xref: /openbmc/linux/fs/fcntl.c (revision 208012f0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/fcntl.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/syscalls.h>
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/fdtable.h>
15 #include <linux/capability.h>
16 #include <linux/dnotify.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/security.h>
21 #include <linux/ptrace.h>
22 #include <linux/signal.h>
23 #include <linux/rcupdate.h>
24 #include <linux/pid_namespace.h>
25 #include <linux/user_namespace.h>
26 #include <linux/memfd.h>
27 #include <linux/compat.h>
28 #include <linux/mount.h>
29 
30 #include <linux/poll.h>
31 #include <asm/siginfo.h>
32 #include <linux/uaccess.h>
33 
34 #define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
35 
36 static int setfl(int fd, struct file * filp, unsigned long arg)
37 {
38 	struct inode * inode = file_inode(filp);
39 	int error = 0;
40 
41 	/*
42 	 * O_APPEND cannot be cleared if the file is marked as append-only
43 	 * and the file is open for write.
44 	 */
45 	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
46 		return -EPERM;
47 
48 	/* O_NOATIME can only be set by the owner or superuser */
49 	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
50 		if (!inode_owner_or_capable(file_mnt_user_ns(filp), inode))
51 			return -EPERM;
52 
53 	/* required for strict SunOS emulation */
54 	if (O_NONBLOCK != O_NDELAY)
55 	       if (arg & O_NDELAY)
56 		   arg |= O_NONBLOCK;
57 
58 	/* Pipe packetized mode is controlled by O_DIRECT flag */
59 	if (!S_ISFIFO(inode->i_mode) && (arg & O_DIRECT)) {
60 		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
61 			!filp->f_mapping->a_ops->direct_IO)
62 				return -EINVAL;
63 	}
64 
65 	if (filp->f_op->check_flags)
66 		error = filp->f_op->check_flags(arg);
67 	if (error)
68 		return error;
69 
70 	/*
71 	 * ->fasync() is responsible for setting the FASYNC bit.
72 	 */
73 	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
74 		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
75 		if (error < 0)
76 			goto out;
77 		if (error > 0)
78 			error = 0;
79 	}
80 	spin_lock(&filp->f_lock);
81 	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
82 	spin_unlock(&filp->f_lock);
83 
84  out:
85 	return error;
86 }
87 
88 static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
89                      int force)
90 {
91 	write_lock_irq(&filp->f_owner.lock);
92 	if (force || !filp->f_owner.pid) {
93 		put_pid(filp->f_owner.pid);
94 		filp->f_owner.pid = get_pid(pid);
95 		filp->f_owner.pid_type = type;
96 
97 		if (pid) {
98 			const struct cred *cred = current_cred();
99 			filp->f_owner.uid = cred->uid;
100 			filp->f_owner.euid = cred->euid;
101 		}
102 	}
103 	write_unlock_irq(&filp->f_owner.lock);
104 }
105 
106 void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
107 		int force)
108 {
109 	security_file_set_fowner(filp);
110 	f_modown(filp, pid, type, force);
111 }
112 EXPORT_SYMBOL(__f_setown);
113 
114 int f_setown(struct file *filp, unsigned long arg, int force)
115 {
116 	enum pid_type type;
117 	struct pid *pid = NULL;
118 	int who = arg, ret = 0;
119 
120 	type = PIDTYPE_TGID;
121 	if (who < 0) {
122 		/* avoid overflow below */
