xref: /openbmc/linux/fs/f2fs/xattr.c (revision 2eb0f624b709e78ec8e2f4c3412947703db99301)
1 /*
2  * fs/f2fs/xattr.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * Portions of this code from linux/fs/ext2/xattr.c
8  *
9  * Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de>
10  *
11  * Fix by Harrison Xing <harrison@mountainviewdata.com>.
12  * Extended attributes for symlinks and special files added per
13  *  suggestion of Luka Renko <luka.renko@hermes.si>.
14  * xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>,
15  *  Red Hat Inc.
16  *
17  * This program is free software; you can redistribute it and/or modify
18  * it under the terms of the GNU General Public License version 2 as
19  * published by the Free Software Foundation.
20  */
21 #include <linux/rwsem.h>
22 #include <linux/f2fs_fs.h>
23 #include <linux/security.h>
24 #include <linux/posix_acl_xattr.h>
25 #include "f2fs.h"
26 #include "xattr.h"
27 
28 static int f2fs_xattr_generic_get(const struct xattr_handler *handler,
29 		struct dentry *unused, struct inode *inode,
30 		const char *name, void *buffer, size_t size)
31 {
32 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
33 
34 	switch (handler->flags) {
35 	case F2FS_XATTR_INDEX_USER:
36 		if (!test_opt(sbi, XATTR_USER))
37 			return -EOPNOTSUPP;
38 		break;
39 	case F2FS_XATTR_INDEX_TRUSTED:
40 		if (!capable(CAP_SYS_ADMIN))
41 			return -EPERM;
42 		break;
43 	case F2FS_XATTR_INDEX_SECURITY:
44 		break;
45 	default:
46 		return -EINVAL;
47 	}
48 	return f2fs_getxattr(inode, handler->flags, name,
49 			     buffer, size, NULL);
50 }
51 
52 static int f2fs_xattr_generic_set(const struct xattr_handler *handler,
53 		struct dentry *unused, struct inode *inode,
54 		const char *name, const void *value,
55 		size_t size, int flags)
56 {
57 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
58 
59 	switch (handler->flags) {
60 	case F2FS_XATTR_INDEX_USER:
61 		if (!test_opt(sbi, XATTR_USER))
62 			return -EOPNOTSUPP;
63 		break;
64 	case F2FS_XATTR_INDEX_TRUSTED:
65 		if (!capable(CAP_SYS_ADMIN))
66 			return -EPERM;
67 		break;
68 	case F2FS_XATTR_INDEX_SECURITY:
69 		break;
70 	default:
71 		return -EINVAL;
72 	}
73 	return f2fs_setxattr(inode, handler->flags, name,
74 					value, size, NULL, flags);
75 }
76 
77 static bool f2fs_xattr_user_list(struct dentry *dentry)
78 {
79 	struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb);
80 
81 	return test_opt(sbi, XATTR_USER);
82 }
83 
84 static bool f2fs_xattr_trusted_list(struct dentry *dentry)
85 {
86 	return capable(CAP_SYS_ADMIN);
87 }
88 
89 static int f2fs_xattr_advise_get(const struct xattr_handler *handler,
90 		struct dentry *unused, struct inode *inode,
91 		const char *name, void *buffer, size_t size)
92 {
93 	if (buffer)
94 		*((char *)buffer) = F2FS_I(inode)->i_advise;
95 	return sizeof(char);
96 }
97 
98 static int f2fs_xattr_advise_set(const struct xattr_handler *handler,
99 		struct dentry *unused, struct inode *inode,
100 		const char *name, const void *value,
101 		size_t size, int flags)
102 {
103 	if (!inode_owner_or_capable(inode))
104 		return -EPERM;
105 	if (value == NULL)
106 		return -EINVAL;
107 
108 	F2FS_I(inode)->i_advise |= *(char *)value;
109 	f2fs_mark_inode_dirty_sync(inode, true);
110 	return 0;
111 }
112 
113 #ifdef CONFIG_F2FS_FS_SECURITY
114 static int f2fs_initxattrs(struct inode *inode, const struct xattr *xattr_array,
115 		void *page)
116 {
117 	const struct xattr *xattr;
118 	int err = 0;
119 
120 	for (xattr = xattr_array; xattr->name != NULL; xattr++) {
