFD_SETLKW: 491 err = -EFAULT; 492 if (copy_from_user(&flock, argp, sizeof(flock))) 493 break; 494 err = fcntl_setlk64(fd, f.file, cmd, &flock); 495 break; 496 default: 497 err = do_fcntl(fd, cmd, arg, f.file); 498 break; 499 } 500 out1: 501 fdput(f); 502 out: 503 return err; 504 } 505 #endif 506 507 #ifdef CONFIG_COMPAT 508 /* careful - don't use anywhere else */ 509 #define copy_flock_fields(dst, src) \ 510 (dst)->l_type = (src)->l_type; \ 511 (dst)->l_whence = (src)->l_whence; \ 512 (dst)->l_start = (src)->l_start; \ 513 (dst)->l_len = (src)->l_len; \ 514 (dst)->l_pid = (src)->l_pid; 515 516 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl) 517 { 518 struct compat_flock fl; 519 520 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock))) 521 return -EFAULT; 522 copy_flock_fields(kfl, &fl); 523 return 0; 524 } 525 526 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl) 527 { 528 struct compat_flock64 fl; 529 530 if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64))) 531 return -EFAULT; 532 copy_flock_fields(kfl, &fl); 533 return 0; 534 } 535 536 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl) 537 { 538 struct compat_flock fl; 539 540 memset(&fl, 0, sizeof(struct compat_flock)); 541 copy_flock_fields(&fl, kfl); 542 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock))) 543 return -EFAULT; 544 return 0; 545 } 546 547 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl) 548 { 549 struct compat_flock64 fl; 550 551 BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start)); 552 BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len)); 553 554 memset(&fl, 0, sizeof(struct compat_flock64)); 555 copy_flock_fields(&fl, kfl); 556 if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64))) 557 return -EFAULT; 558 return 0; 559 } 560 #undef copy_flock_fields 561 562 static unsigned int 563 convert_fcntl_cmd(unsigned int cmd) 564 { 565 switch (cmd) { 566 case F_GETLK64: 567 return F_GETLK; 568 case F_SETLK64: 569 return F_SETLK; 570 case F_SETLKW64: 571 return F_SETLKW; 572 } 573 574 return cmd; 575 } 576 577 /* 578 * GETLK was successful and we need to return the data, but it needs to fit in 579 * the compat structure. 580 * l_start shouldn't be too big, unless the original start + end is greater than 581 * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return 582 * -EOVERFLOW in that case. l_len could be too big, in which case we just 583 * truncate it, and only allow the app to see that part of the conflicting lock 584 * that might make sense to it anyway 585 */ 586 static int fixup_compat_flock(struct flock *flock) 587 { 588 if (flock->l_start > COMPAT_OFF_T_MAX) 589 return -EOVERFLOW; 590 if (flock->l_len > COMPAT_OFF_T_MAX) 591 flock->l_len = COMPAT_OFF_T_MAX; 592 return 0; 593 } 594 595 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd, 596 compat_ulong_t arg) 597 { 598 struct fd f = fdget_raw(fd); 599 struct flock flock; 600 long err = -EBADF; 601 602 if (!f.file) 603 return err; 604 605 if (unlikely(f.file->f_mode & FMODE_PATH)) { 606 if (!check_fcntl_cmd(cmd)) 607 goto out_put; 608 } 609 610 err = security_file_fcntl(f.file, cmd, arg); 611 if (err) 612 goto out_put; 613 614 switch (cmd) { 615 case F_GETLK: 616 err = get_compat_flock(&flock, compat_ptr(arg)); 617 if (err) 618 break; 619 err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock); 620 if (err) 621 break; 622 err = fixup_compat_flock(&flock); 623 if (!err) 624 err = put_compat_flock(&flock, compat_ptr(arg)); 625 break; 626 case F_GETLK64: 627 case F_OFD_GETLK: 628 err = get_compat_flock64(&flock, compat_ptr(arg)); 629 if (err) 630 break; 631 err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock); 