xref: /openbmc/linux/fs/fcntl.c (revision 3932b9ca)
1 /*
2  *  linux/fs/fcntl.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/syscalls.h>
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fs.h>
11 #include <linux/file.h>
12 #include <linux/fdtable.h>
13 #include <linux/capability.h>
14 #include <linux/dnotify.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/pipe_fs_i.h>
18 #include <linux/security.h>
19 #include <linux/ptrace.h>
20 #include <linux/signal.h>
21 #include <linux/rcupdate.h>
22 #include <linux/pid_namespace.h>
23 #include <linux/user_namespace.h>
24 #include <linux/shmem_fs.h>
25 
26 #include <asm/poll.h>
27 #include <asm/siginfo.h>
28 #include <asm/uaccess.h>
29 
30 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
31 
32 static int setfl(int fd, struct file * filp, unsigned long arg)
33 {
34 	struct inode * inode = file_inode(filp);
35 	int error = 0;
36 
37 	/*
38 	 * O_APPEND cannot be cleared if the file is marked as append-only
39 	 * and the file is open for write.
40 	 */
41 	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
42 		return -EPERM;
43 
44 	/* O_NOATIME can only be set by the owner or superuser */
45 	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
46 		if (!inode_owner_or_capable(inode))
47 			return -EPERM;
48 
49 	/* required for strict SunOS emulation */
50 	if (O_NONBLOCK != O_NDELAY)
51 	       if (arg & O_NDELAY)
52 		   arg |= O_NONBLOCK;
53 
54 	if (arg & O_DIRECT) {
55 		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
56 			!filp->f_mapping->a_ops->direct_IO)
57 				return -EINVAL;
58 	}
59 
60 	if (filp->f_op->check_flags)
61 		error = filp->f_op->check_flags(arg);
62 	if (error)
63 		return error;
64 
65 	/*
66 	 * ->fasync() is responsible for setting the FASYNC bit.
67 	 */
68 	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
69 		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
70 		if (error < 0)
71 			goto out;
72 		if (error > 0)
73 			error = 0;
74 	}
75 	spin_lock(&filp->f_lock);
76 	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
77 	spin_unlock(&filp->f_lock);
78 
79  out:
80 	return error;
81 }
82 
83 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
84                      int force)
85 {
86 	write_lock_irq(&filp->f_owner.lock);
87 	if (force || !filp->f_owner.pid) {
88 		put_pid(filp->f_owner.pid);
89 		filp->f_owner.pid = get_pid(pid);
90 		filp->f_owner.pid_type = type;
91 
92 		if (pid) {
93 			const struct cred *cred = current_cred();
94 			filp->f_owner.uid = cred->uid;
95 			filp->f_owner.euid = cred->euid;
96 		}
97 	}
98 	write_unlock_irq(&filp->f_owner.lock);
99 }
100 
101 int __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
102 		int force)
103 {
104 	int err;
105 
106 	err = security_file_set_fowner(filp);
107 	if (err)
108 		return err;
109 
110 	f_modown(filp, pid, type, force);
111 	return 0;
112 }
113 EXPORT_SYMBOL(__f_setown);
114 
115 int f_setown(struct file *filp, unsigned long arg, int force)
116 {
117 	enum pid_type type;
118 	struct pid *pid;
119 	int who = arg;
120 	int result;
121 	type = PIDTYPE_PID;
122 	if (who < 0) {
123 		type = PIDTYPE_PGID;
124 		who = -who;
125 	}
126 	rcu_read_lock();
127 	pid = find_vpid(who);
128 	result = __f_setown(filp, pid, type, force);
129 	rcu_read_unlock();
130 	return result;
131 }
132 EXPORT_SYMBOL(f_setown);
133 
134 void f_delown(struct file *filp)
135 {
136 	f_modown(filp, NULL, PIDTYPE_PID, 1);
137 }
138 
139 pid_t f_getown(struct file *filp)
140 {
141 	pid_t pid;
142 	read_lock(&filp->f_owner.lock);
143 	pid = pid_vnr(filp->f_owner.pid);
144 	if (filp->f_owner.pid_type == PIDTYPE_PGID)
145 		pid = -pid;
