xref: /openbmc/linux/fs/fcntl.c (revision 5b8d9ee0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/fcntl.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/syscalls.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/fdtable.h>
15 #include <linux/capability.h>
16 #include <linux/dnotify.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/security.h>
21 #include <linux/ptrace.h>
22 #include <linux/signal.h>
23 #include <linux/rcupdate.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/user_namespace.h>
26 #include <linux/memfd.h>
27 #include <linux/compat.h>
28 #include <linux/mount.h>
29 
30 #include <linux/poll.h>
31 #include <asm/siginfo.h>
32 #include <linux/uaccess.h>
33 
34 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
35 
36 static int setfl(int fd, struct file * filp, unsigned long arg)
37 {
38 	struct inode * inode = file_inode(filp);
39 	int error = 0;
40 
41 	/*
42 	 * O_APPEND cannot be cleared if the file is marked as append-only
43 	 * and the file is open for write.
44 	 */
45 	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
46 		return -EPERM;
47 
48 	/* O_NOATIME can only be set by the owner or superuser */
49 	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
50 		if (!inode_owner_or_capable(file_mnt_user_ns(filp), inode))
51 			return -EPERM;
52 
53 	/* required for strict SunOS emulation */
54 	if (O_NONBLOCK != O_NDELAY)
55 	       if (arg & O_NDELAY)
56 		   arg |= O_NONBLOCK;
57 
58 	/* Pipe packetized mode is controlled by O_DIRECT flag */
59 	if (!S_ISFIFO(inode->i_mode) &&
60 	    (arg & O_DIRECT) &&
61 	    !(filp->f_mode & FMODE_CAN_ODIRECT))
62 		return -EINVAL;
63 
64 	if (filp->f_op->check_flags)
65 		error = filp->f_op->check_flags(arg);
66 	if (error)
67 		return error;
68 
69 	/*
70 	 * ->fasync() is responsible for setting the FASYNC bit.
71 	 */
72 	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
73 		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
74 		if (error < 0)
75 			goto out;
76 		if (error > 0)
77 			error = 0;
78 	}
79 	spin_lock(&filp->f_lock);
80 	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
81 	spin_unlock(&filp->f_lock);
82 
83  out:
84 	return error;
85 }
86 
87 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
88                      int force)
89 {
90 	write_lock_irq(&filp->f_owner.lock);
91 	if (force || !filp->f_owner.pid) {
92 		put_pid(filp->f_owner.pid);
93 		filp->f_owner.pid = get_pid(pid);
94 		filp->f_owner.pid_type = type;
95 
96 		if (pid) {
97 			const struct cred *cred = current_cred();
98 			filp->f_owner.uid = cred->uid;
99 			filp->f_owner.euid = cred->euid;
100 		}
101 	}
102 	write_unlock_irq(&filp->f_owner.lock);
103 }
104 
105 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
106 		int force)
107 {
108 	security_file_set_fowner(filp);
109 	f_modown(filp, pid, type, force);
110 }
111 EXPORT_SYMBOL(__f_setown);
112 
113 int f_setown(struct file *filp, unsigned long arg, int force)
114 {
115 	enum pid_type type;
116 	struct pid *pid = NULL;
