xref: /openbmc/linux/fs/fcntl.c (revision 4beec1d7)
1 /*
2  *  linux/fs/fcntl.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/syscalls.h>
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fs.h>
11 #include <linux/file.h>
12 #include <linux/fdtable.h>
13 #include <linux/capability.h>
14 #include <linux/dnotify.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/security.h>
19 #include <linux/ptrace.h>
20 #include <linux/signal.h>
21 #include <linux/rcupdate.h>
22 #include <linux/pid_namespace.h>
23 #include <linux/user_namespace.h>
24 #include <linux/shmem_fs.h>
25 
26 #include <asm/poll.h>
27 #include <asm/siginfo.h>
28 #include <linux/uaccess.h>
29 
30 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
31 
32 static int setfl(int fd, struct file * filp, unsigned long arg)
33 {
34 	struct inode * inode = file_inode(filp);
35 	int error = 0;
36 
37 	/*
38 	 * O_APPEND cannot be cleared if the file is marked as append-only
39 	 * and the file is open for write.
40 	 */
41 	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
42 		return -EPERM;
43 
44 	/* O_NOATIME can only be set by the owner or superuser */
45 	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
46 		if (!inode_owner_or_capable(inode))
47 			return -EPERM;
48 
49 	/* required for strict SunOS emulation */
50 	if (O_NONBLOCK != O_NDELAY)
51 	       if (arg & O_NDELAY)
52 		   arg |= O_NONBLOCK;
53 
54 	/* Pipe packetized mode is controlled by O_DIRECT flag */
55 	if (!S_ISFIFO(inode->i_mode) && (arg & O_DIRECT)) {
56 		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
57 			!filp->f_mapping->a_ops->direct_IO)
58 				return -EINVAL;
59 	}
60 
61 	if (filp->f_op->check_flags)
62 		error = filp->f_op->check_flags(arg);
63 	if (error)
64 		return error;
65 
66 	/*
67 	 * ->fasync() is responsible for setting the FASYNC bit.
68 	 */
69 	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
70 		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
71 		if (error < 0)
72 			goto out;
73 		if (error > 0)
74 			error = 0;
75 	}
76 	spin_lock(&filp->f_lock);
77 	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
78 	spin_unlock(&filp->f_lock);
79 
80  out:
81 	return error;
82 }
83 
84 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
85                      int force)
86 {
87 	write_lock_irq(&filp->f_owner.lock);
88 	if (force || !filp->f_owner.pid) {
89 		put_pid(filp->f_owner.pid);
90 		filp->f_owner.pid = get_pid(pid);
91 		filp->f_owner.pid_type = type;
92 
93 		if (pid) {
94 			const struct cred *cred = current_cred();
95 			filp->f_owner.uid = cred->uid;
96 			filp->f_owner.euid = cred->euid;
97 		}
98 	}
99 	write_unlock_irq(&filp->f_owner.lock);
100 }
101 
102 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
103 		int force)
104 {
105 	security_file_set_fowner(filp);
106 	f_modown(filp, pid, type, force);
107 }
108 EXPORT_SYMBOL(__f_setown);
109 
110 void f_setown(struct file *filp, unsigned long arg, int force)
111 {
112 	enum pid_type type;
113 	struct pid *pid;
114 	int who = arg;
115 	type = PIDTYPE_PID;
116 	if (who < 0) {
117 		type = PIDTYPE_PGID;
118 		who = -who;
119 	}
120 	rcu_read_lock();
121 	pid = find_vpid(who);
122 	__f_setown(filp, pid, type, force);
123 	rcu_read_unlock();
124 }
125 EXPORT_SYMBOL(f_setown);
126 
127 void f_delown(struct file *filp)
128 {
129 	f_modown(filp, NULL, PIDTYPE_PID, 1);
130 }
131 
132 pid_t f_getown(struct file *filp)
133 {
134 	pid_t pid;
135 	read_lock(&filp->f_owner.lock);
136 	pid = pid_vnr(filp->f_owner.pid);
137 	if (filp->f_owner.pid_type == PIDTYPE_PGID)
138 		pid = -pid;
139 	read_unlock(&filp->f_owner.lock);
