xref: /openbmc/linux/fs/f2fs/super.c (revision ec2da07c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "gc.h"
32 #include "trace.h"
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/f2fs.h>
36 
37 static struct kmem_cache *f2fs_inode_cachep;
38 
39 #ifdef CONFIG_F2FS_FAULT_INJECTION
40 
41 const char *f2fs_fault_name[FAULT_MAX] = {
42 	[FAULT_KMALLOC]		= "kmalloc",
43 	[FAULT_KVMALLOC]	= "kvmalloc",
44 	[FAULT_PAGE_ALLOC]	= "page alloc",
45 	[FAULT_PAGE_GET]	= "page get",
46 	[FAULT_ALLOC_BIO]	= "alloc bio",
47 	[FAULT_ALLOC_NID]	= "alloc nid",
48 	[FAULT_ORPHAN]		= "orphan",
49 	[FAULT_BLOCK]		= "no more block",
50 	[FAULT_DIR_DEPTH]	= "too big dir depth",
51 	[FAULT_EVICT_INODE]	= "evict_inode fail",
52 	[FAULT_TRUNCATE]	= "truncate fail",
53 	[FAULT_READ_IO]		= "read IO error",
54 	[FAULT_CHECKPOINT]	= "checkpoint error",
55 	[FAULT_DISCARD]		= "discard error",
56 	[FAULT_WRITE_IO]	= "write IO error",
57 };
58 
59 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
60 							unsigned int type)
61 {
62 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
63 
64 	if (rate) {
65 		atomic_set(&ffi->inject_ops, 0);
66 		ffi->inject_rate = rate;
67 	}
68 
69 	if (type)
70 		ffi->inject_type = type;
71 
72 	if (!rate && !type)
73 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
74 }
75 #endif
76 
77 /* f2fs-wide shrinker description */
78 static struct shrinker f2fs_shrinker_info = {
79 	.scan_objects = f2fs_shrink_scan,
80 	.count_objects = f2fs_shrink_count,
81 	.seeks = DEFAULT_SEEKS,
82 };
83 
84 enum {
85 	Opt_gc_background,
86 	Opt_disable_roll_forward,
87 	Opt_norecovery,
88 	Opt_discard,
89 	Opt_nodiscard,
90 	Opt_noheap,
91 	Opt_heap,
92 	Opt_user_xattr,
93 	Opt_nouser_xattr,
94 	Opt_acl,
95 	Opt_noacl,
96 	Opt_active_logs,
97 	Opt_disable_ext_identify,
98 	Opt_inline_xattr,
99 	Opt_noinline_xattr,
100 	Opt_inline_xattr_size,
101 	Opt_inline_data,
102 	Opt_inline_dentry,
103 	Opt_noinline_dentry,
104 	Opt_flush_merge,
105 	Opt_noflush_merge,
106 	Opt_nobarrier,
107 	Opt_fastboot,
108 	Opt_extent_cache,
109 	Opt_noextent_cache,
110 	Opt_noinline_data,
111 	Opt_data_flush,
112 	Opt_reserve_root,
113 	Opt_resgid,
114 	Opt_resuid,
115 	Opt_mode,
116 	Opt_io_size_bits,
117 	Opt_fault_injection,
118 	Opt_fault_type,
119 	Opt_lazytime,
120 	Opt_nolazytime,
121 	Opt_quota,
122 	Opt_noquota,
123 	Opt_usrquota,
124 	Opt_grpquota,
125 	Opt_prjquota,
126 	Opt_usrjquota,
127 	Opt_grpjquota,
128 	Opt_prjjquota,
129 	Opt_offusrjquota,
130 	Opt_offgrpjquota,
131 	Opt_offprjjquota,
132 	Opt_jqfmt_vfsold,
133 	Opt_jqfmt_vfsv0,
134 	Opt_jqfmt_vfsv1,
135 	Opt_whint,
136 	Opt_alloc,
137 	Opt_fsync,
138 	Opt_test_dummy_encryption,
139 	Opt_checkpoint_disable,
140 	Opt_checkpoint_disable_cap,
141 	Opt_checkpoint_disable_cap_perc,
142 	Opt_checkpoint_enable,
143 	Opt_err,
144 };
145 
146 static match_table_t f2fs_tokens = {
147 	{Opt_gc_background, "background_gc=%s"},
148 	{Opt_disable_roll_forward, "disable_roll_forward"},
149 	{Opt_norecovery, "norecovery"},
150 	{Opt_discard, "discard"},
151 	{Opt_nodiscard, "nodiscard"},
152 	{Opt_noheap, "no_heap"},
153 	{Opt_heap, "heap"},
154 	{Opt_user_xattr, "user_xattr"},
155 	{Opt_nouser_xattr, "nouser_xattr"},
156 	{Opt_acl, "acl"},
157 	{Opt_noacl, "noacl"},
158 	{Opt_active_logs, "active_logs=%u"},
159 	{Opt_disable_ext_identify, "disable_ext_identify"},
160 	{Opt_inline_xattr, "inline_xattr"},
161 	{Opt_noinline_xattr, "noinline_xattr"},
162 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
163 	{Opt_inline_data, "inline_data"},
164 	{Opt_inline_dentry, "inline_dentry"},
165 	{Opt_noinline_dentry, "noinline_dentry"},
166 	{Opt_flush_merge, "flush_merge"},
167 	{Opt_noflush_merge, "noflush_merge"},
168 	{Opt_nobarrier, "nobarrier"},
169 	{Opt_fastboot, "fastboot"},
170 	{Opt_extent_cache, "extent_cache"},
171 	{Opt_noextent_cache, "noextent_cache"},
172 	{Opt_noinline_data, "noinline_data"},
173 	{Opt_data_flush, "data_flush"},
174 	{Opt_reserve_root, "reserve_root=%u"},
175 	{Opt_resgid, "resgid=%u"},
176 	{Opt_resuid, "resuid=%u"},
177 	{Opt_mode, "mode=%s"},
178 	{Opt_io_size_bits, "io_bits=%u"},
179 	{Opt_fault_injection, "fault_injection=%u"},
180 	{Opt_fault_type, "fault_type=%u"},
181 	{Opt_lazytime, "lazytime"},
182 	{Opt_nolazytime, "nolazytime"},
183 	{Opt_quota, "quota"},
184 	{Opt_noquota, "noquota"},
185 	{Opt_usrquota, "usrquota"},
186 	{Opt_grpquota, "grpquota"},
187 	{Opt_prjquota, "prjquota"},
188 	{Opt_usrjquota, "usrjquota=%s"},
189 	{Opt_grpjquota, "grpjquota=%s"},
190 	{Opt_prjjquota, "prjjquota=%s"},
191 	{Opt_offusrjquota, "usrjquota="},
192 	{Opt_offgrpjquota, "grpjquota="},
193 	{Opt_offprjjquota, "prjjquota="},
194 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
195 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
196 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
197 	{Opt_whint, "whint_mode=%s"},
198 	{Opt_alloc, "alloc_mode=%s"},
199 	{Opt_fsync, "fsync_mode=%s"},
200 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
201 	{Opt_checkpoint_disable, "checkpoint=disable"},
202 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
203 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
204 	{Opt_checkpoint_enable, "checkpoint=enable"},
205 	{Opt_err, NULL},
206 };
207 
208 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
209 {
210 	struct va_format vaf;
211 	va_list args;
212 	int level;
213 
214 	va_start(args, fmt);
215 
216 	level = printk_get_level(fmt);
217 	vaf.fmt = printk_skip_level(fmt);
218 	vaf.va = &args;
219 	printk("%c%cF2FS-fs (%s): %pV\n",
220 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
221 
222 	va_end(args);
223 }
224 
225 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
226 {
227 	block_t limit = min((sbi->user_block_count << 1) / 1000,
228 			sbi->user_block_count - sbi->reserved_blocks);
229 
230 	/* limit is 0.2% */
231 	if (test_opt(sbi, RESERVE_ROOT) &&
232 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
233 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
234 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
235 			  F2FS_OPTION(sbi).root_reserved_blocks);
236 	}
237 	if (!test_opt(sbi, RESERVE_ROOT) &&
238 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
239 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
240 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
241 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
242 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
243 			  from_kuid_munged(&init_user_ns,
244 					   F2FS_OPTION(sbi).s_resuid),
245 			  from_kgid_munged(&init_user_ns,
246 					   F2FS_OPTION(sbi).s_resgid));
247 }
248 
249 static void init_once(void *foo)
250 {
251 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
252 
253 	inode_init_once(&fi->vfs_inode);
254 }
255 
256 #ifdef CONFIG_QUOTA
257 static const char * const quotatypes[] = INITQFNAMES;
258 #define QTYPE2NAME(t) (quotatypes[t])
259 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
260 							substring_t *args)
261 {
262 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
263 	char *qname;
264 	int ret = -EINVAL;
265 
266 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
267 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
268 		return -EINVAL;
269 	}
270 	if (f2fs_sb_has_quota_ino(sbi)) {
271 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
272 		return 0;
273 	}
274 
275 	qname = match_strdup(args);
276 	if (!qname) {
277 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
278 		return -ENOMEM;
279 	}
280 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
281 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
282 			ret = 0;
283 		else
284 			f2fs_err(sbi, "%s quota file already specified",
285 				 QTYPE2NAME(qtype));
286 		goto errout;
287 	}
288 	if (strchr(qname, '/')) {
289 		f2fs_err(sbi, "quotafile must be on filesystem root");
290 		goto errout;
291 	}
292 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
293 	set_opt(sbi, QUOTA);
294 	return 0;
295 errout:
296 	kvfree(qname);
297 	return ret;
298 }
299 
300 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
301 {
302 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
303 
304 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
305 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
306 		return -EINVAL;
307 	}
308 	kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
309 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
310 	return 0;
311 }
312 
313 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
314 {
315 	/*
316 	 * We do the test below only for project quotas. 'usrquota' and
317 	 * 'grpquota' mount options are allowed even without quota feature
318 	 * to support legacy quotas in quota files.
319 	 */
320 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
321 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
322 		return -1;
323 	}
324 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
325 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
326 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
327 		if (test_opt(sbi, USRQUOTA) &&
328 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
329 			clear_opt(sbi, USRQUOTA);
330 
331 		if (test_opt(sbi, GRPQUOTA) &&
332 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
333 			clear_opt(sbi, GRPQUOTA);
334 
335 		if (test_opt(sbi, PRJQUOTA) &&
336 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
337 			clear_opt(sbi, PRJQUOTA);
338 
339 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
340 				test_opt(sbi, PRJQUOTA)) {
341 			f2fs_err(sbi, "old and new quota format mixing");
342 			return -1;
343 		}
344 
345 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
346 			f2fs_err(sbi, "journaled quota format not specified");
347 			return -1;
348 		}
349 	}
350 
351 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
352 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
353 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
354 	}
355 	return 0;
356 }
357 #endif
358 
359 static int parse_options(struct super_block *sb, char *options)
360 {
361 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
362 	substring_t args[MAX_OPT_ARGS];
363 	char *p, *name;
364 	int arg = 0;
365 	kuid_t uid;
366 	kgid_t gid;
367 #ifdef CONFIG_QUOTA
368 	int ret;
369 #endif
370 
371 	if (!options)
372 		return 0;
373 
374 	while ((p = strsep(&options, ",")) != NULL) {
375 		int token;
376 		if (!*p)
377 			continue;
378 		/*
379 		 * Initialize args struct so we know whether arg was
380 		 * found; some options take optional arguments.
