xref: /openbmc/linux/fs/fat/misc.c (revision ecefa105)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/fat/misc.c
4  *
5  *  Written 1992,1993 by Werner Almesberger
6  *  22/11/2000 - Fixed fat_date_unix2dos for dates earlier than 01/01/1980
7  *		 and date_dos2unix for date==0 by Igor Zhbanov(bsg@uniyar.ac.ru)
8  */
9 
10 #include "fat.h"
11 #include <linux/iversion.h>
12 
13 /*
14  * fat_fs_error reports a file system problem that might indicate fa data
15  * corruption/inconsistency. Depending on 'errors' mount option the
16  * panic() is called, or error message is printed FAT and nothing is done,
17  * or filesystem is remounted read-only (default behavior).
18  * In case the file system is remounted read-only, it can be made writable
19  * again by remounting it.
20  */
21 void __fat_fs_error(struct super_block *sb, int report, const char *fmt, ...)
22 {
23 	struct fat_mount_options *opts = &MSDOS_SB(sb)->options;
24 	va_list args;
25 	struct va_format vaf;
26 
27 	if (report) {
28 		va_start(args, fmt);
29 		vaf.fmt = fmt;
30 		vaf.va = &args;
31 		fat_msg(sb, KERN_ERR, "error, %pV", &vaf);
32 		va_end(args);
33 	}
34 
35 	if (opts->errors == FAT_ERRORS_PANIC)
36 		panic("FAT-fs (%s): fs panic from previous error\n", sb->s_id);
37 	else if (opts->errors == FAT_ERRORS_RO && !sb_rdonly(sb)) {
38 		sb->s_flags |= SB_RDONLY;
39 		fat_msg(sb, KERN_ERR, "Filesystem has been set read-only");
40 	}
41 }
42 EXPORT_SYMBOL_GPL(__fat_fs_error);
43 
44 /**
45  * _fat_msg() - Print a preformatted FAT message based on a superblock.
46  * @sb: A pointer to a &struct super_block
47  * @level: A Kernel printk level constant
48  * @fmt: The printf-style format string to print.
49  *
50  * Everything that is not fat_fs_error() should be fat_msg().
51  *
52  * fat_msg() wraps _fat_msg() for printk indexing.
53  */
54 void _fat_msg(struct super_block *sb, const char *level, const char *fmt, ...)
55 {
56 	struct va_format vaf;
57 	va_list args;
58 
59 	va_start(args, fmt);
60 	vaf.fmt = fmt;
61 	vaf.va = &args;
62 	_printk(FAT_PRINTK_PREFIX "%pV\n", level, sb->s_id, &vaf);
63 	va_end(args);
64 }
65 
66 /* Flushes the number of free clusters on FAT32 */
67 /* XXX: Need to write one per FSINFO block.  Currently only writes 1 */
68 int fat_clusters_flush(struct super_block *sb)
69 {
70 	struct msdos_sb_info *sbi = MSDOS_SB(sb);
71 	struct buffer_head *bh;
72 	struct fat_boot_fsinfo *fsinfo;
73 
74 	if (!is_fat32(sbi))
75 		return 0;
76 
77 	bh = sb_bread(sb, sbi->fsinfo_sector);
78 	if (bh == NULL) {
79 		fat_msg(sb, KERN_ERR, "bread failed in fat_clusters_flush");
80 		return -EIO;
81 	}
82 
83 	fsinfo = (struct fat_boot_fsinfo *)bh->b_data;
84 	/* Sanity check */
85 	if (!IS_FSINFO(fsinfo)) {
86 		fat_msg(sb, KERN_ERR, "Invalid FSINFO signature: "
87 		       "0x%08x, 0x%08x (sector = %lu)",
88 		       le32_to_cpu(fsinfo->signature1),
89 		       le32_to_cpu(fsinfo->signature2),
90 		       sbi->fsinfo_sector);
91 	} else {
92 		if (sbi->free_clusters != -1)
93 			fsinfo->free_clusters = cpu_to_le32(sbi->free_clusters);
94 		if (sbi->prev_free != -1)
95 			fsinfo->next_cluster = cpu_to_le32(sbi->prev_free);
96 		mark_buffer_dirty(bh);
97 	}
98 	brelse(bh);
99 
100 	return 0;
101 }
102 
103 /*
104  * fat_chain_add() adds a new cluster to the chain of clusters represented
105  * by inode.
