1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/xattr.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 * 8 * Portions of this code from linux/fs/ext2/xattr.c 9 * 10 * Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de> 11 * 12 * Fix by Harrison Xing <harrison@mountainviewdata.com>. 13 * Extended attributes for symlinks and special files added per 14 * suggestion of Luka Renko <luka.renko@hermes.si>. 15 * xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>, 16 * Red Hat Inc. 17 */ 18 #include <linux/rwsem.h> 19 #include <linux/f2fs_fs.h> 20 #include <linux/security.h> 21 #include <linux/posix_acl_xattr.h> 22 #include "f2fs.h" 23 #include "xattr.h" 24 25 static int f2fs_xattr_generic_get(const struct xattr_handler *handler, 26 struct dentry *unused, struct inode *inode, 27 const char *name, void *buffer, size_t size) 28 { 29 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 30 31 switch (handler->flags) { 32 case F2FS_XATTR_INDEX_USER: 33 if (!test_opt(sbi, XATTR_USER)) 34 return -EOPNOTSUPP; 35 break; 36 case F2FS_XATTR_INDEX_TRUSTED: 37 case F2FS_XATTR_INDEX_SECURITY: 38 break; 39 default: 40 return -EINVAL; 41 } 42 return f2fs_getxattr(inode, handler->flags, name, 43 buffer, size, NULL); 44 } 45 46 static int f2fs_xattr_generic_set(const struct xattr_handler *handler, 47 struct dentry *unused, struct inode *inode, 48 const char *name, const void *value, 49 size_t size, int flags) 50 { 51 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 52 53 switch (handler->flags) { 54 case F2FS_XATTR_INDEX_USER: 55 if (!test_opt(sbi, XATTR_USER)) 56 return -EOPNOTSUPP; 57 break; 58 case F2FS_XATTR_INDEX_TRUSTED: 59 case F2FS_XATTR_INDEX_SECURITY: 60 break; 61 default: 62 return -EINVAL; 63 } 64 return f2fs_setxattr(inode, handler->flags, name, 65 value, size, NULL, flags); 66 } 67 68 static bool f2fs_xattr_user_list(struct dentry *dentry) 69 { 70 struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb); 71 72 return test_opt(sbi, XATTR_USER); 73 } 74 75 static bool f2fs_xattr_trusted_list(struct dentry *dentry) 76 { 77 return capable(CAP_SYS_ADMIN); 78 } 79 80 static int f2fs_xattr_advise_get(const struct xattr_handler *handler, 81 struct dentry *unused, struct inode *inode, 82 const char *name, void *buffer, size_t size) 83 { 84 if (buffer) 85 *((char *)buffer) = F2FS_I(inode)->i_advise; 86 return sizeof(char); 87 } 88 89 static int f2fs_xattr_advise_set(const struct xattr_handler *handler, 90 struct dentry *unused, struct inode *inode, 91 const char *name, const void *value, 92 size_t size, int flags) 93 { 94 unsigned char old_advise = F2FS_I(inode)->i_advise; 95 unsigned char new_advise; 96 97 if (!inode_owner_or_capable(inode)) 98 return -EPERM; 99 if (value == NULL) 100 return -EINVAL; 101 102 new_advise = *(char *)value; 103 if (new_advise & ~FADVISE_MODIFIABLE_BITS) 104 return -EINVAL; 105 106 new_advise = new_advise & FADVISE_MODIFIABLE_BITS; 107 new_advise |= old_advise & ~FADVISE_MODIFIABLE_BITS; 108 109 F2FS_I(inode)->i_advise = new_advise; 110 f2fs_mark_inode_dirty_sync(inode, true); 111 return 0; 112 } 113 114 #ifdef CONFIG_F2FS_FS_SECURITY 115 static int f2fs_initxattrs(struct inode *inode, const struct xattr *xattr_array, 116 void *page) 117 { 118 const struct xattr *xattr; 119 int err = 0; 120 121 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 122 err = f2fs_setxattr(inode, F2FS_XATTR_INDEX_SECURITY, 123 