123 		if (who == INT_MIN)
124 			return -EINVAL;
125 
126 		type = PIDTYPE_PGID;
127 		who = -who;
128 	}
129 
130 	rcu_read_lock();
131 	if (who) {
132 		pid = find_vpid(who);
133 		if (!pid)
134 			ret = -ESRCH;
135 	}
136 
137 	if (!ret)
138 		__f_setown(filp, pid, type, force);
139 	rcu_read_unlock();
140 
141 	return ret;
142 }
143 EXPORT_SYMBOL(f_setown);
144 
145 void f_delown(struct file *filp)
146 {
147 	f_modown(filp, NULL, PIDTYPE_TGID, 1);
148 }
149 
150 pid_t f_getown(struct file *filp)
151 {
152 	pid_t pid = 0;
153 	read_lock(&filp->f_owner.lock);
154 	rcu_read_lock();
155 	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) {
156 		pid = pid_vnr(filp->f_owner.pid);
157 		if (filp->f_owner.pid_type == PIDTYPE_PGID)
158 			pid = -pid;
159 	}
160 	rcu_read_unlock();
161 	read_unlock(&filp->f_owner.lock);
162 	return pid;
163 }
164 
165 static int f_setown_ex(struct file *filp, unsigned long arg)
166 {
167 	struct f_owner_ex __user *owner_p = (void __user *)arg;
168 	struct f_owner_ex owner;
169 	struct pid *pid;
170 	int type;
171 	int ret;
172 
173 	ret = copy_from_user(&owner, owner_p, sizeof(owner));
174 	if (ret)
175 		return -EFAULT;
176 
177 	switch (owner.type) {
178 	case F_OWNER_TID:
179 		type = PIDTYPE_PID;
180 		break;
181 
182 	case F_OWNER_PID:
183 		type = PIDTYPE_TGID;
184 		break;
185 
186 	case F_OWNER_PGRP:
187 		type = PIDTYPE_PGID;
188 		break;
189 
190 	default:
191 		return -EINVAL;
192 	}
193 
194 	rcu_read_lock();
195 	pid = find_vpid(owner.pid);
196 	if (owner.pid && !pid)
197 		ret = -ESRCH;
198 	else
199 		 __f_setown(filp, pid, type, 1);
200 	rcu_read_unlock();
201 
202 	return ret;
203 }
204 
205 static int f_getown_ex(struct file *filp, unsigned long arg)
206 {
207 	struct f_owner_ex __user *owner_p = (void __user *)arg;
208 	struct f_owner_ex owner = {};
209 	int ret = 0;
210 
211 	read_lock(&filp->f_owner.lock);
212 	rcu_read_lock();
213 	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type))
214 		owner.pid = pid_vnr(filp->f_owner.pid);
215 	rcu_read_unlock();
216 	switch (filp->f_owner.pid_type) {
217 	case PIDTYPE_PID:
218 		owner.type = F_OWNER_TID;
219 		break;
220 
221 	case PIDTYPE_TGID:
222 		owner.type = F_OWNER_PID;
223 		break;
224 
225 	case PIDTYPE_PGID:
226 		owner.type = F_OWNER_PGRP;
227 		break;
228 
229 	default:
230 		WARN_ON(1);
231 		ret = -EINVAL;
232 		break;
233 	}
234 	read_unlock(&filp->f_owner.lock);
235 
236 	if (!ret) {
237 		ret = copy_to_user(owner_p, &owner, sizeof(owner));
238 		if (ret)
239 			ret = -EFAULT;
240 	}
241 	return ret;
242 }
243 
244 #ifdef CONFIG_CHECKPOINT_RESTORE
245 static int f_getowner_uids(struct file *filp, unsigned long arg)
246 {
247 	struct user_namespace *user_ns = current_user_ns();
248 	uid_t __user *dst = (void __user *)arg;
249 	uid_t src[2];
250 	int err;
251 
252 	read_lock(&filp->f_owner.lock);
253 	src[0] = from_kuid(user_ns, filp->f_owner.uid);
254 	src[1] = from_kuid(user_ns, filp->f_owner.euid);
255 	read_unlock(&filp->f_owner.lock);
256 
257 	err  = put_user(src[0], &dst[0]);
258 	err |= put_user(src[1], &dst[1]);
259 
260 	return err;
261 }
262 #else
263 static int f_getowner_uids(struct file *filp, unsigned long arg)
