1 /* 2 * fs/f2fs/xattr.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * Portions of this code from linux/fs/ext2/xattr.c 8 * 9 * Copyright (C) 2001-2003 Andreas Gruenbacher <agruen@suse.de> 10 * 11 * Fix by Harrison Xing <harrison@mountainviewdata.com>. 12 * Extended attributes for symlinks and special files added per 13 * suggestion of Luka Renko <luka.renko@hermes.si>. 14 * xattr consolidation Copyright (c) 2004 James Morris <jmorris@redhat.com>, 15 * Red Hat Inc. 16 * 17 * This program is free software; you can redistribute it and/or modify 18 * it under the terms of the GNU General Public License version 2 as 19 * published by the Free Software Foundation. 20 */ 21 #include <linux/rwsem.h> 22 #include <linux/f2fs_fs.h> 23 #include <linux/security.h> 24 #include <linux/posix_acl_xattr.h> 25 #include "f2fs.h" 26 #include "xattr.h" 27 28 static int f2fs_xattr_generic_get(const struct xattr_handler *handler, 29 struct dentry *unused, struct inode *inode, 30 const char *name, void *buffer, size_t size) 31 { 32 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 33 34 switch (handler->flags) { 35 case F2FS_XATTR_INDEX_USER: 36 if (!test_opt(sbi, XATTR_USER)) 37 return -EOPNOTSUPP; 38 break; 39 case F2FS_XATTR_INDEX_TRUSTED: 40 if (!capable(CAP_SYS_ADMIN)) 41 return -EPERM; 42 break; 43 case F2FS_XATTR_INDEX_SECURITY: 44 break; 45 default: 46 return -EINVAL; 47 } 48 return f2fs_getxattr(inode, handler->flags, name, 49 buffer, size, NULL); 50 } 51 52 static int f2fs_xattr_generic_set(const struct xattr_handler *handler, 53 struct dentry *unused, struct inode *inode, 54 const char *name, const void *value, 55 size_t size, int flags) 56 { 57 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 58 59 switch (handler->flags) { 60 case F2FS_XATTR_INDEX_USER: 61 if (!test_opt(sbi, XATTR_USER)) 62 return -EOPNOTSUPP; 63 break; 64 case F2FS_XATTR_INDEX_TRUSTED: 65 if (!capable(CAP_SYS_ADMIN)) 66 return -EPERM; 67 break; 68 case F2FS_XATTR_INDEX_SECURITY: 69 break; 70 default: 71 return -EINVAL; 72 } 73 return f2fs_setxattr(inode, handler->flags, name, 74 value, size, NULL, flags); 75 } 76 77 static bool f2fs_xattr_user_list(struct dentry *dentry) 78 { 79 struct f2fs_sb_info *sbi = F2FS_SB(dentry->d_sb); 80 81 return test_opt(sbi, XATTR_USER); 82 } 83 84 static bool f2fs_xattr_trusted_list(struct dentry *dentry) 85 { 86 return capable(CAP_SYS_ADMIN); 87 } 88 89 static int f2fs_xattr_advise_get(const struct xattr_handler *handler, 90 struct dentry *unused, struct inode *inode, 91 const char *name, void *buffer, size_t size) 92 { 93 if (buffer) 94 *((char *)buffer) = F2FS_I(inode)->i_advise; 95 return sizeof(char); 96 } 97 98 static int f2fs_xattr_advise_set(const struct xattr_handler *handler, 99 struct dentry *unused, struct inode *inode, 100 const char *name, const void *value, 101 size_t size, int flags) 102 { 103 if (!inode_owner_or_capable(inode)) 104 return -EPERM; 105 if (value == NULL) 106 return -EINVAL; 107 108 F2FS_I(inode)->i_advise |= *(char *)value; 109 f2fs_mark_inode_dirty_sync(inode); 110 return 0; 111 } 112 113 #ifdef CONFIG_F2FS_FS_SECURITY 114 static int