xattr->name, xattr->value, 124 xattr->value_len, (struct page *)page, 0); 125 if (err < 0) 126 break; 127 } 128 return err; 129 } 130 131 int f2fs_init_security(struct inode *inode, struct inode *dir, 132 const struct qstr *qstr, struct page *ipage) 133 { 134 return security_inode_init_security(inode, dir, qstr, 135 &f2fs_initxattrs, ipage); 136 } 137 #endif 138 139 const struct xattr_handler f2fs_xattr_user_handler = { 140 .prefix = XATTR_USER_PREFIX, 141 .flags = F2FS_XATTR_INDEX_USER, 142 .list = f2fs_xattr_user_list, 143 .get = f2fs_xattr_generic_get, 144 .set = f2fs_xattr_generic_set, 145 }; 146 147 const struct xattr_handler f2fs_xattr_trusted_handler = { 148 .prefix = XATTR_TRUSTED_PREFIX, 149 .flags = F2FS_XATTR_INDEX_TRUSTED, 150 .list = f2fs_xattr_trusted_list, 151 .get = f2fs_xattr_generic_get, 152 .set = f2fs_xattr_generic_set, 153 }; 154 155 const struct xattr_handler f2fs_xattr_advise_handler = { 156 .name = F2FS_SYSTEM_ADVISE_NAME, 157 .flags = F2FS_XATTR_INDEX_ADVISE, 158 .get = f2fs_xattr_advise_get, 159 .set = f2fs_xattr_advise_set, 160 }; 161 162 const struct xattr_handler f2fs_xattr_security_handler = { 163 .prefix = XATTR_SECURITY_PREFIX, 164 .flags = F2FS_XATTR_INDEX_SECURITY, 165 .get = f2fs_xattr_generic_get, 166 .set = f2fs_xattr_generic_set, 167 }; 168 169 static const struct xattr_handler *f2fs_xattr_handler_map[] = { 170 [F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler, 171 #ifdef CONFIG_F2FS_FS_POSIX_ACL 172 [F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &posix_acl_access_xattr_handler, 173 [F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &posix_acl_default_xattr_handler, 174 #endif 175 [F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler, 176 #ifdef CONFIG_F2FS_FS_SECURITY 177 [F2FS_XATTR_INDEX_SECURITY] = &f2fs_xattr_security_handler, 178 #endif 179 [F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler, 180 }; 181 182 const struct xattr_handler *f2fs_xattr_handlers[] = { 183 &f2fs_xattr_user_handler, 184 #ifdef CONFIG_F2FS_FS_POSIX_ACL 185 &posix_acl_access_xattr_handler, 186 &posix_acl_default_xattr_handler, 187 #endif 188 &f2fs_xattr_trusted_handler, 189 #ifdef CONFIG_F2FS_FS_SECURITY 190 &f2fs_xattr_security_handler, 191 #endif 192 &f2fs_xattr_advise_handler, 193 NULL, 194 }; 195 196 static inline const struct xattr_handler *f2fs_xattr_handler(int index) 197 { 198 const struct xattr_handler *handler = NULL; 199 200 if (index > 0 && index < ARRAY_SIZE(f2fs_xattr_handler_map)) 201 handler = f2fs_xattr_handler_map[index]; 202 return handler; 203 } 204 205 static struct f2fs_xattr_entry *__find_xattr(void *base_addr, 206 void *last_base_addr, int index, 207 size_t len, const char *name) 208 { 209 struct f2fs_xattr_entry *entry; 210 211 list_for_each_xattr(entry, base_addr) { 212 if ((void *)(entry) + sizeof(__u32) > last_base_addr || 213 (void *)XATTR_NEXT_ENTRY(entry) > last_base_addr) 214 return NULL; 215 216 if (entry->e_name_index != index) 217 continue; 218 if (entry->e_name_len != len) 219 continue; 220 if (!memcmp(entry->e_name, name, len)) 221 break; 222 } 223 return entry; 224 } 225 226 static struct f2fs_xattr_entry *__find_inline_xattr(struct inode *inode, 227 void *base_addr, void **last_addr, int index, 228 size_t len, const char *name) 229 { 230 struct f2fs_xattr_entry *entry; 231 unsigned int inline_size = inline_xattr_size(inode); 232 void *max_addr = base_addr + inline_size; 233 234 list_for_each_xattr(entry, base_addr) { 235 if ((void *)entry + sizeof(__u32) > max_addr || 236 (void *)XATTR_NEXT_ENTRY(entry) > max_addr) { 237 *last_addr = entry; 238 return NULL; 239 } 240 if (entry->e_name_index != index) 241 continue; 242 if (entry->e_name_len != len) 243 continue; 244 if (!memcmp(entry->e_name, name, len)) 245 break; 246 } 247 248 /* inline xattr header or entry across max inline xattr size */ 249 if (IS_XATTR_LAST_ENTRY(entry) && 250 (void *)entry + sizeof(__u32) > max_addr) { 251 *last_addr = entry; 252 return NULL; 253 } 254 return entry; 255 } 256 257 static int read_inline_xattr(struct inode *inode, struct page *ipage, 258 void *txattr_addr) 259 { 260 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 261 unsigned int inline_size = inline_xattr_size(inode); 262 struct page *page = NULL; 263 void *inline_addr; 264 265 if (ipage) { 266 inline_addr = inline_xattr_addr(inode, ipage); 267 } else { 268 page = f2fs_get_node_page(sbi, inode->i_ino); 269 if (IS_ERR(page)) 270 return PTR_ERR(page); 271 272 inline_addr = inline_xattr_addr(inode, page); 273 } 274 memcpy(txattr_addr, inline_addr, inline_size); 275 f2fs_put_page(page, 1); 276 277 return 0; 278 } 279 280 static int read_xattr_block(struct inode *inode, void *txattr_addr) 281 { 282 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 283 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 284 unsigned int inline_size = inline_xattr_size(inode); 285 struct page *xpage; 286 void *xattr_addr; 287 288 /* The inode already has an extended attribute block. */ 289 xpage = f2fs_get_node_page(sbi, xnid); 290 if (IS_ERR(xpage)) 291 return PTR_ERR(xpage); 292 293 xattr_addr = page_address(xpage); 294 memcpy(txattr_addr + inline_size, xattr_addr, VALID_XATTR_BLOCK_SIZE); 295 f2fs_put_page(xpage, 1); 296 297 return 0; 298 } 299 300 static int lookup_all_xattrs(struct inode *inode, struct page *ipage, 301 unsigned int index, unsigned int len, 302 const char *name, struct f2fs_xattr_entry **xe, 303 void **base_addr, int *base_size) 304 { 305 void *cur_addr, *txattr_addr, *last_txattr_addr; 306 void *last_addr = NULL; 307 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 308 unsigned int inline_size = inline_xattr_size(inode); 309 int err = 0; 310 311 if (!xnid && !inline_size) 312 return -ENODATA; 313 314 *base_size = XATTR_SIZE(xnid, inode) + XATTR_PADDING_SIZE; 315 txattr_addr = f2fs_kzalloc(F2FS_I_SB(inode), *base_size, GFP_NOFS); 316 if (!txattr_addr) 317 return -ENOMEM; 318 319 last_txattr_addr = (void *)txattr_addr + XATTR_SIZE(xnid, inode); 320 321 /* read from inline xattr */ 322 if (inline_size) { 323 err = read_inline_xattr(inode, ipage, txattr_addr); 324 if (err) 325 goto out; 326 327 *xe = __find_inline_xattr(inode, txattr_addr, &last_addr, 328 index, len, name); 329 if (*xe) { 330 *base_size = inline_size; 331 goto check; 332 } 333 } 334 335 /* read from xattr node block */ 336 if (xnid) { 337 err = read_xattr_block(inode, txattr_addr); 338 if (err) 339 goto out; 340 } 341 342 if (last_addr) 343 cur_addr = XATTR_HDR(last_addr) - 1; 344 else 345 cur_addr = txattr_addr; 346 347 *xe = __find_xattr(cur_addr, last_txattr_addr, index, len, name); 348 if (!