121 		err = f2fs_setxattr(inode, F2FS_XATTR_INDEX_SECURITY,
122 				xattr->name, xattr->value,
123 				xattr->value_len, (struct page *)page, 0);
124 		if (err < 0)
125 			break;
126 	}
127 	return err;
128 }
129 
130 int f2fs_init_security(struct inode *inode, struct inode *dir,
131 				const struct qstr *qstr, struct page *ipage)
132 {
133 	return security_inode_init_security(inode, dir, qstr,
134 				&f2fs_initxattrs, ipage);
135 }
136 #endif
137 
138 const struct xattr_handler f2fs_xattr_user_handler = {
139 	.prefix	= XATTR_USER_PREFIX,
140 	.flags	= F2FS_XATTR_INDEX_USER,
141 	.list	= f2fs_xattr_user_list,
142 	.get	= f2fs_xattr_generic_get,
143 	.set	= f2fs_xattr_generic_set,
144 };
145 
146 const struct xattr_handler f2fs_xattr_trusted_handler = {
147 	.prefix	= XATTR_TRUSTED_PREFIX,
148 	.flags	= F2FS_XATTR_INDEX_TRUSTED,
149 	.list	= f2fs_xattr_trusted_list,
150 	.get	= f2fs_xattr_generic_get,
151 	.set	= f2fs_xattr_generic_set,
152 };
153 
154 const struct xattr_handler f2fs_xattr_advise_handler = {
155 	.name	= F2FS_SYSTEM_ADVISE_NAME,
156 	.flags	= F2FS_XATTR_INDEX_ADVISE,
157 	.get    = f2fs_xattr_advise_get,
158 	.set    = f2fs_xattr_advise_set,
159 };
160 
161 const struct xattr_handler f2fs_xattr_security_handler = {
162 	.prefix	= XATTR_SECURITY_PREFIX,
163 	.flags	= F2FS_XATTR_INDEX_SECURITY,
164 	.get	= f2fs_xattr_generic_get,
165 	.set	= f2fs_xattr_generic_set,
166 };
167 
168 static const struct xattr_handler *f2fs_xattr_handler_map[] = {
169 	[F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler,
170 #ifdef CONFIG_F2FS_FS_POSIX_ACL
171 	[F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &posix_acl_access_xattr_handler,
172 	[F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &posix_acl_default_xattr_handler,
173 #endif
174 	[F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler,
175 #ifdef CONFIG_F2FS_FS_SECURITY
176 	[F2FS_XATTR_INDEX_SECURITY] = &f2fs_xattr_security_handler,
177 #endif
178 	[F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler,
179 };
180 
181 const struct xattr_handler *f2fs_xattr_handlers[] = {
182 	&f2fs_xattr_user_handler,
183 #ifdef CONFIG_F2FS_FS_POSIX_ACL
184 	&posix_acl_access_xattr_handler,
185 	&posix_acl_default_xattr_handler,
186 #endif
187 	&f2fs_xattr_trusted_handler,
188 #ifdef CONFIG_F2FS_FS_SECURITY
189 	&f2fs_xattr_security_handler,
190 #endif
191 	&f2fs_xattr_advise_handler,
192 	NULL,
193 };
194 
195 static inline const struct xattr_handler *f2fs_xattr_handler(int index)
196 {
197 	const struct xattr_handler *handler = NULL;
198 
199 	if (index > 0 && index < ARRAY_SIZE(f2fs_xattr_handler_map))
200 		handler = f2fs_xattr_handler_map[index];
201 	return handler;
202 }
203 
204 static struct f2fs_xattr_entry *__find_xattr(void *base_addr, int index,
205 					size_t len, const char *name)
206 {
207 	struct f2fs_xattr_entry *entry;
208 
209 	list_for_each_xattr(entry, base_addr) {
210 		if (entry->e_name_index != index)
211 			continue;
212 		if (entry->e_name_len != len)
213 			continue;
214 		if (!memcmp(entry->e_name, name, len))
215 			break;
216 	}
217 	return entry;
218 }
219 
220 static struct f2fs_xattr_entry *__find_inline_xattr(struct inode *inode,
221 				void *base_addr, void **last_addr, int index,
222 				size_t len, const char *name)
223 {
224 	struct f2fs_xattr_entry *entry;
225 	unsigned int inline_size = inline_xattr_size(inode);
226 
227 	list_for_each_xattr(entry, base_addr) {
228 		if ((void *)entry + sizeof(__u32) > base_addr + inline_size ||
229 			(void *)XATTR_NEXT_ENTRY(entry) + sizeof(__u32) >