117 	int who = arg, ret = 0;
118 
119 	type = PIDTYPE_TGID;
120 	if (who < 0) {
121 		/* avoid overflow below */
122 		if (who == INT_MIN)
123 			return -EINVAL;
124 
125 		type = PIDTYPE_PGID;
126 		who = -who;
127 	}
128 
129 	rcu_read_lock();
130 	if (who) {
131 		pid = find_vpid(who);
132 		if (!pid)
133 			ret = -ESRCH;
134 	}
135 
136 	if (!ret)
137 		__f_setown(filp, pid, type, force);
138 	rcu_read_unlock();
139 
140 	return ret;
141 }
142 EXPORT_SYMBOL(f_setown);
143 
144 void f_delown(struct file *filp)
145 {
146 	f_modown(filp, NULL, PIDTYPE_TGID, 1);
147 }
148 
149 pid_t f_getown(struct file *filp)
150 {
151 	pid_t pid = 0;
152 
153 	read_lock_irq(&filp->f_owner.lock);
154 	rcu_read_lock();
155 	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) {
156 		pid = pid_vnr(filp->f_owner.pid);
157 		if (filp->f_owner.pid_type == PIDTYPE_PGID)
158 			pid = -pid;
159 	}
160 	rcu_read_unlock();
161 	read_unlock_irq(&filp->f_owner.lock);
162 	return pid;
163 }
164 
165 static int f_setown_ex(struct file *filp, unsigned long arg)
166 {
167 	struct f_owner_ex __user *owner_p = (void __user *)arg;
168 	struct f_owner_ex owner;
169 	struct pid *pid;
170 	int type;
171 	int ret;
172 
173 	ret = copy_from_user(&owner, owner_p, sizeof(owner));
174 	if (ret)
175 		return -EFAULT;
176 
177 	switch (owner.type) {
178 	case F_OWNER_TID:
179 		type = PIDTYPE_PID;
180 		break;
181 
182 	case F_OWNER_PID:
183 		type = PIDTYPE_TGID;
184 		break;
185 
186 	case F_OWNER_PGRP:
187 		type = PIDTYPE_PGID;
188 		break;
189 
190 	default:
191 		return -EINVAL;
192 	}
193 
194 	rcu_read_lock();
195 	pid = find_vpid(owner.pid);
196 	if (owner.pid && !pid)
197 		ret = -ESRCH;
198 	else
199 		 __f_setown(filp, pid, type, 1);
200 	rcu_read_unlock();
201 
202 	return ret;
203 }
204 
205 static int f_getown_ex(struct file *filp, unsigned long arg)
206 {
207 	struct f_owner_ex __user *owner_p = (void __user *)arg;
208 	struct f_owner_ex owner = {};
209 	int ret = 0;
210 
211 	read_lock_irq(&filp->f_owner.lock);
212 	rcu_read_lock();
213 	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type))
214 		owner.pid = pid_vnr(filp->f_owner.pid);
215 	rcu_read_unlock();
216 	switch (filp->f_owner.pid_type) {
217 	case PIDTYPE_PID:
218 		owner.type = F_OWNER_TID;
219 		break;
220 
221 	case PIDTYPE_TGID:
222 		owner.type = F_OWNER_PID;
223 		break;
224 
225 	case PIDTYPE_PGID:
226 		owner.type = F_OWNER_PGRP;
227 		break;
228 
229 	default:
230 		WARN_ON(1);
231 		ret = -EINVAL;
232 		break;
233 	}
234 	read_unlock_irq(&filp->f_owner.lock);
235 
236 	if (!ret) {
237 		ret = copy_to_user(owner_p, &owner, sizeof(owner));
238 		if (ret)
239 			ret = -EFAULT;
240 	}
241 	return ret;
242 }
243 
244 #ifdef CONFIG_CHECKPOINT_RESTORE
245 static int f_getowner_uids(struct file *filp, unsigned long arg)
246 {
247 	struct user_namespace *user_ns = current_user_ns();
248 	uid_t __user *dst = (void __user *)arg;
249 	uid_t src[2];
250 	int err;
251 
252 	read_lock_irq(&filp->f_owner.lock);
253 	src[0] = from_kuid(user_ns, filp->f_owner.uid);