*xe) { 349 err = -EFAULT; 350 goto out; 351 } 352 check: 353 if (IS_XATTR_LAST_ENTRY(*xe)) { 354 err = -ENODATA; 355 goto out; 356 } 357 358 *base_addr = txattr_addr; 359 return 0; 360 out: 361 kvfree(txattr_addr); 362 return err; 363 } 364 365 static int read_all_xattrs(struct inode *inode, struct page *ipage, 366 void **base_addr) 367 { 368 struct f2fs_xattr_header *header; 369 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 370 unsigned int size = VALID_XATTR_BLOCK_SIZE; 371 unsigned int inline_size = inline_xattr_size(inode); 372 void *txattr_addr; 373 int err; 374 375 txattr_addr = f2fs_kzalloc(F2FS_I_SB(inode), 376 inline_size + size + XATTR_PADDING_SIZE, GFP_NOFS); 377 if (!txattr_addr) 378 return -ENOMEM; 379 380 /* read from inline xattr */ 381 if (inline_size) { 382 err = read_inline_xattr(inode, ipage, txattr_addr); 383 if (err) 384 goto fail; 385 } 386 387 /* read from xattr node block */ 388 if (xnid) { 389 err = read_xattr_block(inode, txattr_addr); 390 if (err) 391 goto fail; 392 } 393 394 header = XATTR_HDR(txattr_addr); 395 396 /* never been allocated xattrs */ 397 if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) { 398 header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC); 399 header->h_refcount = cpu_to_le32(1); 400 } 401 *base_addr = txattr_addr; 402 return 0; 403 fail: 404 kvfree(txattr_addr); 405 return err; 406 } 407 408 static inline int write_all_xattrs(struct inode *inode, __u32 hsize, 409 void *txattr_addr, struct page *ipage) 410 { 411 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 412 size_t inline_size = inline_xattr_size(inode); 413 struct page *in_page = NULL; 414 void *xattr_addr; 415 void *inline_addr = NULL; 416 struct page *xpage; 417 nid_t new_nid = 0; 418 int err = 0; 419 420 if (hsize > inline_size && !F2FS_I(inode)->i_xattr_nid) 421 if (!f2fs_alloc_nid(sbi, &new_nid)) 422 return -ENOSPC; 423 424 /* write to inline xattr */ 425 if (inline_size) { 426 if (ipage) { 427 inline_addr = inline_xattr_addr(inode, ipage); 428 } else { 429 in_page = f2fs_get_node_page(sbi, inode->i_ino); 430 if (IS_ERR(in_page)) { 431 f2fs_alloc_nid_failed(sbi, new_nid); 432 return PTR_ERR(in_page); 433 } 434 inline_addr = inline_xattr_addr(inode, in_page); 435 } 436 437 f2fs_wait_on_page_writeback(ipage ? ipage : in_page, 438 NODE, true, true); 439 /* no need to use xattr node block */ 440 if (hsize <= inline_size) { 441 err = f2fs_truncate_xattr_node(inode); 442 f2fs_alloc_nid_failed(sbi, new_nid); 443 if (err) { 444 f2fs_put_page(in_page, 1); 445 return err; 446 } 447 memcpy(inline_addr, txattr_addr, inline_size); 448 set_page_dirty(ipage ? ipage : in_page); 449 goto in_page_out; 450 } 451 } 452 453 /* write to xattr node block */ 454 if (F2FS_I(inode)->i_xattr_nid) { 455 xpage = f2fs_get_node_page(sbi, F2FS_I(inode)->i_xattr_nid); 456 if (IS_ERR(xpage)) { 457 err = PTR_ERR(xpage); 458 f2fs_alloc_nid_failed(sbi, new_nid); 459 goto in_page_out; 460 } 461 f2fs_bug_on(sbi, new_nid); 462 f2fs_wait_on_page_writeback(xpage, NODE, true, true); 463 } else { 464 struct dnode_of_data dn; 465 set_new_dnode(&dn, inode, NULL, NULL, new_nid); 466 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET); 467 if (IS_ERR(xpage)) { 468 err = PTR_ERR(xpage); 469 f2fs_alloc_nid_failed(sbi, new_nid); 470 goto in_page_out; 471 } 472 f2fs_alloc_nid_done(sbi, new_nid); 473 } 474 xattr_addr = page_address(xpage); 475 476 if (inline_size) 477 memcpy(inline_addr, txattr_addr, inline_size); 478 memcpy(xattr_addr, txattr_addr + inline_size, VALID_XATTR_BLOCK_SIZE); 479 480 if (inline_size) 481 set_page_dirty(ipage ? ipage : in_page); 482 set_page_dirty(xpage); 483 484 f2fs_put_page(xpage, 1); 485 in_page_out: 486 f2fs_put_page(in_page, 1); 487 return err; 488 } 489 490 int f2fs_getxattr(struct inode *inode, int index, const char *name, 491 void *buffer, size_t buffer_size, struct page *ipage) 492 { 493 struct f2fs_xattr_entry *entry = NULL; 494 int error = 0; 495 unsigned int size, len; 496 void *base_addr = NULL; 497 int base_size; 498 499 if (name == NULL) 500 return -EINVAL; 501 502 len = strlen(name); 503 if (len > F2FS_NAME_LEN) 504 return -ERANGE; 505 506 down_read(&F2FS_I(inode)->i_xattr_sem); 507 error = lookup_all_xattrs(inode, ipage, index, len, name, 508 &entry, &base_addr, &base_size); 509 up_read(&F2FS_I(inode)->i_xattr_sem); 510 if (error) 511 return error; 512 513 size = le16_to_cpu(entry->e_value_size); 514 515 if (buffer && size > buffer_size) { 516 error = -ERANGE; 517 goto out; 518 } 519 520 if (buffer) { 521 char *pval = entry->e_name + entry->e_name_len; 522 523 if (base_size - (pval - (char *)base_addr) < size) { 524 error = -ERANGE; 525 goto out; 526 } 527 memcpy(buffer, pval, size); 528 } 529 error = size; 530 out: 531 kvfree(base_addr); 532 return error; 533 } 534 535 ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size) 536 { 537 struct inode *inode = d_inode(dentry); 538 struct f2fs_xattr_entry *entry; 539 void *base_addr; 540 int error = 0; 541 size_t rest = buffer_size; 542 543 down_read(&F2FS_I(inode)->i_xattr_sem); 544 error = read_all_xattrs(inode, NULL, &base_addr); 545 up_read(&F2FS_I(inode)->i_xattr_sem); 546 if (error) 547 return error; 548 549 list_for_each_xattr(entry, base_addr) { 550 const struct xattr_handler *handler = 551 f2fs_xattr_handler(entry->e_name_index); 552 const char *prefix; 553 size_t prefix_len; 554 size_t size; 555 556 if (!handler || (handler->list && !handler->list(dentry))) 557 continue; 558 559 prefix = xattr_prefix(handler); 560 prefix_len = strlen(prefix); 561 size = prefix_len + entry->e_name_len + 1; 562 if (buffer) { 563 if (size > rest) { 564 error = -ERANGE; 565 goto cleanup; 566 } 567 memcpy(buffer, prefix, prefix_len); 568 buffer += prefix_len; 569 memcpy(buffer, entry->e_name, entry->e_name_len); 570 buffer += entry->e_name_len; 571 *buffer++ = 0; 572 } 573 rest -= size; 574 } 575 error = buffer_size - rest; 576 cleanup: 577 kvfree(base_addr); 578 return error; 579 } 580 581 static bool f2fs_xattr_value_same(struct f2fs_xattr_entry *entry, 582 const void *value, size_t size) 583 { 584 void *pval = entry->e_name + entry->e_name_len; 585 586 return (le16_to_cpu(entry->e_value_size) == size) && 587 !memcmp(pval, value, size); 588 } 589 590 static int __f2fs_setxattr(struct inode *inode, int index, 591 const char *name, const void *value, size_t size, 592 struct page *ipage, int flags) 593 { 594 struct f2fs_xattr_entry *here, *last; 595 void *base_addr, *last_base_addr; 596 nid_t xnid = F2FS_I(inode)->i_xattr_nid; 597 int found, newsize; 598 size_t len; 599 __u32 new_hsize; 600 int error = 0; 601 602 if (name == NULL) 603 return -EINVAL; 604 605 if (value == NULL) 606 size = 0; 607 608 len = strlen(name); 609 610 if (len > F2FS_NAME_LEN) 611 return -ERANGE; 612 613 if (size > MAX_VALUE_LEN(inode)) 614 return -E2BIG; 615 616 error = read_all_xattrs(inode, ipage, &base_addr); 617 if (error) 618 return error; 619 620 last_base_addr = (void *)base_addr + XATTR_SIZE(xnid, inode); 621 622 /* find entry with wanted name. */ 623 here = __find_xattr(base_addr, last_base_addr, index, len, name); 624 if (!here) { 625 error = -EFAULT; 626 goto exit; 627 } 628 629 found = IS_XATTR_LAST_ENTRY(here) ? 