1 /* 2 * linux/fs/fcntl.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/syscalls.h> 8 #include <linux/init.h> 9 #include <linux/mm.h> 10 #include <linux/fs.h> 11 #include <linux/file.h> 12 #include <linux/fdtable.h> 13 #include <linux/capability.h> 14 #include <linux/dnotify.h> 15 #include <linux/slab.h> 16 #include <linux/module.h> 17 #include <linux/pipe_fs_i.h> 18 #include <linux/security.h> 19 #include <linux/ptrace.h> 20 #include <linux/signal.h> 21 #include <linux/rcupdate.h> 22 #include <linux/pid_namespace.h> 23 #include <linux/user_namespace.h> 24 #include <linux/shmem_fs.h> 25 26 #include <asm/poll.h> 27 #include <asm/siginfo.h> 28 #include <asm/uaccess.h> 29 30 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME) 31 32 static int setfl(int fd, struct file * filp, unsigned long arg) 33 { 34 struct inode * inode = file_inode(filp); 35 int error = 0; 36 37 /* 38 * O_APPEND cannot be cleared if the file is marked as append-only 39 * and the file is open for write. 40 */ 41 if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode)) 42 return -EPERM; 43 44 /* O_NOATIME can only be set by the owner or superuser */ 45 if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME)) 46 if (!inode_owner_or_capable(inode)) 47 return -EPERM; 48 49 /* required for strict SunOS emulation */ 50 if (O_NONBLOCK != O_NDELAY) 51 if (arg & O_NDELAY) 52 arg |= O_NONBLOCK; 53 54 if (arg & O_DIRECT) { 55 if (!filp->f_mapping || !filp->f_mapping->a_ops || 56 !filp->f_mapping->a_ops->direct_IO) 57 return -EINVAL; 58 } 59 60 if (filp->f_op->check_flags) 61 error = filp->f_op->check_flags(arg); 62 if (error) 63 return error; 64 65 /* 66 * ->fasync() is responsible for setting the FASYNC bit. 67 */ 68 if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) { 69 error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0); 70 if (error < 0) 71 goto out; 72 if (error > 0) 73 error = 0; 74 } 75 spin_lock(&filp->f_lock); 76 filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK); 77 spin_unlock(&filp->f_lock); 78 79 out: 80 return error; 81 } 82 83 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type, 84 int force) 85 { 86 write_lock_irq(&filp->f_owner.lock); 87 if (force || !filp->f_owner.pid) { 88 put_pid(filp->f_owner.pid); 89 filp->f_owner.pid = get_pid(pid); 90 filp->f_owner.pid_type = type; 91 92 if (pid) { 93 const struct cred *cred = current_cred(); 94 filp->f_owner.uid = cred->uid; 95 filp->f_owner.euid = cred->euid; 96 } 97 } 98 write_unlock_irq(&filp->f_owner.lock); 99 } 100 101 int __f_setown(struct file *filp, struct pid *pid, enum pid_type type, 102 int force) 103 { 104 int err; 105 106 err = security_file_set_fowner(filp); 107 if (err) 108 return err; 109 110 f_modown(filp, pid, type, force); 111 return 0; 112 } 113 EXPORT_SYMBOL(__f_setown); 114 115 int f_setown(struct file *filp, unsigned long arg, int force) 116 { 117 enum pid_type type; 118 struct pid *pid; 119 int who = arg; 120 int result; 121 type = PIDTYPE_PID; 122 if (who < 0) { 123 type = PIDTYPE_PGID; 124 who = -who; 125 } 126 rcu_read_lock(); 127 pid = find_vpid(who); 128 result = __f_setown(filp, pid, type, force); 129 rcu_read_unlock(); 130 return result; 131 } 132 EXPORT_SYMBOL(f_setown); 133 134 void f_delown(struct file *filp) 135 { 136 f_modown(filp, NULL, PIDTYPE_PID, 1); 137 } 138 139 pid_t f_getown(struct file *filp) 140 { 141 pid_t pid; 142 read_lock(&filp->f_owner.lock); 143 pid = pid_vnr(filp->f_owner.pid); 144 if (filp->f_owner.pid_type == PIDTYPE_PGID) 145 pid = -pid; 146 read_unlock(&filp->f_owner.lock); 147 return pid; 148 } 149 150 static int f_setown_ex(struct file *filp, unsigned long arg) 151 { 152 struct f_owner_ex __user *owner_p = (void __user *)arg; 153 struct f_owner_ex owner; 154 struct pid *pid; 155 int type; 156 int ret; 157 158 ret = copy_from_user(&owner, owner_p, sizeof(owner)); 159 if (ret) 160 return -EFAULT; 161 162 switch (owner.type) { 163 case F_OWNER_TID: 164 type = PIDTYPE_MAX; 165 break; 166 167 case F_OWNER_PID: 168 type = PIDTYPE_PID; 169 break; 170 171 case F_OWNER_PGRP: 172 type = PIDTYPE_PGID; 173 break; 174 175 default: 176 return -EINVAL; 177 } 178 179 rcu_read_lock(); 180 pid = find_vpid(owner.pid); 181 if (owner.pid && !pid) 182 ret = -ESRCH; 183 else 184 ret = __f_setown(filp, pid, type, 1); 185 rcu_read_unlock(); 186 187 return ret; 188 } 189 190 static int f_getown_ex(struct file *filp, unsigned long arg) 191 { 192 struct f_owner_ex __user *owner_p = (void __user *)arg; 193 struct f_owner_ex owner; 194 int ret = 0; 195 196 read_lock(&filp->f_owner.lock); 197 owner.pid = pid_vnr(filp->f_owner.pid); 198 switch (filp->f_owner.pid_type) { 199 case PIDTYPE_MAX: 200 owner.type = F_OWNER_TID; 201 break; 202 203 case PIDTYPE_PID: 204 owner.type = F_OWNER_PID; 205 break; 206 207 case PIDTYPE_PGID: 208 owner.type = F_OWNER_PGRP; 209 break; 210 211 default: 212 WARN_ON(1); 213 ret = -EINVAL; 214 break; 215 } 216 read_unlock(&filp->f_owner.lock); 217 218 if (!ret) { 219 ret = copy_to_user(owner_p, &owner, sizeof(owner)); 220 if (ret) 221 ret = -EFAULT; 222 } 223 return ret; 224 } 225 226 #ifdef CONFIG_CHECKPOINT_RESTORE 227 static int f_getowner_uids(struct file *filp, unsigned long arg) 228 { 229 struct user_namespace *user_ns = current_user_ns(); 230 uid_t __user *dst = (void __user *)arg; 231 uid_t src[2]; 232 int err; 233 234 read_lock(&filp->f_owner.lock); 235 src[0] = from_kuid(user_ns, filp->f_owner.uid); 236 src[1] = from_kuid(user_ns, filp->f_owner.euid); 237 read_unlock(&filp->f_owner.lock); 238 239 err = put_user(src[0], &dst[0]); 240 err |= put_user(src[1], &dst[1]); 241 242 return err; 243 } 244 #else 245 static int f_getowner_uids(struct file *filp, unsigned long arg) 246 { 247 return -EINVAL; 248 } 249 #endif 250 251 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg, 252 struct file *filp) 253 { 254 long err = -EINVAL; 255 256 switch (cmd) { 257 case F_DUPFD: 258 err = f_dupfd(arg, filp, 0); 259 break; 260 case F_DUPFD_CLOEXEC: 261 err = f_dupfd(arg, filp, O_CLOEXEC); 262 break; 263 case F_GETFD: 264 err = get_close_on_exec(fd) ? FD_CLOEXEC : 0; 265 break; 266 case F_SETFD: 267 err = 0; 268 set_close_on_exec(fd, arg & FD_CLOEXEC); 269 break; 270 case F_GETFL: 271 err = filp->f_flags; 272 break; 