xref: /openbmc/linux/fs/fcntl.c (revision 4800cd83)
1 /*
2  *  linux/fs/fcntl.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/syscalls.h>
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fs.h>
11 #include <linux/file.h>
12 #include <linux/fdtable.h>
13 #include <linux/capability.h>
14 #include <linux/dnotify.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/security.h>
19 #include <linux/ptrace.h>
20 #include <linux/signal.h>
21 #include <linux/rcupdate.h>
22 #include <linux/pid_namespace.h>
23 
24 #include <asm/poll.h>
25 #include <asm/siginfo.h>
26 #include <asm/uaccess.h>
27 
28 void set_close_on_exec(unsigned int fd, int flag)
29 {
30 	struct files_struct *files = current->files;
31 	struct fdtable *fdt;
32 	spin_lock(&files->file_lock);
33 	fdt = files_fdtable(files);
34 	if (flag)
35 		FD_SET(fd, fdt->close_on_exec);
36 	else
37 		FD_CLR(fd, fdt->close_on_exec);
38 	spin_unlock(&files->file_lock);
39 }
40 
41 static int get_close_on_exec(unsigned int fd)
42 {
43 	struct files_struct *files = current->files;
44 	struct fdtable *fdt;
45 	int res;
46 	rcu_read_lock();
47 	fdt = files_fdtable(files);
48 	res = FD_ISSET(fd, fdt->close_on_exec);
49 	rcu_read_unlock();
50 	return res;
51 }
52 
53 SYSCALL_DEFINE3(dup3, unsigned int, oldfd, unsigned int, newfd, int, flags)
54 {
55 	int err = -EBADF;
56 	struct file * file, *tofree;
57 	struct files_struct * files = current->files;
58 	struct fdtable *fdt;
59 
60 	if ((flags & ~O_CLOEXEC) != 0)
61 		return -EINVAL;
62 
63 	if (unlikely(oldfd == newfd))
64 		return -EINVAL;
65 
66 	spin_lock(&files->file_lock);
67 	err = expand_files(files, newfd);
68 	file = fcheck(oldfd);
69 	if (unlikely(!file))
70 		goto Ebadf;
71 	if (unlikely(err < 0)) {
72 		if (err == -EMFILE)
73 			goto Ebadf;
74 		goto out_unlock;
75 	}
76 	/*
77 	 * We need to detect attempts to do dup2() over allocated but still
78 	 * not finished descriptor.  NB: OpenBSD avoids that at the price of
79 	 * extra work in their equivalent of fget() - they insert struct
80 	 * file immediately after grabbing descriptor, mark it larval if
81 	 * more work (e.g. actual opening) is needed and make sure that
82 	 * fget() treats larval files as absent.  Potentially interesting,
83 	 * but while extra work in fget() is trivial, locking implications
84 	 * and amount of surgery on open()-related paths in VFS are not.
85 	 * FreeBSD fails with -EBADF in the same situation, NetBSD "solution"
86 	 * deadlocks in rather amusing ways, AFAICS.  All of that is out of
87 	 * scope of POSIX or SUS, since neither considers shared descriptor
88 	 * tables and this condition does not arise without those.
89 	 */
90 	err = -EBUSY;
91 	fdt = files_fdtable(files);
92 	tofree = fdt->fd[newfd];
93 	if (!tofree && FD_ISSET(newfd, fdt->open_fds))
94 		goto out_unlock;
95 	get_file(file);
96 	rcu_assign_pointer(fdt->fd[newfd], file);
97 	FD_SET(newfd, fdt->open_fds);
98 	if (flags & O_CLOEXEC)
99 		FD_SET(newfd, fdt->close_on_exec);
100 	else
101 		FD_CLR(newfd, fdt->close_on_exec);
102 	spin_unlock(&files->file_lock);
103 
104 	if (tofree)
105 		filp_close(tofree, files);
106 
107 	return newfd;
108 
109 Ebadf:
110 	err = -EBADF;
111 out_unlock:
112 	spin_unlock(&files->file_lock);
113 	return err;
114 }
115 
116 SYSCALL_DEFINE2(dup2, unsigned int, oldfd, unsigned int, newfd)
117 {
118 	if (unlikely(newfd == oldfd)) { /* corner case */
119 		struct files_struct *files = current->files;
120 		int retval = oldfd;
121 
122 		rcu_read_lock();
123 		if (!fcheck_files(files, oldfd))
124 			retval = -EBADF;
125 		rcu_read_unlock();
126 		return retval;
127 	}
128 	return sys_dup3(oldfd, newfd, 0);
129 }
130 
131 SYSCALL_DEFINE1(dup, unsigned int, fildes)
132 {
133 	int ret = -EBADF;
134 	struct file *file = fget(fildes);
135 
136 	if (file) {
137 		ret = get_unused_fd();
138 		if (ret >= 0)
139 			fd_install(ret, file);
140 		else
141 			fput(file);
142 	}
143 	return ret;
144 }
145 
146 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
147 
148 static int setfl(int fd, struct file * filp, unsigned long arg)
149 {
150 	struct inode * inode = filp->f_path.dentry->d_inode;
151 	int error = 0;
152 
153 	/*
154 	 * O_APPEND cannot be cleared if the file is marked as append-only
155 	 * and the file is open for write.
