1 /* 2 * fs/f2fs/xattr.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * Portions of this code from linux/fs/ext2/xattr.c 8 * 9 * Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de> 10 * 11 * Fix by Harrison Xing <harrison@mountainviewdata.com>. 12 * Extended attributes for symlinks and special files added per 13 * suggestion of Luka Renko <luka.renko@hermes.si>. 14 * xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>, 15 * Red Hat Inc. 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License version 2 as 19 * published by the Free Software Foundation. 20 */ 21 #include <linux/rwsem.h> 22 #include <linux/f2fs_fs.h> 23 #include <linux/security.h> 24 #include "f2fs.h" 25 #include "xattr.h" 26 27 static size_t f2fs_xattr_generic_list(struct dentry *dentry, char *list, 28 size_t list_size, const char *name, size_t name_len, int type) 29 { 30 struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb); 31 int total_len, prefix_len = 0; 32 const char *prefix = NULL; 33 34 switch (type) { 35 case F2FS_XATTR_INDEX_USER: 36 if (!test_opt(sbi, XATTR_USER)) 37 return -EOPNOTSUPP; 38 prefix = XATTR_USER_PREFIX; 39 prefix_len = XATTR_USER_PREFIX_LEN; 40 break; 41 case F2FS_XATTR_INDEX_TRUSTED: 42 if (!capable(CAP_SYS_ADMIN)) 43 return -EPERM; 44 prefix = XATTR_TRUSTED_PREFIX; 45 prefix_len = XATTR_TRUSTED_PREFIX_LEN; 46 break; 47 case F2FS_XATTR_INDEX_SECURITY: 48 prefix = XATTR_SECURITY_PREFIX; 49 prefix_len = XATTR_SECURITY_PREFIX_LEN; 50 break; 51 default: 52 return -EINVAL; 53 } 54 55 total_len = prefix_len + name_len + 1; 56 if (list && total_len <= list_size) { 57 memcpy(list, prefix, prefix_len); 58 memcpy(list + prefix_len, name, name_len); 59 list[prefix_len + name_len] = '\0'; 60 } 61 return total_len; 62 } 63 64 static int f2fs_xattr_generic_get(struct dentry *dentry, const char *name, 65 void *buffer, size_t size, int type) 66 { 67 struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb); 68 69 switch (type) { 70 case F2FS_XATTR_INDEX_USER: 71 if (!test_opt(sbi, XATTR_USER)) 72 return -EOPNOTSUPP; 73 break; 74 case F2FS_XATTR_INDEX_TRUSTED: 75 if (!capable(CAP_SYS_ADMIN)) 76 return -EPERM; 77 break; 78 case F2FS_XATTR_INDEX_SECURITY: 79 break; 80 default: 81 return -EINVAL; 82 } 83 if (strcmp(name, "") == 0) 84 return -EINVAL; 85 return f2fs_getxattr(dentry->d_inode, type, name, buffer, size); 86 } 87 88 static int f2fs_xattr_generic_set(struct dentry *dentry, const char *name, 89 const void *value, size_t size, int flags, int type) 90 { 91 struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb); 92 93 switch (type) { 94 case F2FS_XATTR_INDEX_USER: 95 if (!test_opt(sbi, XATTR_USER)) 96 return -EOPNOTSUPP; 97 break; 98 case F2FS_XATTR_INDEX_TRUSTED: 99 if (!capable(CAP_SYS_ADMIN)) 100 return -EPERM; 101 break; 102 case F2FS_XATTR_INDEX_SECURITY: 103 break; 104 default: 105 return -EINVAL; 106 } 107 if (strcmp(name, "") == 0) 108 return -EINVAL; 109 110 return f2fs_setxattr(dentry->d_inode, type, name, value, size, NULL); 111 } 112 113 static size_t f2fs_xattr_advise_list(struct dentry *dentry, char *list, 114 size_t list_size, const char *name, size_t