632 if (!err) 633 err = put_compat_flock64(&flock, compat_ptr(arg)); 634 break; 635 case F_SETLK: 636 case F_SETLKW: 637 err = get_compat_flock(&flock, compat_ptr(arg)); 638 if (err) 639 break; 640 err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock); 641 break; 642 case F_SETLK64: 643 case F_SETLKW64: 644 case F_OFD_SETLK: 645 case F_OFD_SETLKW: 646 err = get_compat_flock64(&flock, compat_ptr(arg)); 647 if (err) 648 break; 649 err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock); 650 break; 651 default: 652 err = do_fcntl(fd, cmd, arg, f.file); 653 break; 654 } 655 out_put: 656 fdput(f); 657 return err; 658 } 659 660 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, 661 compat_ulong_t, arg) 662 { 663 return do_compat_fcntl64(fd, cmd, arg); 664 } 665 666 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, 667 compat_ulong_t, arg) 668 { 669 switch (cmd) { 670 case F_GETLK64: 671 case F_SETLK64: 672 case F_SETLKW64: 673 case F_OFD_GETLK: 674 case F_OFD_SETLK: 675 case F_OFD_SETLKW: 676 return -EINVAL; 677 } 678 return do_compat_fcntl64(fd, cmd, arg); 679 } 680 #endif 681 682 /* Table to convert sigio signal codes into poll band bitmaps */ 683 684 static const __poll_t band_table[NSIGPOLL] = { 685 EPOLLIN | EPOLLRDNORM, /* POLL_IN */ 686 EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND, /* POLL_OUT */ 687 EPOLLIN | EPOLLRDNORM | EPOLLMSG, /* POLL_MSG */ 688 EPOLLERR, /* POLL_ERR */ 689 EPOLLPRI | EPOLLRDBAND, /* POLL_PRI */ 690 EPOLLHUP | EPOLLERR /* POLL_HUP */ 691 }; 692 693 static inline int sigio_perm(struct task_struct *p, 694 struct fown_struct *fown, int sig) 695 { 696 const struct cred *cred; 697 int ret; 698 699 rcu_read_lock(); 700 cred = __task_cred(p); 701 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) || 702 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) || 703 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) && 704 !security_file_send_sigiotask(p, fown, sig)); 705 rcu_read_unlock(); 706 return ret; 707 } 708 709 static void send_sigio_to_task(struct task_struct *p, 710 struct fown_struct *fown, 711 int fd, int reason, enum pid_type type) 712 { 713 /* 714 * F_SETSIG can change ->signum lockless in parallel, make 715 * sure we read it once and use the same value throughout. 716 */ 717 int signum = READ_ONCE(fown->signum); 718 719 if (!sigio_perm(p, fown, signum)) 720 return; 721 722 switch (signum) { 723 default: { 724 kernel_siginfo_t si; 725 726 /* Queue a rt signal with the appropriate fd as its 727 value. We use SI_SIGIO as the source, not 728 SI_KERNEL, since kernel signals always get 729 delivered even if we can't queue. Failure to 730 queue in this case _should_ be reported; we fall 731 back to SIGIO in that case. --sct */ 732 clear_siginfo(&si); 733 si.si_signo = signum; 734 si.si_errno = 0; 735 si.si_code = reason; 736 /* 737 * Posix definies POLL_IN and friends to be signal 738 * specific si_codes for SIG_POLL. Linux extended 739 * these si_codes to other signals in a way that is 740 * ambiguous if other signals also have signal 741 * specific si_codes. In that case use SI_SIGIO instead 742 * to remove the ambiguity. 