381 		 */
382 		args[0].to = args[0].from = NULL;
383 		token = match_token(p, f2fs_tokens, args);
384 
385 		switch (token) {
386 		case Opt_gc_background:
387 			name = match_strdup(&args[0]);
388 
389 			if (!name)
390 				return -ENOMEM;
391 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
392 				set_opt(sbi, BG_GC);
393 				clear_opt(sbi, FORCE_FG_GC);
394 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
395 				clear_opt(sbi, BG_GC);
396 				clear_opt(sbi, FORCE_FG_GC);
397 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
398 				set_opt(sbi, BG_GC);
399 				set_opt(sbi, FORCE_FG_GC);
400 			} else {
401 				kvfree(name);
402 				return -EINVAL;
403 			}
404 			kvfree(name);
405 			break;
406 		case Opt_disable_roll_forward:
407 			set_opt(sbi, DISABLE_ROLL_FORWARD);
408 			break;
409 		case Opt_norecovery:
410 			/* this option mounts f2fs with ro */
411 			set_opt(sbi, DISABLE_ROLL_FORWARD);
412 			if (!f2fs_readonly(sb))
413 				return -EINVAL;
414 			break;
415 		case Opt_discard:
416 			set_opt(sbi, DISCARD);
417 			break;
418 		case Opt_nodiscard:
419 			if (f2fs_sb_has_blkzoned(sbi)) {
420 				f2fs_warn(sbi, "discard is required for zoned block devices");
421 				return -EINVAL;
422 			}
423 			clear_opt(sbi, DISCARD);
424 			break;
425 		case Opt_noheap:
426 			set_opt(sbi, NOHEAP);
427 			break;
428 		case Opt_heap:
429 			clear_opt(sbi, NOHEAP);
430 			break;
431 #ifdef CONFIG_F2FS_FS_XATTR
432 		case Opt_user_xattr:
433 			set_opt(sbi, XATTR_USER);
434 			break;
435 		case Opt_nouser_xattr:
436 			clear_opt(sbi, XATTR_USER);
437 			break;
438 		case Opt_inline_xattr:
439 			set_opt(sbi, INLINE_XATTR);
440 			break;
441 		case Opt_noinline_xattr:
442 			clear_opt(sbi, INLINE_XATTR);
443 			break;
444 		case Opt_inline_xattr_size:
445 			if (args->from && match_int(args, &arg))
446 				return -EINVAL;
447 			set_opt(sbi, INLINE_XATTR_SIZE);
448 			F2FS_OPTION(sbi).inline_xattr_size = arg;
449 			break;
450 #else
451 		case Opt_user_xattr:
452 			f2fs_info(sbi, "user_xattr options not supported");
453 			break;
454 		case Opt_nouser_xattr:
455 			f2fs_info(sbi, "nouser_xattr options not supported");
456 			break;
457 		case Opt_inline_xattr:
458 			f2fs_info(sbi, "inline_xattr options not supported");
459 			break;
460 		case Opt_noinline_xattr:
461 			f2fs_info(sbi, "noinline_xattr options not supported");
462 			break;
463 #endif
464 #ifdef CONFIG_F2FS_FS_POSIX_ACL
465 		case Opt_acl:
466 			set_opt(sbi, POSIX_ACL);
467 			break;
468 		case Opt_noacl:
469 			clear_opt(sbi, POSIX_ACL);
470 			break;
471 #else
472 		case Opt_acl:
473 			f2fs_info(sbi, "acl options not supported");
474 			break;
475 		case Opt_noacl:
476 			f2fs_info(sbi, "noacl options not supported");
477 			break;
478 #endif
479 		case Opt_active_logs:
480 			if (args->from && match_int(args, &arg))
481 				return -EINVAL;
482 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
483 				return -EINVAL;
484 			F2FS_OPTION(sbi).active_logs = arg;
485 			break;
486 		case Opt_disable_ext_identify:
487 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
488 			break;
489 		case Opt_inline_data:
490 			set_opt(sbi, INLINE_DATA);
491 			break;
492 		case Opt_inline_dentry:
493 			set_opt(sbi, INLINE_DENTRY);
494 			break;
495 		case Opt_noinline_dentry:
496 			clear_opt(sbi, INLINE_DENTRY);
497 			break;
498 		case Opt_flush_merge:
499 			set_opt(sbi, FLUSH_MERGE);
500 			break;
501 		case Opt_noflush_merge:
502 			clear_opt(sbi, FLUSH_MERGE);
503 			break;
504 		case Opt_nobarrier:
505 			set_opt(sbi, NOBARRIER);
506 			break;
507 		case Opt_fastboot:
508 			set_opt(sbi, FASTBOOT);
509 			break;
510 		case Opt_extent_cache:
511 			set_opt(sbi, EXTENT_CACHE);
512 			break;
513 		case Opt_noextent_cache:
514 			clear_opt(sbi, EXTENT_CACHE);
515 			break;
516 		case Opt_noinline_data:
517 			clear_opt(sbi, INLINE_DATA);
518 			break;
519 		case Opt_data_flush:
520 			set_opt(sbi, DATA_FLUSH);
521 			break;
522 		case Opt_reserve_root:
523 			if (args->from && match_int(args, &arg))
524 				return -EINVAL;
525 			if (test_opt(sbi, RESERVE_ROOT)) {
526 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
527 					  F2FS_OPTION(sbi).root_reserved_blocks);
528 			} else {
529 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
530 				set_opt(sbi, RESERVE_ROOT);
531 			}
532 			break;
533 		case Opt_resuid:
534 			if (args->from && match_int(args, &arg))
535 				return -EINVAL;
536 			uid = make_kuid(current_user_ns(), arg);
537 			if (!uid_valid(uid)) {
538 				f2fs_err(sbi, "Invalid uid value %d", arg);
539 				return -EINVAL;
540 			}
541 			F2FS_OPTION(sbi).s_resuid = uid;
542 			break;
543 		case Opt_resgid:
544 			if (args->from && match_int(args, &arg))
545 				return -EINVAL;
546 			gid = make_kgid(current_user_ns(), arg);
547 			if (!gid_valid(gid)) {
548 				f2fs_err(sbi, "Invalid gid value %d", arg);
549 				return -EINVAL;
550 			}
551 			F2FS_OPTION(sbi).s_resgid = gid;
552 			break;
553 		case Opt_mode:
554 			name = match_strdup(&args[0]);
555 
556 			if (!name)
557 				return -ENOMEM;
558 			if (strlen(name) == 8 &&
559 					!strncmp(name, "adaptive", 8)) {
560 				if (f2fs_sb_has_blkzoned(sbi)) {
561 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
562 					kvfree(name);
563 					return -EINVAL;
564 				}
565 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
566 			} else if (strlen(name) == 3 &&
567 					!strncmp(name, "lfs", 3)) {
568 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
569 			} else {
570 				kvfree(name);
571 				return -EINVAL;
572 			}
573 			kvfree(name);
574 			break;
575 		case Opt_io_size_bits:
576 			if (args->from && match_int(args, &arg))
577 				return -EINVAL;
578 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
579 				f2fs_warn(sbi, "Not support %d, larger than %d",
580 					  1 << arg, BIO_MAX_PAGES);
581 				return -EINVAL;
582 			}
583 			F2FS_OPTION(sbi).write_io_size_bits = arg;
584 			break;
585 #ifdef CONFIG_F2FS_FAULT_INJECTION
586 		case Opt_fault_injection:
587 			if (args->from && match_int(args, &arg))
588 				return -EINVAL;
589 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
590 			set_opt(sbi, FAULT_INJECTION);
591 			break;
592 
593 		case Opt_fault_type:
594 			if (args->from && match_int(args, &arg))
595 				return -EINVAL;
596 			f2fs_build_fault_attr(sbi, 0, arg);
597 			set_opt(sbi, FAULT_INJECTION);
598 			break;
599 #else
600 		case Opt_fault_injection:
601 			f2fs_info(sbi, "fault_injection options not supported");
602 			break;
603 
604 		case Opt_fault_type:
605 			f2fs_info(sbi, "fault_type options not supported");
606 			break;
607 #endif
608 		case Opt_lazytime:
609 			sb->s_flags |= SB_LAZYTIME;
610 			break;
611 		case Opt_nolazytime:
612 			sb->s_flags &= ~SB_LAZYTIME;
613 			break;
614 #ifdef CONFIG_QUOTA
615 		case Opt_quota:
616 		case Opt_usrquota:
617 			set_opt(sbi, USRQUOTA);
618 			break;
619 		case Opt_grpquota:
620 			set_opt(sbi, GRPQUOTA);
621 			break;
622 		case Opt_prjquota:
623 			set_opt(sbi, PRJQUOTA);
624 			break;
625 		case Opt_usrjquota:
626 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
627 			if (ret)
628 				return ret;
629 			break;
630 		case Opt_grpjquota:
631 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
632 			if (ret)
633 				return ret;
634 			break;
635 		case Opt_prjjquota:
636 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
637 			if (ret)
638 				return ret;
639 			break;
640 		case Opt_offusrjquota:
641 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
642 			if (ret)
643 				return ret;
644 			break;
645 		case Opt_offgrpjquota:
646 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
647 			if (ret)
648 				return ret;
649 			break;
650 		case Opt_offprjjquota:
651 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
652 			if (ret)
653 				return ret;
654 			break;
655 		case Opt_jqfmt_vfsold:
656 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
657 			break;
658 		case Opt_jqfmt_vfsv0:
659 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
660 			break;
661 		case Opt_jqfmt_vfsv1:
662 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
663 			break;
664 		case Opt_noquota:
665 			clear_opt(sbi, QUOTA);
666 			clear_opt(sbi, USRQUOTA);
667 			clear_opt(sbi, GRPQUOTA);
668 			clear_opt(sbi, PRJQUOTA);
669 			break;
670 #else
671 		case Opt_quota:
672 		case Opt_usrquota:
673 		case Opt_grpquota:
674 		case Opt_prjquota:
675 		case Opt_usrjquota:
676 		case Opt_grpjquota:
677 		case Opt_prjjquota:
678 		case Opt_offusrjquota:
679 		case Opt_offgrpjquota:
680 		case Opt_offprjjquota:
681 		case Opt_jqfmt_vfsold:
682 		case Opt_jqfmt_vfsv0:
683 		case Opt_jqfmt_vfsv1:
684 		case Opt_noquota:
685 			f2fs_info(sbi, "quota operations not supported");
686 			break;
687 #endif
688 		case Opt_whint:
689 			name = match_strdup(&args[0]);
690 			if (!name)
691 				return -ENOMEM;
692 			if (strlen(name) == 10 &&
693 					!strncmp(name, "user-based", 10)) {
694 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
695 			} else if (strlen(name) == 3 &&
696 					!strncmp(name, "off", 3)) {
697 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
698 			} else if (strlen(name) == 8 &&
699 					!strncmp(name, "fs-based", 8)) {
700 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
701 			} else {
702 				kvfree(name);
703 				return -EINVAL;
704 			}
705 			kvfree(name);
706 			break;
707 		case Opt_alloc:
708 			name = match_strdup(&args[0]);
709 			if (!name)
710 				return -ENOMEM;
711 
712 			if (strlen(name) == 7 &&
713 					!strncmp(name, "default", 7)) {
714 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
715 			} else if (strlen(name) == 5 &&
716 					!strncmp(name, "reuse", 5)) {
717 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
718 			} else {
719 				kvfree(name);
720 				return -EINVAL;
721 			}
722 			kvfree(name);
723 			break;
724 		case Opt_fsync:
725 			name = match_strdup(&args[0]);
726 			if (!name)
727 				return -ENOMEM;
728 			if (strlen(name) == 5 &&
729 					!strncmp(name, "posix", 5)) {
730 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
731 			} else if (strlen(name) == 6 &&
732 					!strncmp(name, "strict", 6)) {
733 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
734 			} else if (strlen(name) == 9 &&
735 					!strncmp(name, "nobarrier", 9)) {
736 				F2FS_OPTION(sbi).fsync_mode =
737 							FSYNC_MODE_NOBARRIER;
738 			} else {
739 				kvfree(name);
740 				return -EINVAL;
741 			}
742 			kvfree(name);
743 			break;
744 		case Opt_test_dummy_encryption:
745 #ifdef CONFIG_FS_ENCRYPTION
746 			if (!f2fs_sb_has_encrypt(sbi)) {
747 				f2fs_err(sbi, "Encrypt feature is off");
748 				return -EINVAL;
749 			}
750 
751 			F2FS_OPTION(sbi).test_dummy_encryption = true;
752 			f2fs_info(sbi, "Test dummy encryption mode enabled");
753 #else
754 			f2fs_info(sbi, "Test dummy encryption mount option ignored");
755 #endif
756 			break;
757 		case Opt_checkpoint_disable_cap_perc:
758 			if (args->from && match_int(args, &arg))
759 				return -EINVAL;
760 			if (arg < 0 || arg > 100)
761 				return -EINVAL;
762 			if (arg == 100)
763 				F2FS_OPTION(sbi).unusable_cap =
764 					sbi->user_block_count;
765 			else
766 				F2FS_OPTION(sbi).unusable_cap =
767 					(sbi->user_block_count / 100) *	arg;
768 			set_opt(sbi, DISABLE_CHECKPOINT);
769 			break;
770 		case Opt_checkpoint_disable_cap:
771 			if (args->from && match_int(args, &arg))
772 				return -EINVAL;
773 			F2FS_OPTION(sbi).unusable_cap = arg;
774 			set_opt(sbi, DISABLE_CHECKPOINT);
775 			break;
776 		case Opt_checkpoint_disable:
777 			set_opt(sbi, DISABLE_CHECKPOINT);
778 			break;
779 		case Opt_checkpoint_enable:
780 			clear_opt(sbi, DISABLE_CHECKPOINT);
781 			break;
782 		default:
783 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
784 				 p);
785 			return -EINVAL;
786 		}
787 	}
788 #ifdef CONFIG_QUOTA
789 	if (f2fs_check_quota_options(sbi))
790 		return -EINVAL;
791 #else
792 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
793 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
794 		return -EINVAL;
795 	}
796 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
797 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
798 		return -EINVAL;
799 	}
800 #endif
801 
802 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
803 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
804 			 F2FS_IO_SIZE_KB(sbi));
805 		return -EINVAL;
806 	}
807 
808 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
809 		int min_size, max_size;
810 
811 		if (!f2fs_sb_has_extra_attr(sbi) ||
812 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
813 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
814 			return -EINVAL;
815 		}
816 		if (!test_opt(sbi, INLINE_XATTR)) {
817 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
818 			return -EINVAL;
819 		}
820 
821 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
822 		max_size = MAX_INLINE_XATTR_SIZE;
823 
824 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
825 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
826 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
827 				 min_size, max_size);
828 			return -EINVAL;
829 		}
830 	}
831 
832 	if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) {
833 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
834 		return -EINVAL;
835 	}
836 
837 	/* Not pass down write hints if the number of active logs is lesser
838 	 * than NR_CURSEG_TYPE.
839 	 */
840 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
841 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
842 	return 0;
843 }
844 
845 static struct inode *f2fs_alloc_inode(struct super_block *sb)
846 {
847 	struct f2fs_inode_info *fi;
848 
849 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
850 	if (!fi)
851 		return NULL;
852 
853 	init_once((void *) fi);
854 
855 	/* Initialize f2fs-specific inode info */
856 	atomic_set(&fi->dirty_pages, 0);
857 	init_rwsem(&fi->i_sem);
858 	INIT_LIST_HEAD(&fi->dirty_list);
859 	INIT_LIST_HEAD(&fi->gdirty_list);
860 	INIT_LIST_HEAD(&fi->inmem_ilist);
861 	INIT_LIST_HEAD(&fi->inmem_pages);
862 	mutex_init(&fi->inmem_lock);
863 	init_rwsem(&fi->i_gc_rwsem[READ]);
864 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
865 	init_rwsem(&fi->i_mmap_sem);
866 	init_rwsem(&fi->i_xattr_sem);
867 
868 	/* Will be used by directory only */
869 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
870 
871 	return &fi->vfs_inode;
872 }
873 
874 static int f2fs_drop_inode(struct inode *inode)
875 {
876 	int ret;
877 	/*
878 	 * This is to avoid a deadlock condition like below.