name_len, int type) 115 { 116 const char *xname = F2FS_SYSTEM_ADVISE_PREFIX; 117 size_t size; 118 119 if (type != F2FS_XATTR_INDEX_ADVISE) 120 return 0; 121 122 size = strlen(xname) + 1; 123 if (list && size <= list_size) 124 memcpy(list, xname, size); 125 return size; 126 } 127 128 static int f2fs_xattr_advise_get(struct dentry *dentry, const char *name, 129 void *buffer, size_t size, int type) 130 { 131 struct inode *inode = dentry->d_inode; 132 133 if (strcmp(name, "") != 0) 134 return -EINVAL; 135 136 *((char *)buffer) = F2FS_I(inode)->i_advise; 137 return sizeof(char); 138 } 139 140 static int f2fs_xattr_advise_set(struct dentry *dentry, const char *name, 141 const void *value, size_t size, int flags, int type) 142 { 143 struct inode *inode = dentry->d_inode; 144 145 if (strcmp(name, "") != 0) 146 return -EINVAL; 147 if (!inode_owner_or_capable(inode)) 148 return -EPERM; 149 if (value == NULL) 150 return -EINVAL; 151 152 F2FS_I(inode)->i_advise |= *(char *)value; 153 return 0; 154 } 155 156 #ifdef CONFIG_F2FS_FS_SECURITY 157 static int f2fs_initxattrs(struct inode *inode, const struct xattr *xattr_array, 158 void *page) 159 { 160 const struct xattr *xattr; 161 int err = 0; 162 163 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 164 err = f2fs_setxattr(inode, F2FS_XATTR_INDEX_SECURITY, 165 xattr->name, xattr->value, 166 xattr->value_len, (struct page *)page); 167 if (err < 0) 168 break; 169 } 170 return err; 171 } 172 173 int f2fs_init_security(struct inode *inode, struct inode *dir, 174 const struct qstr *qstr, struct page *ipage) 175 { 176 return security_inode_init_security(inode, dir, qstr, 177 &f2fs_initxattrs, ipage); 178 } 179 #endif 180 181 const struct xattr_handler f2fs_xattr_user_handler = { 182 .prefix = XATTR_USER_PREFIX, 183 .flags = F2FS_XATTR_INDEX_USER, 184 .list = f2fs_xattr_generic_list, 185 .get = f2fs_xattr_generic_get, 186 .set = f2fs_xattr_generic_set, 187 }; 188 189 const struct xattr_handler f2fs_xattr_trusted_handler = { 190 .prefix = XATTR_TRUSTED_PREFIX, 191 .flags = F2FS_XATTR_INDEX_TRUSTED, 192 .list = f2fs_xattr_generic_list, 193 .get = f2fs_xattr_generic_get, 194 .set = f2fs_xattr_generic_set, 195 }; 196 197 const struct xattr_handler f2fs_xattr_advise_handler = { 198 .prefix = F2FS_SYSTEM_ADVISE_PREFIX, 199 .flags = F2FS_XATTR_INDEX_ADVISE, 200 .list = f2fs_xattr_advise_list, 201 .get = f2fs_xattr_advise_get, 202 .set = f2fs_xattr_advise_set, 203 }; 204 205 const struct xattr_handler f2fs_xattr_security_handler = { 206 .prefix = XATTR_SECURITY_PREFIX, 207 .flags = F2FS_XATTR_INDEX_SECURITY, 208 .list = f2fs_xattr_generic_list, 209 .get = f2fs_xattr_generic_get, 210 .set = f2fs_xattr_generic_set, 211 }; 212 213 static const struct xattr_handler *f2fs_xattr_handler_map[] = { 214 [F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler, 215 #ifdef CONFIG_F2FS_FS_POSIX_ACL 216 [F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &f2fs_xattr_acl_access_handler, 217 [F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &f2fs_xattr_acl_default_handler, 218 #endif 219 [F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler, 220 #ifdef