1 /* 2 * linux/fs/fcntl.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/syscalls.h> 8 #include <linux/init.h> 9 #include <linux/mm.h> 10 #include <linux/fs.h> 11 #include <linux/file.h> 12 #include <linux/fdtable.h> 13 #include <linux/capability.h> 14 #include <linux/dnotify.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/pipe_fs_i.h> 18 #include <linux/security.h> 19 #include <linux/ptrace.h> 20 #include <linux/signal.h> 21 #include <linux/rcupdate.h> 22 #include <linux/pid_namespace.h> 23 #include <linux/user_namespace.h> 24 #include <linux/shmem_fs.h> 25 26 #include <asm/poll.h> 27 #include <asm/siginfo.h> 28 #include <linux/uaccess.h> 29 30 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME) 31 32 static int setfl(int fd, struct file * filp, unsigned long arg) 33 { 34 struct inode * inode = file_inode(filp); 35 int error = 0; 36 37 /* 38 * O_APPEND cannot be cleared if the file is marked as append-only 39 * and the file is open for write. 40 */ 41 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode)) 42 return -EPERM; 43 44 /* O_NOATIME can only be set by the owner or superuser */ 45 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME)) 46 if (!inode_owner_or_capable(inode)) 47 return -EPERM; 48 49 /* required for strict SunOS emulation */ 50 if (O_NONBLOCK != O_NDELAY) 51 if (arg & O_NDELAY) 52 arg |= O_NONBLOCK; 53 54 /* Pipe packetized mode is controlled by O_DIRECT flag */ 55 if (!S_ISFIFO(inode->i_mode) && (arg & O_DIRECT)) { 56 if (!filp->f_mapping || !filp->f_mapping->a_ops || 57 !filp->f_mapping->a_ops->direct_IO) 58 return -EINVAL; 59 } 60 61 if (filp->f_op->check_flags) 62 error = filp->f_op->check_flags(arg); 63 if (error) 64 return error; 65 66 /* 67 * ->fasync() is responsible for setting the FASYNC bit. 68 */ 69 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) { 70 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0); 71 if (error < 0) 72 goto out; 73 if (error > 0) 74 error = 0; 75 } 76 spin_lock(&filp->f_lock); 77 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK); 78 spin_unlock(&filp->f_lock); 79 80 out: 81 return error; 82 } 83 84 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type, 85 int force) 86 { 87 write_lock_irq(&filp->f_owner.lock); 88 if (force || !filp->f_owner.pid) { 89 put_pid(filp->f_owner.pid); 90 filp->f_owner.pid = get_pid(pid); 91 filp->f_owner.pid_type = type; 92 93 if (pid) { 94 const struct cred *cred = current_cred(); 95 filp->f_owner.uid = cred->uid; 96 filp->f_owner.euid = cred->euid; 97 } 98 } 99 write_unlock_irq(&filp->f_owner.lock); 100 } 101 102 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type, 103 int force) 104 { 105 security_file_set_fowner(filp); 106 f_modown(filp, pid, type, force); 107 } 108 EXPORT_SYMBOL(__f_setown); 109 110 void f_setown(struct file *filp, unsigned long arg, int force) 111 { 112 enum pid_type type; 113 struct pid *pid; 114 int who = arg; 115 type = PIDTYPE_PID; 116 if (who < 0) { 117 type = PIDTYPE_PGID; 118 who = -who; 119 } 120 rcu_read_lock(); 121 pid = find_vpid(who); 122 __f_setown(filp, pid, type, force); 123 rcu_read_unlock(); 124 } 125 EXPORT_SYMBOL(f_setown); 126 127 void f_delown(struct file *filp) 128 { 129 f_modown(filp, NULL, PIDTYPE_PID, 1); 130 } 131 132 pid_t f_getown(struct file *filp) 133 { 134 pid_t pid; 135 read_lock(&filp->f_owner.lock); 136 pid = pid_vnr(filp->f_owner.pid); 137 if (filp->f_owner.pid_type == PIDTYPE_PGID) 138 pid = -pid; 139 read_unlock(&filp->f_owner.lock); 140 return pid; 141 } 142 143 static int f_setown_ex(struct file *filp, unsigned long arg) 144 { 145 struct f_owner_ex __user *owner_p = (void __user *)arg; 146 struct f_owner_ex owner; 147 struct pid *pid; 148 int type; 149 int ret; 150 151 ret = copy_from_user(&owner, owner_p, sizeof(owner)); 152 if (ret) 153 return -EFAULT; 154 155 switch (owner.type) { 156 case F_OWNER_TID: 157 type = PIDTYPE_MAX; 158 break; 159 160 case F_OWNER_PID: 161 type = PIDTYPE_PID; 162 break; 163 164 case F_OWNER_PGRP: 165 type = PIDTYPE_PGID; 166 break; 167 168 default: 169 return -EINVAL; 170 } 171 172 rcu_read_lock(); 173 pid = find_vpid(owner.pid); 174 if (owner.pid && !pid) 175 ret = -ESRCH; 176 else 177 __f_setown(filp, pid, type, 1); 178 rcu_read_unlock(); 179 180 return ret; 181 } 182 183 static int f_getown_ex(struct file *filp, unsigned long arg) 184 { 185 struct f_owner_ex __user *owner_p = (void __user *)arg; 186 struct f_owner_ex owner; 187 int ret = 0; 188 189 read_lock(&filp->f_owner.lock); 190 owner.pid = pid_vnr(filp->f_owner.pid); 191 switch (filp->f_owner.pid_type) { 192 case PIDTYPE_MAX: 193 owner.type = F_OWNER_TID; 194 break; 195 196 case PIDTYPE_PID: 197 owner.type = F_OWNER_PID; 198 break; 199 200 case PIDTYPE_PGID: 201 owner.type = F_OWNER_PGRP; 202 break; 203 204 default: 205 WARN_ON(1); 206 ret = -EINVAL; 207 break; 208 } 209 read_unlock(&filp->f_owner.lock); 210 211 if (!ret) { 212 ret = copy_to_user(owner_p, &owner, sizeof(owner)); 213 if (ret) 214 ret = -EFAULT; 215 } 216 return ret; 217 } 218 219 #ifdef CONFIG_CHECKPOINT_RESTORE 220 static int f_getowner_uids(struct file *filp, unsigned long arg) 221 { 222 struct user_namespace *user_ns = current_user_ns(); 223 uid_t __user *dst = (void __user *)arg; 224 uid_t src[2]; 225 int err; 226 227 read_lock(&filp->f_owner.lock); 228 src[0] = from_kuid(user_ns, filp->f_owner.uid); 229 src[1] = from_kuid(user_ns, filp->f_owner.euid); 230 read_unlock(&filp->f_owner.lock); 231 232 err = put_user(src[0], &dst[0]); 233 err |= put_user(src[1], &dst[1]); 234 235 return err; 236 } 237 #else 238 static int f_getowner_uids(struct file *filp, unsigned long arg) 239 { 240 return -EINVAL; 241 } 242 #endif 243 244 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg, 245 struct file *filp) 246 { 247 long err = -EINVAL; 248 249 switch (cmd) { 250 case F_DUPFD: 251 err = f_dupfd(arg, filp, 0); 252 break; 253 case F_DUPFD_CLOEXEC: 254 err = f_dupfd(arg, filp, O_CLOEXEC); 255 break; 256 case F_GETFD: 257 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0; 258 break; 259 case F_SETFD: 260 err = 0; 261 set_close_on_exec(fd, arg & FD_CLOEXEC); 262 break; 263 case F_GETFL: 264 err = filp->f_flags; 265 break; 266 case F_SETFL: 267 err = setfl(fd, filp, arg); 268 break; 269 #if BITS_PER_LONG != 32 270 /* 32-bit arches must use fcntl64() */ 271 case F_OFD_GETLK: 272 #endif 273 case F_GETLK: 274 err = fcntl_getlk(filp, cmd, (struct flock __user *) arg); 275 break; 276 #if BITS_PER_LONG != 32 277 /* 32-bit arches must use fcntl64() */ 278 case F_OFD_SETLK: 279 case F_OFD_SETLKW: 280 #endif 281 /* Fallthrough */ 282 case F_SETLK: 283 case F_SETLKW: 284 err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg); 285 break; 286 case F_GETOWN: 287 /* 288 * XXX If f_owner is a process group, the 289 * negative return value will get converted 290 * into an error. Oops. If we keep the 291 * current syscall conventions, the only way 292 * to fix this will be in libc. 293 */ 294 err = f_getown(filp); 295 force_successful_syscall_return(); 296 break; 297 case F_SETOWN: 298 f_setown(filp, arg, 1); 299 err = 0; 300 break; 301 case F_GETOWN_EX: 302 err = f_getown_ex(filp, arg); 303 break; 304 case F_SETOWN_EX: 305 err = f_setown_ex(filp, arg); 306 break; 307 case F_GETOWNER_UIDS: 308 err = f_getowner_uids(filp, arg); 309 break; 310 case F_GETSIG: 311 err = filp->f_owner.signum; 312 break; 313 case F_SETSIG: 314 /* arg == 0 restores default behaviour. */ 315 if (!valid_signal(arg)) { 316 