146 	read_unlock(&filp->f_owner.lock);
147 	return pid;
148 }
149 
150 static int f_setown_ex(struct file *filp, unsigned long arg)
151 {
152 	struct f_owner_ex __user *owner_p = (void __user *)arg;
153 	struct f_owner_ex owner;
154 	struct pid *pid;
155 	int type;
156 	int ret;
157 
158 	ret = copy_from_user(&owner, owner_p, sizeof(owner));
159 	if (ret)
160 		return -EFAULT;
161 
162 	switch (owner.type) {
163 	case F_OWNER_TID:
164 		type = PIDTYPE_MAX;
165 		break;
166 
167 	case F_OWNER_PID:
168 		type = PIDTYPE_PID;
169 		break;
170 
171 	case F_OWNER_PGRP:
172 		type = PIDTYPE_PGID;
173 		break;
174 
175 	default:
176 		return -EINVAL;
177 	}
178 
179 	rcu_read_lock();
180 	pid = find_vpid(owner.pid);
181 	if (owner.pid && !pid)
182 		ret = -ESRCH;
183 	else
184 		ret = __f_setown(filp, pid, type, 1);
185 	rcu_read_unlock();
186 
187 	return ret;
188 }
189 
190 static int f_getown_ex(struct file *filp, unsigned long arg)
191 {
192 	struct f_owner_ex __user *owner_p = (void __user *)arg;
193 	struct f_owner_ex owner;
194 	int ret = 0;
195 
196 	read_lock(&filp->f_owner.lock);
197 	owner.pid = pid_vnr(filp->f_owner.pid);
198 	switch (filp->f_owner.pid_type) {
199 	case PIDTYPE_MAX:
200 		owner.type = F_OWNER_TID;
201 		break;
202 
203 	case PIDTYPE_PID:
204 		owner.type = F_OWNER_PID;
205 		break;
206 
207 	case PIDTYPE_PGID:
208 		owner.type = F_OWNER_PGRP;
209 		break;
210 
211 	default:
212 		WARN_ON(1);
213 		ret = -EINVAL;
214 		break;
215 	}
216 	read_unlock(&filp->f_owner.lock);
217 
218 	if (!ret) {
219 		ret = copy_to_user(owner_p, &owner, sizeof(owner));
220 		if (ret)
221 			ret = -EFAULT;
222 	}
223 	return ret;
224 }
225 
226 #ifdef CONFIG_CHECKPOINT_RESTORE
227 static int f_getowner_uids(struct file *filp, unsigned long arg)
228 {
229 	struct user_namespace *user_ns = current_user_ns();
230 	uid_t __user *dst = (void __user *)arg;
231 	uid_t src[2];
232 	int err;
233 
234 	read_lock(&filp->f_owner.lock);
235 	src[0] = from_kuid(user_ns, filp->f_owner.uid);
236 	src[1] = from_kuid(user_ns, filp->f_owner.euid);
237 	read_unlock(&filp->f_owner.lock);
238 
239 	err  = put_user(src[0], &dst[0]);
240 	err |= put_user(src[1], &dst[1]);
241 
242 	return err;
243 }
244 #else
245 static int f_getowner_uids(struct file *filp, unsigned long arg)
246 {
247 	return -EINVAL;
248 }
249 #endif
250 
251 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
252 		struct file *filp)
253 {
254 	long err = -EINVAL;
255 
256 	switch (cmd) {
257 	case F_DUPFD:
258 		err = f_dupfd(arg, filp, 0);
259 		break;
260 	case F_DUPFD_CLOEXEC:
261 		err = f_dupfd(arg, filp, O_CLOEXEC);
262 		break;
263 	case F_GETFD:
264 		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
265 		break;
266 	case F_SETFD:
267 		err = 0;
268 		set_close_on_exec(fd, arg & FD_CLOEXEC);
269 		break;
270 	case F_GETFL:
271 		err = filp->f_flags;
272 		break;
273 	case F_SETFL:
274 		err = setfl(fd, filp, arg);
275 		break;
276 #if BITS_PER_LONG != 32
277 	/* 32-bit arches must use fcntl64() */
278 	case F_OFD_GETLK:
279 #endif
280 	case F_GETLK:
281 		err = fcntl_getlk(filp, cmd, (struct flock __user *) arg);
282 		break;
283 #if BITS_PER_LONG != 32
284 	/* 32-bit arches must use fcntl64() */
285 	case F_OFD_SETLK:
286 	case F_OFD_SETLKW:
287 #endif
288 		/* Fallthrough */
289 	case F_SETLK:
290 	case F_SETLKW:
291 		err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg);
292 		break;
293 	case F_GETOWN:
294 		/*
295 		 * XXX If f_owner is a process group, the
296 		 * negative return value will get converted
297 		 * into an error.  Oops.  If we keep the
298 		 * current syscall conventions, the only way
299 		 * to fix this will be in libc.