CONFIG_F2FS_FS_SECURITY 221 [F2FS_XATTR_INDEX_SECURITY] = &f2fs_xattr_security_handler, 222 #endif 223 [F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler, 224 }; 225 226 const struct xattr_handler *f2fs_xattr_handlers[] = { 227 &f2fs_xattr_user_handler, 228 #ifdef CONFIG_F2FS_FS_POSIX_ACL 229 &f2fs_xattr_acl_access_handler, 230 &f2fs_xattr_acl_default_handler, 231 #endif 232 &f2fs_xattr_trusted_handler, 233 #ifdef CONFIG_F2FS_FS_SECURITY 234 &f2fs_xattr_security_handler, 235 #endif 236 &f2fs_xattr_advise_handler, 237 NULL, 238 }; 239 240 static inline const struct xattr_handler *f2fs_xattr_handler(int name_index) 241 { 242 const struct xattr_handler *handler = NULL; 243 244 if (name_index > 0 && name_index < ARRAY_SIZE(f2fs_xattr_handler_map)) 245 handler = f2fs_xattr_handler_map[name_index]; 246 return handler; 247 } 248 249 static struct f2fs_xattr_entry *__find_xattr(void *base_addr, int name_index, 250 size_t name_len, const char *name) 251 { 252 struct f2fs_xattr_entry *entry; 253 254 list_for_each_xattr(entry, base_addr) { 255 if (entry->e_name_index != name_index) 256 continue; 257 if (entry->e_name_len != name_len) 258 continue; 259 if (!memcmp(entry->e_name, name, name_len)) 260 break; 261 } 262 return entry; 263 } 264 265 static void *read_all_xattrs(struct inode *inode, struct page *ipage) 266 { 267 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 268 struct f2fs_xattr_header *header; 269 size_t size = PAGE_SIZE, inline_size = 0; 270 void *txattr_addr; 271 272 inline_size = inline_xattr_size(inode); 273 274 txattr_addr = kzalloc(inline_size + size, GFP_KERNEL); 275 if (!txattr_addr) 276 return NULL; 277 278 /* read from inline xattr */ 279 if (inline_size) { 280 struct page *page = NULL; 281 void *inline_addr; 282 283 if (ipage) { 284 inline_addr = inline_xattr_addr(ipage); 285 } else { 286 page = get_node_page(sbi, inode->i_ino); 287 if (IS_ERR(page)) 288 goto fail; 289 inline_addr = inline_xattr_addr(page); 290 } 291 memcpy(txattr_addr, inline_addr, inline_size); 292 f2fs_put_page(page, 1); 293 } 294 295 /* read from xattr node block */ 296 if (F2FS_I(inode)->i_xattr_nid) { 297 struct page *xpage; 298 void *xattr_addr; 299 300 /* The inode already has an extended attribute block. */ 301 xpage = get_node_page(sbi, F2FS_I(inode)->i_xattr_nid); 302 if (IS_ERR(xpage)) 303 goto fail; 304 305 xattr_addr = page_address(xpage); 306 memcpy(txattr_addr + inline_size, xattr_addr, PAGE_SIZE); 307 f2fs_put_page(xpage, 1); 308 } 309 310 header = XATTR_HDR(txattr_addr); 311 312 /* never been allocated xattrs */ 313 if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) { 314 header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC); 315 header->h_refcount = cpu_to_le32(1); 316 } 317 return txattr_addr; 318 fail: 319 kzfree(txattr_addr); 320 return NULL; 321 } 322 323 static inline int write_all_xattrs(struct inode *inode, __u32 hsize, 324 void *txattr_addr, struct page *ipage) 325 { 326 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 327 size_t inline_size = 0; 328 void *xattr_addr; 329 struct page *xpage; 330 nid_t new_nid = 0; 331 int err; 332 333 inline_size = inline_xattr_size(inode); 334 335 if (hsize > inline_size && !F2FS_I(inode)->i_xattr_nid) 336 if (!alloc_nid(sbi, &new_nid)) 337 return -ENOSPC; 338 339 /* write to inline xattr */ 340 if (inline_size) { 341 struct page *page = NULL; 342 void *inline_addr; 343 344 if (ipage) { 345 inline_addr = inline_xattr_addr(ipage); 346 } else { 347 page = get_node_page(sbi, inode->i_ino); 348 if (IS_ERR(page)) { 349 alloc_nid_failed(sbi, new_nid); 350 return PTR_ERR(page); 351 } 352 inline_addr = inline_xattr_addr(page); 353 } 354 memcpy(inline_addr, txattr_addr, inline_size); 355 f2fs_put_page(page, 1); 356 357 /* no need to use xattr node block */ 358 if (hsize <= inline_size) { 359 err = truncate_xattr_node(inode, ipage); 360 alloc_nid_failed(sbi, new_nid); 361 return err; 362 } 363 } 364 365 /* write to xattr node block */ 366 if (F2FS_I(inode)->i_xattr_nid) { 367 xpage = get_node_page(sbi, F2FS_I(inode)->i_xattr_nid); 368 if (IS_ERR(xpage)) { 369 alloc_nid_failed(sbi, new_nid); 370 return PTR_ERR(xpage); 371 } 372 BUG_ON(new_nid); 373 } else { 374 struct dnode_of_data dn; 375 set_new_dnode(&dn, inode, NULL, NULL, new_nid); 376 xpage = new_node_page(&dn, XATTR_NODE_OFFSET, ipage); 377 if (IS_ERR(xpage)) { 378 alloc_nid_failed(sbi, new_nid); 379 return PTR_ERR(xpage); 380 } 381 alloc_nid_done(sbi, new_nid); 382 } 383 384 xattr_addr = page_address(xpage); 385 memcpy(xattr_addr, txattr_addr + inline_size, PAGE_SIZE - 386 sizeof(struct node_footer)); 387 set_page_dirty(xpage); 388 f2fs_put_page(xpage, 1); 389 390 /* need to checkpoint during fsync */ 391 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); 392 return 0; 393 } 394 395 int f2fs_getxattr(struct inode *inode, int name_index, const char *name, 396 void *buffer, size_t buffer_size) 397 { 398 struct f2fs_xattr_entry *entry; 399 void *base_addr; 400 int error = 0; 401 size_t value_len, name_len; 402 403 if (name == NULL) 404 return -EINVAL; 405 name_len = strlen(name); 406 407 base_addr = read_all_xattrs(inode, NULL); 408 if (!base_addr) 409 return -ENOMEM; 410 411 entry = __find_xattr(base_addr, name_index, name_len, name); 412 if (IS_XATTR_LAST_ENTRY(entry)) { 413 error = -ENODATA; 414 goto cleanup; 415 } 416 417 value_len = le16_to_cpu(entry->e_value_size); 418 419 if (buffer && value_len > buffer_size) { 420 error = -ERANGE; 421 goto cleanup; 422 } 423 424 if (buffer) { 425 char *pval = entry->e_name + entry->e_name_len; 426 memcpy(buffer, pval, value_len); 427 } 428 error = value_len; 429 430 cleanup: 431 kzfree(base_addr); 432 return error; 433 } 434 435 ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size) 436 { 437 struct inode *inode = dentry->d_inode; 438 struct f2fs_xattr_entry *entry; 439 void *base_addr; 440 int error = 0; 441 size_t rest = buffer_size; 442 443 base_addr = read_all_xattrs(inode, NULL); 444 if (!base_addr) 445 return -ENOMEM; 446 447 list_for_each_xattr(entry, base_addr) { 448 const struct xattr_handler *handler = 449 f2fs_xattr_handler(entry->e_name_index); 450 size_t size; 451 452 if (!handler) 453 continue; 454 455 size = handler->list(dentry, buffer, rest, entry->e_name, 456 entry->e_name_len, handler->flags); 