156 	 */
157 	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
158 		return -EPERM;
159 
160 	/* O_NOATIME can only be set by the owner or superuser */
161 	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
162 		if (!is_owner_or_cap(inode))
163 			return -EPERM;
164 
165 	/* required for strict SunOS emulation */
166 	if (O_NONBLOCK != O_NDELAY)
167 	       if (arg & O_NDELAY)
168 		   arg |= O_NONBLOCK;
169 
170 	if (arg & O_DIRECT) {
171 		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
172 			!filp->f_mapping->a_ops->direct_IO)
173 				return -EINVAL;
174 	}
175 
176 	if (filp->f_op && filp->f_op->check_flags)
177 		error = filp->f_op->check_flags(arg);
178 	if (error)
179 		return error;
180 
181 	/*
182 	 * ->fasync() is responsible for setting the FASYNC bit.
183 	 */
184 	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op &&
185 			filp->f_op->fasync) {
186 		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
187 		if (error < 0)
188 			goto out;
189 		if (error > 0)
190 			error = 0;
191 	}
192 	spin_lock(&filp->f_lock);
193 	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
194 	spin_unlock(&filp->f_lock);
195 
196  out:
197 	return error;
198 }
199 
200 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
201                      int force)
202 {
203 	write_lock_irq(&filp->f_owner.lock);
204 	if (force || !filp->f_owner.pid) {
205 		put_pid(filp->f_owner.pid);
206 		filp->f_owner.pid = get_pid(pid);
207 		filp->f_owner.pid_type = type;
208 
209 		if (pid) {
210 			const struct cred *cred = current_cred();
211 			filp->f_owner.uid = cred->uid;
212 			filp->f_owner.euid = cred->euid;
213 		}
214 	}
215 	write_unlock_irq(&filp->f_owner.lock);
216 }
217 
218 int __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
219 		int force)
220 {
221 	int err;
222 
223 	err = security_file_set_fowner(filp);
224 	if (err)
225 		return err;
226 
227 	f_modown(filp, pid, type, force);
228 	return 0;
229 }
230 EXPORT_SYMBOL(__f_setown);
231 
232 int f_setown(struct file *filp, unsigned long arg, int force)
233 {
234 	enum pid_type type;
235 	struct pid *pid;
236 	int who = arg;
237 	int result;
238 	type = PIDTYPE_PID;
239 	if (who < 0) {
240 		type = PIDTYPE_PGID;
241 		who = -who;
242 	}
243 	rcu_read_lock();
244 	pid = find_vpid(who);
245 	result = __f_setown(filp, pid, type, force);
246 	rcu_read_unlock();
247 	return result;
248 }
249 EXPORT_SYMBOL(f_setown);
250 
251 void f_delown(struct file *filp)
252 {
253 	f_modown(filp, NULL, PIDTYPE_PID, 1);
254 }
255 
256 pid_t f_getown(struct file *filp)
257 {
258 	pid_t pid;
259 	read_lock(&filp->f_owner.lock);
260 	pid = pid_vnr(filp->f_owner.pid);
261 	if (filp->f_owner.pid_type == PIDTYPE_PGID)
262 		pid = -pid;
263 	read_unlock(&filp->f_owner.lock);
264 	return pid;
