1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/fs_context.h> 12 #include <linux/sched/mm.h> 13 #include <linux/statfs.h> 14 #include <linux/buffer_head.h> 15 #include <linux/kthread.h> 16 #include <linux/parser.h> 17 #include <linux/mount.h> 18 #include <linux/seq_file.h> 19 #include <linux/proc_fs.h> 20 #include <linux/random.h> 21 #include <linux/exportfs.h> 22 #include <linux/blkdev.h> 23 #include <linux/quotaops.h> 24 #include <linux/f2fs_fs.h> 25 #include <linux/sysfs.h> 26 #include <linux/quota.h> 27 #include <linux/unicode.h> 28 #include <linux/part_stat.h> 29 #include <linux/zstd.h> 30 #include <linux/lz4.h> 31 32 #include "f2fs.h" 33 #include "node.h" 34 #include "segment.h" 35 #include "xattr.h" 36 #include "gc.h" 37 #include "iostat.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/f2fs.h> 41 42 static struct kmem_cache *f2fs_inode_cachep; 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 46 const char *f2fs_fault_name[FAULT_MAX] = { 47 [FAULT_KMALLOC] = "kmalloc", 48 [FAULT_KVMALLOC] = "kvmalloc", 49 [FAULT_PAGE_ALLOC] = "page alloc", 50 [FAULT_PAGE_GET] = "page get", 51 [FAULT_ALLOC_NID] = "alloc nid", 52 [FAULT_ORPHAN] = "orphan", 53 [FAULT_BLOCK] = "no more block", 54 [FAULT_DIR_DEPTH] = "too big dir depth", 55 [FAULT_EVICT_INODE] = "evict_inode fail", 56 [FAULT_TRUNCATE] = "truncate fail", 57 [FAULT_READ_IO] = "read IO error", 58 [FAULT_CHECKPOINT] = "checkpoint error", 59 [FAULT_DISCARD] = "discard error", 60 [FAULT_WRITE_IO] = "write IO error", 61 [FAULT_SLAB_ALLOC] = "slab alloc", 62 [FAULT_DQUOT_INIT] = "dquot initialize", 63 [FAULT_LOCK_OP] = "lock_op", 64 }; 65 66 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 67 unsigned int type) 68 { 69 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 70 71 if (rate) { 72 atomic_set(&ffi->inject_ops, 0); 73 ffi->inject_rate = rate; 74 } 75 76 if (type) 77 ffi->inject_type = type; 78 79 if (!rate && !type) 80 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 81 } 82 #endif 83 84 /* f2fs-wide shrinker description */ 85 static struct shrinker f2fs_shrinker_info = { 86 .scan_objects = f2fs_shrink_scan, 87 .count_objects = f2fs_shrink_count, 88 .seeks = DEFAULT_SEEKS, 89 }; 90 91 enum { 92 Opt_gc_background, 93 Opt_disable_roll_forward, 94 Opt_norecovery, 95 Opt_discard, 96 Opt_nodiscard, 97 Opt_noheap, 98 Opt_heap, 99 Opt_user_xattr, 100 Opt_nouser_xattr, 101 Opt_acl, 102 Opt_noacl, 103 Opt_active_logs, 104 Opt_disable_ext_identify, 105 Opt_inline_xattr, 106 Opt_noinline_xattr, 107 Opt_inline_xattr_size, 108 Opt_inline_data, 109 Opt_inline_dentry, 110 Opt_noinline_dentry, 111 Opt_flush_merge, 112 Opt_noflush_merge, 113 Opt_nobarrier, 114 Opt_fastboot, 115 Opt_extent_cache, 116 Opt_noextent_cache, 117 Opt_noinline_data, 118 Opt_data_flush, 119 Opt_reserve_root, 120 Opt_resgid, 121 Opt_resuid, 122 Opt_mode, 123 Opt_io_size_bits, 124 Opt_fault_injection, 125 Opt_fault_type, 126 Opt_lazytime, 127 Opt_nolazytime, 128 Opt_quota, 129 Opt_noquota, 130 Opt_usrquota, 131 Opt_grpquota, 132 Opt_prjquota, 133 Opt_usrjquota, 134 Opt_grpjquota, 135 Opt_prjjquota, 136 Opt_offusrjquota, 137 Opt_offgrpjquota, 138 Opt_offprjjquota, 139 Opt_jqfmt_vfsold, 140 Opt_jqfmt_vfsv0, 141 Opt_jqfmt_vfsv1, 142 Opt_alloc, 143 Opt_fsync, 144 Opt_test_dummy_encryption, 145 Opt_inlinecrypt, 146 Opt_checkpoint_disable, 147 