140 	return pid;
141 }
142 
143 static int f_setown_ex(struct file *filp, unsigned long arg)
144 {
145 	struct f_owner_ex __user *owner_p = (void __user *)arg;
146 	struct f_owner_ex owner;
147 	struct pid *pid;
148 	int type;
149 	int ret;
150 
151 	ret = copy_from_user(&owner, owner_p, sizeof(owner));
152 	if (ret)
153 		return -EFAULT;
154 
155 	switch (owner.type) {
156 	case F_OWNER_TID:
157 		type = PIDTYPE_MAX;
158 		break;
159 
160 	case F_OWNER_PID:
161 		type = PIDTYPE_PID;
162 		break;
163 
164 	case F_OWNER_PGRP:
165 		type = PIDTYPE_PGID;
166 		break;
167 
168 	default:
169 		return -EINVAL;
170 	}
171 
172 	rcu_read_lock();
173 	pid = find_vpid(owner.pid);
174 	if (owner.pid && !pid)
175 		ret = -ESRCH;
176 	else
177 		 __f_setown(filp, pid, type, 1);
178 	rcu_read_unlock();
179 
180 	return ret;
181 }
182 
183 static int f_getown_ex(struct file *filp, unsigned long arg)
184 {
185 	struct f_owner_ex __user *owner_p = (void __user *)arg;
186 	struct f_owner_ex owner;
187 	int ret = 0;
188 
189 	read_lock(&filp->f_owner.lock);
190 	owner.pid = pid_vnr(filp->f_owner.pid);
191 	switch (filp->f_owner.pid_type) {
192 	case PIDTYPE_MAX:
193 		owner.type = F_OWNER_TID;
194 		break;
195 
196 	case PIDTYPE_PID:
197 		owner.type = F_OWNER_PID;
198 		break;
199 
200 	case PIDTYPE_PGID:
201 		owner.type = F_OWNER_PGRP;
202 		break;
203 
204 	default:
205 		WARN_ON(1);
206 		ret = -EINVAL;
207 		break;
208 	}
209 	read_unlock(&filp->f_owner.lock);
210 
211 	if (!ret) {
212 		ret = copy_to_user(owner_p, &owner, sizeof(owner));
213 		if (ret)
214 			ret = -EFAULT;
215 	}
216 	return ret;
217 }
218 
219 #ifdef CONFIG_CHECKPOINT_RESTORE
220 static int f_getowner_uids(struct file *filp, unsigned long arg)
221 {
222 	struct user_namespace *user_ns = current_user_ns();
223 	uid_t __user *dst = (void __user *)arg;
224 	uid_t src[2];
225 	int err;
226 
227 	read_lock(&filp->f_owner.lock);
228 	src[0] = from_kuid(user_ns, filp->f_owner.uid);
229 	src[1] = from_kuid(user_ns, filp->f_owner.euid);
230 	read_unlock(&filp->f_owner.lock);
231 
232 	err  = put_user(src[0], &dst[0]);
233 	err |= put_user(src[1], &dst[1]);
234 
235 	return err;
236 }
237 #else
238 static int f_getowner_uids(struct file *filp, unsigned long arg)
239 {
240 	return -EINVAL;
241 }
242 #endif
243 
244 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
245 		struct file *filp)
246 {
247 	long err = -EINVAL;
248 
249 	switch (cmd) {
250 	case F_DUPFD:
251 		err = f_dupfd(arg, filp, 0);
252 		break;
253 	case F_DUPFD_CLOEXEC:
254 		err = f_dupfd(arg, filp, O_CLOEXEC);
255 		break;
256 	case F_GETFD:
257 		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
258 		break;
259 	case F_SETFD:
260 		err = 0;
261 		set_close_on_exec(fd, arg & FD_CLOEXEC);
262 		break;
263 	case F_GETFL:
264 		err = filp->f_flags;
265 		break;
266 	case F_SETFL:
267 		err = setfl(fd, filp, arg);
268 		break;
269 #if BITS_PER_LONG != 32
270 	/* 32-bit arches must use fcntl64() */
271 	case F_OFD_GETLK:
272 #endif
273 	case F_GETLK:
274 		err = fcntl_getlk(filp, cmd, (struct flock __user *) arg);
275 		break;
276 #if BITS_PER_LONG != 32
277 	/* 32-bit arches must use fcntl64() */
278 	case F_OFD_SETLK:
279 	case F_OFD_SETLKW:
280 #endif
281 		/* Fallthrough */
282 	case F_SETLK:
283 	case F_SETLKW:
284 		err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
285 		break;
286 	case F_GETOWN:
287 		/*
288 		 * XXX If f_owner is a process group, the
289 		 * negative return value will get converted
290 		 * into an error.  Oops.  If we keep the
291 		 * current syscall conventions, the only way
292 		 * to fix this will be in libc.