879 	 * writeback_single_inode(inode)
880 	 *  - f2fs_write_data_page
881 	 *    - f2fs_gc -> iput -> evict
882 	 *       - inode_wait_for_writeback(inode)
883 	 */
884 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
885 		if (!inode->i_nlink && !is_bad_inode(inode)) {
886 			/* to avoid evict_inode call simultaneously */
887 			atomic_inc(&inode->i_count);
888 			spin_unlock(&inode->i_lock);
889 
890 			/* some remained atomic pages should discarded */
891 			if (f2fs_is_atomic_file(inode))
892 				f2fs_drop_inmem_pages(inode);
893 
894 			/* should remain fi->extent_tree for writepage */
895 			f2fs_destroy_extent_node(inode);
896 
897 			sb_start_intwrite(inode->i_sb);
898 			f2fs_i_size_write(inode, 0);
899 
900 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
901 					inode, NULL, 0, DATA);
902 			truncate_inode_pages_final(inode->i_mapping);
903 
904 			if (F2FS_HAS_BLOCKS(inode))
905 				f2fs_truncate(inode);
906 
907 			sb_end_intwrite(inode->i_sb);
908 
909 			spin_lock(&inode->i_lock);
910 			atomic_dec(&inode->i_count);
911 		}
912 		trace_f2fs_drop_inode(inode, 0);
913 		return 0;
914 	}
915 	ret = generic_drop_inode(inode);
916 	trace_f2fs_drop_inode(inode, ret);
917 	return ret;
918 }
919 
920 int f2fs_inode_dirtied(struct inode *inode, bool sync)
921 {
922 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
923 	int ret = 0;
924 
925 	spin_lock(&sbi->inode_lock[DIRTY_META]);
926 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
927 		ret = 1;
928 	} else {
929 		set_inode_flag(inode, FI_DIRTY_INODE);
930 		stat_inc_dirty_inode(sbi, DIRTY_META);
931 	}
932 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
933 		list_add_tail(&F2FS_I(inode)->gdirty_list,
934 				&sbi->inode_list[DIRTY_META]);
935 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
936 	}
937 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
938 	return ret;
939 }
940 
941 void f2fs_inode_synced(struct inode *inode)
942 {
943 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
944 
945 	spin_lock(&sbi->inode_lock[DIRTY_META]);
946 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
947 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
948 		return;
949 	}
950 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
951 		list_del_init(&F2FS_I(inode)->gdirty_list);
952 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
953 	}
954 	clear_inode_flag(inode, FI_DIRTY_INODE);
955 	clear_inode_flag(inode, FI_AUTO_RECOVER);
956 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
957 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
958 }
959 
960 /*
961  * f2fs_dirty_inode() is called from __mark_inode_dirty()
962  *
963  * We should call set_dirty_inode to write the dirty inode through write_inode.
964  */
965 static void f2fs_dirty_inode(struct inode *inode, int flags)
966 {
967 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
968 
969 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
970 			inode->i_ino == F2FS_META_INO(sbi))
971 		return;
972 
973 	if (flags == I_DIRTY_TIME)
974 		return;
975 
976 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
977 		clear_inode_flag(inode, FI_AUTO_RECOVER);
978 
979 	f2fs_inode_dirtied(inode, false);
980 }
981 
982 static void f2fs_free_inode(struct inode *inode)
983 {
984 	fscrypt_free_inode(inode);
985 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
986 }
987 
988 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
989 {
990 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
991 	percpu_counter_destroy(&sbi->total_valid_inode_count);
992 }
993 
994 static void destroy_device_list(struct f2fs_sb_info *sbi)
995 {
996 	int i;
997 
998 	for (i = 0; i < sbi->s_ndevs; i++) {
999 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1000 #ifdef CONFIG_BLK_DEV_ZONED
1001 		kvfree(FDEV(i).blkz_seq);
1002 #endif
1003 	}
1004 	kvfree(sbi->devs);
1005 }
1006 
1007 static void f2fs_put_super(struct super_block *sb)
1008 {
1009 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1010 	int i;
1011 	bool dropped;
1012 
1013 	f2fs_quota_off_umount(sb);
1014 
1015 	/* prevent remaining shrinker jobs */
1016 	mutex_lock(&sbi->umount_mutex);
1017 
1018 	/*
1019 	 * We don't need to do checkpoint when superblock is clean.
1020 	 * But, the previous checkpoint was not done by umount, it needs to do
1021 	 * clean checkpoint again.
1022 	 */
1023 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1024 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1025 		struct cp_control cpc = {
1026 			.reason = CP_UMOUNT,
1027 		};
1028 		f2fs_write_checkpoint(sbi, &cpc);
1029 	}
1030 
1031 	/* be sure to wait for any on-going discard commands */
1032 	dropped = f2fs_issue_discard_timeout(sbi);
1033 
1034 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1035 					!sbi->discard_blks && !dropped) {
1036 		struct cp_control cpc = {
1037 			.reason = CP_UMOUNT | CP_TRIMMED,
1038 		};
1039 		f2fs_write_checkpoint(sbi, &cpc);
1040 	}
1041 
1042 	/*
1043 	 * normally superblock is clean, so we need to release this.
1044 	 * In addition, EIO will skip do checkpoint, we need this as well.
1045 	 */
1046 	f2fs_release_ino_entry(sbi, true);
1047 
1048 	f2fs_leave_shrinker(sbi);
1049 	mutex_unlock(&sbi->umount_mutex);
1050 
1051 	/* our cp_error case, we can wait for any writeback page */
1052 	f2fs_flush_merged_writes(sbi);
1053 
1054 	f2fs_wait_on_all_pages_writeback(sbi);
1055 
1056 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1057 
1058 	iput(sbi->node_inode);
1059 	sbi->node_inode = NULL;
1060 
1061 	iput(sbi->meta_inode);
1062 	sbi->meta_inode = NULL;
1063 
1064 	/*
1065 	 * iput() can update stat information, if f2fs_write_checkpoint()
1066 	 * above failed with error.
1067 	 */
1068 	f2fs_destroy_stats(sbi);
1069 
1070 	/* destroy f2fs internal modules */
1071 	f2fs_destroy_node_manager(sbi);
1072 	f2fs_destroy_segment_manager(sbi);
1073 
1074 	kvfree(sbi->ckpt);
1075 
1076 	f2fs_unregister_sysfs(sbi);
1077 
1078 	sb->s_fs_info = NULL;
1079 	if (sbi->s_chksum_driver)
1080 		crypto_free_shash(sbi->s_chksum_driver);
1081 	kvfree(sbi->raw_super);
1082 
1083 	destroy_device_list(sbi);
1084 	mempool_destroy(sbi->write_io_dummy);
1085 #ifdef CONFIG_QUOTA
1086 	for (i = 0; i < MAXQUOTAS; i++)
1087 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1088 #endif
1089 	destroy_percpu_info(sbi);
1090 	for (i = 0; i < NR_PAGE_TYPE; i++)
1091 		kvfree(sbi->write_io[i]);
1092 	kvfree(sbi);
1093 }
1094 
1095 int f2fs_sync_fs(struct super_block *sb, int sync)
1096 {
1097 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1098 	int err = 0;
1099 
1100 	if (unlikely(f2fs_cp_error(sbi)))
1101 		return 0;
1102 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1103 		return 0;
1104 
1105 	trace_f2fs_sync_fs(sb, sync);
1106 
1107 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1108 		return -EAGAIN;
1109 
1110 	if (sync) {
1111 		struct cp_control cpc;
1112 
1113 		cpc.reason = __get_cp_reason(sbi);
1114 
1115 		mutex_lock(&sbi->gc_mutex);
1116 		err = f2fs_write_checkpoint(sbi, &cpc);
1117 		mutex_unlock(&sbi->gc_mutex);
1118 	}
1119 	f2fs_trace_ios(NULL, 1);
1120 
1121 	return err;
1122 }
1123 
1124 static int f2fs_freeze(struct super_block *sb)
1125 {
1126 	if (f2fs_readonly(sb))
1127 		return 0;
1128 
1129 	/* IO error happened before */
1130 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1131 		return -EIO;
1132 
1133 	/* must be clean, since sync_filesystem() was already called */
1134 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1135 		return -EINVAL;
1136 	return 0;
1137 }
1138 
1139 static int f2fs_unfreeze(struct super_block *sb)
1140 {
1141 	return 0;
1142 }
1143 
1144 #ifdef CONFIG_QUOTA
1145 static int f2fs_statfs_project(struct super_block *sb,
1146 				kprojid_t projid, struct kstatfs *buf)
1147 {
1148 	struct kqid qid;
1149 	struct dquot *dquot;
1150 	u64 limit;
1151 	u64 curblock;
1152 
1153 	qid = make_kqid_projid(projid);
1154 	dquot = dqget(sb, qid);
1155 	if (IS_ERR(dquot))
1156 		return PTR_ERR(dquot);
1157 	spin_lock(&dquot->dq_dqb_lock);
1158 
1159 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1160 		 dquot->dq_dqb.dqb_bsoftlimit :
1161 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1162 	if (limit && buf->f_blocks > limit) {
1163 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1164 		buf->f_blocks = limit;
1165 		buf->f_bfree = buf->f_bavail =
1166 			(buf->f_blocks > curblock) ?
1167 			 (buf->f_blocks - curblock) : 0;
1168 	}
1169 
1170 	limit = dquot->dq_dqb.dqb_isoftlimit ?
1171 		dquot->dq_dqb.dqb_isoftlimit :
1172 		dquot->dq_dqb.dqb_ihardlimit;
1173 	if (limit && buf->f_files > limit) {
1174 		buf->f_files = limit;
1175 		buf->f_ffree =
1176 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1177 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1178 	}
1179 
1180 	spin_unlock(&dquot->dq_dqb_lock);
1181 	dqput(dquot);
1182 	return 0;
1183 }
1184 #endif
1185 
1186 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1187 {
1188 	struct super_block *sb = dentry->d_sb;
1189 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1190 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1191 	block_t total_count, user_block_count, start_count;
1192 	u64 avail_node_count;
1193 
1194 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1195 	user_block_count = sbi->user_block_count;
1196 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1197 	buf->f_type = F2FS_SUPER_MAGIC;
1198 	buf->f_bsize = sbi->blocksize;
1199 
1200 	buf->f_blocks = total_count - start_count;
1201 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1202 						sbi->current_reserved_blocks;
1203 
1204 	spin_lock(&sbi->stat_lock);
1205 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1206 		buf->f_bfree = 0;
1207 	else
1208 		buf->f_bfree -= sbi->unusable_block_count;
1209 	spin_unlock(&sbi->stat_lock);
1210 
1211 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1212 		buf->f_bavail = buf->f_bfree -
1213 				F2FS_OPTION(sbi).root_reserved_blocks;
1214 	else
1215 		buf->f_bavail = 0;
1216 
1217 	avail_node_count = sbi->total_node_count - sbi->nquota_files -
1218 						F2FS_RESERVED_NODE_NUM;
1219 
1220 	if (avail_node_count > user_block_count) {
1221 		buf->f_files = user_block_count;
1222 		buf->f_ffree = buf->f_bavail;
1223 	} else {
1224 		buf->f_files = avail_node_count;
1225 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1226 					buf->f_bavail);
1227 	}
1228 
1229 	buf->f_namelen = F2FS_NAME_LEN;
1230 	buf->f_fsid.val[0] = (u32)id;
1231 	buf->f_fsid.val[1] = (u32)(id >> 32);
1232 
1233 #ifdef CONFIG_QUOTA
1234 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1235 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1236 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1237 	}
1238 #endif
1239 	return 0;
1240 }
1241 
1242 static inline void f2fs_show_quota_options(struct seq_file *seq,
1243 					   struct super_block *sb)
1244 {
1245 #ifdef CONFIG_QUOTA
1246 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1247 
1248 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1249 		char *fmtname = "";
1250 
1251 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1252 		case QFMT_VFS_OLD:
1253 			fmtname = "vfsold";
1254 			break;
1255 		case QFMT_VFS_V0:
1256 			fmtname = "vfsv0";
1257 			break;
1258 		case QFMT_VFS_V1:
1259 			fmtname = "vfsv1";
1260 			break;
1261 		}
1262 		seq_printf(seq, ",jqfmt=%s", fmtname);
1263 	}
1264 
1265 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1266 		seq_show_option(seq, "usrjquota",
1267 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1268 
1269 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1270 		seq_show_option(seq, "grpjquota",
1271 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1272 
1273 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1274 		seq_show_option(seq, "prjjquota",
1275 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1276 #endif
1277 }
1278 
1279 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1280 {
1281 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1282 
1283 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1284 		if (test_opt(sbi, FORCE_FG_GC))
1285 			seq_printf(seq, ",background_gc=%s", "sync");
1286 		else
1287 			seq_printf(seq, ",background_gc=%s", "on");
1288 	} else {
1289 		seq_printf(seq, ",background_gc=%s", "off");
1290 	}
1291 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1292 		seq_puts(seq, ",disable_roll_forward");
1293 	if (test_opt(sbi, DISCARD))
1294 		seq_puts(seq, ",discard");
1295 	else
1296 		seq_puts(seq, ",nodiscard");
1297 	if (test_opt(sbi, NOHEAP))
1298 		seq_puts(seq, ",no_heap");
1299 	else
1300 		seq_puts(seq, ",heap");
1301 #ifdef CONFIG_F2FS_FS_XATTR
1302 	if (test_opt(sbi, XATTR_USER))
1303 		seq_puts(seq, ",user_xattr");
1304 	else
1305 		seq_puts(seq, ",nouser_xattr");
1306 	if (test_opt(sbi, INLINE_XATTR))
1307 		seq_puts(seq, ",inline_xattr");
1308 	else
1309 		seq_puts(seq, ",noinline_xattr");
1310 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1311 		seq_printf(seq, ",inline_xattr_size=%u",
1312 					F2FS_OPTION(sbi).inline_xattr_size);
1313 #endif
1314 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1315 	if (test_opt(sbi, POSIX_ACL))
1316 		seq_puts(seq, ",acl");
1317 	else
1318 		seq_puts(seq, ",noacl");
1319 #endif
1320 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1321 		seq_puts(seq, ",disable_ext_identify");
1322 	if (test_opt(sbi, INLINE_DATA))
1323 		seq_puts(seq, ",inline_data");
1324 	else
1325 		seq_puts(seq, ",noinline_data");
1326 	if (test_opt(sbi, INLINE_DENTRY))
1327 		seq_puts(seq, ",inline_dentry");
1328 	else
1329 		seq_puts(seq, ",noinline_dentry");
1330 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1331 		seq_puts(seq, ",flush_merge");
1332 	if (test_opt(sbi, NOBARRIER))
1333 		seq_puts(seq, ",nobarrier");
1334 	if (test_opt(sbi, FASTBOOT))
1335 		seq_puts(seq, ",fastboot");
1336 	if (test_opt(sbi, EXTENT_CACHE))
1337 		seq_puts(seq, ",extent_cache");
1338 	else
1339 		seq_puts(seq, ",noextent_cache");
1340 	if (test_opt(sbi, DATA_FLUSH))
1341 		seq_puts(seq, ",data_flush");
1342 
1343 	seq_puts(seq, ",mode=");
1344 	if (test_opt(sbi, ADAPTIVE))
1345 		seq_puts(seq, "adaptive");
1346 	else if (test_opt(sbi, LFS))
1347 		seq_puts(seq, "lfs");
1348 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1349 	if (test_opt(sbi, RESERVE_ROOT))
1350 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1351 				F2FS_OPTION(sbi).root_reserved_blocks,
1352 				from_kuid_munged(&init_user_ns,
1353 					F2FS_OPTION(sbi).s_resuid),
1354 				from_kgid_munged(&init_user_ns,
1355 					F2FS_OPTION(sbi).s_resgid));
1356 	if (F2FS_IO_SIZE_BITS(sbi))
1357 		seq_printf(seq, ",io_bits=%u",
1358 				F2FS_OPTION(sbi).write_io_size_bits);
1359 #ifdef CONFIG_F2FS_FAULT_INJECTION
1360 	if (test_opt(sbi, FAULT_INJECTION)) {
1361 		seq_printf(seq, ",fault_injection=%u",
1362 				F2FS_OPTION(sbi).fault_info.inject_rate);
1363 		seq_printf(seq, ",fault_type=%u",
1364 				F2FS_OPTION(sbi).fault_info.inject_type);
1365 	}
1366 #endif
1367 #ifdef CONFIG_QUOTA
1368 	if (test_opt(sbi, QUOTA))
1369 		seq_puts(seq, ",quota");
1370 	if (test_opt(sbi, USRQUOTA))
1371 		seq_puts(seq, ",usrquota");
1372 	if (test_opt(sbi, GRPQUOTA))
1373 		seq_puts(seq, ",grpquota");
1374 	if (test_opt(sbi, PRJQUOTA))
1375 		seq_puts(seq, ",prjquota");
1376 #endif
1377 	f2fs_show_quota_options(seq, sbi->sb);
1378 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1379 		seq_printf(seq, ",whint_mode=%s", "user-based");
1380 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1381 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1382 #ifdef CONFIG_FS_ENCRYPTION
1383 	if (F2FS_OPTION(sbi).test_dummy_encryption)
1384 		seq_puts(seq, ",test_dummy_encryption");
1385 #endif
1386 
1387 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1388 		seq_printf(seq, ",alloc_mode=%s", "default");
1389 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1390 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1391 
1392 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1393 		seq_printf(seq, ",checkpoint=disable:%u",