300 		 */
301 		err = f_getown(filp);
302 		force_successful_syscall_return();
303 		break;
304 	case F_SETOWN:
305 		err = f_setown(filp, arg, 1);
306 		break;
307 	case F_GETOWN_EX:
308 		err = f_getown_ex(filp, arg);
309 		break;
310 	case F_SETOWN_EX:
311 		err = f_setown_ex(filp, arg);
312 		break;
313 	case F_GETOWNER_UIDS:
314 		err = f_getowner_uids(filp, arg);
315 		break;
316 	case F_GETSIG:
317 		err = filp->f_owner.signum;
318 		break;
319 	case F_SETSIG:
320 		/* arg == 0 restores default behaviour. */
321 		if (!valid_signal(arg)) {
322 			break;
323 		}
324 		err = 0;
325 		filp->f_owner.signum = arg;
326 		break;
327 	case F_GETLEASE:
328 		err = fcntl_getlease(filp);
329 		break;
330 	case F_SETLEASE:
331 		err = fcntl_setlease(fd, filp, arg);
332 		break;
333 	case F_NOTIFY:
334 		err = fcntl_dirnotify(fd, filp, arg);
335 		break;
336 	case F_SETPIPE_SZ:
337 	case F_GETPIPE_SZ:
338 		err = pipe_fcntl(filp, cmd, arg);
339 		break;
340 	case F_ADD_SEALS:
341 	case F_GET_SEALS:
342 		err = shmem_fcntl(filp, cmd, arg);
343 		break;
344 	default:
345 		break;
346 	}
347 	return err;
348 }
349 
350 static int check_fcntl_cmd(unsigned cmd)
351 {
352 	switch (cmd) {
353 	case F_DUPFD:
354 	case F_DUPFD_CLOEXEC:
355 	case F_GETFD:
356 	case F_SETFD:
357 	case F_GETFL:
358 		return 1;
359 	}
360 	return 0;
361 }
362 
363 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
364 {
365 	struct fd f = fdget_raw(fd);
366 	long err = -EBADF;
367 
368 	if (!f.file)
369 		goto out;
370 
371 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
372 		if (!check_fcntl_cmd(cmd))
373 			goto out1;
374 	}
375 
376 	err = security_file_fcntl(f.file, cmd, arg);
377 	if (!err)
378 		err = do_fcntl(fd, cmd, arg, f.file);
379 
380 out1:
381  	fdput(f);
382 out:
383 	return err;
384 }
385 
386 #if BITS_PER_LONG == 32
387 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
388 		unsigned long, arg)
389 {
390 	struct fd f = fdget_raw(fd);
391 	long err = -EBADF;
392 
393 	if (!f.file)
394 		goto out;
395 
396 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
397 		if (!check_fcntl_cmd(cmd))
398 			goto out1;
399 	}
400 
401 	err = security_file_fcntl(f.file, cmd, arg);
402 	if (err)
403 		goto out1;
404 
405 	switch (cmd) {
406 	case F_GETLK64:
407 	case F_OFD_GETLK:
408 		err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg);
409 		break;
410 	case F_SETLK64:
411 	case F_SETLKW64:
412 	case F_OFD_SETLK:
413 	case F_OFD_SETLKW:
414 		err = fcntl_setlk64(fd, f.file, cmd,
415 				(struct flock64 __user *) arg);
416 		break;
417 	default:
418 		err = do_fcntl(fd, cmd, arg, f.file);
419 		break;
420 	}
421 out1:
422 	fdput(f);
423 out:
424 	return err;
425 }
426 #endif
427 
428 /* Table to convert sigio signal codes into poll band bitmaps */
429 
430 static const long band_table[NSIGPOLL] = {
431 	POLLIN | POLLRDNORM,			/* POLL_IN */
432 	POLLOUT | POLLWRNORM | POLLWRBAND,	/* POLL_OUT */
433 	POLLIN | POLLRDNORM | POLLMSG,		/* POLL_MSG */
434 	POLLERR,				/* POLL_ERR */
435 	POLLPRI | POLLRDBAND,			/* POLL_PRI */
436 	POLLHUP | POLLERR			/* POLL_HUP */
437 };
438 