230 			base_addr + inline_size) {
231 			*last_addr = entry;
232 			return NULL;
233 		}
234 		if (entry->e_name_index != index)
235 			continue;
236 		if (entry->e_name_len != len)
237 			continue;
238 		if (!memcmp(entry->e_name, name, len))
239 			break;
240 	}
241 	return entry;
242 }
243 
244 static int read_inline_xattr(struct inode *inode, struct page *ipage,
245 							void *txattr_addr)
246 {
247 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
248 	unsigned int inline_size = inline_xattr_size(inode);
249 	struct page *page = NULL;
250 	void *inline_addr;
251 
252 	if (ipage) {
253 		inline_addr = inline_xattr_addr(inode, ipage);
254 	} else {
255 		page = get_node_page(sbi, inode->i_ino);
256 		if (IS_ERR(page))
257 			return PTR_ERR(page);
258 
259 		inline_addr = inline_xattr_addr(inode, page);
260 	}
261 	memcpy(txattr_addr, inline_addr, inline_size);
262 	f2fs_put_page(page, 1);
263 
264 	return 0;
265 }
266 
267 static int read_xattr_block(struct inode *inode, void *txattr_addr)
268 {
269 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
270 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
271 	unsigned int inline_size = inline_xattr_size(inode);
272 	struct page *xpage;
273 	void *xattr_addr;
274 
275 	/* The inode already has an extended attribute block. */
276 	xpage = get_node_page(sbi, xnid);
277 	if (IS_ERR(xpage))
278 		return PTR_ERR(xpage);
279 
280 	xattr_addr = page_address(xpage);
281 	memcpy(txattr_addr + inline_size, xattr_addr, VALID_XATTR_BLOCK_SIZE);
282 	f2fs_put_page(xpage, 1);
283 
284 	return 0;
285 }
286 
287 static int lookup_all_xattrs(struct inode *inode, struct page *ipage,
288 				unsigned int index, unsigned int len,
289 				const char *name, struct f2fs_xattr_entry **xe,
290 				void **base_addr)
291 {
292 	void *cur_addr, *txattr_addr, *last_addr = NULL;
293 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
294 	unsigned int size = xnid ? VALID_XATTR_BLOCK_SIZE : 0;
295 	unsigned int inline_size = inline_xattr_size(inode);
296 	int err = 0;
297 
298 	if (!size && !inline_size)
299 		return -ENODATA;
300 
301 	txattr_addr = f2fs_kzalloc(F2FS_I_SB(inode),
302 			inline_size + size + XATTR_PADDING_SIZE, GFP_NOFS);
303 	if (!txattr_addr)
304 		return -ENOMEM;
305 
306 	/* read from inline xattr */
307 	if (inline_size) {
308 		err = read_inline_xattr(inode, ipage, txattr_addr);
309 		if (err)
310 			goto out;
311 
312 		*xe = __find_inline_xattr(inode, txattr_addr, &last_addr,
313 						index, len, name);
314 		if (*xe)
315 			goto check;
316 	}
317 
318 	/* read from xattr node block */
319 	if (xnid) {
320 		err = read_xattr_block(inode, txattr_addr);
321 		if (err)
322 			goto out;
323 	}
324 
325 	if (last_addr)
326 		cur_addr = XATTR_HDR(last_addr) - 1;
327 	else
328 		cur_addr = txattr_addr;
329 
330 	*xe = __find_xattr(cur_addr, index, len, name);
331 check:
332 	if (IS_XATTR_LAST_ENTRY(*xe)) {
333 		err = -ENODATA;
334 		goto out;
335 	}
336 
337 	*base_addr = txattr_addr;
338 	return 0;
339 out:
340 	kzfree(txattr_addr);
341 	return err;
342 }
343 
344 static int read_all_xattrs(struct inode *inode, struct page *ipage,
345 							void **base_addr)
346 {
347 	struct f2fs_xattr_header *header;
348 	nid_t xnid = F2FS_I(inode)->i_xattr_nid;
349 	unsigned int size = VALID_XATTR_BLOCK_SIZE;
350 	unsigned int inline_size = inline_xattr_size(inode);
351 	void *txattr_addr;
352 	int err;
353 
354 	txattr_addr = f2fs_kzalloc(F2FS_I_SB(inode),
355 			inline_size + size + XATTR_PADDING_SIZE, GFP_NOFS);