break; 317 } 318 err = 0; 319 filp->f_owner.signum = arg; 320 break; 321 case F_GETLEASE: 322 err = fcntl_getlease(filp); 323 break; 324 case F_SETLEASE: 325 err = fcntl_setlease(fd, filp, arg); 326 break; 327 case F_NOTIFY: 328 err = fcntl_dirnotify(fd, filp, arg); 329 break; 330 case F_SETPIPE_SZ: 331 case F_GETPIPE_SZ: 332 err = pipe_fcntl(filp, cmd, arg); 333 break; 334 case F_ADD_SEALS: 335 case F_GET_SEALS: 336 err = shmem_fcntl(filp, cmd, arg); 337 break; 338 default: 339 break; 340 } 341 return err; 342 } 343 344 static int check_fcntl_cmd(unsigned cmd) 345 { 346 switch (cmd) { 347 case F_DUPFD: 348 case F_DUPFD_CLOEXEC: 349 case F_GETFD: 350 case F_SETFD: 351 case F_GETFL: 352 return 1; 353 } 354 return 0; 355 } 356 357 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg) 358 { 359 struct fd f = fdget_raw(fd); 360 long err = -EBADF; 361 362 if (!f.file) 363 goto out; 364 365 if (unlikely(f.file->f_mode & FMODE_PATH)) { 366 if (!check_fcntl_cmd(cmd)) 367 goto out1; 368 } 369 370 err = security_file_fcntl(f.file, cmd, arg); 371 if (!err) 372 err = do_fcntl(fd, cmd, arg, f.file); 373 374 out1: 375 fdput(f); 376 out: 377 return err; 378 } 379 380 #if BITS_PER_LONG == 32 381 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, 382 unsigned long, arg) 383 { 384 struct fd f = fdget_raw(fd); 385 long err = -EBADF; 386 387 if (!f.file) 388 goto out; 389 390 if (unlikely(f.file->f_mode & FMODE_PATH)) { 391 if (!check_fcntl_cmd(cmd)) 392 goto out1; 393 } 394 395 err = security_file_fcntl(f.file, cmd, arg); 396 if (err) 397 goto out1; 398 399 switch (cmd) { 400 case F_GETLK64: 401 case F_OFD_GETLK: 402 err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg); 403 break; 404 case F_SETLK64: 405 case F_SETLKW64: 406 case F_OFD_SETLK: 407 case F_OFD_SETLKW: 408 err = fcntl_setlk64(fd, f.file, cmd, 409 (struct flock64 __user *) arg); 410 break; 411 default: 412 err = do_fcntl(fd, cmd, arg, f.file); 413 break; 414 } 415 out1: 416 fdput(f); 417 out: 418 return err; 419 } 420 #endif 421 422 /* Table to convert sigio signal codes into poll band bitmaps */ 423 424 static const long band_table[NSIGPOLL] = { 425 POLLIN | POLLRDNORM, /* POLL_IN */ 426 POLLOUT | POLLWRNORM | POLLWRBAND, /* POLL_OUT */ 427 POLLIN | POLLRDNORM | POLLMSG, /* POLL_MSG */ 428 POLLERR, /* POLL_ERR */ 429 POLLPRI | POLLRDBAND, /* POLL_PRI */ 430 POLLHUP | POLLERR /* POLL_HUP */ 431 }; 432 433 static inline int sigio_perm(struct task_struct *p, 434 struct fown_struct *fown, int sig) 435 { 436 const struct cred *cred; 437 int ret; 438 439 rcu_read_lock(); 440 cred = __task_cred(p); 441 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) || 442 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) || 443 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) && 444 !security_file_send_sigiotask(p, fown, sig)); 445 rcu_read_unlock(); 446 return ret; 447 } 448 449 static void send_sigio_to_task(struct task_struct *p, 450 struct fown_struct *fown, 451 int fd, int reason, int group) 452 { 453 /* 454 * F_SETSIG can change ->signum lockless in parallel, make 455 * sure we read it once and use the same value throughout. 456 */ 457 int signum = ACCESS_ONCE(fown->signum); 458 459 if (!sigio_perm(p, fown, signum)) 460 return; 461 462 switch (signum) { 463 siginfo_t si; 464 default: 465 /* Queue a rt signal with the appropriate fd as its 466 value. We use SI_SIGIO as the source, not 467 SI_KERNEL, since kernel signals always get 468 delivered even if we can't queue. Failure to 469 queue in this case _should_ be reported; we fall 470 back to SIGIO in that case. --sct */ 471 si.si_signo = signum; 472 si.si_errno = 0; 473 si.si_code = reason; 474 /* Make sure we are called with one of the POLL_* 475 reasons, otherwise