254 	src[1] = from_kuid(user_ns, filp->f_owner.euid);
255 	read_unlock_irq(&filp->f_owner.lock);
256 
257 	err  = put_user(src[0], &dst[0]);
258 	err |= put_user(src[1], &dst[1]);
259 
260 	return err;
261 }
262 #else
263 static int f_getowner_uids(struct file *filp, unsigned long arg)
264 {
265 	return -EINVAL;
266 }
267 #endif
268 
269 static bool rw_hint_valid(enum rw_hint hint)
270 {
271 	switch (hint) {
272 	case RWH_WRITE_LIFE_NOT_SET:
273 	case RWH_WRITE_LIFE_NONE:
274 	case RWH_WRITE_LIFE_SHORT:
275 	case RWH_WRITE_LIFE_MEDIUM:
276 	case RWH_WRITE_LIFE_LONG:
277 	case RWH_WRITE_LIFE_EXTREME:
278 		return true;
279 	default:
280 		return false;
281 	}
282 }
283 
284 static long fcntl_rw_hint(struct file *file, unsigned int cmd,
285 			  unsigned long arg)
286 {
287 	struct inode *inode = file_inode(file);
288 	u64 __user *argp = (u64 __user *)arg;
289 	enum rw_hint hint;
290 	u64 h;
291 
292 	switch (cmd) {
293 	case F_GET_RW_HINT:
294 		h = inode->i_write_hint;
295 		if (copy_to_user(argp, &h, sizeof(*argp)))
296 			return -EFAULT;
297 		return 0;
298 	case F_SET_RW_HINT:
299 		if (copy_from_user(&h, argp, sizeof(h)))
300 			return -EFAULT;
301 		hint = (enum rw_hint) h;
302 		if (!rw_hint_valid(hint))
303 			return -EINVAL;
304 
305 		inode_lock(inode);
306 		inode->i_write_hint = hint;
307 		inode_unlock(inode);
308 		return 0;
309 	default:
310 		return -EINVAL;
311 	}
312 }
313 
314 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
315 		struct file *filp)
316 {
317 	void __user *argp = (void __user *)arg;
318 	struct flock flock;
319 	long err = -EINVAL;
320 
321 	switch (cmd) {
322 	case F_DUPFD:
323 		err = f_dupfd(arg, filp, 0);
324 		break;
325 	case F_DUPFD_CLOEXEC:
326 		err = f_dupfd(arg, filp, O_CLOEXEC);
327 		break;
328 	case F_GETFD:
329 		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
330 		break;
331 	case F_SETFD:
332 		err = 0;
333 		set_close_on_exec(fd, arg & FD_CLOEXEC);
334 		break;
335 	case F_GETFL:
336 		err = filp->f_flags;
337 		break;
338 	case F_SETFL:
339 		err = setfl(fd, filp, arg);
340 		break;
341 #if BITS_PER_LONG != 32
342 	/* 32-bit arches must use fcntl64() */
343 	case F_OFD_GETLK:
344 #endif
345 	case F_GETLK:
346 		if (copy_from_user(&flock, argp, sizeof(flock)))
347 			return -EFAULT;
348 		err = fcntl_getlk(filp, cmd, &flock);
349 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
350 			return -EFAULT;
351 		break;
352 #if BITS_PER_LONG != 32
353 	/* 32-bit arches must use fcntl64() */
354 	case F_OFD_SETLK:
355 	case F_OFD_SETLKW:
356 		fallthrough;
357 #endif
358 	case F_SETLK:
359 	case F_SETLKW:
360 		if (copy_from_user(&flock, argp, sizeof(flock)))
361 			return -EFAULT;
362 		err = fcntl_setlk(fd, filp, cmd, &flock);
363 		break;
364 	case F_GETOWN:
365 		/*
366 		 * XXX If f_owner is a process group, the
367 		 * negative return value will get converted
368 		 * into an error.  Oops.  If we keep the
369 		 * current syscall conventions, the only way
370 		 * to fix this will be in libc.