106  */
107 int fat_chain_add(struct inode *inode, int new_dclus, int nr_cluster)
108 {
109 	struct super_block *sb = inode->i_sb;
110 	struct msdos_sb_info *sbi = MSDOS_SB(sb);
111 	int ret, new_fclus, last;
112 
113 	/*
114 	 * We must locate the last cluster of the file to add this new
115 	 * one (new_dclus) to the end of the link list (the FAT).
116 	 */
117 	last = new_fclus = 0;
118 	if (MSDOS_I(inode)->i_start) {
119 		int fclus, dclus;
120 
121 		ret = fat_get_cluster(inode, FAT_ENT_EOF, &fclus, &dclus);
122 		if (ret < 0)
123 			return ret;
124 		new_fclus = fclus + 1;
125 		last = dclus;
126 	}
127 
128 	/* add new one to the last of the cluster chain */
129 	if (last) {
130 		struct fat_entry fatent;
131 
132 		fatent_init(&fatent);
133 		ret = fat_ent_read(inode, &fatent, last);
134 		if (ret >= 0) {
135 			int wait = inode_needs_sync(inode);
136 			ret = fat_ent_write(inode, &fatent, new_dclus, wait);
137 			fatent_brelse(&fatent);
138 		}
139 		if (ret < 0)
140 			return ret;
141 		/*
142 		 * FIXME:Although we can add this cache, fat_cache_add() is
143 		 * assuming to be called after linear search with fat_cache_id.
144 		 */
145 //		fat_cache_add(inode, new_fclus, new_dclus);
146 	} else {
147 		MSDOS_I(inode)->i_start = new_dclus;
148 		MSDOS_I(inode)->i_logstart = new_dclus;
149 		/*
150 		 * Since generic_write_sync() synchronizes regular files later,
151 		 * we sync here only directories.
152 		 */
153 		if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) {
154 			ret = fat_sync_inode(inode);
155 			if (ret)
156 				return ret;
157 		} else
158 			mark_inode_dirty(inode);
159 	}
160 	if (new_fclus != (inode->i_blocks >> (sbi->cluster_bits - 9))) {
161 		fat_fs_error(sb, "clusters badly computed (%d != %llu)",
162 			     new_fclus,
163 			     (llu)(inode->i_blocks >> (sbi->cluster_bits - 9)));
164 		fat_cache_inval_inode(inode);
165 	}
166 	inode->i_blocks += nr_cluster << (sbi->cluster_bits - 9);
167 
168 	return 0;
169 }
170 
171 /*
172  * The epoch of FAT timestamp is 1980.
173  *     :  bits :     value
174  * date:  0 -  4: day	(1 -  31)
175  * date:  5 -  8: month	(1 -  12)
176  * date:  9 - 15: year	(0 - 127) from 1980
177  * time:  0 -  4: sec	(0 -  29) 2sec counts
178  * time:  5 - 10: min	(0 -  59)
179  * time: 11 - 15: hour	(0 -  23)
180  */
181 #define SECS_PER_MIN	60
182 #define SECS_PER_HOUR	(60 * 60)
183 #define SECS_PER_DAY	(SECS_PER_HOUR * 24)
184 /* days between 1.1.70 and 1.1.80 (2 leap days) */
185 #define DAYS_DELTA	(365 * 10 + 2)
186 /* 120 (2100 - 1980) isn't leap year */
187 #define YEAR_2100	120
188 #define IS_LEAP_YEAR(y)	(!((y) & 3) && (y) != YEAR_2100)
189 
190 /* Linear day numbers of the respective 1sts in non-leap years. */
191 static long days_in_year[] = {
192 	/* Jan  Feb  Mar  Apr  May  Jun  Jul  Aug  Sep  Oct  Nov  Dec */
193 	0,   0,  31,  59,  90, 120, 151, 181, 212, 243, 273, 304, 334, 0, 0, 0,
194 };
195 
196 static inline int fat_tz_offset(const struct msdos_sb_info *sbi)
197 {
198 	return (sbi->options.tz_set ?