439 static inline int sigio_perm(struct task_struct *p,
440                              struct fown_struct *fown, int sig)
441 {
442 	const struct cred *cred;
443 	int ret;
444 
445 	rcu_read_lock();
446 	cred = __task_cred(p);
447 	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
448 		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
449 		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
450 	       !security_file_send_sigiotask(p, fown, sig));
451 	rcu_read_unlock();
452 	return ret;
453 }
454 
455 static void send_sigio_to_task(struct task_struct *p,
456 			       struct fown_struct *fown,
457 			       int fd, int reason, int group)
458 {
459 	/*
460 	 * F_SETSIG can change ->signum lockless in parallel, make
461 	 * sure we read it once and use the same value throughout.
462 	 */
463 	int signum = ACCESS_ONCE(fown->signum);
464 
465 	if (!sigio_perm(p, fown, signum))
466 		return;
467 
468 	switch (signum) {
469 		siginfo_t si;
470 		default:
471 			/* Queue a rt signal with the appropriate fd as its
472 			   value.  We use SI_SIGIO as the source, not
473 			   SI_KERNEL, since kernel signals always get
474 			   delivered even if we can't queue.  Failure to
475 			   queue in this case _should_ be reported; we fall
476 			   back to SIGIO in that case. --sct */
477 			si.si_signo = signum;
478 			si.si_errno = 0;
479 		        si.si_code  = reason;
480 			/* Make sure we are called with one of the POLL_*
481 			   reasons, otherwise we could leak kernel stack into
482 			   userspace.  */
483 			BUG_ON((reason & __SI_MASK) != __SI_POLL);
484 			if (reason - POLL_IN >= NSIGPOLL)
485 				si.si_band  = ~0L;
486 			else
487 				si.si_band = band_table[reason - POLL_IN];
488 			si.si_fd    = fd;
489 			if (!do_send_sig_info(signum, &si, p, group))
490 				break;
491 		/* fall-through: fall back on the old plain SIGIO signal */
492 		case 0:
493 			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group);
494 	}
495 }
496 
497 void send_sigio(struct fown_struct *fown, int fd, int band)
498 {
499 	struct task_struct *p;
500 	enum pid_type type;
501 	struct pid *pid;
502 	int group = 1;
503 
504 	read_lock(&fown->lock);
505 
506 	type = fown->pid_type;
507 	if (type == PIDTYPE_MAX) {
508 		group = 0;
509 		type = PIDTYPE_PID;
510 	}
511 
512 	pid = fown->pid;
513 	if (!pid)
514 		goto out_unlock_fown;
515 
516 	read_lock(&tasklist_lock);
517 	do_each_pid_task(pid, type, p) {
518 		send_sigio_to_task(p, fown, fd, band, group);
519 	} while_each_pid_task(pid, type, p);
520 	read_unlock(&tasklist_lock);
521  out_unlock_fown:
522 	read_unlock(&fown->lock);
523 }
524 
525 static void send_sigurg_to_task(struct task_struct *p,
526 				struct fown_struct *fown, int group)
527 {
528 	if (sigio_perm(p, fown, SIGURG))
529 		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group);
530 }
531 
532 int send_sigurg(struct fown_struct *fown)
533 {
534 	struct task_struct *p;
535 	enum pid_type type;
536 	struct pid *pid;
537 	int group = 1;
538 	int ret = 0;
539 
540 	read_lock(&fown->lock);
541 
542 	type = fown->pid_type;
543 	if (type == PIDTYPE_MAX) {
544 		group = 0;
545 		type = PIDTYPE_PID;