371 		 */
372 		err = f_getown(filp);
373 		force_successful_syscall_return();
374 		break;
375 	case F_SETOWN:
376 		err = f_setown(filp, arg, 1);
377 		break;
378 	case F_GETOWN_EX:
379 		err = f_getown_ex(filp, arg);
380 		break;
381 	case F_SETOWN_EX:
382 		err = f_setown_ex(filp, arg);
383 		break;
384 	case F_GETOWNER_UIDS:
385 		err = f_getowner_uids(filp, arg);
386 		break;
387 	case F_GETSIG:
388 		err = filp->f_owner.signum;
389 		break;
390 	case F_SETSIG:
391 		/* arg == 0 restores default behaviour. */
392 		if (!valid_signal(arg)) {
393 			break;
394 		}
395 		err = 0;
396 		filp->f_owner.signum = arg;
397 		break;
398 	case F_GETLEASE:
399 		err = fcntl_getlease(filp);
400 		break;
401 	case F_SETLEASE:
402 		err = fcntl_setlease(fd, filp, arg);
403 		break;
404 	case F_NOTIFY:
405 		err = fcntl_dirnotify(fd, filp, arg);
406 		break;
407 	case F_SETPIPE_SZ:
408 	case F_GETPIPE_SZ:
409 		err = pipe_fcntl(filp, cmd, arg);
410 		break;
411 	case F_ADD_SEALS:
412 	case F_GET_SEALS:
413 		err = memfd_fcntl(filp, cmd, arg);
414 		break;
415 	case F_GET_RW_HINT:
416 	case F_SET_RW_HINT:
417 		err = fcntl_rw_hint(filp, cmd, arg);
418 		break;
419 	default:
420 		break;
421 	}
422 	return err;
423 }
424 
425 static int check_fcntl_cmd(unsigned cmd)
426 {
427 	switch (cmd) {
428 	case F_DUPFD:
429 	case F_DUPFD_CLOEXEC:
430 	case F_GETFD:
431 	case F_SETFD:
432 	case F_GETFL:
433 		return 1;
434 	}
435 	return 0;
436 }
437 
438 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
439 {
440 	struct fd f = fdget_raw(fd);
441 	long err = -EBADF;
442 
443 	if (!f.file)
444 		goto out;
445 
446 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
447 		if (!check_fcntl_cmd(cmd))
448 			goto out1;
449 	}
450 
451 	err = security_file_fcntl(f.file, cmd, arg);
452 	if (!err)
453 		err = do_fcntl(fd, cmd, arg, f.file);
454 
455 out1:
456  	fdput(f);
457 out:
458 	return err;
459 }
460 
461 #if BITS_PER_LONG == 32
462 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
463 		unsigned long, arg)
464 {
465 	void __user *argp = (void __user *)arg;
466 	struct fd f = fdget_raw(fd);
467 	struct flock64 flock;
468 	long err = -EBADF;
469 
470 	if (!f.file)
471 		goto out;
472 
473 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
474 		if (!check_fcntl_cmd(cmd))
475 			goto out1;
476 	}
477 
478 	err = security_file_fcntl(f.file, cmd, arg);
479 	if (err)
480 		goto out1;
481 
482 	switch (cmd) {
483 	case F_GETLK64:
484 	case F_OFD_GETLK:
485 		err = -EFAULT;
486 		if (copy_from_user(&flock, argp, sizeof(flock)))
487 			break;
488 		err = fcntl_getlk64(f.file, cmd, &flock);
489 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
490 			err = -EFAULT;
491 		break;
492 	case F_SETLK64:
493 	case F_SETLKW64:
494 	case F_OFD_SETLK:
495 	case F_OFD_SETLKW:
496 		err = -EFAULT;
497 		if (copy_from_user(&flock, argp, sizeof(flock)))
498 			break;
499 		err = fcntl_setlk64(fd, f.file, cmd, &flock);
500 		break;
501 	default:
502 		err = do_fcntl(fd, cmd, arg, f.file);
503 		break;
504 	}
505 out1:
506 	fdput(f);
507 out:
508 	return err;
509 }
510 #endif
511 
512 #ifdef CONFIG_COMPAT
513 /* careful - don't use anywhere else */
514 #define copy_flock_fields(dst, src)		\
515 	(dst)->l_type = (src)->l_type;		\
516 	(dst)->l_whence = (src)->l_whence;	\
517 	(dst)->l_start = (src)->l_start;	\
518 	(dst)->l_len = (src)->l_len;		\
519 	(dst)->l_pid = (src)->l_pid;
520 
521 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
522 {
523 	struct compat_flock fl;
524 
525 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
526 		return -EFAULT;