f2fs_initxattrs(struct inode *inode, const struct xattr *xattr_array, 115 void *page) 116 { 117 const struct xattr *xattr; 118 int err = 0; 119 120 for (xattr = xattr_array; xattr->name != NULL; xattr++) { 121 err = f2fs_setxattr(inode, F2FS_XATTR_INDEX_SECURITY, 122 xattr->name, xattr->value, 123 xattr->value_len, (struct page *)page, 0); 124 if (err < 0) 125 break; 126 } 127 return err; 128 } 129 130 int f2fs_init_security(struct inode *inode, struct inode *dir, 131 const struct qstr *qstr, struct page *ipage) 132 { 133 return security_inode_init_security(inode, dir, qstr, 134 &f2fs_initxattrs, ipage); 135 } 136 #endif 137 138 const struct xattr_handler f2fs_xattr_user_handler = { 139 .prefix = XATTR_USER_PREFIX, 140 .flags = F2FS_XATTR_INDEX_USER, 141 .list = f2fs_xattr_user_list, 142 .get = f2fs_xattr_generic_get, 143 .set = f2fs_xattr_generic_set, 144 }; 145 146 const struct xattr_handler f2fs_xattr_trusted_handler = { 147 .prefix = XATTR_TRUSTED_PREFIX, 148 .flags = F2FS_XATTR_INDEX_TRUSTED, 149 .list = f2fs_xattr_trusted_list, 150 .get = f2fs_xattr_generic_get, 151 .set = f2fs_xattr_generic_set, 152 }; 153 154 const struct xattr_handler f2fs_xattr_advise_handler = { 155 .name = F2FS_SYSTEM_ADVISE_NAME, 156 .flags = F2FS_XATTR_INDEX_ADVISE, 157 .get = f2fs_xattr_advise_get, 158 .set = f2fs_xattr_advise_set, 159 }; 160 161 const struct xattr_handler f2fs_xattr_security_handler = { 162 .prefix = XATTR_SECURITY_PREFIX, 163 .flags = F2FS_XATTR_INDEX_SECURITY, 164 .get = f2fs_xattr_generic_get, 165 .set = f2fs_xattr_generic_set, 166 }; 167 168 static const struct xattr_handler *f2fs_xattr_handler_map[] = { 169 [F2FS_XATTR_INDEX_USER] = &f2fs_xattr_user_handler, 170 #ifdef CONFIG_F2FS_FS_POSIX_ACL 171 [F2FS_XATTR_INDEX_POSIX_ACL_ACCESS] = &posix_acl_access_xattr_handler, 172 [F2FS_XATTR_INDEX_POSIX_ACL_DEFAULT] = &posix_acl_default_xattr_handler, 173 #endif 174 [F2FS_XATTR_INDEX_TRUSTED] = &f2fs_xattr_trusted_handler, 175 #ifdef CONFIG_F2FS_FS_SECURITY 176 [F2FS_XATTR_INDEX_SECURITY] = &f2fs_xattr_security_handler, 177 #endif 178 [F2FS_XATTR_INDEX_ADVISE] = &f2fs_xattr_advise_handler, 179 }; 180 181 const struct xattr_handler *f2fs_xattr_handlers[] = { 182 &f2fs_xattr_user_handler, 183 #ifdef CONFIG_F2FS_FS_POSIX_ACL 184 &posix_acl_access_xattr_handler, 185 &posix_acl_default_xattr_handler, 186 #endif 187 &f2fs_xattr_trusted_handler, 188 #ifdef CONFIG_F2FS_FS_SECURITY 189 &f2fs_xattr_security_handler, 190 #endif 191 &f2fs_xattr_advise_handler, 192 NULL, 193 }; 194 195 static inline const struct xattr_handler *f2fs_xattr_handler(int index) 196 { 197 const struct xattr_handler *handler = NULL; 198 199 if (index > 0 && index < ARRAY_SIZE(f2fs_xattr_handler_map)) 200 handler = f2fs_xattr_handler_map[index]; 201 return handler; 202 } 203 204 static struct f2fs_xattr_entry *__find_xattr(void *base_addr, int index, 205 size_t len, const char *name) 206 { 207 struct f2fs_xattr_entry *entry; 208 209 list_for_each_xattr(entry, base_addr) { 210 if (entry->e_name_index != index) 211 continue; 212 if (entry->e_name_len != len) 213 continue; 214 if (!memcmp(entry->e_name, name, len)) 215 