we could leak kernel stack into 476 userspace. */ 477 BUG_ON((reason & __SI_MASK) != __SI_POLL); 478 if (reason - POLL_IN >= NSIGPOLL) 479 si.si_band = ~0L; 480 else 481 si.si_band = band_table[reason - POLL_IN]; 482 si.si_fd = fd; 483 if (!do_send_sig_info(signum, &si, p, group)) 484 break; 485 /* fall-through: fall back on the old plain SIGIO signal */ 486 case 0: 487 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group); 488 } 489 } 490 491 void send_sigio(struct fown_struct *fown, int fd, int band) 492 { 493 struct task_struct *p; 494 enum pid_type type; 495 struct pid *pid; 496 int group = 1; 497 498 read_lock(&fown->lock); 499 500 type = fown->pid_type; 501 if (type == PIDTYPE_MAX) { 502 group = 0; 503 type = PIDTYPE_PID; 504 } 505 506 pid = fown->pid; 507 if (!pid) 508 goto out_unlock_fown; 509 510 read_lock(&tasklist_lock); 511 do_each_pid_task(pid, type, p) { 512 send_sigio_to_task(p, fown, fd, band, group); 513 } while_each_pid_task(pid, type, p); 514 read_unlock(&tasklist_lock); 515 out_unlock_fown: 516 read_unlock(&fown->lock); 517 } 518 519 static void send_sigurg_to_task(struct task_struct *p, 520 struct fown_struct *fown, int group) 521 { 522 if (sigio_perm(p, fown, SIGURG)) 523 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group); 524 } 525 526 int send_sigurg(struct fown_struct *fown) 527 { 528 struct task_struct *p; 529 enum pid_type type; 530 struct pid *pid; 531 int group = 1; 532 int ret = 0; 533 534 read_lock(&fown->lock); 535 536 type = fown->pid_type; 537 if (type == PIDTYPE_MAX) { 538 group = 0; 539 type = PIDTYPE_PID; 540 } 541 542 pid = fown->pid; 543 if (!pid) 544 goto out_unlock_fown; 545 546 ret = 1; 547 548 read_lock(&tasklist_lock); 549 do_each_pid_task(pid, type, p) { 550 send_sigurg_to_task(p, fown, group); 551 } while_each_pid_task(pid, type, p); 552 read_unlock(&tasklist_lock); 553 out_unlock_fown: 554 read_unlock(&fown->lock); 555 return ret; 556 } 557 558 static DEFINE_SPINLOCK(fasync_lock); 559 static struct kmem_cache *fasync_cache __read_mostly; 560 561 static void fasync_free_rcu(struct rcu_head *head) 562 { 563 kmem_cache_free(fasync_cache, 564 container_of(head, struct fasync_struct, fa_rcu)); 565 } 566 567 /* 568 * Remove a fasync entry. If successfully removed, return 569 * positive and clear the FASYNC flag. If no entry exists, 570 * do nothing and return 0. 571 * 572 * NOTE! It is very important that the FASYNC flag always 573 * match the state "is the filp on a fasync list". 574 * 575 */ 576 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp) 577 { 578 struct fasync_struct *fa, **fp; 579 int result = 0; 580 581 spin_lock(&filp->f_lock); 582 spin_lock(&fasync_lock); 583 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 584 if (fa->fa_file != filp) 585 continue; 586 587 spin_lock_irq(&fa->fa_lock); 588 fa->fa_file = NULL; 589 spin_unlock_irq(&fa->fa_lock); 590 591 *fp = fa->fa_next; 592 call_rcu(&fa->fa_rcu, fasync_free_rcu); 593 filp->f_flags &= ~FASYNC; 594 result = 1; 595 break; 596 } 597 spin_unlock(&fasync_lock); 598 spin_unlock(&filp->f_lock); 599 return result; 600 } 601 602 struct fasync_struct *fasync_alloc(void) 603 { 604 return kmem_cache_alloc(fasync_cache, GFP_KERNEL); 605 } 606 607 /* 608 * NOTE! This can be used only for unused fasync entries: 609 * entries that actually got inserted on the fasync list 610 * need to be released by rcu - see fasync_remove_entry. 611 */ 612 void fasync_free(struct fasync_struct *new) 613 { 614 kmem_cache_free(fasync_cache, new); 615 } 616 617 /* 618 * Insert a new entry into the fasync list. Return the pointer to the 619 * old one if we didn't use the new one. 620 * 621 * NOTE! It is very important that the FASYNC flag always 622 * match the state "is the filp on a fasync list". 