743 */ 744 if ((signum != SIGPOLL) && sig_specific_sicodes(signum)) 745 si.si_code = SI_SIGIO; 746 747 /* Make sure we are called with one of the POLL_* 748 reasons, otherwise we could leak kernel stack into 749 userspace. */ 750 BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL)); 751 if (reason - POLL_IN >= NSIGPOLL) 752 si.si_band = ~0L; 753 else 754 si.si_band = mangle_poll(band_table[reason - POLL_IN]); 755 si.si_fd = fd; 756 if (!do_send_sig_info(signum, &si, p, type)) 757 break; 758 } 759 fallthrough; /* fall back on the old plain SIGIO signal */ 760 case 0: 761 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type); 762 } 763 } 764 765 void send_sigio(struct fown_struct *fown, int fd, int band) 766 { 767 struct task_struct *p; 768 enum pid_type type; 769 unsigned long flags; 770 struct pid *pid; 771 772 read_lock_irqsave(&fown->lock, flags); 773 774 type = fown->pid_type; 775 pid = fown->pid; 776 if (!pid) 777 goto out_unlock_fown; 778 779 if (type <= PIDTYPE_TGID) { 780 rcu_read_lock(); 781 p = pid_task(pid, PIDTYPE_PID); 782 if (p) 783 send_sigio_to_task(p, fown, fd, band, type); 784 rcu_read_unlock(); 785 } else { 786 read_lock(&tasklist_lock); 787 do_each_pid_task(pid, type, p) { 788 send_sigio_to_task(p, fown, fd, band, type); 789 } while_each_pid_task(pid, type, p); 790 read_unlock(&tasklist_lock); 791 } 792 out_unlock_fown: 793 read_unlock_irqrestore(&fown->lock, flags); 794 } 795 796 static void send_sigurg_to_task(struct task_struct *p, 797 struct fown_struct *fown, enum pid_type type) 798 { 799 if (sigio_perm(p, fown, SIGURG)) 800 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type); 801 } 802 803 int send_sigurg(struct fown_struct *fown) 804 { 805 struct task_struct *p; 806 enum pid_type type; 807 struct pid *pid; 808 unsigned long flags; 809 int ret = 0; 810 811 read_lock_irqsave(&fown->lock, flags); 812 813 type = fown->pid_type; 814 pid = fown->pid; 815 if (!pid) 816 goto out_unlock_fown; 817 818 ret = 1; 819 820 if (type <= PIDTYPE_TGID) { 821 rcu_read_lock(); 822 p = pid_task(pid, PIDTYPE_PID); 823 if (p) 824 send_sigurg_to_task(p, fown, type); 825 rcu_read_unlock(); 826 } else { 827 read_lock(&tasklist_lock); 828 do_each_pid_task(pid, type, p) { 829 send_sigurg_to_task(p, fown, type); 830 } while_each_pid_task(pid, type, p); 831 read_unlock(&tasklist_lock); 832 } 833 out_unlock_fown: 834 read_unlock_irqrestore(&fown->lock, flags); 835 return ret; 836 } 837 838 static DEFINE_SPINLOCK(fasync_lock); 839 static struct kmem_cache *fasync_cache __read_mostly; 840 841 static void fasync_free_rcu(struct rcu_head *head) 842 { 843 kmem_cache_free(fasync_cache, 844 container_of(head, struct fasync_struct, fa_rcu)); 845 } 846 847 /* 848 * Remove a fasync entry. If successfully removed, return 849 * positive and clear the FASYNC flag. If no entry exists, 850 * do nothing and return 0. 851 * 852 * NOTE! It is very important that the FASYNC flag always 853 * match the state "is the filp on a fasync list". 854 * 855 */ 856 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp) 857 { 858 struct fasync_struct *fa, **fp; 859 int result = 0; 860 861 spin_lock(&filp->f_lock); 862 spin_lock(&fasync_lock); 863 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 864 if (fa->fa_file != filp) 865 continue; 866 867 write_lock_irq(&fa->fa_lock); 868 fa->fa_file = NULL; 869 write_unlock_irq(&fa->fa_lock); 870 871 *fp = fa->fa_next; 872 call_rcu(&fa->fa_rcu, fasync_free_rcu); 873 filp->f_flags &= ~FASYNC; 874 result = 1; 875 break; 876 } 877 spin_unlock(&fasync_lock); 878 spin_unlock(&filp->f_lock); 879 return result; 880 } 881 882 struct fasync_struct *fasync_alloc(void) 883 { 884 return kmem_cache_alloc(fasync_cache, GFP_KERNEL); 885 } 886 887 /* 888 * NOTE! This can be used only for unused fasync entries: 889 * entries that actually got inserted on the fasync list 890 * need to be released by rcu - see fasync_remove_entry. 891 */ 892 void fasync_free(struct fasync_struct *new) 893 { 894 kmem_cache_free(fasync_cache, new); 895 } 896 897 /* 898 * Insert a new entry into the fasync list. Return the pointer to the 899 * old one if we didn't use the new one. 900 * 901 * NOTE! It is very important that the FASYNC flag always 902 * match the state "is the filp on a fasync list". 