break; 216 } 217 return entry; 218 } 219 220 static void *read_all_xattrs(struct inode *inode, struct page *ipage) 221 { 222 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 223 struct f2fs_xattr_header *header; 224 size_t size = PAGE_SIZE, inline_size = 0; 225 void *txattr_addr; 226 227 inline_size = inline_xattr_size(inode); 228 229 txattr_addr = kzalloc(inline_size + size, GFP_F2FS_ZERO); 230 if (!txattr_addr) 231 return NULL; 232 233 /* read from inline xattr */ 234 if (inline_size) { 235 struct page *page = NULL; 236 void *inline_addr; 237 238 if (ipage) { 239 inline_addr = inline_xattr_addr(ipage); 240 } else { 241 page = get_node_page(sbi, inode->i_ino); 242 if (IS_ERR(page)) 243 goto fail; 244 inline_addr = inline_xattr_addr(page); 245 } 246 memcpy(txattr_addr, inline_addr, inline_size); 247 f2fs_put_page(page, 1); 248 } 249 250 /* read from xattr node block */ 251 if (F2FS_I(inode)->i_xattr_nid) { 252 struct page *xpage; 253 void *xattr_addr; 254 255 /* The inode already has an extended attribute block. */ 256 xpage = get_node_page(sbi, F2FS_I(inode)->i_xattr_nid); 257 if (IS_ERR(xpage)) 258 goto fail; 259 260 xattr_addr = page_address(xpage); 261 memcpy(txattr_addr + inline_size, xattr_addr, PAGE_SIZE); 262 f2fs_put_page(xpage, 1); 263 } 264 265 header = XATTR_HDR(txattr_addr); 266 267 /* never been allocated xattrs */ 268 if (le32_to_cpu(header->h_magic) != F2FS_XATTR_MAGIC) { 269 header->h_magic = cpu_to_le32(F2FS_XATTR_MAGIC); 270 header->h_refcount = cpu_to_le32(1); 271 } 272 return txattr_addr; 273 fail: 274 kzfree(txattr_addr); 275 return NULL; 276 } 277 278 static inline int write_all_xattrs(struct inode *inode, __u32 hsize, 279 void *txattr_addr, struct page *ipage) 280 { 281 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 282 size_t inline_size = 0; 283 void *xattr_addr; 284 struct page *xpage; 285 nid_t new_nid = 0; 286 int err; 287 288 inline_size = inline_xattr_size(inode); 289 290 if (hsize > inline_size && !F2FS_I(inode)->i_xattr_nid) 291 if (!alloc_nid(sbi, &new_nid)) 292 return -ENOSPC; 293 294 /* write to inline xattr */ 295 if (inline_size) { 296 struct page *page = NULL; 297 void *inline_addr; 298 299 if (ipage) { 300 inline_addr = inline_xattr_addr(ipage); 301 f2fs_wait_on_page_writeback(ipage, NODE, true); 302 set_page_dirty(ipage); 303 } else { 304 page = get_node_page(sbi, inode->i_ino); 305 if (IS_ERR(page)) { 306 alloc_nid_failed(sbi, new_nid); 307 return PTR_ERR(page); 308 } 309 inline_addr = inline_xattr_addr(page); 310 f2fs_wait_on_page_writeback(page, NODE, true); 311 } 312 memcpy(inline_addr, txattr_addr, inline_size); 313 f2fs_put_page(page, 1); 314 315 /* no need to use xattr node block */ 316 if (hsize <= inline_size) { 317 err = truncate_xattr_node(inode, ipage); 318 alloc_nid_failed(sbi, new_nid); 319 return err; 320 } 321 } 322 323 /* write to xattr node block */ 324 if (F2FS_I(inode)->i_xattr_nid) { 325 xpage = get_node_page(sbi, F2FS_I(inode)->i_xattr_nid); 326 if (IS_ERR(xpage)) { 327 alloc_nid_failed(sbi, new_nid); 328 return PTR_ERR(xpage); 329 } 330 f2fs_bug_on(sbi, new_nid); 331 f2fs_wait_on_page_writeback(xpage, NODE, true); 