1394 				F2FS_OPTION(sbi).unusable_cap);
1395 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1396 		seq_printf(seq, ",fsync_mode=%s", "posix");
1397 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1398 		seq_printf(seq, ",fsync_mode=%s", "strict");
1399 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1400 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1401 	return 0;
1402 }
1403 
1404 static void default_options(struct f2fs_sb_info *sbi)
1405 {
1406 	/* init some FS parameters */
1407 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1408 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1409 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1410 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1411 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1412 	F2FS_OPTION(sbi).test_dummy_encryption = false;
1413 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1414 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1415 
1416 	set_opt(sbi, BG_GC);
1417 	set_opt(sbi, INLINE_XATTR);
1418 	set_opt(sbi, INLINE_DATA);
1419 	set_opt(sbi, INLINE_DENTRY);
1420 	set_opt(sbi, EXTENT_CACHE);
1421 	set_opt(sbi, NOHEAP);
1422 	clear_opt(sbi, DISABLE_CHECKPOINT);
1423 	F2FS_OPTION(sbi).unusable_cap = 0;
1424 	sbi->sb->s_flags |= SB_LAZYTIME;
1425 	set_opt(sbi, FLUSH_MERGE);
1426 	set_opt(sbi, DISCARD);
1427 	if (f2fs_sb_has_blkzoned(sbi))
1428 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1429 	else
1430 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1431 
1432 #ifdef CONFIG_F2FS_FS_XATTR
1433 	set_opt(sbi, XATTR_USER);
1434 #endif
1435 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1436 	set_opt(sbi, POSIX_ACL);
1437 #endif
1438 
1439 	f2fs_build_fault_attr(sbi, 0, 0);
1440 }
1441 
1442 #ifdef CONFIG_QUOTA
1443 static int f2fs_enable_quotas(struct super_block *sb);
1444 #endif
1445 
1446 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1447 {
1448 	unsigned int s_flags = sbi->sb->s_flags;
1449 	struct cp_control cpc;
1450 	int err = 0;
1451 	int ret;
1452 	block_t unusable;
1453 
1454 	if (s_flags & SB_RDONLY) {
1455 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1456 		return -EINVAL;
1457 	}
1458 	sbi->sb->s_flags |= SB_ACTIVE;
1459 
1460 	f2fs_update_time(sbi, DISABLE_TIME);
1461 
1462 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1463 		mutex_lock(&sbi->gc_mutex);
1464 		err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1465 		if (err == -ENODATA) {
1466 			err = 0;
1467 			break;
1468 		}
1469 		if (err && err != -EAGAIN)
1470 			break;
1471 	}
1472 
1473 	ret = sync_filesystem(sbi->sb);
1474 	if (ret || err) {
1475 		err = ret ? ret: err;
1476 		goto restore_flag;
1477 	}
1478 
1479 	unusable = f2fs_get_unusable_blocks(sbi);
1480 	if (f2fs_disable_cp_again(sbi, unusable)) {
1481 		err = -EAGAIN;
1482 		goto restore_flag;
1483 	}
1484 
1485 	mutex_lock(&sbi->gc_mutex);
1486 	cpc.reason = CP_PAUSE;
1487 	set_sbi_flag(sbi, SBI_CP_DISABLED);
1488 	err = f2fs_write_checkpoint(sbi, &cpc);
1489 	if (err)
1490 		goto out_unlock;
1491 
1492 	spin_lock(&sbi->stat_lock);
1493 	sbi->unusable_block_count = unusable;
1494 	spin_unlock(&sbi->stat_lock);
1495 
1496 out_unlock:
1497 	mutex_unlock(&sbi->gc_mutex);
1498 restore_flag:
1499 	sbi->sb->s_flags = s_flags;	/* Restore MS_RDONLY status */
1500 	return err;
1501 }
1502 
1503 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1504 {
1505 	mutex_lock(&sbi->gc_mutex);
1506 	f2fs_dirty_to_prefree(sbi);
1507 
1508 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1509 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1510 	mutex_unlock(&sbi->gc_mutex);
1511 
1512 	f2fs_sync_fs(sbi->sb, 1);
1513 }
1514 
1515 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1516 {
1517 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1518 	struct f2fs_mount_info org_mount_opt;
1519 	unsigned long old_sb_flags;
1520 	int err;
1521 	bool need_restart_gc = false;
1522 	bool need_stop_gc = false;
1523 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1524 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1525 	bool checkpoint_changed;
1526 #ifdef CONFIG_QUOTA
1527 	int i, j;
1528 #endif
1529 
1530 	/*
1531 	 * Save the old mount options in case we
1532 	 * need to restore them.
1533 	 */
1534 	org_mount_opt = sbi->mount_opt;
1535 	old_sb_flags = sb->s_flags;
1536 
1537 #ifdef CONFIG_QUOTA
1538 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1539 	for (i = 0; i < MAXQUOTAS; i++) {
1540 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1541 			org_mount_opt.s_qf_names[i] =
1542 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1543 				GFP_KERNEL);
1544 			if (!org_mount_opt.s_qf_names[i]) {
1545 				for (j = 0; j < i; j++)
1546 					kvfree(org_mount_opt.s_qf_names[j]);
1547 				return -ENOMEM;
1548 			}
1549 		} else {
1550 			org_mount_opt.s_qf_names[i] = NULL;
1551 		}
1552 	}
1553 #endif
1554 
1555 	/* recover superblocks we couldn't write due to previous RO mount */
1556 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1557 		err = f2fs_commit_super(sbi, false);
1558 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1559 			  err);
1560 		if (!err)
1561 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1562 	}
1563 
1564 	default_options(sbi);
1565 
1566 	/* parse mount options */
1567 	err = parse_options(sb, data);
1568 	if (err)
1569 		goto restore_opts;
1570 	checkpoint_changed =
1571 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1572 
1573 	/*
1574 	 * Previous and new state of filesystem is RO,
1575 	 * so skip checking GC and FLUSH_MERGE conditions.
1576 	 */
1577 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1578 		goto skip;
1579 
1580 #ifdef CONFIG_QUOTA
1581 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1582 		err = dquot_suspend(sb, -1);
1583 		if (err < 0)
1584 			goto restore_opts;
1585 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1586 		/* dquot_resume needs RW */
1587 		sb->s_flags &= ~SB_RDONLY;
1588 		if (sb_any_quota_suspended(sb)) {
1589 			dquot_resume(sb, -1);
1590 		} else if (f2fs_sb_has_quota_ino(sbi)) {
1591 			err = f2fs_enable_quotas(sb);
1592 			if (err)
1593 				goto restore_opts;
1594 		}
1595 	}
1596 #endif
1597 	/* disallow enable/disable extent_cache dynamically */
1598 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1599 		err = -EINVAL;
1600 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
1601 		goto restore_opts;
1602 	}
1603 
1604 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1605 		err = -EINVAL;
1606 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1607 		goto restore_opts;
1608 	}
1609 
1610 	/*
1611 	 * We stop the GC thread if FS is mounted as RO
1612 	 * or if background_gc = off is passed in mount
1613 	 * option. Also sync the filesystem.
1614 	 */
1615 	if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1616 		if (sbi->gc_thread) {
1617 			f2fs_stop_gc_thread(sbi);
1618 			need_restart_gc = true;
1619 		}
1620 	} else if (!sbi->gc_thread) {
1621 		err = f2fs_start_gc_thread(sbi);
1622 		if (err)
1623 			goto restore_opts;
1624 		need_stop_gc = true;
1625 	}
1626 
1627 	if (*flags & SB_RDONLY ||
1628 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1629 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1630 		sync_inodes_sb(sb);
1631 
1632 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1633 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1634 		f2fs_sync_fs(sb, 1);
1635 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1636 	}
1637 
1638 	if (checkpoint_changed) {
1639 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1640 			err = f2fs_disable_checkpoint(sbi);
1641 			if (err)
1642 				goto restore_gc;
1643 		} else {
1644 			f2fs_enable_checkpoint(sbi);
1645 		}
1646 	}
1647 
1648 	/*
1649 	 * We stop issue flush thread if FS is mounted as RO
1650 	 * or if flush_merge is not passed in mount option.
1651 	 */
1652 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1653 		clear_opt(sbi, FLUSH_MERGE);
1654 		f2fs_destroy_flush_cmd_control(sbi, false);
1655 	} else {
1656 		err = f2fs_create_flush_cmd_control(sbi);
1657 		if (err)
1658 			goto restore_gc;
1659 	}
1660 skip:
1661 #ifdef CONFIG_QUOTA
1662 	/* Release old quota file names */
1663 	for (i = 0; i < MAXQUOTAS; i++)
1664 		kvfree(org_mount_opt.s_qf_names[i]);
1665 #endif
1666 	/* Update the POSIXACL Flag */
1667 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1668 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1669 
1670 	limit_reserve_root(sbi);
1671 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1672 	return 0;
1673 restore_gc:
1674 	if (need_restart_gc) {
1675 		if (f2fs_start_gc_thread(sbi))
1676 			f2fs_warn(sbi, "background gc thread has stopped");
1677 	} else if (need_stop_gc) {
1678 		f2fs_stop_gc_thread(sbi);
1679 	}
1680 restore_opts:
1681 #ifdef CONFIG_QUOTA
1682 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1683 	for (i = 0; i < MAXQUOTAS; i++) {
1684 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1685 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1686 	}
1687 #endif
1688 	sbi->mount_opt = org_mount_opt;
1689 	sb->s_flags = old_sb_flags;
1690 	return err;
1691 }
1692 
1693 #ifdef CONFIG_QUOTA
1694 /* Read data from quotafile */
1695 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1696 			       size_t len, loff_t off)
1697 {
1698 	struct inode *inode = sb_dqopt(sb)->files[type];
1699 	struct address_space *mapping = inode->i_mapping;
1700 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1701 	int offset = off & (sb->s_blocksize - 1);
1702 	int tocopy;
1703 	size_t toread;
1704 	loff_t i_size = i_size_read(inode);
1705 	struct page *page;
1706 	char *kaddr;
1707 
1708 	if (off > i_size)
1709 		return 0;
1710 
1711 	if (off + len > i_size)
1712 		len = i_size - off;
1713 	toread = len;
1714 	while (toread > 0) {
1715 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1716 repeat:
1717 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1718 		if (IS_ERR(page)) {
1719 			if (PTR_ERR(page) == -ENOMEM) {
1720 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1721 				goto repeat;
1722 			}
1723 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1724 			return PTR_ERR(page);
1725 		}
1726 
1727 		lock_page(page);
1728 
1729 		if (unlikely(page->mapping != mapping)) {
1730 			f2fs_put_page(page, 1);
1731 			goto repeat;
1732 		}
1733 		if (unlikely(!PageUptodate(page))) {
1734 			f2fs_put_page(page, 1);
1735 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1736 			return -EIO;
1737 		}
1738 
1739 		kaddr = kmap_atomic(page);
1740 		memcpy(data, kaddr + offset, tocopy);
1741 		kunmap_atomic(kaddr);
1742 		f2fs_put_page(page, 1);
1743 
1744 		offset = 0;
1745 		toread -= tocopy;
1746 		data += tocopy;
1747 		blkidx++;
1748 	}
1749 	return len;
1750 }
1751 
1752 /* Write to quotafile */
1753 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1754 				const char *data, size_t len, loff_t off)
1755 {
1756 	struct inode *inode = sb_dqopt(sb)->files[type];
1757 	struct address_space *mapping = inode->i_mapping;
1758 	const struct address_space_operations *a_ops = mapping->a_ops;
1759 	int offset = off & (sb->s_blocksize - 1);
1760 	size_t towrite = len;
1761 	struct page *page;
1762 	char *kaddr;
1763 	int err = 0;
1764 	int tocopy;
1765 
1766 	while (towrite > 0) {
1767 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1768 								towrite);
1769 retry:
1770 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1771 							&page, NULL);
1772 		if (unlikely(err)) {
1773 			if (err == -ENOMEM) {
1774 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1775 				goto retry;
1776 			}
1777 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1778 			break;
1779 		}
1780 
1781 		kaddr = kmap_atomic(page);
1782 		memcpy(kaddr + offset, data, tocopy);
1783 		kunmap_atomic(kaddr);
1784 		flush_dcache_page(page);
1785 
1786 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1787 						page, NULL);
1788 		offset = 0;
1789 		towrite -= tocopy;
1790 		off += tocopy;
1791 		data += tocopy;
1792 		cond_resched();
1793 	}
1794 
1795 	if (len == towrite)
1796 		return err;
1797 	inode->i_mtime = inode->i_ctime = current_time(inode);
1798 	f2fs_mark_inode_dirty_sync(inode, false);
1799 	return len - towrite;
1800 }
1801 
1802 static struct dquot **f2fs_get_dquots(struct inode *inode)
1803 {
1804 	return F2FS_I(inode)->i_dquot;
1805 }
1806 
1807 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1808 {
1809 	return &F2FS_I(inode)->i_reserved_quota;
1810 }
1811 
1812 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1813 {
1814 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
1815 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
1816 		return 0;
1817 	}
1818 
1819 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1820 					F2FS_OPTION(sbi).s_jquota_fmt, type);
1821 }
1822 
1823 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1824 {
1825 	int enabled = 0;
1826 	int i, err;
1827 
1828 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
1829 		err = f2fs_enable_quotas(sbi->sb);
1830 		if (err) {
1831 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
1832 			return 0;
1833 		}
1834 		return 1;
1835 	}
1836 
1837 	for (i = 0; i < MAXQUOTAS; i++) {
1838 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1839 			err = f2fs_quota_on_mount(sbi, i);
1840 			if (!err) {
1841 				enabled = 1;
1842 				continue;
1843 			}
1844 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
1845 				 err, i);
1846 		}
1847 	}
1848 	return enabled;
1849 }
1850 
1851 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1852 			     unsigned int flags)
1853 {
1854 	struct inode *qf_inode;
1855 	unsigned long qf_inum;
1856 	int err;
1857 
1858 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
1859 
1860 	qf_inum = f2fs_qf_ino(sb, type);
1861 	if (!qf_inum)
1862 		return -EPERM;
1863 
1864 	qf_inode = f2fs_iget(sb, qf_inum);
1865 	if (IS_ERR(qf_inode)) {
1866 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
1867 		return PTR_ERR(qf_inode);
1868 	}
1869 
1870 	/* Don't account quota for quota files to avoid recursion */
1871 	qf_inode->i_flags |= S_NOQUOTA;
1872 	err = dquot_enable(qf_inode, type, format_id, flags);
1873 	iput(qf_inode);
1874 	return err;
1875 }
1876 
1877 static int f2fs_enable_quotas(struct super_block *sb)
1878 {
1879 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1880 	int type, err = 0;
1881 	unsigned long qf_inum;
1882 	bool quota_mopt[MAXQUOTAS] = {
1883 		test_opt(sbi, USRQUOTA),
1884 		test_opt(sbi, GRPQUOTA),
1885 		test_opt(sbi, PRJQUOTA),
1886 	};
1887 
1888 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
1889 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
1890 		return 0;
1891 	}
1892 
1893 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
1894 
1895 	for (type = 0; type < MAXQUOTAS; type++) {
1896 		qf_inum = f2fs_qf_ino(sb, type);
1897 		if (qf_inum) {
1898 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1899 				DQUOT_USAGE_ENABLED |
1900 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1901 			if (err) {
1902 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
1903 					 type, err);
1904 				for (type--; type >= 0; type--)
1905 					dquot_quota_off(sb, type);
1906 				set_sbi_flag(F2FS_SB(sb),
1907 						SBI_QUOTA_NEED_REPAIR);
1908 				return err;
1909 			}
1910 		}
1911 	}
1912 	return 0;
1913 }
1914 
1915 int f2fs_quota_sync(struct super_block *sb, int type)
1916 {
1917 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1918 	struct quota_info *dqopt = sb_dqopt(sb);
1919 	int cnt;
1920 	int ret;
1921 
1922 	/*
1923 	 * do_quotactl
1924 	 *  f2fs_quota_sync
1925 	 *  down_read(quota_sem)
1926 	 *  dquot_writeback_dquots()
1927 	 *  f2fs_dquot_commit
1928 	 *                            block_operation
1929 	 *                            down_read(quota_sem)
1930 	 */
1931 	f2fs_lock_op(sbi);
1932 
1933 	down_read(&sbi->quota_sem);
1934 	ret = dquot_writeback_dquots(sb, type);
1935 	if (ret)
1936 		goto out;
1937 
1938 	/*
1939 	 * Now when everything is written we can discard the pagecache so
1940 	 * that userspace sees the changes.