265 }
266 
267 static int f_setown_ex(struct file *filp, unsigned long arg)
268 {
269 	struct f_owner_ex * __user owner_p = (void * __user)arg;
270 	struct f_owner_ex owner;
271 	struct pid *pid;
272 	int type;
273 	int ret;
274 
275 	ret = copy_from_user(&owner, owner_p, sizeof(owner));
276 	if (ret)
277 		return -EFAULT;
278 
279 	switch (owner.type) {
280 	case F_OWNER_TID:
281 		type = PIDTYPE_MAX;
282 		break;
283 
284 	case F_OWNER_PID:
285 		type = PIDTYPE_PID;
286 		break;
287 
288 	case F_OWNER_PGRP:
289 		type = PIDTYPE_PGID;
290 		break;
291 
292 	default:
293 		return -EINVAL;
294 	}
295 
296 	rcu_read_lock();
297 	pid = find_vpid(owner.pid);
298 	if (owner.pid && !pid)
299 		ret = -ESRCH;
300 	else
301 		ret = __f_setown(filp, pid, type, 1);
302 	rcu_read_unlock();
303 
304 	return ret;
305 }
306 
307 static int f_getown_ex(struct file *filp, unsigned long arg)
308 {
309 	struct f_owner_ex * __user owner_p = (void * __user)arg;
310 	struct f_owner_ex owner;
311 	int ret = 0;
312 
313 	read_lock(&filp->f_owner.lock);
314 	owner.pid = pid_vnr(filp->f_owner.pid);
315 	switch (filp->f_owner.pid_type) {
316 	case PIDTYPE_MAX:
317 		owner.type = F_OWNER_TID;
318 		break;
319 
320 	case PIDTYPE_PID:
321 		owner.type = F_OWNER_PID;
322 		break;
323 
324 	case PIDTYPE_PGID:
325 		owner.type = F_OWNER_PGRP;
326 		break;
327 
328 	default:
329 		WARN_ON(1);
330 		ret = -EINVAL;
331 		break;
332 	}
333 	read_unlock(&filp->f_owner.lock);
334 
335 	if (!ret) {
336 		ret = copy_to_user(owner_p, &owner, sizeof(owner));
337 		if (ret)
338 			ret = -EFAULT;
339 	}
340 	return ret;
341 }
342 
343 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
344 		struct file *filp)
345 {
346 	long err = -EINVAL;
347 
348 	switch (cmd) {
349 	case F_DUPFD:
350 	case F_DUPFD_CLOEXEC:
351 		if (arg >= rlimit(RLIMIT_NOFILE))
352 			break;
353 		err = alloc_fd(arg, cmd == F_DUPFD_CLOEXEC ? O_CLOEXEC : 0);
354 		if (err >= 0) {
355 			get_file(filp);
356 			fd_install(err, filp);
357 		}
358 		break;
359 	case F_GETFD:
360 		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
361 		break;
362 	case F_SETFD:
363 		err = 0;
364 		set_close_on_exec(fd, arg & FD_CLOEXEC);
365 		break;
366 	case F_GETFL:
367 		err = filp->f_flags;
368 		break;
369 	case F_SETFL:
370 		err = setfl(fd, filp, arg);
371 		break;
372 	case F_GETLK:
373 		err = fcntl_getlk(filp, (struct flock __user *) arg);
374 		break;
375 	case F_SETLK:
376 	case F_SETLKW:
377 		err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
378 		break;
379 	case F_GETOWN:
380 		/*
381 		 * XXX If f_owner is a process group, the
382 		 * negative return value will get converted
383 		 * into an error.  Oops.  If we keep the
384 		 * current syscall conventions, the only way
385 		 * to fix this will be in libc.