332 } else { 333 struct dnode_of_data dn; 334 set_new_dnode(&dn, inode, NULL, NULL, new_nid); 335 xpage = new_node_page(&dn, XATTR_NODE_OFFSET, ipage); 336 if (IS_ERR(xpage)) { 337 alloc_nid_failed(sbi, new_nid); 338 return PTR_ERR(xpage); 339 } 340 alloc_nid_done(sbi, new_nid); 341 } 342 343 xattr_addr = page_address(xpage); 344 memcpy(xattr_addr, txattr_addr + inline_size, PAGE_SIZE - 345 sizeof(struct node_footer)); 346 set_page_dirty(xpage); 347 f2fs_put_page(xpage, 1); 348 349 /* need to checkpoint during fsync */ 350 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi)); 351 return 0; 352 } 353 354 int f2fs_getxattr(struct inode *inode, int index, const char *name, 355 void *buffer, size_t buffer_size, struct page *ipage) 356 { 357 struct f2fs_xattr_entry *entry; 358 void *base_addr; 359 int error = 0; 360 size_t size, len; 361 362 if (name == NULL) 363 return -EINVAL; 364 365 len = strlen(name); 366 if (len > F2FS_NAME_LEN) 367 return -ERANGE; 368 369 base_addr = read_all_xattrs(inode, ipage); 370 if (!base_addr) 371 return -ENOMEM; 372 373 entry = __find_xattr(base_addr, index, len, name); 374 if (IS_XATTR_LAST_ENTRY(entry)) { 375 error = -ENODATA; 376 goto cleanup; 377 } 378 379 size = le16_to_cpu(entry->e_value_size); 380 381 if (buffer && size > buffer_size) { 382 error = -ERANGE; 383 goto cleanup; 384 } 385 386 if (buffer) { 387 char *pval = entry->e_name + entry->e_name_len; 388 memcpy(buffer, pval, size); 389 } 390 error = size; 391 392 cleanup: 393 kzfree(base_addr); 394 return error; 395 } 396 397 ssize_t f2fs_listxattr(struct dentry *dentry, char *buffer, size_t buffer_size) 398 { 399 struct inode *inode = d_inode(dentry); 400 struct f2fs_xattr_entry *entry; 401 void *base_addr; 402 int error = 0; 403 size_t rest = buffer_size; 404 405 base_addr = read_all_xattrs(inode, NULL); 406 if (!base_addr) 407 return -ENOMEM; 408 409 list_for_each_xattr(entry, base_addr) { 410 const struct xattr_handler *handler = 411 f2fs_xattr_handler(entry->e_name_index); 412 const char *prefix; 413 size_t prefix_len; 414 size_t size; 415 416 if (!handler || (handler->list && !handler->list(dentry))) 417 continue; 418 419 prefix = handler->prefix ?: handler->name; 420 prefix_len = strlen(prefix); 421 size = prefix_len + entry->e_name_len + 1; 422 if (buffer) { 423 if (size > rest) { 424 error = -ERANGE; 425 goto cleanup; 426 } 427 memcpy(buffer, prefix, prefix_len); 428 buffer += prefix_len; 429 memcpy(buffer, entry->e_name, entry->e_name_len); 430 buffer += entry->e_name_len; 431 *buffer++ = 0; 432 } 433 rest -= size; 434 } 435 error = buffer_size - rest; 436 cleanup: 437 kzfree(base_addr); 438 return error; 439 } 440 441 static int __f2fs_setxattr(struct inode *inode, int index, 442 const char *name, const void *value, size_t size, 443 struct page *ipage, int flags) 444 { 445 struct f2fs_xattr_entry *here, *last; 446 void *base_addr; 447 int found, newsize; 448 size_t len; 449 __u32 new_hsize; 450 int error = 0; 451 452 if (name == NULL) 453 return -EINVAL; 454 455 if (value == NULL) 456 size = 0; 457 458 len = strlen(name); 459 460 if (len > F2FS_NAME_LEN) 461 return -ERANGE; 462 463 if (size > MAX_VALUE_LEN(inode)) 464 return -E2BIG; 465 466 base_addr = read_all_xattrs(inode, ipage); 467 if (!base_addr) 468 return -ENOMEM; 469 470 /* find entry with wanted name. */ 471 here = __find_xattr(base_addr, index, len, name); 472 473 found = IS_XATTR_LAST_ENTRY(here) ? 