546 	}
547 
548 	pid = fown->pid;
549 	if (!pid)
550 		goto out_unlock_fown;
551 
552 	ret = 1;
553 
554 	read_lock(&tasklist_lock);
555 	do_each_pid_task(pid, type, p) {
556 		send_sigurg_to_task(p, fown, group);
557 	} while_each_pid_task(pid, type, p);
558 	read_unlock(&tasklist_lock);
559  out_unlock_fown:
560 	read_unlock(&fown->lock);
561 	return ret;
562 }
563 
564 static DEFINE_SPINLOCK(fasync_lock);
565 static struct kmem_cache *fasync_cache __read_mostly;
566 
567 static void fasync_free_rcu(struct rcu_head *head)
568 {
569 	kmem_cache_free(fasync_cache,
570 			container_of(head, struct fasync_struct, fa_rcu));
571 }
572 
573 /*
574  * Remove a fasync entry. If successfully removed, return
575  * positive and clear the FASYNC flag. If no entry exists,
576  * do nothing and return 0.
577  *
578  * NOTE! It is very important that the FASYNC flag always
579  * match the state "is the filp on a fasync list".
580  *
581  */
582 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
583 {
584 	struct fasync_struct *fa, **fp;
585 	int result = 0;
586 
587 	spin_lock(&filp->f_lock);
588 	spin_lock(&fasync_lock);
589 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
590 		if (fa->fa_file != filp)
591 			continue;
592 
593 		spin_lock_irq(&fa->fa_lock);
594 		fa->fa_file = NULL;
595 		spin_unlock_irq(&fa->fa_lock);
596 
597 		*fp = fa->fa_next;
598 		call_rcu(&fa->fa_rcu, fasync_free_rcu);
599 		filp->f_flags &= ~FASYNC;
600 		result = 1;
601 		break;
602 	}
603 	spin_unlock(&fasync_lock);
604 	spin_unlock(&filp->f_lock);
605 	return result;
606 }
607 
608 struct fasync_struct *fasync_alloc(void)
609 {
610 	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
611 }
612 
613 /*
614  * NOTE! This can be used only for unused fasync entries:
615  * entries that actually got inserted on the fasync list
616  * need to be released by rcu - see fasync_remove_entry.
617  */
618 void fasync_free(struct fasync_struct *new)
619 {
620 	kmem_cache_free(fasync_cache, new);
621 }
622 
623 /*
624  * Insert a new entry into the fasync list.  Return the pointer to the
625  * old one if we didn't use the new one.
626  *
627  * NOTE! It is very important that the FASYNC flag always
628  * match the state "is the filp on a fasync list".
629  */
630 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
631 {
632         struct fasync_struct *fa, **fp;
633 
634 	spin_lock(&filp->f_lock);
635 	spin_lock(&fasync_lock);
636 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
637 		if (fa->fa_file != filp)
638 			continue;
639 
640 		spin_lock_irq(&fa->fa_lock);
641 		fa->fa_fd = fd;
642 		spin_unlock_irq(&fa->fa_lock);
643 		goto out;
644 	}
645 
646 	spin_lock_init(&new->fa_lock);
647 	new->magic = FASYNC_MAGIC;
648 	new->fa_file = filp;
649 	new->fa_fd = fd;
650 	new->fa_next = *fapp;
651 	rcu_assign_pointer(*fapp, new);
652 	filp->f_flags |= FASYNC;
653 
654 out:
655 	spin_unlock(&fasync_lock);
656 	spin_unlock(&filp->f_lock);
657 	return fa;
658 }
659 
660 /*
661  * Add a fasync entry. Return negative on error, positive if
662  * added, and zero if did nothing but change an existing one.