273 case F_SETFL: 274 err = setfl(fd, filp, arg); 275 break; 276 #if BITS_PER_LONG != 32 277 /* 32-bit arches must use fcntl64() */ 278 case F_OFD_GETLK: 279 #endif 280 case F_GETLK: 281 err = fcntl_getlk(filp, cmd, (struct flock __user *) arg); 282 break; 283 #if BITS_PER_LONG != 32 284 /* 32-bit arches must use fcntl64() */ 285 case F_OFD_SETLK: 286 case F_OFD_SETLKW: 287 #endif 288 /* Fallthrough */ 289 case F_SETLK: 290 case F_SETLKW: 291 err = fcntl_setlk(fd, filp, cmd, (struct flock __user *) arg); 292 break; 293 case F_GETOWN: 294 /* 295 * XXX If f_owner is a process group, the 296 * negative return value will get converted 297 * into an error. Oops. If we keep the 298 * current syscall conventions, the only way 299 * to fix this will be in libc. 300 */ 301 err = f_getown(filp); 302 force_successful_syscall_return(); 303 break; 304 case F_SETOWN: 305 err = f_setown(filp, arg, 1); 306 break; 307 case F_GETOWN_EX: 308 err = f_getown_ex(filp, arg); 309 break; 310 case F_SETOWN_EX: 311 err = f_setown_ex(filp, arg); 312 break; 313 case F_GETOWNER_UIDS: 314 err = f_getowner_uids(filp, arg); 315 break; 316 case F_GETSIG: 317 err = filp->f_owner.signum; 318 break; 319 case F_SETSIG: 320 /* arg == 0 restores default behaviour. */ 321 if (!valid_signal(arg)) { 322 break; 323 } 324 err = 0; 325 filp->f_owner.signum = arg; 326 break; 327 case F_GETLEASE: 328 err = fcntl_getlease(filp); 329 break; 330 case F_SETLEASE: 331 err = fcntl_setlease(fd, filp, arg); 332 break; 333 case F_NOTIFY: 334 err = fcntl_dirnotify(fd, filp, arg); 335 break; 336 case F_SETPIPE_SZ: 337 case F_GETPIPE_SZ: 338 err = pipe_fcntl(filp, cmd, arg); 339 break; 340 case F_ADD_SEALS: 341 case F_GET_SEALS: 342 err = shmem_fcntl(filp, cmd, arg); 343 break; 344 default: 345 break; 346 } 347 return err; 348 } 349 350 static int check_fcntl_cmd(unsigned cmd) 351 { 352 switch (cmd) { 353 case F_DUPFD: 354 case F_DUPFD_CLOEXEC: 355 case F_GETFD: 356 case F_SETFD: 357 case F_GETFL: 358 return 1; 359 } 360 return 0; 361 } 362 363 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg) 364 { 365 struct fd f = fdget_raw(fd); 366 long err = -EBADF; 367 368 if (!f.file) 369 goto out; 370 371 if (unlikely(f.file->f_mode & FMODE_PATH)) { 372 if (!check_fcntl_cmd(cmd)) 373 goto out1; 374 } 375 376 err = security_file_fcntl(f.file, cmd, arg); 377 if (!err) 378 err = do_fcntl(fd, cmd, arg, f.file); 379 380 out1: 381 fdput(f); 382 out: 383 return err; 384 } 385 386 #if BITS_PER_LONG == 32 387 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd, 388 unsigned long, arg) 389 { 390 struct fd f = fdget_raw(fd); 391 long err = -EBADF; 392 393 if (!f.file) 394 goto out; 395 396 if (unlikely(f.file->f_mode & FMODE_PATH)) { 397 if (!check_fcntl_cmd(cmd)) 398 goto out1; 399 } 400 401 err = security_file_fcntl(f.file, cmd, arg); 402 if (err) 403 goto out1; 404 405 switch (cmd) { 406 case F_GETLK64: 407 case F_OFD_GETLK: 408 err = fcntl_getlk64(f.file, cmd, (struct flock64 __user *) arg); 409 break; 410 case F_SETLK64: 411 case F_SETLKW64: 412 case F_OFD_SETLK: 413 case F_OFD_SETLKW: 414 err = fcntl_setlk64(fd, f.file, cmd, 415 (struct flock64 __user *) arg); 416 break; 417 default: 418 err = do_fcntl(fd, cmd, arg, f.file); 419 break; 420 } 421 out1: 422 fdput(f); 423 out: 424 return err; 425 } 426 #endif 427 428 /* Table to convert sigio signal codes into poll band bitmaps */ 429 430 static const long band_table[NSIGPOLL] = { 431 POLLIN | POLLRDNORM, /* POLL_IN */ 432 POLLOUT | POLLWRNORM | POLLWRBAND, /* POLL_OUT */ 433 POLLIN | POLLRDNORM | POLLMSG, /* POLL_MSG */ 434 POLLERR, /* POLL_ERR */ 435 POLLPRI | POLLRDBAND, /* POLL_PRI */ 436 POLLHUP | POLLERR /* POLL_HUP */ 437 }; 438 439 static inline int sigio_perm(struct task_struct *p, 440 struct fown_struct *fown, int sig) 441 { 442 const struct cred *cred; 443 int ret; 444 445 rcu_read_lock(); 446 cred = __task_cred(p); 447 ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) || 448 uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) || 449 uid_eq(fown->uid, cred->suid) || uid_eq(fown->uid, cred->uid)) && 450 !security_file_send_sigiotask(p, fown, sig)); 451 rcu_read_unlock(); 452 return ret; 453 } 454 455 static void send_sigio_to_task(struct task_struct *p, 456 struct fown_struct *fown, 457 int fd, int reason, int group) 458 { 459 /* 460 * F_SETSIG can change ->signum lockless in parallel, make 461 * sure we read it once and use the same value throughout. 462 */ 463 int signum = ACCESS_ONCE(fown->signum); 464 465 if (!sigio_perm(p, fown, signum)) 466 return; 467 468 switch (signum) { 469 siginfo_t si; 470 default: 471 /* Queue a rt signal with the appropriate fd as its 472 value. We use SI_SIGIO as the source, not 473 SI_KERNEL, since kernel signals always get 474 delivered even if we can't queue. Failure to 475 queue in this case _should_ be reported; we fall 476 back to SIGIO in that case. --sct */ 477 si.si_signo = signum; 478 si.si_errno = 0; 479 si.si_code = reason; 480 /* Make sure we are called with one of the POLL_* 481 reasons, otherwise we could leak kernel stack into 482 userspace. */ 483 BUG_ON((reason & __SI_MASK) != __SI_POLL); 484 if (reason - POLL_IN >= NSIGPOLL) 485 si.si_band = ~0L; 486 else 487 si.si_band = band_table[reason - POLL_IN]; 488 si.si_fd = fd; 489 if (!do_send_sig_info(signum, &si, p, group)) 490 break; 491 /* fall-through: fall back on the old plain SIGIO signal */ 492 case 0: 493 do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, group); 494 } 495 } 496 497 void send_sigio(struct fown_struct *fown, int fd, int band) 498 { 499 struct task_struct *p; 500 enum pid_type type; 501 struct pid *pid; 502 int group = 1; 503 504 read_lock(&fown->lock); 505 506 type = fown->pid_type; 507 if (type == PIDTYPE_MAX) { 508 group = 0; 509 type = PIDTYPE_PID; 510 } 511 512 pid = fown->pid; 513 if (!pid) 514 goto out_unlock_fown; 515 516 read_lock(&tasklist_lock); 517 do_each_pid_task(pid, type, p) { 518 send_sigio_to_task(p, fown, fd, band, group); 519 } while_each_pid_task(pid, type, p); 520 read_unlock(&tasklist_lock); 521 out_unlock_fown: 522 read_unlock(&fown->lock); 523 } 524 525 static void send_sigurg_to_task(struct task_struct *p, 526 struct fown_struct *fown, int group) 527 { 528 if (sigio_perm(p, fown, SIGURG)) 