293 		 */
294 		err = f_getown(filp);
295 		force_successful_syscall_return();
296 		break;
297 	case F_SETOWN:
298 		f_setown(filp, arg, 1);
299 		err = 0;
300 		break;
301 	case F_GETOWN_EX:
302 		err = f_getown_ex(filp, arg);
303 		break;
304 	case F_SETOWN_EX:
305 		err = f_setown_ex(filp, arg);
306 		break;
307 	case F_GETOWNER_UIDS:
308 		err = f_getowner_uids(filp, arg);
309 		break;
310 	case F_GETSIG:
311 		err = filp->f_owner.signum;
312 		break;
313 	case F_SETSIG:
314 		/* arg == 0 restores default behaviour. */
315 		if (!valid_signal(arg)) {
316 			break;
317 		}
318 		err = 0;
319 		filp->f_owner.signum = arg;
320 		break;
321 	case F_GETLEASE:
322 		err = fcntl_getlease(filp);
323 		break;
324 	case F_SETLEASE:
325 		err = fcntl_setlease(fd, filp, arg);
326 		break;
327 	case F_NOTIFY:
328 		err = fcntl_dirnotify(fd, filp, arg);
329 		break;
330 	case F_SETPIPE_SZ:
331 	case F_GETPIPE_SZ:
332 		err = pipe_fcntl(filp, cmd, arg);
333 		break;
334 	case F_ADD_SEALS:
335 	case F_GET_SEALS:
336 		err = shmem_fcntl(filp, cmd, arg);
337 		break;
338 	default:
339 		break;
340 	}
341 	return err;
342 }
343 
344 static int check_fcntl_cmd(unsigned cmd)
345 {
346 	switch (cmd) {
347 	case F_DUPFD:
348 	case F_DUPFD_CLOEXEC:
349 	case F_GETFD:
350 	case F_SETFD:
351 	case F_GETFL:
352 		return 1;
353 	}
354 	return 0;
355 }
356 
357 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
358 {
359 	struct fd f = fdget_raw(fd);
360 	long err = -EBADF;
361 
362 	if (!f.file)
363 		goto out;
364 
365 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
366 		if (!check_fcntl_cmd(cmd))
367 			goto out1;
368 	}
369 
370 	err = security_file_fcntl(f.file, cmd, arg);
371 	if (!err)
372 		err = do_fcntl(fd, cmd, arg, f.file);
373 
374 out1:
375  	fdput(f);
376 out:
377 	return err;
378 }
379 
380 #if BITS_PER_LONG == 32
381 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
382 		unsigned long, arg)
383 {
384 	struct fd f = fdget_raw(fd);
385 	long err = -EBADF;
386 
387 	if (!f.file)
388 		goto out;
389 
390 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
391 		if (!check_fcntl_cmd(cmd))
392 			goto out1;
393 	}
394 
395 	err = security_file_fcntl(f.file, cmd, arg);
396 	if (err)
397 		goto out1;
398 
399 	switch (cmd) {
400 	case F_GETLK64:
401 	case F_OFD_GETLK:
402 		err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg);
403 		break;
404 	case F_SETLK64:
405 	case F_SETLKW64:
406 	case F_OFD_SETLK:
407 	case F_OFD_SETLKW:
408 		err = fcntl_setlk64(fd, f.file, cmd,
409 				(struct flock64 __user *) arg);
410 		break;
411 	default:
412 		err = do_fcntl(fd, cmd, arg, f.file);
413 		break;
414 	}
415 out1:
416 	fdput(f);
417 out:
418 	return err;
419 }
420 #endif
421 
422 /* Table to convert sigio signal codes into poll band bitmaps */
423 
424 static const long band_table[NSIGPOLL] = {
425 	POLLIN | POLLRDNORM,			/* POLL_IN */
426 	POLLOUT | POLLWRNORM | POLLWRBAND,	/* POLL_OUT */
427 	POLLIN | POLLRDNORM | POLLMSG,		/* POLL_MSG */
428 	POLLERR,				/* POLL_ERR */
429 	POLLPRI | POLLRDBAND,			/* POLL_PRI */
430 	POLLHUP | POLLERR			/* POLL_HUP */
431 };
432 