663  */
664 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
665 {
666 	struct fasync_struct *new;
667 
668 	new = fasync_alloc();
669 	if (!new)
670 		return -ENOMEM;
671 
672 	/*
673 	 * fasync_insert_entry() returns the old (update) entry if
674 	 * it existed.
675 	 *
676 	 * So free the (unused) new entry and return 0 to let the
677 	 * caller know that we didn't add any new fasync entries.
678 	 */
679 	if (fasync_insert_entry(fd, filp, fapp, new)) {
680 		fasync_free(new);
681 		return 0;
682 	}
683 
684 	return 1;
685 }
686 
687 /*
688  * fasync_helper() is used by almost all character device drivers
689  * to set up the fasync queue, and for regular files by the file
690  * lease code. It returns negative on error, 0 if it did no changes
691  * and positive if it added/deleted the entry.
692  */
693 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
694 {
695 	if (!on)
696 		return fasync_remove_entry(filp, fapp);
697 	return fasync_add_entry(fd, filp, fapp);
698 }
699 
700 EXPORT_SYMBOL(fasync_helper);
701 
702 /*
703  * rcu_read_lock() is held
704  */
705 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
706 {
707 	while (fa) {
708 		struct fown_struct *fown;
709 		unsigned long flags;
710 
711 		if (fa->magic != FASYNC_MAGIC) {
712 			printk(KERN_ERR "kill_fasync: bad magic number in "
713 			       "fasync_struct!\n");
714 			return;
715 		}
716 		spin_lock_irqsave(&fa->fa_lock, flags);
717 		if (fa->fa_file) {
718 			fown = &fa->fa_file->f_owner;
719 			/* Don't send SIGURG to processes which have not set a
720 			   queued signum: SIGURG has its own default signalling
721 			   mechanism. */
722 			if (!(sig == SIGURG && fown->signum == 0))
723 				send_sigio(fown, fa->fa_fd, band);
724 		}
725 		spin_unlock_irqrestore(&fa->fa_lock, flags);
726 		fa = rcu_dereference(fa->fa_next);
727 	}
728 }
729 
730 void kill_fasync(struct fasync_struct **fp, int sig, int band)
731 {
732 	/* First a quick test without locking: usually
733 	 * the list is empty.
734 	 */
735 	if (*fp) {
736 		rcu_read_lock();
737 		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
738 		rcu_read_unlock();
739 	}
740 }
741 EXPORT_SYMBOL(kill_fasync);
742 
743 static int __init fcntl_init(void)
744 {
745 	/*
746 	 * Please add new bits here to ensure allocation uniqueness.
747 	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
748 	 * is defined as O_NONBLOCK on some platforms and not on others.
749 	 */
750 	BUILD_BUG_ON(20 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32(
751 		O_RDONLY	| O_WRONLY	| O_RDWR	|
752 		O_CREAT		| O_EXCL	| O_NOCTTY	|
753 		O_TRUNC		| O_APPEND	| /* O_NONBLOCK	| */
754 		__O_SYNC	| O_DSYNC	| FASYNC	|
755 		O_DIRECT	| O_LARGEFILE	| O_DIRECTORY	|
756 		O_NOFOLLOW	| O_NOATIME	| O_CLOEXEC	|
757 		__FMODE_EXEC	| O_PATH	| __O_TMPFILE
758 		));
759 
760 	fasync_cache = kmem_cache_create("fasync_cache",
761 		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
762 	return 0;
763 }
764 
765 module_init(fcntl_init)
766