529 do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, group); 530 } 531 532 int send_sigurg(struct fown_struct *fown) 533 { 534 struct task_struct *p; 535 enum pid_type type; 536 struct pid *pid; 537 int group = 1; 538 int ret = 0; 539 540 read_lock(&fown->lock); 541 542 type = fown->pid_type; 543 if (type == PIDTYPE_MAX) { 544 group = 0; 545 type = PIDTYPE_PID; 546 } 547 548 pid = fown->pid; 549 if (!pid) 550 goto out_unlock_fown; 551 552 ret = 1; 553 554 read_lock(&tasklist_lock); 555 do_each_pid_task(pid, type, p) { 556 send_sigurg_to_task(p, fown, group); 557 } while_each_pid_task(pid, type, p); 558 read_unlock(&tasklist_lock); 559 out_unlock_fown: 560 read_unlock(&fown->lock); 561 return ret; 562 } 563 564 static DEFINE_SPINLOCK(fasync_lock); 565 static struct kmem_cache *fasync_cache __read_mostly; 566 567 static void fasync_free_rcu(struct rcu_head *head) 568 { 569 kmem_cache_free(fasync_cache, 570 container_of(head, struct fasync_struct, fa_rcu)); 571 } 572 573 /* 574 * Remove a fasync entry. If successfully removed, return 575 * positive and clear the FASYNC flag. If no entry exists, 576 * do nothing and return 0. 577 * 578 * NOTE! It is very important that the FASYNC flag always 579 * match the state "is the filp on a fasync list". 580 * 581 */ 582 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp) 583 { 584 struct fasync_struct *fa, **fp; 585 int result = 0; 586 587 spin_lock(&filp->f_lock); 588 spin_lock(&fasync_lock); 589 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 590 if (fa->fa_file != filp) 591 continue; 592 593 spin_lock_irq(&fa->fa_lock); 594 fa->fa_file = NULL; 595 spin_unlock_irq(&fa->fa_lock); 596 597 *fp = fa->fa_next; 598 call_rcu(&fa->fa_rcu, fasync_free_rcu); 599 filp->f_flags &= ~FASYNC; 600 result = 1; 601 break; 602 } 603 spin_unlock(&fasync_lock); 604 spin_unlock(&filp->f_lock); 605 return result; 606 } 607 608 struct fasync_struct *fasync_alloc(void) 609 { 610 return kmem_cache_alloc(fasync_cache, GFP_KERNEL); 611 } 612 613 /* 614 * NOTE! This can be used only for unused fasync entries: 615 * entries that actually got inserted on the fasync list 616 * need to be released by rcu - see fasync_remove_entry. 617 */ 618 void fasync_free(struct fasync_struct *new) 619 { 620 kmem_cache_free(fasync_cache, new); 621 } 622 623 /* 624 * Insert a new entry into the fasync list. Return the pointer to the 625 * old one if we didn't use the new one. 626 * 627 * NOTE! It is very important that the FASYNC flag always 628 * match the state "is the filp on a fasync list". 629 */ 630 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new) 631 { 632 struct fasync_struct *fa, **fp; 633 634 spin_lock(&filp->f_lock); 635 spin_lock(&fasync_lock); 636 for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) { 637 if (fa->fa_file != filp) 638 continue; 639 640 spin_lock_irq(&fa->fa_lock); 641 fa->fa_fd = fd; 642 spin_unlock_irq(&fa->fa_lock); 643 goto out; 644 } 645 646 spin_lock_init(&new->fa_lock); 647 new->magic = FASYNC_MAGIC; 648 new->fa_file = filp; 649 new->fa_fd = fd; 650 new->fa_next = *fapp; 651 rcu_assign_pointer(*fapp, new); 