199 	       -sbi->options.time_offset :
200 	       sys_tz.tz_minuteswest) * SECS_PER_MIN;
201 }
202 
203 /* Convert a FAT time/date pair to a UNIX date (seconds since 1 1 70). */
204 void fat_time_fat2unix(struct msdos_sb_info *sbi, struct timespec64 *ts,
205 		       __le16 __time, __le16 __date, u8 time_cs)
206 {
207 	u16 time = le16_to_cpu(__time), date = le16_to_cpu(__date);
208 	time64_t second;
209 	long day, leap_day, month, year;
210 
211 	year  = date >> 9;
212 	month = max(1, (date >> 5) & 0xf);
213 	day   = max(1, date & 0x1f) - 1;
214 
215 	leap_day = (year + 3) / 4;
216 	if (year > YEAR_2100)		/* 2100 isn't leap year */
217 		leap_day--;
218 	if (IS_LEAP_YEAR(year) && month > 2)
219 		leap_day++;
220 
221 	second =  (time & 0x1f) << 1;
222 	second += ((time >> 5) & 0x3f) * SECS_PER_MIN;
223 	second += (time >> 11) * SECS_PER_HOUR;
224 	second += (time64_t)(year * 365 + leap_day
225 		   + days_in_year[month] + day
226 		   + DAYS_DELTA) * SECS_PER_DAY;
227 
228 	second += fat_tz_offset(sbi);
229 
230 	if (time_cs) {
231 		ts->tv_sec = second + (time_cs / 100);
232 		ts->tv_nsec = (time_cs % 100) * 10000000;
233 	} else {
234 		ts->tv_sec = second;
235 		ts->tv_nsec = 0;
236 	}
237 }
238 
239 /* Export fat_time_fat2unix() for the fat_test KUnit tests. */
240 EXPORT_SYMBOL_GPL(fat_time_fat2unix);
241 
242 /* Convert linear UNIX date to a FAT time/date pair. */
243 void fat_time_unix2fat(struct msdos_sb_info *sbi, struct timespec64 *ts,
244 		       __le16 *time, __le16 *date, u8 *time_cs)
245 {
246 	struct tm tm;
247 	time64_to_tm(ts->tv_sec, -fat_tz_offset(sbi), &tm);
248 
249 	/*  FAT can only support year between 1980 to 2107 */
250 	if (tm.tm_year < 1980 - 1900) {
251 		*time = 0;
252 		*date = cpu_to_le16((0 << 9) | (1 << 5) | 1);
253 		if (time_cs)
254 			*time_cs = 0;
255 		return;
256 	}
257 	if (tm.tm_year > 2107 - 1900) {
258 		*time = cpu_to_le16((23 << 11) | (59 << 5) | 29);
259 		*date = cpu_to_le16((127 << 9) | (12 << 5) | 31);
260 		if (time_cs)
261 			*time_cs = 199;
262 		return;
263 	}
264 
265 	/* from 1900 -> from 1980 */
266 	tm.tm_year -= 80;
267 	/* 0~11 -> 1~12 */
268 	tm.tm_mon++;
269 	/* 0~59 -> 0~29(2sec counts) */
270 	tm.tm_sec >>= 1;
271 
272 	*time = cpu_to_le16(tm.tm_hour << 11 | tm.tm_min << 5 | tm.tm_sec);
273 	*date = cpu_to_le16(tm.tm_year << 9 | tm.tm_mon << 5 | tm.tm_mday);
274 	if (time_cs)
275 		*time_cs = (ts->tv_sec & 1) * 100 + ts->tv_nsec / 10000000;
276 }
277 EXPORT_SYMBOL_GPL(fat_time_unix2fat);
278 
279 static inline struct timespec64 fat_timespec64_trunc_2secs(struct timespec64 ts)
280 {
281 	return (struct timespec64){ ts.tv_sec & ~1ULL, 0 };