264 {
265 	return -EINVAL;
266 }
267 #endif
268 
269 static bool rw_hint_valid(enum rw_hint hint)
270 {
271 	switch (hint) {
272 	case RWH_WRITE_LIFE_NOT_SET:
273 	case RWH_WRITE_LIFE_NONE:
274 	case RWH_WRITE_LIFE_SHORT:
275 	case RWH_WRITE_LIFE_MEDIUM:
276 	case RWH_WRITE_LIFE_LONG:
277 	case RWH_WRITE_LIFE_EXTREME:
278 		return true;
279 	default:
280 		return false;
281 	}
282 }
283 
284 static long fcntl_rw_hint(struct file *file, unsigned int cmd,
285 			  unsigned long arg)
286 {
287 	struct inode *inode = file_inode(file);
288 	u64 __user *argp = (u64 __user *)arg;
289 	enum rw_hint hint;
290 	u64 h;
291 
292 	switch (cmd) {
293 	case F_GET_FILE_RW_HINT:
294 		h = file_write_hint(file);
295 		if (copy_to_user(argp, &h, sizeof(*argp)))
296 			return -EFAULT;
297 		return 0;
298 	case F_SET_FILE_RW_HINT:
299 		if (copy_from_user(&h, argp, sizeof(h)))
300 			return -EFAULT;
301 		hint = (enum rw_hint) h;
302 		if (!rw_hint_valid(hint))
303 			return -EINVAL;
304 
305 		spin_lock(&file->f_lock);
306 		file->f_write_hint = hint;
307 		spin_unlock(&file->f_lock);
308 		return 0;
309 	case F_GET_RW_HINT:
310 		h = inode->i_write_hint;
311 		if (copy_to_user(argp, &h, sizeof(*argp)))
312 			return -EFAULT;
313 		return 0;
314 	case F_SET_RW_HINT:
315 		if (copy_from_user(&h, argp, sizeof(h)))
316 			return -EFAULT;
317 		hint = (enum rw_hint) h;
318 		if (!rw_hint_valid(hint))
319 			return -EINVAL;
320 
321 		inode_lock(inode);
322 		inode->i_write_hint = hint;
323 		inode_unlock(inode);
324 		return 0;
325 	default:
326 		return -EINVAL;
327 	}
328 }
329 
330 static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
331 		struct file *filp)
332 {
333 	void __user *argp = (void __user *)arg;
334 	struct flock flock;
335 	long err = -EINVAL;
336 
337 	switch (cmd) {
338 	case F_DUPFD:
339 		err = f_dupfd(arg, filp, 0);
340 		break;
341 	case F_DUPFD_CLOEXEC:
342 		err = f_dupfd(arg, filp, O_CLOEXEC);
343 		break;
344 	case F_GETFD:
345 		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
346 		break;
347 	case F_SETFD:
348 		err = 0;
349 		set_close_on_exec(fd, arg & FD_CLOEXEC);
350 		break;
351 	case F_GETFL:
352 		err = filp->f_flags;
353 		break;
354 	case F_SETFL:
355 		err = setfl(fd, filp, arg);
356 		break;
357 #if BITS_PER_LONG != 32
358 	/* 32-bit arches must use fcntl64() */
359 	case F_OFD_GETLK:
360 #endif
361 	case F_GETLK:
362 		if (copy_from_user(&flock, argp, sizeof(flock)))
363 			return -EFAULT;
364 		err = fcntl_getlk(filp, cmd, &flock);
365 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
366 			return -EFAULT;
367 		break;
368 #if BITS_PER_LONG != 32
369 	/* 32-bit arches must use fcntl64() */
370 	case F_OFD_SETLK:
371 	case F_OFD_SETLKW:
372 #endif
373 		fallthrough;
374 	case F_SETLK:
375 	case F_SETLKW:
376 		if (copy_from_user(&flock, argp, sizeof(flock)))
377 			return -EFAULT;
378 		err = fcntl_setlk(fd, filp, cmd, &flock);
379 		break;
380 	case F_GETOWN:
381 		/*
382 		 * XXX If f_owner is a process group, the
383 		 * negative return value will get converted
384 		 * into an error.  Oops.  If we keep the
385 		 * current syscall conventions, the only way
386 		 * to fix this will be in libc.