623 */ 624 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new) 625 { 626 struct fasync_struct *fa, **fp; 627 628 spin_lock(&filp->f_lock); 629 spin_lock(&fasync_lock); 630 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 631 if (fa->fa_file != filp) 632 continue; 633 634 spin_lock_irq(&fa->fa_lock); 635 fa->fa_fd = fd; 636 spin_unlock_irq(&fa->fa_lock); 637 goto out; 638 } 639 640 spin_lock_init(&new->fa_lock); 641 new->magic = FASYNC_MAGIC; 642 new->fa_file = filp; 643 new->fa_fd = fd; 644 new->fa_next = *fapp; 645 rcu_assign_pointer(*fapp, new); 646 filp->f_flags |= FASYNC; 647 648 out: 649 spin_unlock(&fasync_lock); 650 spin_unlock(&filp->f_lock); 651 return fa; 652 } 653 654 /* 655 * Add a fasync entry. Return negative on error, positive if 656 * added, and zero if did nothing but change an existing one. 657 */ 658 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp) 659 { 660 struct fasync_struct *new; 661 662 new = fasync_alloc(); 663 if (!new) 664 return -ENOMEM; 665 666 /* 667 * fasync_insert_entry() returns the old (update) entry if 668 * it existed. 669 * 670 * So free the (unused) new entry and return 0 to let the 671 * caller know that we didn't add any new fasync entries. 672 */ 673 if (fasync_insert_entry(fd, filp, fapp, new)) { 674 fasync_free(new); 675 return 0; 676 } 677 678 return 1; 679 } 680 681 /* 682 * fasync_helper() is used by almost all character device drivers 683 * to set up the fasync queue, and for regular files by the file 684 * lease code. It returns negative on error, 0 if it did no changes 685 * and positive if it added/deleted the entry. 686 */ 687 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp) 688 { 689 if (!on) 690 return fasync_remove_entry(filp, fapp); 691 return fasync_add_entry(fd, filp, fapp); 692 } 693 694 EXPORT_SYMBOL(fasync_helper); 695 696 /* 697 * rcu_read_lock() is held 698 */ 699 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band) 700 { 701 while (fa) { 702 struct fown_struct *fown; 703 unsigned long flags; 704 705 if (fa->magic != FASYNC_MAGIC) { 706 printk(KERN_ERR "kill_fasync: bad magic number in " 707 "fasync_struct!\n"); 708 return; 709 } 710 spin_lock_irqsave(&fa->fa_lock, flags); 711 if (fa->fa_file) { 712 fown = &fa->fa_file->f_owner; 713 /* Don't send SIGURG to processes which have not set a 714 queued signum: SIGURG has its own default signalling 715 mechanism. */ 716 if (!(sig == SIGURG && fown->signum == 0)) 717 send_sigio(fown, fa->fa_fd, band); 718 } 719 spin_unlock_irqrestore(&fa->fa_lock, flags); 720 fa = rcu_dereference(fa->fa_next); 721 } 722 } 723 724 void kill_fasync(struct fasync_struct **fp, int sig, int band) 725 { 726 /* First a quick test without locking: usually 727 * the list is empty. 728 */ 729 if (*fp) { 730 rcu_read_lock(); 731 kill_fasync_rcu(rcu_dereference(*fp), sig, band); 732 rcu_read_unlock(); 733 } 734 } 735 EXPORT_SYMBOL(kill_fasync); 736 737 static int __init fcntl_init(void) 738 { 739 /* 740 * Please add new bits here to ensure allocation uniqueness. 741 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY 742 * is defined as O_NONBLOCK on some platforms and not on others. 743 */ 744 BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32( 745 O_RDONLY | O_WRONLY | O_RDWR | 746 O_CREAT | O_EXCL | O_NOCTTY | 747 O_TRUNC | O_APPEND | /* O_NONBLOCK | */ 748 __O_SYNC | O_DSYNC | FASYNC | 749 O_DIRECT | O_LARGEFILE | O_DIRECTORY | 750 O_NOFOLLOW | O_NOATIME | O_CLOEXEC | 751 __FMODE_EXEC | O_PATH | __O_TMPFILE | 752 __FMODE_NONOTIFY 753 )); 754 755 fasync_cache = kmem_cache_create("fasync_cache", 756 sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL); 757 return 0; 758 } 759 760 module_init(fcntl_init) 761