1941 	 */
1942 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1943 		struct address_space *mapping;
1944 
1945 		if (type != -1 && cnt != type)
1946 			continue;
1947 		if (!sb_has_quota_active(sb, cnt))
1948 			continue;
1949 
1950 		mapping = dqopt->files[cnt]->i_mapping;
1951 
1952 		ret = filemap_fdatawrite(mapping);
1953 		if (ret)
1954 			goto out;
1955 
1956 		/* if we are using journalled quota */
1957 		if (is_journalled_quota(sbi))
1958 			continue;
1959 
1960 		ret = filemap_fdatawait(mapping);
1961 		if (ret)
1962 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1963 
1964 		inode_lock(dqopt->files[cnt]);
1965 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1966 		inode_unlock(dqopt->files[cnt]);
1967 	}
1968 out:
1969 	if (ret)
1970 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1971 	up_read(&sbi->quota_sem);
1972 	f2fs_unlock_op(sbi);
1973 	return ret;
1974 }
1975 
1976 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1977 							const struct path *path)
1978 {
1979 	struct inode *inode;
1980 	int err;
1981 
1982 	err = f2fs_quota_sync(sb, type);
1983 	if (err)
1984 		return err;
1985 
1986 	err = dquot_quota_on(sb, type, format_id, path);
1987 	if (err)
1988 		return err;
1989 
1990 	inode = d_inode(path->dentry);
1991 
1992 	inode_lock(inode);
1993 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
1994 	f2fs_set_inode_flags(inode);
1995 	inode_unlock(inode);
1996 	f2fs_mark_inode_dirty_sync(inode, false);
1997 
1998 	return 0;
1999 }
2000 
2001 static int f2fs_quota_off(struct super_block *sb, int type)
2002 {
2003 	struct inode *inode = sb_dqopt(sb)->files[type];
2004 	int err;
2005 
2006 	if (!inode || !igrab(inode))
2007 		return dquot_quota_off(sb, type);
2008 
2009 	err = f2fs_quota_sync(sb, type);
2010 	if (err)
2011 		goto out_put;
2012 
2013 	err = dquot_quota_off(sb, type);
2014 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2015 		goto out_put;
2016 
2017 	inode_lock(inode);
2018 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2019 	f2fs_set_inode_flags(inode);
2020 	inode_unlock(inode);
2021 	f2fs_mark_inode_dirty_sync(inode, false);
2022 out_put:
2023 	iput(inode);
2024 	return err;
2025 }
2026 
2027 void f2fs_quota_off_umount(struct super_block *sb)
2028 {
2029 	int type;
2030 	int err;
2031 
2032 	for (type = 0; type < MAXQUOTAS; type++) {
2033 		err = f2fs_quota_off(sb, type);
2034 		if (err) {
2035 			int ret = dquot_quota_off(sb, type);
2036 
2037 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2038 				 type, err, ret);
2039 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2040 		}
2041 	}
2042 	/*
2043 	 * In case of checkpoint=disable, we must flush quota blocks.
2044 	 * This can cause NULL exception for node_inode in end_io, since
2045 	 * put_super already dropped it.
2046 	 */
2047 	sync_filesystem(sb);
2048 }
2049 
2050 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2051 {
2052 	struct quota_info *dqopt = sb_dqopt(sb);
2053 	int type;
2054 
2055 	for (type = 0; type < MAXQUOTAS; type++) {
2056 		if (!dqopt->files[type])
2057 			continue;
2058 		f2fs_inode_synced(dqopt->files[type]);
2059 	}
2060 }
2061 
2062 static int f2fs_dquot_commit(struct dquot *dquot)
2063 {
2064 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2065 	int ret;
2066 
2067 	down_read(&sbi->quota_sem);
2068 	ret = dquot_commit(dquot);
2069 	if (ret < 0)
2070 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2071 	up_read(&sbi->quota_sem);
2072 	return ret;
2073 }
2074 
2075 static int f2fs_dquot_acquire(struct dquot *dquot)
2076 {
2077 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2078 	int ret;
2079 
2080 	down_read(&sbi->quota_sem);
2081 	ret = dquot_acquire(dquot);
2082 	if (ret < 0)
2083 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2084 	up_read(&sbi->quota_sem);
2085 	return ret;
2086 }
2087 
2088 static int f2fs_dquot_release(struct dquot *dquot)
2089 {
2090 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2091 	int ret;
2092 
2093 	down_read(&sbi->quota_sem);
2094 	ret = dquot_release(dquot);
2095 	if (ret < 0)
2096 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2097 	up_read(&sbi->quota_sem);
2098 	return ret;
2099 }
2100 
2101 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2102 {
2103 	struct super_block *sb = dquot->dq_sb;
2104 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2105 	int ret;
2106 
2107 	down_read(&sbi->quota_sem);
2108 	ret = dquot_mark_dquot_dirty(dquot);
2109 
2110 	/* if we are using journalled quota */
2111 	if (is_journalled_quota(sbi))
2112 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2113 
2114 	up_read(&sbi->quota_sem);
2115 	return ret;
2116 }
2117 
2118 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2119 {
2120 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2121 	int ret;
2122 
2123 	down_read(&sbi->quota_sem);
2124 	ret = dquot_commit_info(sb, type);
2125 	if (ret < 0)
2126 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2127 	up_read(&sbi->quota_sem);
2128 	return ret;
2129 }
2130 
2131 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2132 {
2133 	*projid = F2FS_I(inode)->i_projid;
2134 	return 0;
2135 }
2136 
2137 static const struct dquot_operations f2fs_quota_operations = {
2138 	.get_reserved_space = f2fs_get_reserved_space,
2139 	.write_dquot	= f2fs_dquot_commit,
2140 	.acquire_dquot	= f2fs_dquot_acquire,
2141 	.release_dquot	= f2fs_dquot_release,
2142 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2143 	.write_info	= f2fs_dquot_commit_info,
2144 	.alloc_dquot	= dquot_alloc,
2145 	.destroy_dquot	= dquot_destroy,
2146 	.get_projid	= f2fs_get_projid,
2147 	.get_next_id	= dquot_get_next_id,
2148 };
2149 
2150 static const struct quotactl_ops f2fs_quotactl_ops = {
2151 	.quota_on	= f2fs_quota_on,
2152 	.quota_off	= f2fs_quota_off,
2153 	.quota_sync	= f2fs_quota_sync,
2154 	.get_state	= dquot_get_state,
2155 	.set_info	= dquot_set_dqinfo,
2156 	.get_dqblk	= dquot_get_dqblk,
2157 	.set_dqblk	= dquot_set_dqblk,
2158 	.get_nextdqblk	= dquot_get_next_dqblk,
2159 };
2160 #else
2161 int f2fs_quota_sync(struct super_block *sb, int type)
2162 {
2163 	return 0;
2164 }
2165 
2166 void f2fs_quota_off_umount(struct super_block *sb)
2167 {
2168 }
2169 #endif
2170 
2171 static const struct super_operations f2fs_sops = {
2172 	.alloc_inode	= f2fs_alloc_inode,
2173 	.free_inode	= f2fs_free_inode,
2174 	.drop_inode	= f2fs_drop_inode,
2175 	.write_inode	= f2fs_write_inode,
2176 	.dirty_inode	= f2fs_dirty_inode,
2177 	.show_options	= f2fs_show_options,
2178 #ifdef CONFIG_QUOTA
2179 	.quota_read	= f2fs_quota_read,
2180 	.quota_write	= f2fs_quota_write,
2181 	.get_dquots	= f2fs_get_dquots,
2182 #endif
2183 	.evict_inode	= f2fs_evict_inode,
2184 	.put_super	= f2fs_put_super,
2185 	.sync_fs	= f2fs_sync_fs,
2186 	.freeze_fs	= f2fs_freeze,
2187 	.unfreeze_fs	= f2fs_unfreeze,
2188 	.statfs		= f2fs_statfs,
2189 	.remount_fs	= f2fs_remount,
2190 };
2191 
2192 #ifdef CONFIG_FS_ENCRYPTION
2193 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2194 {
2195 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2196 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2197 				ctx, len, NULL);
2198 }
2199 
2200 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2201 							void *fs_data)
2202 {
2203 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2204 
2205 	/*
2206 	 * Encrypting the root directory is not allowed because fsck
2207 	 * expects lost+found directory to exist and remain unencrypted
2208 	 * if LOST_FOUND feature is enabled.
2209 	 *
2210 	 */
2211 	if (f2fs_sb_has_lost_found(sbi) &&
2212 			inode->i_ino == F2FS_ROOT_INO(sbi))
2213 		return -EPERM;
2214 
2215 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2216 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2217 				ctx, len, fs_data, XATTR_CREATE);
2218 }
2219 
2220 static bool f2fs_dummy_context(struct inode *inode)
2221 {
2222 	return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
2223 }
2224 
2225 static const struct fscrypt_operations f2fs_cryptops = {
2226 	.key_prefix	= "f2fs:",
2227 	.get_context	= f2fs_get_context,
2228 	.set_context	= f2fs_set_context,
2229 	.dummy_context	= f2fs_dummy_context,
2230 	.empty_dir	= f2fs_empty_dir,
2231 	.max_namelen	= F2FS_NAME_LEN,
2232 };
2233 #endif
2234 
2235 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2236 		u64 ino, u32 generation)
2237 {
2238 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2239 	struct inode *inode;
2240 
2241 	if (f2fs_check_nid_range(sbi, ino))
2242 		return ERR_PTR(-ESTALE);
2243 
2244 	/*
2245 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2246 	 * However f2fs_iget currently does appropriate checks to handle stale
2247 	 * inodes so everything is OK.
2248 	 */
2249 	inode = f2fs_iget(sb, ino);
2250 	if (IS_ERR(inode))
2251 		return ERR_CAST(inode);
2252 	if (unlikely(generation && inode->i_generation != generation)) {
2253 		/* we didn't find the right inode.. */
2254 		iput(inode);
2255 		return ERR_PTR(-ESTALE);
2256 	}
2257 	return inode;
2258 }
2259 
2260 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2261 		int fh_len, int fh_type)
2262 {
2263 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2264 				    f2fs_nfs_get_inode);
2265 }
2266 
2267 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2268 		int fh_len, int fh_type)
2269 {
2270 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2271 				    f2fs_nfs_get_inode);
2272 }
2273 
2274 static const struct export_operations f2fs_export_ops = {
2275 	.fh_to_dentry = f2fs_fh_to_dentry,
2276 	.fh_to_parent = f2fs_fh_to_parent,
2277 	.get_parent = f2fs_get_parent,
2278 };
2279 
2280 static loff_t max_file_blocks(void)
2281 {
2282 	loff_t result = 0;
2283 	loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2284 
2285 	/*
2286 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2287 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2288 	 * space in inode.i_addr, it will be more safe to reassign
2289 	 * result as zero.