387 		 */
388 		err = f_getown(filp);
389 		force_successful_syscall_return();
390 		break;
391 	case F_SETOWN:
392 		err = f_setown(filp, arg, 1);
393 		break;
394 	case F_GETOWN_EX:
395 		err = f_getown_ex(filp, arg);
396 		break;
397 	case F_SETOWN_EX:
398 		err = f_setown_ex(filp, arg);
399 		break;
400 	case F_GETOWNER_UIDS:
401 		err = f_getowner_uids(filp, arg);
402 		break;
403 	case F_GETSIG:
404 		err = filp->f_owner.signum;
405 		break;
406 	case F_SETSIG:
407 		/* arg == 0 restores default behaviour. */
408 		if (!valid_signal(arg)) {
409 			break;
410 		}
411 		err = 0;
412 		filp->f_owner.signum = arg;
413 		break;
414 	case F_GETLEASE:
415 		err = fcntl_getlease(filp);
416 		break;
417 	case F_SETLEASE:
418 		err = fcntl_setlease(fd, filp, arg);
419 		break;
420 	case F_NOTIFY:
421 		err = fcntl_dirnotify(fd, filp, arg);
422 		break;
423 	case F_SETPIPE_SZ:
424 	case F_GETPIPE_SZ:
425 		err = pipe_fcntl(filp, cmd, arg);
426 		break;
427 	case F_ADD_SEALS:
428 	case F_GET_SEALS:
429 		err = memfd_fcntl(filp, cmd, arg);
430 		break;
431 	case F_GET_RW_HINT:
432 	case F_SET_RW_HINT:
433 	case F_GET_FILE_RW_HINT:
434 	case F_SET_FILE_RW_HINT:
435 		err = fcntl_rw_hint(filp, cmd, arg);
436 		break;
437 	default:
438 		break;
439 	}
440 	return err;
441 }
442 
443 static int check_fcntl_cmd(unsigned cmd)
444 {
445 	switch (cmd) {
446 	case F_DUPFD:
447 	case F_DUPFD_CLOEXEC:
448 	case F_GETFD:
449 	case F_SETFD:
450 	case F_GETFL:
451 		return 1;
452 	}
453 	return 0;
454 }
455 
456 SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
457 {
458 	struct fd f = fdget_raw(fd);
459 	long err = -EBADF;
460 
461 	if (!f.file)
462 		goto out;
463 
464 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
465 		if (!check_fcntl_cmd(cmd))
466 			goto out1;
467 	}
468 
469 	err = security_file_fcntl(f.file, cmd, arg);
470 	if (!err)
471 		err = do_fcntl(fd, cmd, arg, f.file);
472 
473 out1:
474  	fdput(f);
475 out:
476 	return err;
477 }
478 
479 #if BITS_PER_LONG == 32
480 SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
481 		unsigned long, arg)
482 {
483 	void __user *argp = (void __user *)arg;
484 	struct fd f = fdget_raw(fd);
485 	struct flock64 flock;
486 	long err = -EBADF;
487 
488 	if (!f.file)
489 		goto out;
490 
491 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
492 		if (!check_fcntl_cmd(cmd))
493 			goto out1;
494 	}
495 
496 	err = security_file_fcntl(f.file, cmd, arg);
497 	if (err)
498 		goto out1;
499 
500 	switch (cmd) {
501 	case F_GETLK64:
502 	case F_OFD_GETLK:
503 		err = -EFAULT;
504 		if (copy_from_user(&flock, argp, sizeof(flock)))
505 			break;
506 		err = fcntl_getlk64(f.file, cmd, &flock);
507 		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
508 			err = -EFAULT;
509 		break;
510 	case F_SETLK64:
511 	case F_SETLKW64:
512 	case F_OFD_SETLK:
513 	case F_OFD_SETLKW:
514 		err = -EFAULT;
515 		if (copy_from_user(&flock, argp, sizeof(flock)))
516 			break;
517 		err = fcntl_setlk64(fd, f.file, cmd, &flock);
518 		break;
519 	default:
520 		err = do_fcntl(fd, cmd, arg, f.file);
521 		break;
522 	}
523 out1:
524 	fdput(f);
525 out:
526 	return err;
527 }
528 #endif
529 
530 #ifdef CONFIG_COMPAT
531 /* careful - don't use anywhere else */
532 #define copy_flock_fields(dst, src)		\
533 	(dst)->l_type = (src)->l_type;		\
534 	(dst)->l_whence = (src)->l_whence;	\