0 : 1; 630 631 if (found) { 632 if ((flags & XATTR_CREATE)) { 633 error = -EEXIST; 634 goto exit; 635 } 636 637 if (value && f2fs_xattr_value_same(here, value, size)) 638 goto exit; 639 } else if ((flags & XATTR_REPLACE)) { 640 error = -ENODATA; 641 goto exit; 642 } 643 644 last = here; 645 while (!IS_XATTR_LAST_ENTRY(last)) 646 last = XATTR_NEXT_ENTRY(last); 647 648 newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) + len + size); 649 650 /* 1. Check space */ 651 if (value) { 652 int free; 653 /* 654 * If value is NULL, it is remove operation. 655 * In case of update operation, we calculate free. 656 */ 657 free = MIN_OFFSET(inode) - ((char *)last - (char *)base_addr); 658 if (found) 659 free = free + ENTRY_SIZE(here); 660 661 if (unlikely(free < newsize)) { 662 error = -E2BIG; 663 goto exit; 664 } 665 } 666 667 /* 2. Remove old entry */ 668 if (found) { 669 /* 670 * If entry is found, remove old entry. 671 * If not found, remove operation is not needed. 672 */ 673 struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here); 674 int oldsize = ENTRY_SIZE(here); 675 676 memmove(here, next, (char *)last - (char *)next); 677 last = (struct f2fs_xattr_entry *)((char *)last - oldsize); 678 memset(last, 0, oldsize); 679 } 680 681 new_hsize = (char *)last - (char *)base_addr; 682 683 /* 3. Write new entry */ 684 if (value) { 685 char *pval; 686 /* 687 * Before we come here, old entry is removed. 688 * We just write new entry. 689 */ 690 last->e_name_index = index; 691 last->e_name_len = len; 692 memcpy(last->e_name, name, len); 693 pval = last->e_name + len; 694 memcpy(pval, value, size); 695 last->e_value_size = cpu_to_le16(size); 696 new_hsize += newsize; 697 } 698 699 error = write_all_xattrs(inode, new_hsize, base_addr, ipage); 700 if (error) 701 goto exit; 702 703 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 704 inode->i_mode = F2FS_I(inode)->i_acl_mode; 705 inode->i_ctime = current_time(inode); 706 clear_inode_flag(inode, FI_ACL_MODE); 707 } 708 if (index == F2FS_XATTR_INDEX_ENCRYPTION && 709 !strcmp(name, F2FS_XATTR_NAME_ENCRYPTION_CONTEXT)) 710 f2fs_set_encrypted_inode(inode); 711 f2fs_mark_inode_dirty_sync(inode, true); 712 if (!error && S_ISDIR(inode->i_mode)) 713 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_CP); 714 exit: 715 kvfree(base_addr); 716 return error; 717 } 718 719 int f2fs_setxattr(struct inode *inode, int index, const char *name, 720 const void *value, size_t size, 721 struct page *ipage, int flags) 722 { 723 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 724 int err; 725 726 err = dquot_initialize(inode); 727 if (err) 728 return err; 729 730 /* this case is only from f2fs_init_inode_metadata */ 731 if (ipage) 732 return __f2fs_setxattr(inode, index, name, value, 733 size, ipage, flags); 734 f2fs_balance_fs(sbi, true); 735 736 f2fs_lock_op(sbi); 737 /* protect xattr_ver */ 738 down_write(&F2FS_I(inode)->i_sem); 739 down_write(&F2FS_I(inode)->i_xattr_sem); 740 err = __f2fs_setxattr(inode, index, name, value, size, ipage, flags); 741 up_write(&F2FS_I(inode)->i_xattr_sem); 742 up_write(&F2FS_I(inode)->i_sem); 743 f2fs_unlock_op(sbi); 744 745 f2fs_update_time(sbi, REQ_TIME); 746 return err; 747 } 748