2290 	 */
2291 
2292 	/* two direct node blocks */
2293 	result += (leaf_count * 2);
2294 
2295 	/* two indirect node blocks */
2296 	leaf_count *= NIDS_PER_BLOCK;
2297 	result += (leaf_count * 2);
2298 
2299 	/* one double indirect node block */
2300 	leaf_count *= NIDS_PER_BLOCK;
2301 	result += leaf_count;
2302 
2303 	return result;
2304 }
2305 
2306 static int __f2fs_commit_super(struct buffer_head *bh,
2307 			struct f2fs_super_block *super)
2308 {
2309 	lock_buffer(bh);
2310 	if (super)
2311 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2312 	set_buffer_dirty(bh);
2313 	unlock_buffer(bh);
2314 
2315 	/* it's rare case, we can do fua all the time */
2316 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2317 }
2318 
2319 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2320 					struct buffer_head *bh)
2321 {
2322 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2323 					(bh->b_data + F2FS_SUPER_OFFSET);
2324 	struct super_block *sb = sbi->sb;
2325 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2326 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2327 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2328 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2329 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2330 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2331 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2332 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2333 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2334 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2335 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2336 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2337 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2338 	u64 main_end_blkaddr = main_blkaddr +
2339 				(segment_count_main << log_blocks_per_seg);
2340 	u64 seg_end_blkaddr = segment0_blkaddr +
2341 				(segment_count << log_blocks_per_seg);
2342 
2343 	if (segment0_blkaddr != cp_blkaddr) {
2344 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2345 			  segment0_blkaddr, cp_blkaddr);
2346 		return true;
2347 	}
2348 
2349 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2350 							sit_blkaddr) {
2351 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2352 			  cp_blkaddr, sit_blkaddr,
2353 			  segment_count_ckpt << log_blocks_per_seg);
2354 		return true;
2355 	}
2356 
2357 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2358 							nat_blkaddr) {
2359 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2360 			  sit_blkaddr, nat_blkaddr,
2361 			  segment_count_sit << log_blocks_per_seg);
2362 		return true;
2363 	}
2364 
2365 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2366 							ssa_blkaddr) {
2367 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2368 			  nat_blkaddr, ssa_blkaddr,
2369 			  segment_count_nat << log_blocks_per_seg);
2370 		return true;
2371 	}
2372 
2373 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2374 							main_blkaddr) {
2375 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2376 			  ssa_blkaddr, main_blkaddr,
2377 			  segment_count_ssa << log_blocks_per_seg);
2378 		return true;
2379 	}
2380 
2381 	if (main_end_blkaddr > seg_end_blkaddr) {
2382 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2383 			  main_blkaddr,
2384 			  segment0_blkaddr +
2385 			  (segment_count << log_blocks_per_seg),
2386 			  segment_count_main << log_blocks_per_seg);
2387 		return true;
2388 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2389 		int err = 0;
2390 		char *res;
2391 
2392 		/* fix in-memory information all the time */
2393 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2394 				segment0_blkaddr) >> log_blocks_per_seg);
2395 
2396 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2397 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2398 			res = "internally";
2399 		} else {
2400 			err = __f2fs_commit_super(bh, NULL);
2401 			res = err ? "failed" : "done";
2402 		}
2403 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)",
2404 			  res, main_blkaddr,
2405 			  segment0_blkaddr +
2406 			  (segment_count << log_blocks_per_seg),
2407 			  segment_count_main << log_blocks_per_seg);
2408 		if (err)
2409 			return true;
2410 	}
2411 	return false;
2412 }
2413 
2414 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2415 				struct buffer_head *bh)
2416 {
2417 	block_t segment_count, segs_per_sec, secs_per_zone;
2418 	block_t total_sections, blocks_per_seg;
2419 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2420 					(bh->b_data + F2FS_SUPER_OFFSET);
2421 	unsigned int blocksize;
2422 	size_t crc_offset = 0;
2423 	__u32 crc = 0;
2424 
2425 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2426 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2427 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2428 		return -EINVAL;
2429 	}
2430 
2431 	/* Check checksum_offset and crc in superblock */
2432 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2433 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2434 		if (crc_offset !=
2435 			offsetof(struct f2fs_super_block, crc)) {
2436 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2437 				  crc_offset);
2438 			return -EFSCORRUPTED;
2439 		}
2440 		crc = le32_to_cpu(raw_super->crc);
2441 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2442 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2443 			return -EFSCORRUPTED;
2444 		}
2445 	}
2446 
2447 	/* Currently, support only 4KB page cache size */
2448 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2449 		f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2450 			  PAGE_SIZE);
2451 		return -EFSCORRUPTED;
2452 	}
2453 
2454 	/* Currently, support only 4KB block size */
2455 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2456 	if (blocksize != F2FS_BLKSIZE) {
2457 		f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB",
2458 			  blocksize);
2459 		return -EFSCORRUPTED;
2460 	}
2461 
2462 	/* check log blocks per segment */
2463 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2464 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2465 			  le32_to_cpu(raw_super->log_blocks_per_seg));
2466 		return -EFSCORRUPTED;
2467 	}
2468 
2469 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2470 	if (le32_to_cpu(raw_super->log_sectorsize) >
2471 				F2FS_MAX_LOG_SECTOR_SIZE ||
2472 		le32_to_cpu(raw_super->log_sectorsize) <
2473 				F2FS_MIN_LOG_SECTOR_SIZE) {
2474 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
2475 			  le32_to_cpu(raw_super->log_sectorsize));
2476 		return -EFSCORRUPTED;
2477 	}
2478 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2479 		le32_to_cpu(raw_super->log_sectorsize) !=
2480 			F2FS_MAX_LOG_SECTOR_SIZE) {
2481 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2482 			  le32_to_cpu(raw_super->log_sectors_per_block),
2483 			  le32_to_cpu(raw_super->log_sectorsize));
2484 		return -EFSCORRUPTED;
2485 	}
2486 
2487 	segment_count = le32_to_cpu(raw_super->segment_count);
2488 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2489 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2490 	total_sections = le32_to_cpu(raw_super->section_count);
2491 
2492 	/* blocks_per_seg should be 512, given the above check */
2493 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2494 
2495 	if (segment_count > F2FS_MAX_SEGMENT ||
2496 				segment_count < F2FS_MIN_SEGMENTS) {
2497 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2498 		return -EFSCORRUPTED;
2499 	}
2500 
2501 	if (total_sections > segment_count ||
2502 			total_sections < F2FS_MIN_SEGMENTS ||
2503 			segs_per_sec > segment_count || !segs_per_sec) {
2504 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2505 			  segment_count, total_sections, segs_per_sec);
2506 		return -EFSCORRUPTED;
2507 	}
2508 
2509 	if ((segment_count / segs_per_sec) < total_sections) {
2510 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2511 			  segment_count, segs_per_sec, total_sections);
2512 		return -EFSCORRUPTED;
2513 	}
2514 
2515 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2516 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2517 			  segment_count, le64_to_cpu(raw_super->block_count));
2518 		return -EFSCORRUPTED;
2519 	}
2520 
2521 	if (secs_per_zone > total_sections || !secs_per_zone) {
2522 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2523 			  secs_per_zone, total_sections);
2524 		return -EFSCORRUPTED;
2525 	}
2526 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2527 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2528 			(le32_to_cpu(raw_super->extension_count) +
2529 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2530 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2531 			  le32_to_cpu(raw_super->extension_count),
2532 			  raw_super->hot_ext_count,
2533 			  F2FS_MAX_EXTENSION);
2534 		return -EFSCORRUPTED;
2535 	}
2536 
2537 	if (le32_to_cpu(raw_super->cp_payload) >
2538 				(blocks_per_seg - F2FS_CP_PACKS)) {
2539 		f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2540 			  le32_to_cpu(raw_super->cp_payload),
2541 			  blocks_per_seg - F2FS_CP_PACKS);
2542 		return -EFSCORRUPTED;
2543 	}
2544 
2545 	/* check reserved ino info */
2546 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2547 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2548 		le32_to_cpu(raw_super->root_ino) != 3) {
2549 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2550 			  le32_to_cpu(raw_super->node_ino),
2551 			  le32_to_cpu(raw_super->meta_ino),
2552 			  le32_to_cpu(raw_super->root_ino));
2553 		return -EFSCORRUPTED;
2554 	}
2555 
2556 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2557 	if (sanity_check_area_boundary(sbi, bh))
2558 		return -EFSCORRUPTED;
2559 
2560 	return 0;
2561 }
2562 
2563 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2564 {
2565 	unsigned int total, fsmeta;
2566 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2567 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2568 	unsigned int ovp_segments, reserved_segments;
2569 	unsigned int main_segs, blocks_per_seg;
2570 	unsigned int sit_segs, nat_segs;
2571 	unsigned int sit_bitmap_size, nat_bitmap_size;
2572 	unsigned int log_blocks_per_seg;
2573 	unsigned int segment_count_main;
2574 	unsigned int cp_pack_start_sum, cp_payload;
2575 	block_t user_block_count, valid_user_blocks;
2576 	block_t avail_node_count, valid_node_count;
2577 	int i, j;
2578 
2579 	total = le32_to_cpu(raw_super->segment_count);
2580 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2581 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2582 	fsmeta += sit_segs;
2583 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2584 	fsmeta += nat_segs;
2585 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2586 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2587 
2588 	if (unlikely(fsmeta >= total))
2589 		return 1;
2590 
2591 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2592 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2593 
2594 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2595 			ovp_segments == 0 || reserved_segments == 0)) {
2596 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2597 		return 1;
2598 	}
2599 
2600 	user_block_count = le64_to_cpu(ckpt->user_block_count);
2601 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2602 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2603 	if (!user_block_count || user_block_count >=
2604 			segment_count_main << log_blocks_per_seg) {
2605 		f2fs_err(sbi, "Wrong user_block_count: %u",
2606 			 user_block_count);
2607 		return 1;
2608 	}
2609 
2610 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2611 	if (valid_user_blocks > user_block_count) {
2612 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2613 			 valid_user_blocks, user_block_count);
2614 		return 1;
2615 	}
2616 
2617 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2618 	avail_node_count = sbi->total_node_count - sbi->nquota_files -
2619 						F2FS_RESERVED_NODE_NUM;
2620 	if (valid_node_count > avail_node_count) {
2621 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2622 			 valid_node_count, avail_node_count);
2623 		return 1;
2624 	}
2625 
2626 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2627 	blocks_per_seg = sbi->blocks_per_seg;
2628 
2629 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2630 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2631 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2632 			return 1;
2633 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2634 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2635 				le32_to_cpu(ckpt->cur_node_segno[j])) {
2636 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2637 					 i, j,
2638 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2639 				return 1;
2640 			}
2641 		}
2642 	}
2643 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2644 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2645 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2646 			return 1;
2647 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2648 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2649 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2650 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
2651 					 i, j,
2652 					 le32_to_cpu(ckpt->cur_data_segno[i]));
2653 				return 1;
2654 			}
2655 		}
2656 	}
2657 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2658 		for (j = i; j < NR_CURSEG_DATA_TYPE; j++) {
2659 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2660 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2661 				f2fs_err(sbi, "Data segment (%u) and Data segment (%u) has the same segno: %u",
2662 					 i, j,
2663 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2664 				return 1;
2665 			}
2666 		}
2667 	}
2668 
2669 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2670 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2671 
2672 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2673 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2674 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
2675 			 sit_bitmap_size, nat_bitmap_size);
2676 		return 1;
2677 	}
2678 
2679 	cp_pack_start_sum = __start_sum_addr(sbi);
2680 	cp_payload = __cp_payload(sbi);
2681 	if (cp_pack_start_sum < cp_payload + 1 ||
2682 		cp_pack_start_sum > blocks_per_seg - 1 -
2683 			NR_CURSEG_TYPE) {
2684 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
2685 			 cp_pack_start_sum);
2686 		return 1;
2687 	}
2688 
2689 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
2690 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
2691 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
2692 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
2693 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
2694 			  le32_to_cpu(ckpt->checksum_offset));
2695 		return 1;
2696 	}
2697 
2698 	if (unlikely(f2fs_cp_error(sbi))) {
2699 		f2fs_err(sbi, "A bug case: need to run fsck");
2700 		return 1;
2701 	}
2702 	return 0;
2703 }
2704 
2705 static void init_sb_info(struct f2fs_sb_info *sbi)
2706 {
2707 	struct f2fs_super_block *raw_super = sbi->raw_super;
2708 	int i;
2709 
2710 	sbi->log_sectors_per_block =
2711 		le32_to_cpu(raw_super->log_sectors_per_block);
2712 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2713 	sbi->blocksize = 1 << sbi->log_blocksize;
2714 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2715 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2716 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2717 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2718 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2719 	sbi->total_node_count =
2720 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2721 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2722 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2723 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2724 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2725 	sbi->cur_victim_sec = NULL_SECNO;
2726 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
2727 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
2728 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2729 	sbi->migration_granularity = sbi->segs_per_sec;
2730 
2731 	sbi->dir_level = DEF_DIR_LEVEL;
2732 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2733 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2734 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
2735 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
2736 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
2737 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
2738 				DEF_UMOUNT_DISCARD_TIMEOUT;
2739 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
2740 
2741 	for (i = 0; i < NR_COUNT_TYPE; i++)
2742 		atomic_set(&sbi->nr_pages[i], 0);
2743 
2744 	for (i = 0; i < META; i++)
2745 		atomic_set(&sbi->wb_sync_req[i], 0);
2746 
2747 	INIT_LIST_HEAD(&sbi->s_list);
2748 	mutex_init(&sbi->umount_mutex);
2749 	init_rwsem(&sbi->io_order_lock);
2750 	spin_lock_init(&sbi->cp_lock);
2751 
2752 	sbi->dirty_device = 0;
2753 	spin_lock_init(&sbi->dev_lock);
2754 
2755 	init_rwsem(&sbi->sb_lock);
2756 }
2757 
2758 static int init_percpu_info(struct f2fs_sb_info *sbi)
2759 {
2760 	int err;
2761 
2762 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2763 	if (err)
2764 		return err;
2765 
2766 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2767 								GFP_KERNEL);
2768 	if (err)
2769 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
2770 
2771 	return err;
2772 }
2773 
2774 #ifdef CONFIG_BLK_DEV_ZONED
2775 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2776 {
2777 	struct block_device *bdev = FDEV(devi).bdev;
2778 	sector_t nr_sectors = bdev->bd_part->nr_sects;
2779 	sector_t sector = 0;
2780 	struct blk_zone *zones;
2781 	unsigned int i, nr_zones;
2782 	unsigned int n = 0;
2783 	int err = -EIO;
2784 
2785 	if (!f2fs_sb_has_blkzoned(sbi))
2786 		return 0;
2787 
2788 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2789 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2790 		return -EINVAL;
2791 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2792 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2793 				__ilog2_u32(sbi->blocks_per_blkz))
2794 		return -EINVAL;
2795 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2796 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2797 					sbi->log_blocks_per_blkz;
2798 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2799 		FDEV(devi).nr_blkz++;
2800 
2801 	FDEV(devi).blkz_seq = f2fs_kzalloc(sbi,
2802 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
2803 					* sizeof(unsigned long),
2804 					GFP_KERNEL);
2805 	if (!FDEV(devi).blkz_seq)
2806 		return -ENOMEM;
2807 
2808 #define F2FS_REPORT_NR_ZONES   4096
2809 
2810 	zones = f2fs_kzalloc(sbi,
2811 			     array_size(F2FS_REPORT_NR_ZONES,
2812 					sizeof(struct blk_zone)),
2813 			     GFP_KERNEL);
2814 	if (!zones)
2815 		return -ENOMEM;
2816 
2817 	/* Get block zones type */
2818 	while (zones && sector < nr_sectors) {
2819 
2820 		nr_zones = F2FS_REPORT_NR_ZONES;
2821 		err = blkdev_report_zones(bdev, sector, zones, &nr_zones);
2822 		if (err)
2823 			break;
2824 		if (!nr_zones) {
2825 			err = -EIO;
2826 			break;
2827 		}
2828 
2829 		for (i = 0; i < nr_zones; i++) {
2830 			if (zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL)
2831 				set_bit(n, FDEV(devi).blkz_seq);
2832 			sector += zones[i].len;
2833 			n++;
2834 		}
2835 	}
2836 
2837 	kvfree(zones);
2838 
2839 	return err;
2840 }
2841 #endif
2842 
2843 /*
2844  * Read f2fs raw super block.