386 		 */
387 		err = f_getown(filp);
388 		force_successful_syscall_return();
389 		break;
390 	case F_SETOWN:
391 		err = f_setown(filp, arg, 1);
392 		break;
393 	case F_GETOWN_EX:
394 		err = f_getown_ex(filp, arg);
395 		break;
396 	case F_SETOWN_EX:
397 		err = f_setown_ex(filp, arg);
398 		break;
399 	case F_GETSIG:
400 		err = filp->f_owner.signum;
401 		break;
402 	case F_SETSIG:
403 		/* arg == 0 restores default behaviour. */
404 		if (!valid_signal(arg)) {
405 			break;
406 		}
407 		err = 0;
408 		filp->f_owner.signum = arg;
409 		break;
410 	case F_GETLEASE:
411 		err = fcntl_getlease(filp);
412 		break;
413 	case F_SETLEASE:
414 		err = fcntl_setlease(fd, filp, arg);
415 		break;
416 	case F_NOTIFY:
417 		err = fcntl_dirnotify(fd, filp, arg);
418 		break;
419 	case F_SETPIPE_SZ:
420 	case F_GETPIPE_SZ:
421 		err = pipe_fcntl(filp, cmd, arg);
422 		break;
423 	default:
424 		break;
425 	}
426 	return err;
427 }
428 
429 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
430 {
431 	struct file *filp;
432 	long err = -EBADF;
433 
434 	filp = fget(fd);
435 	if (!filp)
436 		goto out;
437 
438 	err = security_file_fcntl(filp, cmd, arg);
439 	if (err) {
440 		fput(filp);
441 		return err;
442 	}
443 
444 	err = do_fcntl(fd, cmd, arg, filp);
445 
446  	fput(filp);
447 out:
448 	return err;
449 }
450 
451 #if BITS_PER_LONG == 32
452 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
453 		unsigned long, arg)
454 {
455 	struct file * filp;
456 	long err;
457 
458 	err = -EBADF;
459 	filp = fget(fd);
460 	if (!filp)
461 		goto out;
462 
463 	err = security_file_fcntl(filp, cmd, arg);
464 	if (err) {
465 		fput(filp);
466 		return err;
467 	}
468 	err = -EBADF;
469 
470 	switch (cmd) {
471 		case F_GETLK64:
472 			err = fcntl_getlk64(filp, (struct flock64 __user *) arg);
473 			break;
474 		case F_SETLK64:
475 		case F_SETLKW64:
476 			err = fcntl_setlk64(fd, filp, cmd,
477 					(struct flock64 __user *) arg);
478 			break;
479 		default:
480 			err = do_fcntl(fd, cmd, arg, filp);
481 			break;
482 	}
483 	fput(filp);
484 out:
485 	return err;
486 }
487 #endif
488 
489 /* Table to convert sigio signal codes into poll band bitmaps */
490 
491 static const long band_table[NSIGPOLL] = {
492 	POLLIN | POLLRDNORM,			/* POLL_IN */
493 	POLLOUT | POLLWRNORM | POLLWRBAND,	/* POLL_OUT */
494 	POLLIN | POLLRDNORM | POLLMSG,		/* POLL_MSG */
495 	POLLERR,				/* POLL_ERR */
496 	POLLPRI | POLLRDBAND,			/* POLL_PRI */
497 	POLLHUP | POLLERR			/* POLL_HUP */
498 };
499 
500 static inline int sigio_perm(struct task_struct *p,
501                              struct fown_struct *fown, int sig)
502 {
503 	const struct cred *cred;
504 	int ret;
505 
506 	rcu_read_lock();
507 	cred = __task_cred(p);
508 	ret = ((fown->euid == 0 ||
509 		fown->euid == cred->suid || fown->euid == cred->uid ||
510 		fown->uid  == cred->suid || fown->uid  == cred->uid) &&
511 	       !security_file_send_sigiotask(p, fown, sig));
512 	rcu_read_unlock();
513 	return ret;
514 }
515 
516 static void send_sigio_to_task(struct task_struct *p,
517 			       struct fown_struct *fown,
518 			       int fd, int reason, int group)
519 {
520 	/*
521 	 * F_SETSIG can change ->signum lockless in parallel, make
522 	 * sure we read it once and use the same value throughout.