356 	if (!txattr_addr)
357 		return -ENOMEM;
358 
359 	/* read from inline xattr */
360 	if (inline_size) {
361 		err = read_inline_xattr(inode, ipage, txattr_addr);
362 		if (err)
363 			goto fail;
364 	}
365 
366 	/* read from xattr node block */
367 	if (xnid) {
368 		err = read_xattr_block(inode, txattr_addr);
369 		if (err)
370 			goto fail;
371 	}
372 
373 	header = XATTR_HDR(txattr_addr);
374 
375 	/* never been allocated xattrs */
376 	if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) {
377 		header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC);
378 		header->h_refcount = cpu_to_le32(1);
379 	}
380 	*base_addr = txattr_addr;
381 	return 0;
382 fail:
383 	kzfree(txattr_addr);
384 	return err;
385 }
386 
387 static inline int write_all_xattrs(struct inode *inode, __u32 hsize,
388 				void *txattr_addr, struct page *ipage)
389 {
390 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
391 	size_t inline_size = inline_xattr_size(inode);
392 	struct page *in_page = NULL;
393 	void *xattr_addr;
394 	void *inline_addr = NULL;
395 	struct page *xpage;
396 	nid_t new_nid = 0;
397 	int err = 0;
398 
399 	if (hsize > inline_size && !F2FS_I(inode)->i_xattr_nid)
400 		if (!alloc_nid(sbi, &new_nid))
401 			return -ENOSPC;
402 
403 	/* write to inline xattr */
404 	if (inline_size) {
405 		if (ipage) {
406 			inline_addr = inline_xattr_addr(inode, ipage);
407 		} else {
408 			in_page = get_node_page(sbi, inode->i_ino);
409 			if (IS_ERR(in_page)) {
410 				alloc_nid_failed(sbi, new_nid);
411 				return PTR_ERR(in_page);
412 			}
413 			inline_addr = inline_xattr_addr(inode, in_page);
414 		}
415 
416 		f2fs_wait_on_page_writeback(ipage ? ipage : in_page,
417 							NODE, true);
418 		/* no need to use xattr node block */
419 		if (hsize <= inline_size) {
420 			err = truncate_xattr_node(inode);
421 			alloc_nid_failed(sbi, new_nid);
422 			if (err) {
423 				f2fs_put_page(in_page, 1);
424 				return err;
425 			}
426 			memcpy(inline_addr, txattr_addr, inline_size);
427 			set_page_dirty(ipage ? ipage : in_page);
428 			goto in_page_out;
429 		}
430 	}
431 
432 	/* write to xattr node block */
433 	if (F2FS_I(inode)->i_xattr_nid) {
434 		xpage = get_node_page(sbi, F2FS_I(inode)->i_xattr_nid);
435 		if (IS_ERR(xpage)) {
436 			err = PTR_ERR(xpage);
437 			alloc_nid_failed(sbi, new_nid);
438 			goto in_page_out;
439 		}
440 		f2fs_bug_on(sbi, new_nid);
441 		f2fs_wait_on_page_writeback(xpage, NODE, true);
442 	} else {
443 		struct dnode_of_data dn;
444 		set_new_dnode(&dn, inode, NULL, NULL, new_nid);
445 		xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
446 		if (IS_ERR(xpage)) {
447 			err = PTR_ERR(xpage);
448 			alloc_nid_failed(sbi, new_nid);
449 			goto in_page_out;
450 		}
451 		alloc_nid_done(sbi, new_nid);
452 	}
453 	xattr_addr = page_address(xpage);
454 
455 	if (inline_size)
456 		memcpy(inline_addr, txattr_addr, inline_size);
457 	memcpy(xattr_addr, txattr_addr + inline_size, VALID_XATTR_BLOCK_SIZE);
458 
459 	if (inline_size)
460 		set_page_dirty(ipage ? ipage : in_page);
461 	set_page_dirty(xpage);
462 
463 	f2fs_put_page(xpage, 1);
464 in_page_out:
465 	f2fs_put_page(in_page, 1);
466 	return err;
467 }
468 
469 int f2fs_getxattr(struct inode *inode, int index, const char *name,
470 		void *buffer, size_t buffer_size, struct page *ipage)
471 {
472 	struct f2fs_xattr_entry *entry = NULL;
473 	int error = 0;
474 	unsigned int size, len;
475 	void *base_addr = NULL;
476 
477 	if (name == NULL)
478 		return -EINVAL;
479 
480 	len = strlen(name);
481 	if (len > F2FS_NAME_LEN)