282 }
283 
284 /*
285  * truncate atime to 24 hour granularity (00:00:00 in local timezone)
286  */
287 struct timespec64 fat_truncate_atime(const struct msdos_sb_info *sbi,
288 				     const struct timespec64 *ts)
289 {
290 	/* to localtime */
291 	time64_t seconds = ts->tv_sec - fat_tz_offset(sbi);
292 	s32 remainder;
293 
294 	div_s64_rem(seconds, SECS_PER_DAY, &remainder);
295 	/* to day boundary, and back to unix time */
296 	seconds = seconds + fat_tz_offset(sbi) - remainder;
297 
298 	return (struct timespec64){ seconds, 0 };
299 }
300 
301 /*
302  * truncate mtime to 2 second granularity
303  */
304 struct timespec64 fat_truncate_mtime(const struct msdos_sb_info *sbi,
305 				     const struct timespec64 *ts)
306 {
307 	return fat_timespec64_trunc_2secs(*ts);
308 }
309 
310 /*
311  * truncate the various times with appropriate granularity:
312  *   all times in root node are always 0
313  */
314 int fat_truncate_time(struct inode *inode, struct timespec64 *now, int flags)
315 {
316 	struct msdos_sb_info *sbi = MSDOS_SB(inode->i_sb);
317 	struct timespec64 ts;
318 
319 	if (inode->i_ino == MSDOS_ROOT_INO)
320 		return 0;
321 
322 	if (now == NULL) {
323 		now = &ts;
324 		ts = current_time(inode);
325 	}
326 
327 	if (flags & S_ATIME)
328 		inode->i_atime = fat_truncate_atime(sbi, now);
329 	/*
330 	 * ctime and mtime share the same on-disk field, and should be
331 	 * identical in memory. all mtime updates will be applied to ctime,
332 	 * but ctime updates are ignored.
333 	 */
334 	if (flags & S_MTIME)
335 		inode->i_mtime = inode->i_ctime = fat_truncate_mtime(sbi, now);
336 
337 	return 0;
338 }
339 EXPORT_SYMBOL_GPL(fat_truncate_time);
340 
341 int fat_update_time(struct inode *inode, struct timespec64 *now, int flags)
342 {
343 	int dirty_flags = 0;
344 
345 	if (inode->i_ino == MSDOS_ROOT_INO)
346 		return 0;
347 
348 	if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
349 		fat_truncate_time(inode, now, flags);
350 		if (inode->i_sb->s_flags & SB_LAZYTIME)
351 			dirty_flags |= I_DIRTY_TIME;
352 		else
353 			dirty_flags |= I_DIRTY_SYNC;
354 	}
355 
356 	if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
357 		dirty_flags |= I_DIRTY_SYNC;
358 
359 	__mark_inode_dirty(inode, dirty_flags);
360 	return 0;
361 }
362 EXPORT_SYMBOL_GPL(fat_update_time);
363 
364 int fat_sync_bhs(struct buffer_head **bhs, int nr_bhs)
365 {
366 	int i, err = 0;
367 
368 	for (i = 0; i < nr_bhs; i++)
369 		write_dirty_buffer(bhs[i], 0);
370 
371 	for (i = 0; i < nr_bhs; i++) {
372 		wait_on_buffer(bhs[i]);
373 		if (!err && !buffer_uptodate(bhs[i]))
374 			err = -EIO;
375 	}
376 	return err;
377 }
378