433 static inline int sigio_perm(struct task_struct *p,
434                              struct fown_struct *fown, int sig)
435 {
436 	const struct cred *cred;
437 	int ret;
438 
439 	rcu_read_lock();
440 	cred = __task_cred(p);
441 	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
442 		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
443 		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
444 	       !security_file_send_sigiotask(p, fown, sig));
445 	rcu_read_unlock();
446 	return ret;
447 }
448 
449 static void send_sigio_to_task(struct task_struct *p,
450 			       struct fown_struct *fown,
451 			       int fd, int reason, int group)
452 {
453 	/*
454 	 * F_SETSIG can change ->signum lockless in parallel, make
455 	 * sure we read it once and use the same value throughout.
456 	 */
457 	int signum = ACCESS_ONCE(fown->signum);
458 
459 	if (!sigio_perm(p, fown, signum))
460 		return;
461 
462 	switch (signum) {
463 		siginfo_t si;
464 		default:
465 			/* Queue a rt signal with the appropriate fd as its
466 			   value.  We use SI_SIGIO as the source, not
467 			   SI_KERNEL, since kernel signals always get
468 			   delivered even if we can't queue.  Failure to
469 			   queue in this case _should_ be reported; we fall
470 			   back to SIGIO in that case. --sct */
471 			si.si_signo = signum;
472 			si.si_errno = 0;
473 		        si.si_code  = reason;
474 			/* Make sure we are called with one of the POLL_*
475 			   reasons, otherwise we could leak kernel stack into
476 			   userspace.  */
477 			BUG_ON((reason & __SI_MASK) != __SI_POLL);
478 			if (reason - POLL_IN >= NSIGPOLL)
479 				si.si_band  = ~0L;
480 			else
481 				si.si_band = band_table[reason - POLL_IN];
482 			si.si_fd    = fd;
483 			if (!do_send_sig_info(signum, &si, p, group))
484 				break;
485 		/* fall-through: fall back on the old plain SIGIO signal */
486 		case 0:
487 			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
488 	}
489 }
490 
491 void send_sigio(struct fown_struct *fown, int fd, int band)
492 {
493 	struct task_struct *p;
494 	enum pid_type type;
495 	struct pid *pid;
496 	int group = 1;
497 
498 	read_lock(&fown->lock);
499 
500 	type = fown->pid_type;
501 	if (type == PIDTYPE_MAX) {
502 		group = 0;
503 		type = PIDTYPE_PID;
504 	}
505 
506 	pid = fown->pid;
507 	if (!pid)
508 		goto out_unlock_fown;
509 
510 	read_lock(&tasklist_lock);
511 	do_each_pid_task(pid, type, p) {
512 		send_sigio_to_task(p, fown, fd, band, group);
513 	} while_each_pid_task(pid, type, p);
514 	read_unlock(&tasklist_lock);
515  out_unlock_fown:
516 	read_unlock(&fown->lock);
517 }
518 
519 static void send_sigurg_to_task(struct task_struct *p,
520 				struct fown_struct *fown, int group)
521 {
522 	if (sigio_perm(p, fown, SIGURG))
523 		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
524 }
525 
526 int send_sigurg(struct fown_struct *fown)
527 {
528 	struct task_struct *p;
529 	enum pid_type type;
530 	struct pid *pid;
531 	int group = 1;
532 	int ret = 0;
533 
534 	read_lock(&fown->lock);
535 
536 	type = fown->pid_type;
537 	if (type == PIDTYPE_MAX) {
538 		group = 0;
539 		type = PIDTYPE_PID;