523 	 */
524 	int signum = ACCESS_ONCE(fown->signum);
525 
526 	if (!sigio_perm(p, fown, signum))
527 		return;
528 
529 	switch (signum) {
530 		siginfo_t si;
531 		default:
532 			/* Queue a rt signal with the appropriate fd as its
533 			   value.  We use SI_SIGIO as the source, not
534 			   SI_KERNEL, since kernel signals always get
535 			   delivered even if we can't queue.  Failure to
536 			   queue in this case _should_ be reported; we fall
537 			   back to SIGIO in that case. --sct */
538 			si.si_signo = signum;
539 			si.si_errno = 0;
540 		        si.si_code  = reason;
541 			/* Make sure we are called with one of the POLL_*
542 			   reasons, otherwise we could leak kernel stack into
543 			   userspace.  */
544 			BUG_ON((reason & __SI_MASK) != __SI_POLL);
545 			if (reason - POLL_IN >= NSIGPOLL)
546 				si.si_band  = ~0L;
547 			else
548 				si.si_band = band_table[reason - POLL_IN];
549 			si.si_fd    = fd;
550 			if (!do_send_sig_info(signum, &si, p, group))
551 				break;
552 		/* fall-through: fall back on the old plain SIGIO signal */
553 		case 0:
554 			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
555 	}
556 }
557 
558 void send_sigio(struct fown_struct *fown, int fd, int band)
559 {
560 	struct task_struct *p;
561 	enum pid_type type;
562 	struct pid *pid;
563 	int group = 1;
564 
565 	read_lock(&fown->lock);
566 
567 	type = fown->pid_type;
568 	if (type == PIDTYPE_MAX) {
569 		group = 0;
570 		type = PIDTYPE_PID;
571 	}
572 
573 	pid = fown->pid;
574 	if (!pid)
575 		goto out_unlock_fown;
576 
577 	read_lock(&tasklist_lock);
578 	do_each_pid_task(pid, type, p) {
579 		send_sigio_to_task(p, fown, fd, band, group);
580 	} while_each_pid_task(pid, type, p);
581 	read_unlock(&tasklist_lock);
582  out_unlock_fown:
583 	read_unlock(&fown->lock);
584 }
585 
586 static void send_sigurg_to_task(struct task_struct *p,
587 				struct fown_struct *fown, int group)
588 {
589 	if (sigio_perm(p, fown, SIGURG))
590 		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
591 }
592 
593 int send_sigurg(struct fown_struct *fown)
594 {
595 	struct task_struct *p;
596 	enum pid_type type;
597 	struct pid *pid;
598 	int group = 1;
599 	int ret = 0;
600 
601 	read_lock(&fown->lock);
602 
603 	type = fown->pid_type;
604 	if (type == PIDTYPE_MAX) {
605 		group = 0;
606 		type = PIDTYPE_PID;
607 	}
608 
609 	pid = fown->pid;
610 	if (!pid)
611 		goto out_unlock_fown;
612 
613 	ret = 1;
614 
615 	read_lock(&tasklist_lock);
616 	do_each_pid_task(pid, type, p) {
617 		send_sigurg_to_task(p, fown, group);
618 	} while_each_pid_task(pid, type, p);
619 	read_unlock(&tasklist_lock);
620  out_unlock_fown:
621 	read_unlock(&fown->lock);
622 	return ret;
623 }
624 
625 static DEFINE_SPINLOCK(fasync_lock);
626 static struct kmem_cache *fasync_cache __read_mostly;
627 
628 static void fasync_free_rcu(struct rcu_head *head)
629 {
630 	kmem_cache_free(fasync_cache,
631 			container_of(head, struct fasync_struct, fa_rcu));
632 }
633 
634 /*
635  * Remove a fasync entry. If successfully removed, return
636  * positive and clear the FASYNC flag. If no entry exists,
637  * do nothing and return 0.
638  *
639  * NOTE! It is very important that the FASYNC flag always
640  * match the state "is the filp on a fasync list".
641  *
642  */
643 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
644 {
645 	struct fasync_struct *fa, **fp;
646 	int result = 0;
647 
648 	spin_lock(&filp->f_lock);
649 	spin_lock(&fasync_lock);
650 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
651 		if (fa->fa_file != filp)
652 			continue;
653 
654 		spin_lock_irq(&fa->fa_lock);
655 		fa->fa_file = NULL;
656 		spin_unlock_irq(&fa->fa_lock);
657 
658 		*fp = fa->fa_next;
659 		call_rcu(&fa->fa_rcu, fasync_free_rcu);
660 		filp->f_flags &= ~FASYNC;
661 		result = 1;
662 		break;
663 	}
664 	spin_unlock(&fasync_lock);
665 	spin_unlock(&filp->f_lock);
666 	return result;
667 }
668 
669 struct fasync_struct *fasync_alloc(void)
670 {
671 	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
672 }
673 
674 /*
675  * NOTE! This can be used only for unused fasync entries:
676  * entries that actually got inserted on the fasync list
677  * need to be released by rcu - see fasync_remove_entry.
678  */
679 void fasync_free(struct fasync_struct *new)
680 {
681 	kmem_cache_free(fasync_cache, new);
682 }
683 
684 /*
685  * Insert a new entry into the fasync list.  Return the pointer to the
686  * old one if we didn't use the new one.
687  *
688  * NOTE! It is very important that the FASYNC flag always
689  * match the state "is the filp on a fasync list".