527 	copy_flock_fields(kfl, &fl);
528 	return 0;
529 }
530 
531 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
532 {
533 	struct compat_flock64 fl;
534 
535 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
536 		return -EFAULT;
537 	copy_flock_fields(kfl, &fl);
538 	return 0;
539 }
540 
541 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
542 {
543 	struct compat_flock fl;
544 
545 	memset(&fl, 0, sizeof(struct compat_flock));
546 	copy_flock_fields(&fl, kfl);
547 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
548 		return -EFAULT;
549 	return 0;
550 }
551 
552 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
553 {
554 	struct compat_flock64 fl;
555 
556 	BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
557 	BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
558 
559 	memset(&fl, 0, sizeof(struct compat_flock64));
560 	copy_flock_fields(&fl, kfl);
561 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
562 		return -EFAULT;
563 	return 0;
564 }
565 #undef copy_flock_fields
566 
567 static unsigned int
568 convert_fcntl_cmd(unsigned int cmd)
569 {
570 	switch (cmd) {
571 	case F_GETLK64:
572 		return F_GETLK;
573 	case F_SETLK64:
574 		return F_SETLK;
575 	case F_SETLKW64:
576 		return F_SETLKW;
577 	}
578 
579 	return cmd;
580 }
581 
582 /*
583  * GETLK was successful and we need to return the data, but it needs to fit in
584  * the compat structure.
585  * l_start shouldn't be too big, unless the original start + end is greater than
586  * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
587  * -EOVERFLOW in that case.  l_len could be too big, in which case we just
588  * truncate it, and only allow the app to see that part of the conflicting lock
589  * that might make sense to it anyway
590  */
591 static int fixup_compat_flock(struct flock *flock)
592 {
593 	if (flock->l_start > COMPAT_OFF_T_MAX)
594 		return -EOVERFLOW;
595 	if (flock->l_len > COMPAT_OFF_T_MAX)
596 		flock->l_len = COMPAT_OFF_T_MAX;
597 	return 0;
598 }
599 
600 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
601 			     compat_ulong_t arg)
602 {
603 	struct fd f = fdget_raw(fd);
604 	struct flock flock;
605 	long err = -EBADF;
606 
607 	if (!f.file)
608 		return err;
609 
610 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
611 		if (!check_fcntl_cmd(cmd))
612 			goto out_put;
613 	}
614 
615 	err = security_file_fcntl(f.file, cmd, arg);
616 	if (err)
617 		goto out_put;
618 
619 	switch (cmd) {
620 	case F_GETLK:
621 		err = get_compat_flock(&flock, compat_ptr(arg));
622 		if (err)
623 			break;
624 		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
625 		if (err)
626 			break;
627 		err = fixup_compat_flock(&flock);
628 		if (!err)
629 			err = put_compat_flock(&flock, compat_ptr(arg));
630 		break;
631 	case F_GETLK64:
632 	case F_OFD_GETLK:
633 		err = get_compat_flock64(&flock, compat_ptr(arg));
634 		if (err)
635 			break;
636 		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
637 		if (!err)
638 			err = put_compat_flock64(&flock, compat_ptr(arg));
639 		break;
640 	case F_SETLK:
641 	case F_SETLKW:
642 		err = get_compat_flock(&flock, compat_ptr(arg));
643 		if (err)
644 			break;
645 		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
646 		break;
647 	case F_SETLK64:
648 	case F_SETLKW64:
649 	case F_OFD_SETLK:
650 	case F_OFD_SETLKW:
651 		err = get_compat_flock64(&flock, compat_ptr(arg));
652 		if (err)
653 			break;
654 		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
655 		break;
656 	default:
657 		err = do_fcntl(fd, cmd, arg, f.file);
658 		break;
659 	}
660 out_put:
661 	fdput(f);
662 	return err;