535 	(dst)->l_start = (src)->l_start;	\
536 	(dst)->l_len = (src)->l_len;		\
537 	(dst)->l_pid = (src)->l_pid;
538 
539 static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
540 {
541 	struct compat_flock fl;
542 
543 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
544 		return -EFAULT;
545 	copy_flock_fields(kfl, &fl);
546 	return 0;
547 }
548 
549 static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
550 {
551 	struct compat_flock64 fl;
552 
553 	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
554 		return -EFAULT;
555 	copy_flock_fields(kfl, &fl);
556 	return 0;
557 }
558 
559 static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
560 {
561 	struct compat_flock fl;
562 
563 	memset(&fl, 0, sizeof(struct compat_flock));
564 	copy_flock_fields(&fl, kfl);
565 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
566 		return -EFAULT;
567 	return 0;
568 }
569 
570 static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
571 {
572 	struct compat_flock64 fl;
573 
574 	BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
575 	BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
576 
577 	memset(&fl, 0, sizeof(struct compat_flock64));
578 	copy_flock_fields(&fl, kfl);
579 	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
580 		return -EFAULT;
581 	return 0;
582 }
583 #undef copy_flock_fields
584 
585 static unsigned int
586 convert_fcntl_cmd(unsigned int cmd)
587 {
588 	switch (cmd) {
589 	case F_GETLK64:
590 		return F_GETLK;
591 	case F_SETLK64:
592 		return F_SETLK;
593 	case F_SETLKW64:
594 		return F_SETLKW;
595 	}
596 
597 	return cmd;
598 }
599 
600 /*
601  * GETLK was successful and we need to return the data, but it needs to fit in
602  * the compat structure.
603  * l_start shouldn't be too big, unless the original start + end is greater than
604  * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
605  * -EOVERFLOW in that case.  l_len could be too big, in which case we just
606  * truncate it, and only allow the app to see that part of the conflicting lock
607  * that might make sense to it anyway
608  */
609 static int fixup_compat_flock(struct flock *flock)
610 {
611 	if (flock->l_start > COMPAT_OFF_T_MAX)
612 		return -EOVERFLOW;
613 	if (flock->l_len > COMPAT_OFF_T_MAX)
614 		flock->l_len = COMPAT_OFF_T_MAX;
615 	return 0;
616 }
617 
618 static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
619 			     compat_ulong_t arg)
620 {
621 	struct fd f = fdget_raw(fd);
622 	struct flock flock;
623 	long err = -EBADF;
624 
625 	if (!f.file)
626 		return err;
627 
628 	if (unlikely(f.file->f_mode & FMODE_PATH)) {
629 		if (!check_fcntl_cmd(cmd))
630 			goto out_put;
631 	}
632 
633 	err = security_file_fcntl(f.file, cmd, arg);
634 	if (err)
635 		goto out_put;
636 
637 	switch (cmd) {
638 	case F_GETLK:
639 		err = get_compat_flock(&flock, compat_ptr(arg));
640 		if (err)
641 			break;
642 		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
643 		if (err)
644 			break;
645 		err = fixup_compat_flock(&flock);
646 		if (!err)
647 			err = put_compat_flock(&flock, compat_ptr(arg));
648 		break;
649 	case F_GETLK64:
650 	case F_OFD_GETLK:
651 		err = get_compat_flock64(&flock, compat_ptr(arg));
652 		if (err)
653 			break;
654 		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
655 		if (!err)