2845  * Because we have two copies of super block, so read both of them
2846  * to get the first valid one. If any one of them is broken, we pass
2847  * them recovery flag back to the caller.
2848  */
2849 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2850 			struct f2fs_super_block **raw_super,
2851 			int *valid_super_block, int *recovery)
2852 {
2853 	struct super_block *sb = sbi->sb;
2854 	int block;
2855 	struct buffer_head *bh;
2856 	struct f2fs_super_block *super;
2857 	int err = 0;
2858 
2859 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2860 	if (!super)
2861 		return -ENOMEM;
2862 
2863 	for (block = 0; block < 2; block++) {
2864 		bh = sb_bread(sb, block);
2865 		if (!bh) {
2866 			f2fs_err(sbi, "Unable to read %dth superblock",
2867 				 block + 1);
2868 			err = -EIO;
2869 			continue;
2870 		}
2871 
2872 		/* sanity checking of raw super */
2873 		err = sanity_check_raw_super(sbi, bh);
2874 		if (err) {
2875 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
2876 				 block + 1);
2877 			brelse(bh);
2878 			continue;
2879 		}
2880 
2881 		if (!*raw_super) {
2882 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2883 							sizeof(*super));
2884 			*valid_super_block = block;
2885 			*raw_super = super;
2886 		}
2887 		brelse(bh);
2888 	}
2889 
2890 	/* Fail to read any one of the superblocks*/
2891 	if (err < 0)
2892 		*recovery = 1;
2893 
2894 	/* No valid superblock */
2895 	if (!*raw_super)
2896 		kvfree(super);
2897 	else
2898 		err = 0;
2899 
2900 	return err;
2901 }
2902 
2903 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2904 {
2905 	struct buffer_head *bh;
2906 	__u32 crc = 0;
2907 	int err;
2908 
2909 	if ((recover && f2fs_readonly(sbi->sb)) ||
2910 				bdev_read_only(sbi->sb->s_bdev)) {
2911 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2912 		return -EROFS;
2913 	}
2914 
2915 	/* we should update superblock crc here */
2916 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
2917 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
2918 				offsetof(struct f2fs_super_block, crc));
2919 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
2920 	}
2921 
2922 	/* write back-up superblock first */
2923 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2924 	if (!bh)
2925 		return -EIO;
2926 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2927 	brelse(bh);
2928 
2929 	/* if we are in recovery path, skip writing valid superblock */
2930 	if (recover || err)
2931 		return err;
2932 
2933 	/* write current valid superblock */
2934 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
2935 	if (!bh)
2936 		return -EIO;
2937 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2938 	brelse(bh);
2939 	return err;
2940 }
2941 
2942 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2943 {
2944 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2945 	unsigned int max_devices = MAX_DEVICES;
2946 	int i;
2947 
2948 	/* Initialize single device information */
2949 	if (!RDEV(0).path[0]) {
2950 		if (!bdev_is_zoned(sbi->sb->s_bdev))
2951 			return 0;
2952 		max_devices = 1;
2953 	}
2954 
2955 	/*
2956 	 * Initialize multiple devices information, or single
2957 	 * zoned block device information.
2958 	 */
2959 	sbi->devs = f2fs_kzalloc(sbi,
2960 				 array_size(max_devices,
2961 					    sizeof(struct f2fs_dev_info)),
2962 				 GFP_KERNEL);
2963 	if (!sbi->devs)
2964 		return -ENOMEM;
2965 
2966 	for (i = 0; i < max_devices; i++) {
2967 
2968 		if (i > 0 && !RDEV(i).path[0])
2969 			break;
2970 
2971 		if (max_devices == 1) {
2972 			/* Single zoned block device mount */
2973 			FDEV(0).bdev =
2974 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2975 					sbi->sb->s_mode, sbi->sb->s_type);
2976 		} else {
2977 			/* Multi-device mount */
2978 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2979 			FDEV(i).total_segments =
2980 				le32_to_cpu(RDEV(i).total_segments);
2981 			if (i == 0) {
2982 				FDEV(i).start_blk = 0;
2983 				FDEV(i).end_blk = FDEV(i).start_blk +
2984 				    (FDEV(i).total_segments <<
2985 				    sbi->log_blocks_per_seg) - 1 +
2986 				    le32_to_cpu(raw_super->segment0_blkaddr);
2987 			} else {
2988 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2989 				FDEV(i).end_blk = FDEV(i).start_blk +
2990 					(FDEV(i).total_segments <<
2991 					sbi->log_blocks_per_seg) - 1;
2992 			}
2993 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2994 					sbi->sb->s_mode, sbi->sb->s_type);
2995 		}
2996 		if (IS_ERR(FDEV(i).bdev))
2997 			return PTR_ERR(FDEV(i).bdev);
2998 
2999 		/* to release errored devices */
3000 		sbi->s_ndevs = i + 1;
3001 
3002 #ifdef CONFIG_BLK_DEV_ZONED
3003 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3004 				!f2fs_sb_has_blkzoned(sbi)) {
3005 			f2fs_err(sbi, "Zoned block device feature not enabled\n");
3006 			return -EINVAL;
3007 		}
3008 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3009 			if (init_blkz_info(sbi, i)) {
3010 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3011 				return -EINVAL;
3012 			}
3013 			if (max_devices == 1)
3014 				break;
3015 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3016 				  i, FDEV(i).path,
3017 				  FDEV(i).total_segments,
3018 				  FDEV(i).start_blk, FDEV(i).end_blk,
3019 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3020 				  "Host-aware" : "Host-managed");
3021 			continue;
3022 		}
3023 #endif
3024 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3025 			  i, FDEV(i).path,
3026 			  FDEV(i).total_segments,
3027 			  FDEV(i).start_blk, FDEV(i).end_blk);
3028 	}
3029 	f2fs_info(sbi,
3030 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3031 	return 0;
3032 }
3033 
3034 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3035 {
3036 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3037 
3038 	/* adjust parameters according to the volume size */
3039 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3040 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3041 		sm_i->dcc_info->discard_granularity = 1;
3042 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3043 	}
3044 
3045 	sbi->readdir_ra = 1;
3046 }
3047 
3048 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3049 {
3050 	struct f2fs_sb_info *sbi;
3051 	struct f2fs_super_block *raw_super;
3052 	struct inode *root;
3053 	int err;
3054 	bool skip_recovery = false, need_fsck = false;
3055 	char *options = NULL;
3056 	int recovery, i, valid_super_block;
3057 	struct curseg_info *seg_i;
3058 	int retry_cnt = 1;
3059 
3060 try_onemore:
3061 	err = -EINVAL;
3062 	raw_super = NULL;
3063 	valid_super_block = -1;
3064 	recovery = 0;
3065 
3066 	/* allocate memory for f2fs-specific super block info */
3067 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3068 	if (!sbi)
3069 		return -ENOMEM;
3070 
3071 	sbi->sb = sb;
3072 
3073 	/* Load the checksum driver */
3074 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3075 	if (IS_ERR(sbi->s_chksum_driver)) {
3076 		f2fs_err(sbi, "Cannot load crc32 driver.");
3077 		err = PTR_ERR(sbi->s_chksum_driver);
3078 		sbi->s_chksum_driver = NULL;
3079 		goto free_sbi;
3080 	}
3081 
3082 	/* set a block size */
3083 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3084 		f2fs_err(sbi, "unable to set blocksize");
3085 		goto free_sbi;
3086 	}
3087 
3088 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3089 								&recovery);
3090 	if (err)
3091 		goto free_sbi;
3092 
3093 	sb->s_fs_info = sbi;
3094 	sbi->raw_super = raw_super;
3095 
3096 	/* precompute checksum seed for metadata */
3097 	if (f2fs_sb_has_inode_chksum(sbi))
3098 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3099 						sizeof(raw_super->uuid));
3100 
3101 	/*
3102 	 * The BLKZONED feature indicates that the drive was formatted with
3103 	 * zone alignment optimization. This is optional for host-aware
3104 	 * devices, but mandatory for host-managed zoned block devices.