663 }
664 
665 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
666 		       compat_ulong_t, arg)
667 {
668 	return do_compat_fcntl64(fd, cmd, arg);
669 }
670 
671 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
672 		       compat_ulong_t, arg)
673 {
674 	switch (cmd) {
675 	case F_GETLK64:
676 	case F_SETLK64:
677 	case F_SETLKW64:
678 	case F_OFD_GETLK:
679 	case F_OFD_SETLK:
680 	case F_OFD_SETLKW:
681 		return -EINVAL;
682 	}
683 	return do_compat_fcntl64(fd, cmd, arg);
684 }
685 #endif
686 
687 /* Table to convert sigio signal codes into poll band bitmaps */
688 
689 static const __poll_t band_table[NSIGPOLL] = {
690 	EPOLLIN | EPOLLRDNORM,			/* POLL_IN */
691 	EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND,	/* POLL_OUT */
692 	EPOLLIN | EPOLLRDNORM | EPOLLMSG,		/* POLL_MSG */
693 	EPOLLERR,				/* POLL_ERR */
694 	EPOLLPRI | EPOLLRDBAND,			/* POLL_PRI */
695 	EPOLLHUP | EPOLLERR			/* POLL_HUP */
696 };
697 
698 static inline int sigio_perm(struct task_struct *p,
699                              struct fown_struct *fown, int sig)
700 {
701 	const struct cred *cred;
702 	int ret;
703 
704 	rcu_read_lock();
705 	cred = __task_cred(p);
706 	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
707 		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
708 		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
709 	       !security_file_send_sigiotask(p, fown, sig));
710 	rcu_read_unlock();
711 	return ret;
712 }
713 
714 static void send_sigio_to_task(struct task_struct *p,
715 			       struct fown_struct *fown,
716 			       int fd, int reason, enum pid_type type)
717 {
718 	/*
719 	 * F_SETSIG can change ->signum lockless in parallel, make
720 	 * sure we read it once and use the same value throughout.
721 	 */
722 	int signum = READ_ONCE(fown->signum);
723 
724 	if (!sigio_perm(p, fown, signum))
725 		return;
726 
727 	switch (signum) {
728 		default: {
729 			kernel_siginfo_t si;
730 
731 			/* Queue a rt signal with the appropriate fd as its
732 			   value.  We use SI_SIGIO as the source, not
733 			   SI_KERNEL, since kernel signals always get
734 			   delivered even if we can't queue.  Failure to
735 			   queue in this case _should_ be reported; we fall
736 			   back to SIGIO in that case. --sct */
737 			clear_siginfo(&si);
738 			si.si_signo = signum;
739 			si.si_errno = 0;
740 		        si.si_code  = reason;
741 			/*
742 			 * Posix definies POLL_IN and friends to be signal
743 			 * specific si_codes for SIG_POLL.  Linux extended
744 			 * these si_codes to other signals in a way that is
745 			 * ambiguous if other signals also have signal
746 			 * specific si_codes.  In that case use SI_SIGIO instead
747 			 * to remove the ambiguity.
748 			 */
749 			if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
750 				si.si_code = SI_SIGIO;
751 
752 			/* Make sure we are called with one of the POLL_*
753 			   reasons, otherwise we could leak kernel stack into
754 			   userspace.  */
755 			BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
756 			if (reason - POLL_IN >= NSIGPOLL)
757 				si.si_band  = ~0L;
758 			else
759 				si.si_band = mangle_poll(band_table[reason - POLL_IN]);
760 			si.si_fd    = fd;
761 			if (!do_send_sig_info(signum, &si, p, type))
762 				break;
763 		}
764 			fallthrough;	/* fall back on the old plain SIGIO signal */
765 		case 0:
766 			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
767 	}
768 }
769 
770 void send_sigio(struct fown_struct *fown, int fd, int band)
771 {
772 	struct task_struct *p;
773 	enum pid_type type;
774 	unsigned long flags;