656 			err = put_compat_flock64(&flock, compat_ptr(arg));
657 		break;
658 	case F_SETLK:
659 	case F_SETLKW:
660 		err = get_compat_flock(&flock, compat_ptr(arg));
661 		if (err)
662 			break;
663 		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
664 		break;
665 	case F_SETLK64:
666 	case F_SETLKW64:
667 	case F_OFD_SETLK:
668 	case F_OFD_SETLKW:
669 		err = get_compat_flock64(&flock, compat_ptr(arg));
670 		if (err)
671 			break;
672 		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
673 		break;
674 	default:
675 		err = do_fcntl(fd, cmd, arg, f.file);
676 		break;
677 	}
678 out_put:
679 	fdput(f);
680 	return err;
681 }
682 
683 COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
684 		       compat_ulong_t, arg)
685 {
686 	return do_compat_fcntl64(fd, cmd, arg);
687 }
688 
689 COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
690 		       compat_ulong_t, arg)
691 {
692 	switch (cmd) {
693 	case F_GETLK64:
694 	case F_SETLK64:
695 	case F_SETLKW64:
696 	case F_OFD_GETLK:
697 	case F_OFD_SETLK:
698 	case F_OFD_SETLKW:
699 		return -EINVAL;
700 	}
701 	return do_compat_fcntl64(fd, cmd, arg);
702 }
703 #endif
704 
705 /* Table to convert sigio signal codes into poll band bitmaps */
706 
707 static const __poll_t band_table[NSIGPOLL] = {
708 	EPOLLIN | EPOLLRDNORM,			/* POLL_IN */
709 	EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND,	/* POLL_OUT */
710 	EPOLLIN | EPOLLRDNORM | EPOLLMSG,		/* POLL_MSG */
711 	EPOLLERR,				/* POLL_ERR */
712 	EPOLLPRI | EPOLLRDBAND,			/* POLL_PRI */
713 	EPOLLHUP | EPOLLERR			/* POLL_HUP */
714 };
715 
716 static inline int sigio_perm(struct task_struct *p,
717                              struct fown_struct *fown, int sig)
718 {
719 	const struct cred *cred;
720 	int ret;
721 
722 	rcu_read_lock();
723 	cred = __task_cred(p);
724 	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
725 		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
726 		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
727 	       !security_file_send_sigiotask(p, fown, sig));
728 	rcu_read_unlock();
729 	return ret;
730 }
731 
732 static void send_sigio_to_task(struct task_struct *p,
733 			       struct fown_struct *fown,
734 			       int fd, int reason, enum pid_type type)
735 {
736 	/*
737 	 * F_SETSIG can change ->signum lockless in parallel, make
738 	 * sure we read it once and use the same value throughout.
739 	 */
740 	int signum = READ_ONCE(fown->signum);
741 
742 	if (!sigio_perm(p, fown, signum))
743 		return;
744 
745 	switch (signum) {
746 		default: {
747 			kernel_siginfo_t si;
748 
749 			/* Queue a rt signal with the appropriate fd as its
750 			   value.  We use SI_SIGIO as the source, not
751 			   SI_KERNEL, since kernel signals always get
752 			   delivered even if we can't queue.  Failure to
753 			   queue in this case _should_ be reported; we fall
754 			   back to SIGIO in that case. --sct */
755 			clear_siginfo(&si);
756 			si.si_signo = signum;
757 			si.si_errno = 0;
758 		        si.si_code  = reason;
759 			/*
760 			 * Posix definies POLL_IN and friends to be signal
761 			 * specific si_codes for SIG_POLL.  Linux extended
762 			 * these si_codes to other signals in a way that is
763 			 * ambiguous if other signals also have signal
764 			 * specific si_codes.  In that case use SI_SIGIO instead
765 			 * to remove the ambiguity.