903 */ 904 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new) 905 { 906 struct fasync_struct *fa, **fp; 907 908 spin_lock(&filp->f_lock); 909 spin_lock(&fasync_lock); 910 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 911 if (fa->fa_file != filp) 912 continue; 913 914 write_lock_irq(&fa->fa_lock); 915 fa->fa_fd = fd; 916 write_unlock_irq(&fa->fa_lock); 917 goto out; 918 } 919 920 rwlock_init(&new->fa_lock); 921 new->magic = FASYNC_MAGIC; 922 new->fa_file = filp; 923 new->fa_fd = fd; 924 new->fa_next = *fapp; 925 rcu_assign_pointer(*fapp, new); 926 filp->f_flags |= FASYNC; 927 928 out: 929 spin_unlock(&fasync_lock); 930 spin_unlock(&filp->f_lock); 931 return fa; 932 } 933 934 /* 935 * Add a fasync entry. Return negative on error, positive if 936 * added, and zero if did nothing but change an existing one. 937 */ 938 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp) 939 { 940 struct fasync_struct *new; 941 942 new = fasync_alloc(); 943 if (!new) 944 return -ENOMEM; 945 946 /* 947 * fasync_insert_entry() returns the old (update) entry if 948 * it existed. 949 * 950 * So free the (unused) new entry and return 0 to let the 951 * caller know that we didn't add any new fasync entries. 952 */ 953 if (fasync_insert_entry(fd, filp, fapp, new)) { 954 fasync_free(new); 955 return 0; 956 } 957 958 return 1; 959 } 960 961 /* 962 * fasync_helper() is used by almost all character device drivers 963 * to set up the fasync queue, and for regular files by the file 964 * lease code. It returns negative on error, 0 if it did no changes 965 * and positive if it added/deleted the entry. 966 */ 967 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp) 968 { 969 if (!on) 970 return fasync_remove_entry(filp, fapp); 971 return fasync_add_entry(fd, filp, fapp); 972 } 973 974 EXPORT_SYMBOL(fasync_helper); 975 976 /* 977 * rcu_read_lock() is held 978 */ 979 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band) 980 { 981 while (fa) { 982 struct fown_struct *fown; 983 unsigned long flags; 984 985 if (fa->magic != FASYNC_MAGIC) { 986 printk(KERN_ERR "kill_fasync: bad magic number in " 987 "fasync_struct!\n"); 988 return; 989 } 990 read_lock_irqsave(&fa->fa_lock, flags); 991 if (fa->fa_file) { 992 fown = &fa->fa_file->f_owner; 993 /* Don't send SIGURG to processes which have not set a 994 queued signum: SIGURG has its own default signalling 995 mechanism. */ 996 if (!(sig == SIGURG && fown->signum == 0)) 997 send_sigio(fown, fa->fa_fd, band); 998 } 999 read_unlock_irqrestore(&fa->fa_lock, flags); 1000 fa = rcu_dereference(fa->fa_next); 1001 } 1002 } 1003 1004 void kill_fasync(struct fasync_struct **fp, int sig, int band) 1005 { 1006 /* First a quick test without locking: usually 1007 * the list is empty. 1008 */ 1009 if (*fp) { 1010 rcu_read_lock(); 1011 kill_fasync_rcu(rcu_dereference(*fp), sig, band); 1012 rcu_read_unlock(); 1013 } 1014 } 1015 EXPORT_SYMBOL(kill_fasync); 1016 1017 static int __init fcntl_init(void) 1018 { 1019 /* 1020 * Please add new bits here to ensure allocation uniqueness. 1021 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY 1022 * is defined as O_NONBLOCK on some platforms and not on others. 1023 */ 1024 BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ != 1025 HWEIGHT32( 1026 (VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) | 1027 __FMODE_EXEC | __FMODE_NONOTIFY)); 1028 1029 fasync_cache = kmem_cache_create("fasync_cache", 1030 sizeof(struct fasync_struct), 0, 1031 SLAB_PANIC | SLAB_ACCOUNT, NULL); 1032 return 0; 1033 } 1034 1035 module_init(fcntl_init) 1036