0 : 1; 474 475 if ((flags & XATTR_REPLACE) && !found) { 476 error = -ENODATA; 477 goto exit; 478 } else if ((flags & XATTR_CREATE) && found) { 479 error = -EEXIST; 480 goto exit; 481 } 482 483 last = here; 484 while (!IS_XATTR_LAST_ENTRY(last)) 485 last = XATTR_NEXT_ENTRY(last); 486 487 newsize = XATTR_ALIGN(sizeof(struct f2fs_xattr_entry) + len + size); 488 489 /* 1. Check space */ 490 if (value) { 491 int free; 492 /* 493 * If value is NULL, it is remove operation. 494 * In case of update operation, we calculate free. 495 */ 496 free = MIN_OFFSET(inode) - ((char *)last - (char *)base_addr); 497 if (found) 498 free = free + ENTRY_SIZE(here); 499 500 if (unlikely(free < newsize)) { 501 error = -E2BIG; 502 goto exit; 503 } 504 } 505 506 /* 2. Remove old entry */ 507 if (found) { 508 /* 509 * If entry is found, remove old entry. 510 * If not found, remove operation is not needed. 511 */ 512 struct f2fs_xattr_entry *next = XATTR_NEXT_ENTRY(here); 513 int oldsize = ENTRY_SIZE(here); 514 515 memmove(here, next, (char *)last - (char *)next); 516 last = (struct f2fs_xattr_entry *)((char *)last - oldsize); 517 memset(last, 0, oldsize); 518 } 519 520 new_hsize = (char *)last - (char *)base_addr; 521 522 /* 3. Write new entry */ 523 if (value) { 524 char *pval; 525 /* 526 * Before we come here, old entry is removed. 527 * We just write new entry. 528 */ 529 last->e_name_index = index; 530 last->e_name_len = len; 531 memcpy(last->e_name, name, len); 532 pval = last->e_name + len; 533 memcpy(pval, value, size); 534 last->e_value_size = cpu_to_le16(size); 535 new_hsize += newsize; 536 } 537 538 error = write_all_xattrs(inode, new_hsize, base_addr, ipage); 539 if (error) 540 goto exit; 541 542 if (is_inode_flag_set(inode, FI_ACL_MODE)) { 543 inode->i_mode = F2FS_I(inode)->i_acl_mode; 544 inode->i_ctime = CURRENT_TIME; 545 clear_inode_flag(inode, FI_ACL_MODE); 546 } 547 if (index == F2FS_XATTR_INDEX_ENCRYPTION && 548 !strcmp(name, F2FS_XATTR_NAME_ENCRYPTION_CONTEXT)) 549 f2fs_set_encrypted_inode(inode); 550 f2fs_mark_inode_dirty_sync(inode); 551 exit: 552 kzfree(base_addr); 553 return error; 554 } 555 556 int f2fs_setxattr(struct inode *inode, int index, const char *name, 557 const void *value, size_t size, 558 struct page *ipage, int flags) 559 { 560 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 561 int err; 562 563 /* this case is only from init_inode_metadata */ 564 if (ipage) 565 return __f2fs_setxattr(inode, index, name, value, 566 size, ipage, flags); 567 f2fs_balance_fs(sbi, true); 568 569 f2fs_lock_op(sbi); 570 /* protect xattr_ver */ 571 down_write(&F2FS_I(inode)->i_sem); 572 err = __f2fs_setxattr(inode, index, name, value, size, ipage, flags); 573 up_write(&F2FS_I(inode)->i_sem); 574 f2fs_unlock_op(sbi); 575 576 f2fs_update_time(sbi, REQ_TIME); 577 return err; 578 } 579