766 			 */
767 			if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
768 				si.si_code = SI_SIGIO;
769 
770 			/* Make sure we are called with one of the POLL_*
771 			   reasons, otherwise we could leak kernel stack into
772 			   userspace.  */
773 			BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
774 			if (reason - POLL_IN >= NSIGPOLL)
775 				si.si_band  = ~0L;
776 			else
777 				si.si_band = mangle_poll(band_table[reason - POLL_IN]);
778 			si.si_fd    = fd;
779 			if (!do_send_sig_info(signum, &si, p, type))
780 				break;
781 		}
782 			fallthrough;	/* fall back on the old plain SIGIO signal */
783 		case 0:
784 			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
785 	}
786 }
787 
788 void send_sigio(struct fown_struct *fown, int fd, int band)
789 {
790 	struct task_struct *p;
791 	enum pid_type type;
792 	unsigned long flags;
793 	struct pid *pid;
794 
795 	read_lock_irqsave(&fown->lock, flags);
796 
797 	type = fown->pid_type;
798 	pid = fown->pid;
799 	if (!pid)
800 		goto out_unlock_fown;
801 
802 	if (type <= PIDTYPE_TGID) {
803 		rcu_read_lock();
804 		p = pid_task(pid, PIDTYPE_PID);
805 		if (p)
806 			send_sigio_to_task(p, fown, fd, band, type);
807 		rcu_read_unlock();
808 	} else {
809 		read_lock(&tasklist_lock);
810 		do_each_pid_task(pid, type, p) {
811 			send_sigio_to_task(p, fown, fd, band, type);
812 		} while_each_pid_task(pid, type, p);
813 		read_unlock(&tasklist_lock);
814 	}
815  out_unlock_fown:
816 	read_unlock_irqrestore(&fown->lock, flags);
817 }
818 
819 static void send_sigurg_to_task(struct task_struct *p,
820 				struct fown_struct *fown, enum pid_type type)
821 {
822 	if (sigio_perm(p, fown, SIGURG))
823 		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
824 }
825 
826 int send_sigurg(struct fown_struct *fown)
827 {
828 	struct task_struct *p;
829 	enum pid_type type;
830 	struct pid *pid;
831 	unsigned long flags;
832 	int ret = 0;
833 
834 	read_lock_irqsave(&fown->lock, flags);
835 
836 	type = fown->pid_type;
837 	pid = fown->pid;
838 	if (!pid)
839 		goto out_unlock_fown;
840 
841 	ret = 1;
842 
843 	if (type <= PIDTYPE_TGID) {
844 		rcu_read_lock();
845 		p = pid_task(pid, PIDTYPE_PID);
846 		if (p)
847 			send_sigurg_to_task(p, fown, type);
848 		rcu_read_unlock();
849 	} else {
850 		read_lock(&tasklist_lock);
851 		do_each_pid_task(pid, type, p) {
852 			send_sigurg_to_task(p, fown, type);
853 		} while_each_pid_task(pid, type, p);
854 		read_unlock(&tasklist_lock);
855 	}
856  out_unlock_fown:
857 	read_unlock_irqrestore(&fown->lock, flags);
858 	return ret;
859 }
860 
861 static DEFINE_SPINLOCK(fasync_lock);
862 static struct kmem_cache *fasync_cache __read_mostly;
863 
864 static void fasync_free_rcu(struct rcu_head *head)
865 {
866 	kmem_cache_free(fasync_cache,
867 			container_of(head, struct fasync_struct, fa_rcu));
868 }
869 
870 /*
871  * Remove a fasync entry. If successfully removed, return
872  * positive and clear the FASYNC flag. If no entry exists,
873  * do nothing and return 0.
874  *
875  * NOTE! It is very important that the FASYNC flag always
876  * match the state "is the filp on a fasync list".
877  *
878  */
879 int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
880 {
881 	struct fasync_struct *fa, **fp;
882 	int result = 0;
883 
884 	spin_lock(&filp->f_lock);
885 	spin_lock(&fasync_lock);
886 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
887 		if (fa->fa_file != filp)
888 			continue;
889 
890 		write_lock_irq(&fa->fa_lock);
891 		fa->fa_file = NULL;
892 		write_unlock_irq(&fa->fa_lock);
893 
894 		*fp = fa->fa_next;
895 		call_rcu(&fa->fa_rcu, fasync_free_rcu);
896 		filp->f_flags &= ~FASYNC;
897 		result = 1;
898 		break;
899 	}
900 	spin_unlock(&fasync_lock);
901 	spin_unlock(&filp->f_lock);
902 	return result;
903 }
904 
905 struct fasync_struct *fasync_alloc(void)
906 {
907 	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
908 }
909 
910 /*
911  * NOTE! This can be used only for unused fasync entries:
912  * entries that actually got inserted on the fasync list
913  * need to be released by rcu - see fasync_remove_entry.
914  */
915 void fasync_free(struct fasync_struct *new)
916 {
917 	kmem_cache_free(fasync_cache, new);
918 }
919 
920 /*
921  * Insert a new entry into the fasync list.  Return the pointer to the
922  * old one if we didn't use the new one.
923  *
924  * NOTE! It is very important that the FASYNC flag always
925  * match the state "is the filp on a fasync list".