690  */
691 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
692 {
693         struct fasync_struct *fa, **fp;
694 
695 	spin_lock(&filp->f_lock);
696 	spin_lock(&fasync_lock);
697 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
698 		if (fa->fa_file != filp)
699 			continue;
700 
701 		spin_lock_irq(&fa->fa_lock);
702 		fa->fa_fd = fd;
703 		spin_unlock_irq(&fa->fa_lock);
704 		goto out;
705 	}
706 
707 	spin_lock_init(&new->fa_lock);
708 	new->magic = FASYNC_MAGIC;
709 	new->fa_file = filp;
710 	new->fa_fd = fd;
711 	new->fa_next = *fapp;
712 	rcu_assign_pointer(*fapp, new);
713 	filp->f_flags |= FASYNC;
714 
715 out:
716 	spin_unlock(&fasync_lock);
717 	spin_unlock(&filp->f_lock);
718 	return fa;
719 }
720 
721 /*
722  * Add a fasync entry. Return negative on error, positive if
723  * added, and zero if did nothing but change an existing one.
724  */
725 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
726 {
727 	struct fasync_struct *new;
728 
729 	new = fasync_alloc();
730 	if (!new)
731 		return -ENOMEM;
732 
733 	/*
734 	 * fasync_insert_entry() returns the old (update) entry if
735 	 * it existed.
736 	 *
737 	 * So free the (unused) new entry and return 0 to let the
738 	 * caller know that we didn't add any new fasync entries.
739 	 */
740 	if (fasync_insert_entry(fd, filp, fapp, new)) {
741 		fasync_free(new);
742 		return 0;
743 	}
744 
745 	return 1;
746 }
747 
748 /*
749  * fasync_helper() is used by almost all character device drivers
750  * to set up the fasync queue, and for regular files by the file
751  * lease code. It returns negative on error, 0 if it did no changes
752  * and positive if it added/deleted the entry.
753  */
754 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
755 {
756 	if (!on)
757 		return fasync_remove_entry(filp, fapp);
758 	return fasync_add_entry(fd, filp, fapp);
759 }
760 
761 EXPORT_SYMBOL(fasync_helper);
762 
763 /*
764  * rcu_read_lock() is held
765  */
766 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
767 {
768 	while (fa) {
769 		struct fown_struct *fown;
770 		unsigned long flags;
771 
772 		if (fa->magic != FASYNC_MAGIC) {
773 			printk(KERN_ERR "kill_fasync: bad magic number in "
774 			       "fasync_struct!\n");
775 			return;
776 		}
777 		spin_lock_irqsave(&fa->fa_lock, flags);
778 		if (fa->fa_file) {
779 			fown = &fa->fa_file->f_owner;
780 			/* Don't send SIGURG to processes which have not set a
781 			   queued signum: SIGURG has its own default signalling
782 			   mechanism. */
783 			if (!(sig == SIGURG && fown->signum == 0))
784 				send_sigio(fown, fa->fa_fd, band);
785 		}
786 		spin_unlock_irqrestore(&fa->fa_lock, flags);
787 		fa = rcu_dereference(fa->fa_next);
788 	}
789 }
790 
791 void kill_fasync(struct fasync_struct **fp, int sig, int band)
792 {
793 	/* First a quick test without locking: usually
794 	 * the list is empty.
795 	 */
796 	if (*fp) {
797 		rcu_read_lock();
798 		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
799 		rcu_read_unlock();
800 	}
801 }
802 EXPORT_SYMBOL(kill_fasync);
803 
804 static int __init fcntl_init(void)
805 {
806 	/*
807 	 * Please add new bits here to ensure allocation uniqueness.
808 	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
809 	 * is defined as O_NONBLOCK on some platforms and not on others.
810 	 */
811 	BUILD_BUG_ON(18 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32(
812 		O_RDONLY	| O_WRONLY	| O_RDWR	|
813 		O_CREAT		| O_EXCL	| O_NOCTTY	|
814 		O_TRUNC		| O_APPEND	| /* O_NONBLOCK	| */
815 		__O_SYNC	| O_DSYNC	| FASYNC	|
816 		O_DIRECT	| O_LARGEFILE	| O_DIRECTORY	|
817 		O_NOFOLLOW	| O_NOATIME	| O_CLOEXEC	|
818 		__FMODE_EXEC
819 		));
820 
821 	fasync_cache = kmem_cache_create("fasync_cache",
822 		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
823 	return 0;
824 }
825 
826 module_init(fcntl_init)
827