775 	struct pid *pid;
776 
777 	read_lock_irqsave(&fown->lock, flags);
778 
779 	type = fown->pid_type;
780 	pid = fown->pid;
781 	if (!pid)
782 		goto out_unlock_fown;
783 
784 	if (type <= PIDTYPE_TGID) {
785 		rcu_read_lock();
786 		p = pid_task(pid, PIDTYPE_PID);
787 		if (p)
788 			send_sigio_to_task(p, fown, fd, band, type);
789 		rcu_read_unlock();
790 	} else {
791 		read_lock(&tasklist_lock);
792 		do_each_pid_task(pid, type, p) {
793 			send_sigio_to_task(p, fown, fd, band, type);
794 		} while_each_pid_task(pid, type, p);
795 		read_unlock(&tasklist_lock);
796 	}
797  out_unlock_fown:
798 	read_unlock_irqrestore(&fown->lock, flags);
799 }
800 
801 static void send_sigurg_to_task(struct task_struct *p,
802 				struct fown_struct *fown, enum pid_type type)
803 {
804 	if (sigio_perm(p, fown, SIGURG))
805 		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
806 }
807 
808 int send_sigurg(struct fown_struct *fown)
809 {
810 	struct task_struct *p;
811 	enum pid_type type;
812 	struct pid *pid;
813 	unsigned long flags;
814 	int ret = 0;
815 
816 	read_lock_irqsave(&fown->lock, flags);
817 
818 	type = fown->pid_type;
819 	pid = fown->pid;
820 	if (!pid)
821 		goto out_unlock_fown;
822 
823 	ret = 1;
824 
825 	if (type <= PIDTYPE_TGID) {
826 		rcu_read_lock();
827 		p = pid_task(pid, PIDTYPE_PID);
828 		if (p)
829 			send_sigurg_to_task(p, fown, type);
830 		rcu_read_unlock();
831 	} else {
832 		read_lock(&tasklist_lock);
833 		do_each_pid_task(pid, type, p) {
834 			send_sigurg_to_task(p, fown, type);
835 		} while_each_pid_task(pid, type, p);
836 		read_unlock(&tasklist_lock);
837 	}
838  out_unlock_fown:
839 	read_unlock_irqrestore(&fown->lock, flags);
840 	return ret;
841 }
842 
843 static DEFINE_SPINLOCK(fasync_lock);
844 static struct kmem_cache *fasync_cache __read_mostly;
845 
846 static void fasync_free_rcu(struct rcu_head *head)
847 {
848 	kmem_cache_free(fasync_cache,
849 			container_of(head, struct fasync_struct, fa_rcu));
850 }
851 
852 /*
853  * Remove a fasync entry. If successfully removed, return
854  * positive and clear the FASYNC flag. If no entry exists,
855  * do nothing and return 0.
856  *
857  * NOTE! It is very important that the FASYNC flag always
858  * match the state "is the filp on a fasync list".
859  *
860  */
861 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
862 {
863 	struct fasync_struct *fa, **fp;
864 	int result = 0;
865 
866 	spin_lock(&filp->f_lock);
867 	spin_lock(&fasync_lock);
868 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
869 		if (fa->fa_file != filp)
870 			continue;
871 
872 		write_lock_irq(&fa->fa_lock);
873 		fa->fa_file = NULL;
874 		write_unlock_irq(&fa->fa_lock);
875 
876 		*fp = fa->fa_next;
877 		call_rcu(&fa->fa_rcu, fasync_free_rcu);
878 		filp->f_flags &= ~FASYNC;
879 		result = 1;
880 		break;
881 	}
882 	spin_unlock(&fasync_lock);
883 	spin_unlock(&filp->f_lock);
884 	return result;
885 }
886 
887 struct fasync_struct *fasync_alloc(void)
888 {
889 	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
890 }
891 
892 /*
893  * NOTE! This can be used only for unused fasync entries:
894  * entries that actually got inserted on the fasync list
895  * need to be released by rcu - see fasync_remove_entry.
896  */
897 void fasync_free(struct fasync_struct *new)
898 {
899 	kmem_cache_free(fasync_cache, new);
900 }
901 
902 /*
903  * Insert a new entry into the fasync list.  Return the pointer to the
904  * old one if we didn't use the new one.
905  *
906  * NOTE! It is very important that the FASYNC flag always
907  * match the state "is the filp on a fasync list".