926  */
927 struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
928 {
929         struct fasync_struct *fa, **fp;
930 
931 	spin_lock(&filp->f_lock);
932 	spin_lock(&fasync_lock);
933 	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
934 		if (fa->fa_file != filp)
935 			continue;
936 
937 		write_lock_irq(&fa->fa_lock);
938 		fa->fa_fd = fd;
939 		write_unlock_irq(&fa->fa_lock);
940 		goto out;
941 	}
942 
943 	rwlock_init(&new->fa_lock);
944 	new->magic = FASYNC_MAGIC;
945 	new->fa_file = filp;
946 	new->fa_fd = fd;
947 	new->fa_next = *fapp;
948 	rcu_assign_pointer(*fapp, new);
949 	filp->f_flags |= FASYNC;
950 
951 out:
952 	spin_unlock(&fasync_lock);
953 	spin_unlock(&filp->f_lock);
954 	return fa;
955 }
956 
957 /*
958  * Add a fasync entry. Return negative on error, positive if
959  * added, and zero if did nothing but change an existing one.
960  */
961 static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
962 {
963 	struct fasync_struct *new;
964 
965 	new = fasync_alloc();
966 	if (!new)
967 		return -ENOMEM;
968 
969 	/*
970 	 * fasync_insert_entry() returns the old (update) entry if
971 	 * it existed.
972 	 *
973 	 * So free the (unused) new entry and return 0 to let the
974 	 * caller know that we didn't add any new fasync entries.
975 	 */
976 	if (fasync_insert_entry(fd, filp, fapp, new)) {
977 		fasync_free(new);
978 		return 0;
979 	}
980 
981 	return 1;
982 }
983 
984 /*
985  * fasync_helper() is used by almost all character device drivers
986  * to set up the fasync queue, and for regular files by the file
987  * lease code. It returns negative on error, 0 if it did no changes
988  * and positive if it added/deleted the entry.
989  */
990 int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
991 {
992 	if (!on)
993 		return fasync_remove_entry(filp, fapp);
994 	return fasync_add_entry(fd, filp, fapp);
995 }
996 
997 EXPORT_SYMBOL(fasync_helper);
998 
999 /*
1000  * rcu_read_lock() is held
1001  */
1002 static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
1003 {
1004 	while (fa) {
1005 		struct fown_struct *fown;
1006 
1007 		if (fa->magic != FASYNC_MAGIC) {
1008 			printk(KERN_ERR "kill_fasync: bad magic number in "
1009 			       "fasync_struct!\n");
1010 			return;
1011 		}
1012 		read_lock(&fa->fa_lock);
1013 		if (fa->fa_file) {
1014 			fown = &fa->fa_file->f_owner;
1015 			/* Don't send SIGURG to processes which have not set a
1016 			   queued signum: SIGURG has its own default signalling
1017 			   mechanism. */
1018 			if (!(sig == SIGURG && fown->signum == 0))
1019 				send_sigio(fown, fa->fa_fd, band);
1020 		}
1021 		read_unlock(&fa->fa_lock);
1022 		fa = rcu_dereference(fa->fa_next);
1023 	}
1024 }
1025 
1026 void kill_fasync(struct fasync_struct **fp, int sig, int band)
1027 {
1028 	/* First a quick test without locking: usually
1029 	 * the list is empty.
1030 	 */
1031 	if (*fp) {
1032 		rcu_read_lock();
1033 		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1034 		rcu_read_unlock();
1035 	}
1036 }
1037 EXPORT_SYMBOL(kill_fasync);
1038 
1039 static int __init fcntl_init(void)
1040 {
1041 	/*
1042 	 * Please add new bits here to ensure allocation uniqueness.
1043 	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1044 	 * is defined as O_NONBLOCK on some platforms and not on others.
1045 	 */
1046 	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1047 		HWEIGHT32(
1048 			(VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1049 			__FMODE_EXEC | __FMODE_NONOTIFY));
1050 
1051 	fasync_cache = kmem_cache_create("fasync_cache",
1052 		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
1053 	return 0;
1054 }
1055 
1056 module_init(fcntl_init)
1057