540 	}
541 
542 	pid = fown->pid;
543 	if (!pid)
544 		goto out_unlock_fown;
545 
546 	ret = 1;
547 
548 	read_lock(&tasklist_lock);
549 	do_each_pid_task(pid, type, p) {
550 		send_sigurg_to_task(p, fown, group);
551 	} while_each_pid_task(pid, type, p);
552 	read_unlock(&tasklist_lock);
553  out_unlock_fown:
554 	read_unlock(&fown->lock);
555 	return ret;
556 }
557 
558 static DEFINE_SPINLOCK(fasync_lock);
559 static struct kmem_cache *fasync_cache __read_mostly;
560 
561 static void fasync_free_rcu(struct rcu_head *head)
562 {
563 	kmem_cache_free(fasync_cache,
564 			container_of(head, struct fasync_struct, fa_rcu));
565 }
566 
567 /*
568  * Remove a fasync entry. If successfully removed, return
569  * positive and clear the FASYNC flag. If no entry exists,
570  * do nothing and return 0.
571  *
572  * NOTE! It is very important that the FASYNC flag always
573  * match the state "is the filp on a fasync list".
574  *
575  */
576 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
577 {
578 	struct fasync_struct *fa, **fp;
579 	int result = 0;
580 
581 	spin_lock(&filp->f_lock);
582 	spin_lock(&fasync_lock);
583 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
584 		if (fa->fa_file != filp)
585 			continue;
586 
587 		spin_lock_irq(&fa->fa_lock);
588 		fa->fa_file = NULL;
589 		spin_unlock_irq(&fa->fa_lock);
590 
591 		*fp = fa->fa_next;
592 		call_rcu(&fa->fa_rcu, fasync_free_rcu);
593 		filp->f_flags &= ~FASYNC;
594 		result = 1;
595 		break;
596 	}
597 	spin_unlock(&fasync_lock);
598 	spin_unlock(&filp->f_lock);
599 	return result;
600 }
601 
602 struct fasync_struct *fasync_alloc(void)
603 {
604 	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
605 }
606 
607 /*
608  * NOTE! This can be used only for unused fasync entries:
609  * entries that actually got inserted on the fasync list
610  * need to be released by rcu - see fasync_remove_entry.
611  */
612 void fasync_free(struct fasync_struct *new)
613 {
614 	kmem_cache_free(fasync_cache, new);
615 }
616 
617 /*
618  * Insert a new entry into the fasync list.  Return the pointer to the
619  * old one if we didn't use the new one.
620  *
621  * NOTE! It is very important that the FASYNC flag always
622  * match the state "is the filp on a fasync list".
623  */
624 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
625 {
626         struct fasync_struct *fa, **fp;
627 
628 	spin_lock(&filp->f_lock);
629 	spin_lock(&fasync_lock);
630 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
631 		if (fa->fa_file != filp)
632 			continue;
633 
634 		spin_lock_irq(&fa->fa_lock);
635 		fa->fa_fd = fd;
636 		spin_unlock_irq(&fa->fa_lock);
637 		goto out;
638 	}
639 
640 	spin_lock_init(&new->fa_lock);
641 	new->magic = FASYNC_MAGIC;
642 	new->fa_file = filp;
643 	new->fa_fd = fd;
644 	new->fa_next = *fapp;
645 	rcu_assign_pointer(*fapp, new);
646 	filp->f_flags |= FASYNC;
647 
648 out:
649 	spin_unlock(&fasync_lock);
650 	spin_unlock(&filp->f_lock);
651 	return fa;
652 }
653 
654 /*
655  * Add a fasync entry. Return negative on error, positive if
656  * added, and zero if did nothing but change an existing one.