908  */
909 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
910 {
911         struct fasync_struct *fa, **fp;
912 
913 	spin_lock(&filp->f_lock);
914 	spin_lock(&fasync_lock);
915 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
916 		if (fa->fa_file != filp)
917 			continue;
918 
919 		write_lock_irq(&fa->fa_lock);
920 		fa->fa_fd = fd;
921 		write_unlock_irq(&fa->fa_lock);
922 		goto out;
923 	}
924 
925 	rwlock_init(&new->fa_lock);
926 	new->magic = FASYNC_MAGIC;
927 	new->fa_file = filp;
928 	new->fa_fd = fd;
929 	new->fa_next = *fapp;
930 	rcu_assign_pointer(*fapp, new);
931 	filp->f_flags |= FASYNC;
932 
933 out:
934 	spin_unlock(&fasync_lock);
935 	spin_unlock(&filp->f_lock);
936 	return fa;
937 }
938 
939 /*
940  * Add a fasync entry. Return negative on error, positive if
941  * added, and zero if did nothing but change an existing one.
942  */
943 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
944 {
945 	struct fasync_struct *new;
946 
947 	new = fasync_alloc();
948 	if (!new)
949 		return -ENOMEM;
950 
951 	/*
952 	 * fasync_insert_entry() returns the old (update) entry if
953 	 * it existed.
954 	 *
955 	 * So free the (unused) new entry and return 0 to let the
956 	 * caller know that we didn't add any new fasync entries.
957 	 */
958 	if (fasync_insert_entry(fd, filp, fapp, new)) {
959 		fasync_free(new);
960 		return 0;
961 	}
962 
963 	return 1;
964 }
965 
966 /*
967  * fasync_helper() is used by almost all character device drivers
968  * to set up the fasync queue, and for regular files by the file
969  * lease code. It returns negative on error, 0 if it did no changes
970  * and positive if it added/deleted the entry.
971  */
972 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
973 {
974 	if (!on)
975 		return fasync_remove_entry(filp, fapp);
976 	return fasync_add_entry(fd, filp, fapp);
977 }
978 
979 EXPORT_SYMBOL(fasync_helper);
980 
981 /*
982  * rcu_read_lock() is held
983  */
984 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
985 {
986 	while (fa) {
987 		struct fown_struct *fown;
988 		unsigned long flags;
989 
990 		if (fa->magic != FASYNC_MAGIC) {
991 			printk(KERN_ERR "kill_fasync: bad magic number in "
992 			       "fasync_struct!\n");
993 			return;
994 		}
995 		read_lock_irqsave(&fa->fa_lock, flags);
996 		if (fa->fa_file) {
997 			fown = &fa->fa_file->f_owner;
998 			/* Don't send SIGURG to processes which have not set a
999 			   queued signum: SIGURG has its own default signalling
1000 			   mechanism. */
1001 			if (!(sig == SIGURG && fown->signum == 0))
1002 				send_sigio(fown, fa->fa_fd, band);
1003 		}
1004 		read_unlock_irqrestore(&fa->fa_lock, flags);
1005 		fa = rcu_dereference(fa->fa_next);
1006 	}
1007 }
1008 
1009 void kill_fasync(struct fasync_struct **fp, int sig, int band)
1010 {
1011 	/* First a quick test without locking: usually
1012 	 * the list is empty.
1013 	 */
1014 	if (*fp) {
1015 		rcu_read_lock();
1016 		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1017 		rcu_read_unlock();
1018 	}
1019 }
1020 EXPORT_SYMBOL(kill_fasync);
1021 
1022 static int __init fcntl_init(void)
1023 {
1024 	/*
1025 	 * Please add new bits here to ensure allocation uniqueness.
1026 	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1027 	 * is defined as O_NONBLOCK on some platforms and not on others.
1028 	 */
1029 	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1030 		HWEIGHT32(
1031 			(VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1032 			__FMODE_EXEC | __FMODE_NONOTIFY));
1033 
1034 	fasync_cache = kmem_cache_create("fasync_cache",
1035 					 sizeof(struct fasync_struct), 0,
1036 					 SLAB_PANIC | SLAB_ACCOUNT, NULL);
1037 	return 0;
1038 }
1039 
1040 module_init(fcntl_init)
1041