652 filp->f_flags |= FASYNC; 653 654 out: 655 spin_unlock(&fasync_lock); 656 spin_unlock(&filp->f_lock); 657 return fa; 658 } 659 660 /* 661 * Add a fasync entry. Return negative on error, positive if 662 * added, and zero if did nothing but change an existing one. 663 */ 664 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp) 665 { 666 struct fasync_struct *new; 667 668 new = fasync_alloc(); 669 if (!new) 670 return -ENOMEM; 671 672 /* 673 * fasync_insert_entry() returns the old (update) entry if 674 * it existed. 675 * 676 * So free the (unused) new entry and return 0 to let the 677 * caller know that we didn't add any new fasync entries. 678 */ 679 if (fasync_insert_entry(fd, filp, fapp, new)) { 680 fasync_free(new); 681 return 0; 682 } 683 684 return 1; 685 } 686 687 /* 688 * fasync_helper() is used by almost all character device drivers 689 * to set up the fasync queue, and for regular files by the file 690 * lease code. It returns negative on error, 0 if it did no changes 691 * and positive if it added/deleted the entry. 692 */ 693 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp) 694 { 695 if (!on) 696 return fasync_remove_entry(filp, fapp); 697 return fasync_add_entry(fd, filp, fapp); 698 } 699 700 EXPORT_SYMBOL(fasync_helper); 701 702 /* 703 * rcu_read_lock() is held 704 */ 705 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band) 706 { 707 while (fa) { 708 struct fown_struct *fown; 709 unsigned long flags; 710 711 if (fa->magic != FASYNC_MAGIC) { 712 printk(KERN_ERR "kill_fasync: bad magic number in " 713 "fasync_struct!\n"); 714 return; 715 } 716 spin_lock_irqsave(&fa->fa_lock, flags); 717 if (fa->fa_file) { 718 fown = &fa->fa_file->f_owner; 719 /* Don't send SIGURG to processes which have not set a 720 queued signum: SIGURG has its own default signalling 721 mechanism. */ 722 if (!(sig == SIGURG && fown->signum == 0)) 723 send_sigio(fown, fa->fa_fd, band); 724 } 725 spin_unlock_irqrestore(&fa->fa_lock, flags); 726 fa = rcu_dereference(fa->fa_next); 727 } 728 } 729 730 void kill_fasync(struct fasync_struct **fp, int sig, int band) 731 { 732 /* First a quick test without locking: usually 733 * the list is empty. 734 */ 735 if (*fp) { 736 rcu_read_lock(); 737 kill_fasync_rcu(rcu_dereference(*fp), sig, band); 738 rcu_read_unlock(); 739 } 740 } 741 EXPORT_SYMBOL(kill_fasync); 742 743 static int __init fcntl_init(void) 744 { 745 /* 746 * Please add new bits here to ensure allocation uniqueness. 747 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY 748 * is defined as O_NONBLOCK on some platforms and not on others. 749 */ 750 BUILD_BUG_ON(20 - 1 /* for O_RDONLY being 0 */ != HWEIGHT32( 751 O_RDONLY | O_WRONLY | O_RDWR | 752 O_CREAT | O_EXCL | O_NOCTTY | 753 O_TRUNC | O_APPEND | /* O_NONBLOCK | */ 754 __O_SYNC | O_DSYNC | FASYNC | 755 O_DIRECT | O_LARGEFILE | O_DIRECTORY | 756 O_NOFOLLOW | O_NOATIME | O_CLOEXEC | 757 __FMODE_EXEC | O_PATH | __O_TMPFILE 758 )); 759 760 fasync_cache = kmem_cache_create("fasync_cache", 761 sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL); 762 return 0; 763 } 764 765 module_init(fcntl_init) 766