482 		return -ERANGE;
483 
484 	down_read(&F2FS_I(inode)->i_xattr_sem);
485 	error = lookup_all_xattrs(inode, ipage, index, len, name,
486 				&entry, &base_addr);
487 	up_read(&F2FS_I(inode)->i_xattr_sem);
488 	if (error)
489 		return error;
490 
491 	size = le16_to_cpu(entry->e_value_size);
492 
493 	if (buffer && size > buffer_size) {
494 		error = -ERANGE;
495 		goto out;
496 	}
497 
498 	if (buffer) {
499 		char *pval = entry->e_name + entry->e_name_len;
500 		memcpy(buffer, pval, size);
501 	}
502 	error = size;
503 out:
504 	kzfree(base_addr);
505 	return error;
506 }
507 
508 ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size)
509 {
510 	struct inode *inode = d_inode(dentry);
511 	struct f2fs_xattr_entry *entry;
512 	void *base_addr;
513 	int error = 0;
514 	size_t rest = buffer_size;
515 
516 	down_read(&F2FS_I(inode)->i_xattr_sem);
517 	error = read_all_xattrs(inode, NULL, &base_addr);
518 	up_read(&F2FS_I(inode)->i_xattr_sem);
519 	if (error)
520 		return error;
521 
522 	list_for_each_xattr(entry, base_addr) {
523 		const struct xattr_handler *handler =
524 			f2fs_xattr_handler(entry->e_name_index);
525 		const char *prefix;
526 		size_t prefix_len;
527 		size_t size;
528 
529 		if (!handler || (handler->list && !handler->list(dentry)))
530 			continue;
531 
532 		prefix = handler->prefix ?: handler->name;
533 		prefix_len = strlen(prefix);
534 		size = prefix_len + entry->e_name_len + 1;
535 		if (buffer) {
536 			if (size > rest) {
537 				error = -ERANGE;
538 				goto cleanup;
539 			}
540 			memcpy(buffer, prefix, prefix_len);
541 			buffer += prefix_len;
542 			memcpy(buffer, entry->e_name, entry->e_name_len);
543 			buffer += entry->e_name_len;
544 			*buffer++ = 0;
545 		}
546 		rest -= size;
547 	}
548 	error = buffer_size - rest;
549 cleanup:
550 	kzfree(base_addr);
551 	return error;
552 }
553 
554 static bool f2fs_xattr_value_same(struct f2fs_xattr_entry *entry,
555 					const void *value, size_t size)
556 {
557 	void *pval = entry->e_name + entry->e_name_len;
558 
559 	return (le16_to_cpu(entry->e_value_size) == size) &&
560 					!memcmp(pval, value, size);
561 }
562 
563 static int __f2fs_setxattr(struct inode *inode, int index,
564 			const char *name, const void *value, size_t size,
565 			struct page *ipage, int flags)
566 {
567 	struct f2fs_xattr_entry *here, *last;
568 	void *base_addr;
569 	int found, newsize;
570 	size_t len;
571 	__u32 new_hsize;
572 	int error = 0;
573 
574 	if (name == NULL)
575 		return -EINVAL;
576 
577 	if (value == NULL)
578 		size = 0;
579 
580 	len = strlen(name);
581 
582 	if (len > F2FS_NAME_LEN)
583 		return -ERANGE;
584 
585 	if (size > MAX_VALUE_LEN(inode))
586 		return -E2BIG;
587 
588 	error = read_all_xattrs(inode, ipage, &base_addr);
589 	if (error)
590 		return error;
591 
592 	/* find entry with wanted name. */
593 	here = __find_xattr(base_addr, index, len, name);
594 
595 	found = IS_XATTR_LAST_ENTRY(here) ? 0 : 1;
596 
597 	if (found) {
598 		if ((flags & XATTR_CREATE)) {
599 			error = -EEXIST;
600 			goto exit;
601 		}
602 
603 		if (value && f2fs_xattr_value_same(here, value, size))
604 			goto exit;
605 	} else if ((flags & XATTR_REPLACE)) {
606 		error = -ENODATA;
607 		goto exit;
608 	}
609 
610 	last = here;
611 	while (!IS_XATTR_LAST_ENTRY(last))
612 		last = XATTR_NEXT_ENTRY(last);
613 
614 	newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) + len + size);
615 
616 	/* 1. Check space */
617 	if (value) {
618 		int free;
619 		/*
620 		 * If value is NULL, it is remove operation.