657  */
658 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
659 {
660 	struct fasync_struct *new;
661 
662 	new = fasync_alloc();
663 	if (!new)
664 		return -ENOMEM;
665 
666 	/*
667 	 * fasync_insert_entry() returns the old (update) entry if
668 	 * it existed.
669 	 *
670 	 * So free the (unused) new entry and return 0 to let the
671 	 * caller know that we didn't add any new fasync entries.
672 	 */
673 	if (fasync_insert_entry(fd, filp, fapp, new)) {
674 		fasync_free(new);
675 		return 0;
676 	}
677 
678 	return 1;
679 }
680 
681 /*
682  * fasync_helper() is used by almost all character device drivers
683  * to set up the fasync queue, and for regular files by the file
684  * lease code. It returns negative on error, 0 if it did no changes
685  * and positive if it added/deleted the entry.
686  */
687 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
688 {
689 	if (!on)
690 		return fasync_remove_entry(filp, fapp);
691 	return fasync_add_entry(fd, filp, fapp);
692 }
693 
694 EXPORT_SYMBOL(fasync_helper);
695 
696 /*
697  * rcu_read_lock() is held
698  */
699 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
700 {
701 	while (fa) {
702 		struct fown_struct *fown;
703 		unsigned long flags;
704 
705 		if (fa->magic != FASYNC_MAGIC) {
706 			printk(KERN_ERR "kill_fasync: bad magic number in "
707 			       "fasync_struct!\n");
708 			return;
709 		}
710 		spin_lock_irqsave(&fa->fa_lock, flags);
711 		if (fa->fa_file) {
712 			fown = &fa->fa_file->f_owner;
713 			/* Don't send SIGURG to processes which have not set a
714 			   queued signum: SIGURG has its own default signalling
715 			   mechanism. */
716 			if (!(sig == SIGURG && fown->signum == 0))
717 				send_sigio(fown, fa->fa_fd, band);
718 		}
719 		spin_unlock_irqrestore(&fa->fa_lock, flags);
720 		fa = rcu_dereference(fa->fa_next);
721 	}
722 }
723 
724 void kill_fasync(struct fasync_struct **fp, int sig, int band)
725 {
726 	/* First a quick test without locking: usually
727 	 * the list is empty.
728 	 */
729 	if (*fp) {
730 		rcu_read_lock();
731 		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
732 		rcu_read_unlock();
733 	}
734 }
735 EXPORT_SYMBOL(kill_fasync);
736 
737 static int __init fcntl_init(void)
738 {
739 	/*
740 	 * Please add new bits here to ensure allocation uniqueness.
741 	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
742 	 * is defined as O_NONBLOCK on some platforms and not on others.
743 	 */
744 	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32(
745 		O_RDONLY	| O_WRONLY	| O_RDWR	|
746 		O_CREAT		| O_EXCL	| O_NOCTTY	|
747 		O_TRUNC		| O_APPEND	| /* O_NONBLOCK	| */
748 		__O_SYNC	| O_DSYNC	| FASYNC	|
749 		O_DIRECT	| O_LARGEFILE	| O_DIRECTORY	|
750 		O_NOFOLLOW	| O_NOATIME	| O_CLOEXEC	|
751 		__FMODE_EXEC	| O_PATH	| __O_TMPFILE	|
752 		__FMODE_NONOTIFY
753 		));
754 
755 	fasync_cache = kmem_cache_create("fasync_cache",
756 		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
757 	return 0;
758 }
759 
760 module_init(fcntl_init)
761