3105 	 */
3106 #ifndef CONFIG_BLK_DEV_ZONED
3107 	if (f2fs_sb_has_blkzoned(sbi)) {
3108 		f2fs_err(sbi, "Zoned block device support is not enabled");
3109 		err = -EOPNOTSUPP;
3110 		goto free_sb_buf;
3111 	}
3112 #endif
3113 	default_options(sbi);
3114 	/* parse mount options */
3115 	options = kstrdup((const char *)data, GFP_KERNEL);
3116 	if (data && !options) {
3117 		err = -ENOMEM;
3118 		goto free_sb_buf;
3119 	}
3120 
3121 	err = parse_options(sb, options);
3122 	if (err)
3123 		goto free_options;
3124 
3125 	sbi->max_file_blocks = max_file_blocks();
3126 	sb->s_maxbytes = sbi->max_file_blocks <<
3127 				le32_to_cpu(raw_super->log_blocksize);
3128 	sb->s_max_links = F2FS_LINK_MAX;
3129 
3130 #ifdef CONFIG_QUOTA
3131 	sb->dq_op = &f2fs_quota_operations;
3132 	sb->s_qcop = &f2fs_quotactl_ops;
3133 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3134 
3135 	if (f2fs_sb_has_quota_ino(sbi)) {
3136 		for (i = 0; i < MAXQUOTAS; i++) {
3137 			if (f2fs_qf_ino(sbi->sb, i))
3138 				sbi->nquota_files++;
3139 		}
3140 	}
3141 #endif
3142 
3143 	sb->s_op = &f2fs_sops;
3144 #ifdef CONFIG_FS_ENCRYPTION
3145 	sb->s_cop = &f2fs_cryptops;
3146 #endif
3147 	sb->s_xattr = f2fs_xattr_handlers;
3148 	sb->s_export_op = &f2fs_export_ops;
3149 	sb->s_magic = F2FS_SUPER_MAGIC;
3150 	sb->s_time_gran = 1;
3151 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3152 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3153 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3154 	sb->s_iflags |= SB_I_CGROUPWB;
3155 
3156 	/* init f2fs-specific super block info */
3157 	sbi->valid_super_block = valid_super_block;
3158 	mutex_init(&sbi->gc_mutex);
3159 	mutex_init(&sbi->writepages);
3160 	mutex_init(&sbi->cp_mutex);
3161 	mutex_init(&sbi->resize_mutex);
3162 	init_rwsem(&sbi->node_write);
3163 	init_rwsem(&sbi->node_change);
3164 
3165 	/* disallow all the data/node/meta page writes */
3166 	set_sbi_flag(sbi, SBI_POR_DOING);
3167 	spin_lock_init(&sbi->stat_lock);
3168 
3169 	/* init iostat info */
3170 	spin_lock_init(&sbi->iostat_lock);
3171 	sbi->iostat_enable = false;
3172 
3173 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3174 		int n = (i == META) ? 1: NR_TEMP_TYPE;
3175 		int j;
3176 
3177 		sbi->write_io[i] =
3178 			f2fs_kmalloc(sbi,
3179 				     array_size(n,
3180 						sizeof(struct f2fs_bio_info)),
3181 				     GFP_KERNEL);
3182 		if (!sbi->write_io[i]) {
3183 			err = -ENOMEM;
3184 			goto free_bio_info;
3185 		}
3186 
3187 		for (j = HOT; j < n; j++) {
3188 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3189 			sbi->write_io[i][j].sbi = sbi;
3190 			sbi->write_io[i][j].bio = NULL;
3191 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3192 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3193 		}
3194 	}
3195 
3196 	init_rwsem(&sbi->cp_rwsem);
3197 	init_rwsem(&sbi->quota_sem);
3198 	init_waitqueue_head(&sbi->cp_wait);
3199 	init_sb_info(sbi);
3200 
3201 	err = init_percpu_info(sbi);
3202 	if (err)
3203 		goto free_bio_info;
3204 
3205 	if (F2FS_IO_SIZE(sbi) > 1) {
3206 		sbi->write_io_dummy =
3207 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3208 		if (!sbi->write_io_dummy) {
3209 			err = -ENOMEM;
3210 			goto free_percpu;
3211 		}
3212 	}
3213 
3214 	/* get an inode for meta space */
3215 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3216 	if (IS_ERR(sbi->meta_inode)) {
3217 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
3218 		err = PTR_ERR(sbi->meta_inode);
3219 		goto free_io_dummy;
3220 	}
3221 
3222 	err = f2fs_get_valid_checkpoint(sbi);
3223 	if (err) {
3224 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3225 		goto free_meta_inode;
3226 	}
3227 
3228 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3229 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3230 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3231 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3232 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3233 	}
3234 
3235 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3236 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3237 
3238 	/* Initialize device list */
3239 	err = f2fs_scan_devices(sbi);
3240 	if (err) {
3241 		f2fs_err(sbi, "Failed to find devices");
3242 		goto free_devices;
3243 	}
3244 
3245 	sbi->total_valid_node_count =
3246 				le32_to_cpu(sbi->ckpt->valid_node_count);
3247 	percpu_counter_set(&sbi->total_valid_inode_count,
3248 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3249 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3250 	sbi->total_valid_block_count =
3251 				le64_to_cpu(sbi->ckpt->valid_block_count);
3252 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3253 	sbi->reserved_blocks = 0;
3254 	sbi->current_reserved_blocks = 0;
3255 	limit_reserve_root(sbi);
3256 
3257 	for (i = 0; i < NR_INODE_TYPE; i++) {
3258 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3259 		spin_lock_init(&sbi->inode_lock[i]);
3260 	}
3261 	mutex_init(&sbi->flush_lock);
3262 
3263 	f2fs_init_extent_cache_info(sbi);
3264 
3265 	f2fs_init_ino_entry_info(sbi);
3266 
3267 	f2fs_init_fsync_node_info(sbi);
3268 
3269 	/* setup f2fs internal modules */
3270 	err = f2fs_build_segment_manager(sbi);
3271 	if (err) {
3272 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3273 			 err);
3274 		goto free_sm;
3275 	}
3276 	err = f2fs_build_node_manager(sbi);
3277 	if (err) {
3278 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3279 			 err);
3280 		goto free_nm;
3281 	}
3282 
3283 	/* For write statistics */
3284 	if (sb->s_bdev->bd_part)
3285 		sbi->sectors_written_start =
3286 			(u64)part_stat_read(sb->s_bdev->bd_part,
3287 					    sectors[STAT_WRITE]);
3288 
3289 	/* Read accumulated write IO statistics if exists */
3290 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3291 	if (__exist_node_summaries(sbi))
3292 		sbi->kbytes_written =
3293 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3294 
3295 	f2fs_build_gc_manager(sbi);
3296 
3297 	err = f2fs_build_stats(sbi);
3298 	if (err)
3299 		goto free_nm;
3300 
3301 	/* get an inode for node space */
3302 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3303 	if (IS_ERR(sbi->node_inode)) {
3304 		f2fs_err(sbi, "Failed to read node inode");
3305 		err = PTR_ERR(sbi->node_inode);
3306 		goto free_stats;
3307 	}
3308 
3309 	/* read root inode and dentry */
3310 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3311 	if (IS_ERR(root)) {
3312 		f2fs_err(sbi, "Failed to read root inode");
3313 		err = PTR_ERR(root);
3314 		goto free_node_inode;
3315 	}
3316 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3317 			!root->i_size || !root->i_nlink) {
3318 		iput(root);
3319 		err = -EINVAL;
3320 		goto free_node_inode;
3321 	}
3322 
3323 	sb->s_root = d_make_root(root); /* allocate root dentry */
3324 	if (!sb->s_root) {
3325 		err = -ENOMEM;
3326 		goto free_node_inode;
3327 	}
3328 
3329 	err = f2fs_register_sysfs(sbi);
3330 	if (err)
3331 		goto free_root_inode;
3332 
3333 #ifdef CONFIG_QUOTA
3334 	/* Enable quota usage during mount */
3335 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3336 		err = f2fs_enable_quotas(sb);
3337 		if (err)
3338 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3339 	}
3340 #endif
3341 	/* if there are nt orphan nodes free them */
3342 	err = f2fs_recover_orphan_inodes(sbi);
3343 	if (err)
3344 		goto free_meta;
3345 
3346 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3347 		goto reset_checkpoint;
3348 
3349 	/* recover fsynced data */
3350 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
3351 		/*
3352 		 * mount should be failed, when device has readonly mode, and
3353 		 * previous checkpoint was not done by clean system shutdown.
3354 		 */
3355 		if (f2fs_hw_is_readonly(sbi)) {
3356 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3357 				err = -EROFS;
3358 				f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3359 				goto free_meta;
3360 			}
3361 			f2fs_info(sbi, "write access unavailable, skipping recovery");
3362 			goto reset_checkpoint;
3363 		}
3364 
3365 		if (need_fsck)
3366 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3367 
3368 		if (skip_recovery)
3369 			goto reset_checkpoint;
3370 
3371 		err = f2fs_recover_fsync_data(sbi, false);
3372 		if (err < 0) {
3373 			if (err != -ENOMEM)
3374 				skip_recovery = true;
3375 			need_fsck = true;
3376 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3377 				 err);
3378 			goto free_meta;
3379 		}
3380 	} else {
3381 		err = f2fs_recover_fsync_data(sbi, true);
3382 
3383 		if (!f2fs_readonly(sb) && err > 0) {
3384 			err = -EINVAL;
3385 			f2fs_err(sbi, "Need to recover fsync data");
3386 			goto free_meta;
3387 		}
3388 	}
3389 reset_checkpoint:
3390 	/* f2fs_recover_fsync_data() cleared this already */
3391 	clear_sbi_flag(sbi, SBI_POR_DOING);
3392 
3393 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3394 		err = f2fs_disable_checkpoint(sbi);
3395 		if (err)
3396 			goto sync_free_meta;
3397 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3398 		f2fs_enable_checkpoint(sbi);
3399 	}
3400 
3401 	/*
3402 	 * If filesystem is not mounted as read-only then
3403 	 * do start the gc_thread.
3404 	 */
3405 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3406 		/* After POR, we can run background GC thread.*/
3407 		err = f2fs_start_gc_thread(sbi);
3408 		if (err)
3409 			goto sync_free_meta;
3410 	}
3411 	kvfree(options);
3412 
3413 	/* recover broken superblock */
3414 	if (recovery) {
3415 		err = f2fs_commit_super(sbi, true);
3416 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3417 			  sbi->valid_super_block ? 1 : 2, err);
3418 	}
3419 
3420 	f2fs_join_shrinker(sbi);
3421 
3422 	f2fs_tuning_parameters(sbi);
3423 
3424 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3425 		    cur_cp_version(F2FS_CKPT(sbi)));
3426 	f2fs_update_time(sbi, CP_TIME);
3427 	f2fs_update_time(sbi, REQ_TIME);
3428 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3429 	return 0;
3430 
3431 sync_free_meta:
3432 	/* safe to flush all the data */
3433 	sync_filesystem(sbi->sb);
3434 	retry_cnt = 0;
3435 
3436 free_meta:
3437 #ifdef CONFIG_QUOTA
3438 	f2fs_truncate_quota_inode_pages(sb);
3439 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3440 		f2fs_quota_off_umount(sbi->sb);
3441 #endif
3442 	/*
3443 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3444 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3445 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3446 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3447 	 */
3448 	truncate_inode_pages_final(META_MAPPING(sbi));
3449 	/* evict some inodes being cached by GC */
3450 	evict_inodes(sb);
3451 	f2fs_unregister_sysfs(sbi);
3452 free_root_inode:
3453 	dput(sb->s_root);
3454 	sb->s_root = NULL;
3455 free_node_inode:
3456 	f2fs_release_ino_entry(sbi, true);
3457 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3458 	iput(sbi->node_inode);
3459 	sbi->node_inode = NULL;
3460 free_stats:
3461 	f2fs_destroy_stats(sbi);
3462 free_nm:
3463 	f2fs_destroy_node_manager(sbi);
3464 free_sm:
3465 	f2fs_destroy_segment_manager(sbi);
3466 free_devices:
3467 	destroy_device_list(sbi);
3468 	kvfree(sbi->ckpt);
3469 free_meta_inode:
3470 	make_bad_inode(sbi->meta_inode);
3471 	iput(sbi->meta_inode);
3472 	sbi->meta_inode = NULL;
3473 free_io_dummy:
3474 	mempool_destroy(sbi->write_io_dummy);
3475 free_percpu:
3476 	destroy_percpu_info(sbi);
3477 free_bio_info:
3478 	for (i = 0; i < NR_PAGE_TYPE; i++)
3479 		kvfree(sbi->write_io[i]);
3480 free_options:
3481 #ifdef CONFIG_QUOTA
3482 	for (i = 0; i < MAXQUOTAS; i++)
3483 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3484 #endif
3485 	kvfree(options);
3486 free_sb_buf:
3487 	kvfree(raw_super);
3488 free_sbi:
3489 	if (sbi->s_chksum_driver)
3490 		crypto_free_shash(sbi->s_chksum_driver);
3491 	kvfree(sbi);
3492 
3493 	/* give only one another chance */
3494 	if (retry_cnt > 0 && skip_recovery) {
3495 		retry_cnt--;
3496 		shrink_dcache_sb(sb);
3497 		goto try_onemore;
3498 	}
3499 	return err;
3500 }
3501 
3502 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3503 			const char *dev_name, void *data)
3504 {
3505 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3506 }
3507 
3508 static void kill_f2fs_super(struct super_block *sb)
3509 {
3510 	if (sb->s_root) {
3511 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3512 
3513 		set_sbi_flag(sbi, SBI_IS_CLOSE);
3514 		f2fs_stop_gc_thread(sbi);
3515 		f2fs_stop_discard_thread(sbi);
3516 
3517 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3518 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3519 			struct cp_control cpc = {
3520 				.reason = CP_UMOUNT,
3521 			};
3522 			f2fs_write_checkpoint(sbi, &cpc);
3523 		}
3524 
3525 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3526 			sb->s_flags &= ~SB_RDONLY;
3527 	}
3528 	kill_block_super(sb);
3529 }
3530 
3531 static struct file_system_type f2fs_fs_type = {
3532 	.owner		= THIS_MODULE,
3533 	.name		= "f2fs",
3534 	.mount		= f2fs_mount,
3535 	.kill_sb	= kill_f2fs_super,
3536 	.fs_flags	= FS_REQUIRES_DEV,
3537 };
3538 MODULE_ALIAS_FS("f2fs");
3539 
3540 static int __init init_inodecache(void)
3541 {
3542 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3543 			sizeof(struct f2fs_inode_info), 0,
3544 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3545 	if (!f2fs_inode_cachep)
3546 		return -ENOMEM;
3547 	return 0;
3548 }
3549 
3550 static void destroy_inodecache(void)
3551 {
3552 	/*
3553 	 * Make sure all delayed rcu free inodes are flushed before we
3554 	 * destroy cache.
3555 	 */
3556 	rcu_barrier();
3557 	kmem_cache_destroy(f2fs_inode_cachep);
3558 }
3559 
3560 static int __init init_f2fs_fs(void)
3561 {
3562 	int err;
3563 
3564 	if (PAGE_SIZE != F2FS_BLKSIZE) {
3565 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3566 				PAGE_SIZE, F2FS_BLKSIZE);
3567 		return -EINVAL;
3568 	}
3569 
3570 	f2fs_build_trace_ios();
3571 
3572 	err = init_inodecache();
3573 	if (err)
3574 		goto fail;
3575 	err = f2fs_create_node_manager_caches();
3576 	if (err)
3577 		goto free_inodecache;
3578 	err = f2fs_create_segment_manager_caches();
3579 	if (err)
3580 		goto free_node_manager_caches;
3581 	err = f2fs_create_checkpoint_caches();
3582 	if (err)
3583 		goto free_segment_manager_caches;
3584 	err = f2fs_create_extent_cache();
3585 	if (err)
3586 		goto free_checkpoint_caches;
3587 	err = f2fs_init_sysfs();
3588 	if (err)
3589 		goto free_extent_cache;
3590 	err = register_shrinker(&f2fs_shrinker_info);
3591 	if (err)
3592 		goto free_sysfs;
3593 	err = register_filesystem(&f2fs_fs_type);
3594 	if (err)
3595 		goto free_shrinker;
3596 	f2fs_create_root_stats();
3597 	err = f2fs_init_post_read_processing();
3598 	if (err)
3599 		goto free_root_stats;
3600 	return 0;
3601 
3602 free_root_stats:
3603 	f2fs_destroy_root_stats();
3604 	unregister_filesystem(&f2fs_fs_type);
3605 free_shrinker:
3606 	unregister_shrinker(&f2fs_shrinker_info);
3607 free_sysfs:
3608 	f2fs_exit_sysfs();
3609 free_extent_cache:
3610 	f2fs_destroy_extent_cache();
3611 free_checkpoint_caches:
3612 	f2fs_destroy_checkpoint_caches();
3613 free_segment_manager_caches:
3614 	f2fs_destroy_segment_manager_caches();
3615 free_node_manager_caches:
3616 	f2fs_destroy_node_manager_caches();
3617 free_inodecache:
3618 	destroy_inodecache();
3619 fail:
3620 	return err;
3621 }
3622 
3623 static void __exit exit_f2fs_fs(void)
3624 {
3625 	f2fs_destroy_post_read_processing();
3626 	f2fs_destroy_root_stats();
3627 	unregister_filesystem(&f2fs_fs_type);
3628 	unregister_shrinker(&f2fs_shrinker_info);
3629 	f2fs_exit_sysfs();
3630 	f2fs_destroy_extent_cache();
3631 	f2fs_destroy_checkpoint_caches();
3632 	f2fs_destroy_segment_manager_caches();
3633 	f2fs_destroy_node_manager_caches();
3634 	destroy_inodecache();
3635 	f2fs_destroy_trace_ios();
3636 }
3637 
3638 module_init(init_f2fs_fs)
3639 module_exit(exit_f2fs_fs)
3640 
3641 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3642 MODULE_DESCRIPTION("Flash Friendly File System");
3643 MODULE_LICENSE("GPL");
3644 
3645