621 		 * In case of update operation, we calculate free.
622 		 */
623 		free = MIN_OFFSET(inode) - ((char *)last - (char *)base_addr);
624 		if (found)
625 			free = free + ENTRY_SIZE(here);
626 
627 		if (unlikely(free < newsize)) {
628 			error = -E2BIG;
629 			goto exit;
630 		}
631 	}
632 
633 	/* 2. Remove old entry */
634 	if (found) {
635 		/*
636 		 * If entry is found, remove old entry.
637 		 * If not found, remove operation is not needed.
638 		 */
639 		struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here);
640 		int oldsize = ENTRY_SIZE(here);
641 
642 		memmove(here, next, (char *)last - (char *)next);
643 		last = (struct f2fs_xattr_entry *)((char *)last - oldsize);
644 		memset(last, 0, oldsize);
645 	}
646 
647 	new_hsize = (char *)last - (char *)base_addr;
648 
649 	/* 3. Write new entry */
650 	if (value) {
651 		char *pval;
652 		/*
653 		 * Before we come here, old entry is removed.
654 		 * We just write new entry.
655 		 */
656 		last->e_name_index = index;
657 		last->e_name_len = len;
658 		memcpy(last->e_name, name, len);
659 		pval = last->e_name + len;
660 		memcpy(pval, value, size);
661 		last->e_value_size = cpu_to_le16(size);
662 		new_hsize += newsize;
663 	}
664 
665 	error = write_all_xattrs(inode, new_hsize, base_addr, ipage);
666 	if (error)
667 		goto exit;
668 
669 	if (is_inode_flag_set(inode, FI_ACL_MODE)) {
670 		inode->i_mode = F2FS_I(inode)->i_acl_mode;
671 		inode->i_ctime = current_time(inode);
672 		clear_inode_flag(inode, FI_ACL_MODE);
673 	}
674 	if (index == F2FS_XATTR_INDEX_ENCRYPTION &&
675 			!strcmp(name, F2FS_XATTR_NAME_ENCRYPTION_CONTEXT))
676 		f2fs_set_encrypted_inode(inode);
677 	f2fs_mark_inode_dirty_sync(inode, true);
678 	if (!error && S_ISDIR(inode->i_mode))
679 		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_CP);
680 exit:
681 	kzfree(base_addr);
682 	return error;
683 }
684 
685 int f2fs_setxattr(struct inode *inode, int index, const char *name,
686 				const void *value, size_t size,
687 				struct page *ipage, int flags)
688 {
689 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
690 	int err;
691 
692 	err = dquot_initialize(inode);
693 	if (err)
694 		return err;
695 
696 	/* this case is only from init_inode_metadata */
697 	if (ipage)
698 		return __f2fs_setxattr(inode, index, name, value,
699 						size, ipage, flags);
700 	f2fs_balance_fs(sbi, true);
701 
702 	f2fs_lock_op(sbi);
703 	/* protect xattr_ver */
704 	down_write(&F2FS_I(inode)->i_sem);
705 	down_write(&F2FS_I(inode)->i_xattr_sem);
706 	err = __f2fs_setxattr(inode, index, name, value, size, ipage, flags);
707 	up_write(&F2FS_I(inode)->i_xattr_sem);
708 	up_write(&F2FS_I(inode)->i_sem);
709 	f2fs_unlock_op(sbi);
710 
711 	f2fs_update_time(sbi, REQ_TIME);
712 	return err;
713 }
714