457 if (buffer && size > rest) { 458 error = -ERANGE; 459 goto cleanup; 460 } 461 462 if (buffer) 463 buffer += size; 464 rest -= size; 465 } 466 error = buffer_size - rest; 467 cleanup: 468 kzfree(base_addr); 469 return error; 470 } 471 472 int f2fs_setxattr(struct inode *inode, int name_index, const char *name, 473 const void *value, size_t value_len, struct page *ipage) 474 { 475 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 476 struct f2fs_inode_info *fi = F2FS_I(inode); 477 struct f2fs_xattr_entry *here, *last; 478 void *base_addr; 479 int found, newsize; 480 size_t name_len; 481 int ilock; 482 __u32 new_hsize; 483 int error = -ENOMEM; 484 485 if (name == NULL) 486 return -EINVAL; 487 488 if (value == NULL) 489 value_len = 0; 490 491 name_len = strlen(name); 492 493 if (name_len > F2FS_NAME_LEN || value_len > MAX_VALUE_LEN(inode)) 494 return -ERANGE; 495 496 f2fs_balance_fs(sbi); 497 498 ilock = mutex_lock_op(sbi); 499 500 base_addr = read_all_xattrs(inode, ipage); 501 if (!base_addr) 502 goto exit; 503 504 /* find entry with wanted name. */ 505 here = __find_xattr(base_addr, name_index, name_len, name); 506 507 found = IS_XATTR_LAST_ENTRY(here) ? 0 : 1; 508 last = here; 509 510 while (!IS_XATTR_LAST_ENTRY(last)) 511 last = XATTR_NEXT_ENTRY(last); 512 513 newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) + 514 name_len + value_len); 515 516 /* 1. Check space */ 517 if (value) { 518 int free; 519 /* 520 * If value is NULL, it is remove operation. 521 * In case of update operation, we caculate free. 522 */ 523 free = MIN_OFFSET(inode) - ((char *)last - (char *)base_addr); 524 if (found) 525 free = free - ENTRY_SIZE(here); 526 527 if (free < newsize) { 528 error = -ENOSPC; 529 goto exit; 530 } 531 } 532 533 /* 2. Remove old entry */ 534 if (found) { 535 /* 536 * If entry is found, remove old entry. 537 * If not found, remove operation is not needed. 538 */ 539 struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here); 540 int oldsize = ENTRY_SIZE(here); 541 542 memmove(here, next, (char *)last - (char *)next); 543 last = (struct f2fs_xattr_entry *)((char *)last - oldsize); 544 memset(last, 0, oldsize); 545 } 546 547 new_hsize = (char *)last - (char *)base_addr; 548 549 /* 3. Write new entry */ 550 if (value) { 551 char *pval; 552 /* 553 * Before we come here, old entry is removed. 554 * We just write new entry. 555 */ 556 memset(last, 0, newsize); 557 last->e_name_index = name_index; 558 last->e_name_len = name_len; 559 memcpy(last->e_name, name, name_len); 560 pval = last->e_name + name_len; 561 memcpy(pval, value, value_len); 562 last->e_value_size = cpu_to_le16(value_len); 563 new_hsize += newsize; 564 } 565 566 error = write_all_xattrs(inode, new_hsize, base_addr, ipage); 567 if (error) 568 goto exit; 569 570 if (is_inode_flag_set(fi, FI_ACL_MODE)) { 571 inode->i_mode = fi->i_acl_mode; 572 inode->i_ctime = CURRENT_TIME; 573 clear_inode_flag(fi, FI_ACL_MODE); 574 } 575 576 if (ipage) 577 update_inode(inode, ipage); 578 else 579 update_inode_page(inode); 580 exit: 581 mutex_unlock_op(sbi, ilock); 582 kzfree(base_addr); 583 return error; 584 } 585