Opt_checkpoint_disable_cap, 148 Opt_checkpoint_disable_cap_perc, 149 Opt_checkpoint_enable, 150 Opt_checkpoint_merge, 151 Opt_nocheckpoint_merge, 152 Opt_compress_algorithm, 153 Opt_compress_log_size, 154 Opt_compress_extension, 155 Opt_nocompress_extension, 156 Opt_compress_chksum, 157 Opt_compress_mode, 158 Opt_compress_cache, 159 Opt_atgc, 160 Opt_gc_merge, 161 Opt_nogc_merge, 162 Opt_discard_unit, 163 Opt_memory_mode, 164 Opt_err, 165 }; 166 167 static match_table_t f2fs_tokens = { 168 {Opt_gc_background, "background_gc=%s"}, 169 {Opt_disable_roll_forward, "disable_roll_forward"}, 170 {Opt_norecovery, "norecovery"}, 171 {Opt_discard, "discard"}, 172 {Opt_nodiscard, "nodiscard"}, 173 {Opt_noheap, "no_heap"}, 174 {Opt_heap, "heap"}, 175 {Opt_user_xattr, "user_xattr"}, 176 {Opt_nouser_xattr, "nouser_xattr"}, 177 {Opt_acl, "acl"}, 178 {Opt_noacl, "noacl"}, 179 {Opt_active_logs, "active_logs=%u"}, 180 {Opt_disable_ext_identify, "disable_ext_identify"}, 181 {Opt_inline_xattr, "inline_xattr"}, 182 {Opt_noinline_xattr, "noinline_xattr"}, 183 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 184 {Opt_inline_data, "inline_data"}, 185 {Opt_inline_dentry, "inline_dentry"}, 186 {Opt_noinline_dentry, "noinline_dentry"}, 187 {Opt_flush_merge, "flush_merge"}, 188 {Opt_noflush_merge, "noflush_merge"}, 189 {Opt_nobarrier, "nobarrier"}, 190 {Opt_fastboot, "fastboot"}, 191 {Opt_extent_cache, "extent_cache"}, 192 {Opt_noextent_cache, "noextent_cache"}, 193 {Opt_noinline_data, "noinline_data"}, 194 {Opt_data_flush, "data_flush"}, 195 {Opt_reserve_root, "reserve_root=%u"}, 196 {Opt_resgid, "resgid=%u"}, 197 {Opt_resuid, "resuid=%u"}, 198 {Opt_mode, "mode=%s"}, 199 {Opt_io_size_bits, "io_bits=%u"}, 200 {Opt_fault_injection, "fault_injection=%u"}, 201 {Opt_fault_type, "fault_type=%u"}, 202 {Opt_lazytime, "lazytime"}, 203 {Opt_nolazytime, "nolazytime"}, 204 {Opt_quota, "quota"}, 205 {Opt_noquota, "noquota"}, 206 {Opt_usrquota, "usrquota"}, 207 {Opt_grpquota, "grpquota"}, 208 {Opt_prjquota, "prjquota"}, 209 {Opt_usrjquota, "usrjquota=%s"}, 210 {Opt_grpjquota, "grpjquota=%s"}, 211 {Opt_prjjquota, "prjjquota=%s"}, 212 {Opt_offusrjquota, "usrjquota="}, 213 {Opt_offgrpjquota, "grpjquota="}, 214 {Opt_offprjjquota, "prjjquota="}, 215 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 216 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 217 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 218 {Opt_alloc, "alloc_mode=%s"}, 219 {Opt_fsync, "fsync_mode=%s"}, 220 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 221 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 222 {Opt_inlinecrypt, "inlinecrypt"}, 223 {Opt_checkpoint_disable, "checkpoint=disable"}, 224 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 225 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 226 {Opt_checkpoint_enable, "checkpoint=enable"}, 227 {Opt_checkpoint_merge, "checkpoint_merge"}, 228 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 229 {Opt_compress_algorithm, "compress_algorithm=%s"}, 230 {Opt_compress_log_size, "compress_log_size=%u"}, 231 {Opt_compress_extension, "compress_extension=%s"}, 232 {Opt_nocompress_extension, "nocompress_extension=%s"}, 233 {Opt_compress_chksum, "compress_chksum"}, 234 {Opt_compress_mode, "compress_mode=%s"}, 235 {Opt_compress_cache, "compress_cache"}, 236 {Opt_atgc, "atgc"}, 237 {Opt_gc_merge, "gc_merge"}, 238 {Opt_nogc_merge, "nogc_merge"}, 239 {Opt_discard_unit, "discard_unit=%s"}, 240 {Opt_memory_mode, "memory=%s"}, 241 {Opt_err, NULL}, 242 }; 243 244 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 245 { 246 struct va_format vaf; 247 va_list args; 248 int level; 249 250 va_start(args, fmt); 251 252 level = printk_get_level(fmt); 253 vaf.fmt = printk_skip_level(fmt); 254 vaf.va = &args; 255 printk("%c%cF2FS-fs (%s): %pV\n", 256 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 257 258 va_end(args); 259 } 260 261 #if IS_ENABLED(CONFIG_UNICODE) 262 static const struct f2fs_sb_encodings { 263 __u16 magic; 264 char *name; 265 unsigned int version; 266 } f2fs_sb_encoding_map[] = { 267 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 268 }; 269 270 static const struct f2fs_sb_encodings * 271 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 272 { 273 __u16 magic = le16_to_cpu(sb->s_encoding); 274 int i; 275 276 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 277 if (magic == f2fs_sb_encoding_map[i].magic) 278 return &f2fs_sb_encoding_map[i]; 279 280 return NULL; 281 } 282 283 struct kmem_cache *f2fs_cf_name_slab; 284 static int __init f2fs_create_casefold_cache(void) 285 { 286 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 287 F2FS_NAME_LEN); 288 if (!f2fs_cf_name_slab) 289 return -ENOMEM; 290 return 0; 291 } 292 293 static void f2fs_destroy_casefold_cache(void) 294 { 295 kmem_cache_destroy(f2fs_cf_name_slab); 296 } 297 #else 298 static int __init f2fs_create_casefold_cache(void) { return 0; } 299 static void f2fs_destroy_casefold_cache(void) { } 300 #endif 301 302 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 303 { 304 block_t limit = min((sbi->user_block_count << 1) / 1000, 305 sbi->user_block_count - sbi->reserved_blocks); 306 307 /* limit is 0.2% */ 308 if (test_opt(sbi, RESERVE_ROOT) && 309 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 310 F2FS_OPTION(sbi).root_reserved_blocks = limit; 311 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 312 F2FS_OPTION(sbi).root_reserved_blocks); 313 } 314 if (!test_opt(sbi, RESERVE_ROOT) && 315 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 316 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 317 !gid_eq(F2FS_OPTION(sbi).s_resgid, 318 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 319 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 320 from_kuid_munged(&init_user_ns, 321 F2FS_OPTION(sbi).s_resuid), 322 from_kgid_munged(&init_user_ns, 323 F2FS_OPTION(sbi).s_resgid)); 324 } 325 326 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi) 327 { 328 unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec; 329 unsigned int avg_vblocks; 330 unsigned int wanted_reserved_segments; 331 block_t avail_user_block_count; 332 333 if (!F2FS_IO_ALIGNED(sbi)) 334 return 0; 335 336 /* average valid block count in section in worst case */ 337 avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi); 338 339 /* 340 * we need enough free space when migrating one section in worst case 341 */ 342 wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) * 343 reserved_segments(sbi); 344 wanted_reserved_segments -= reserved_segments(sbi); 345 346 avail_user_block_count = sbi->user_block_count - 347 sbi->current_reserved_blocks - 348 F2FS_OPTION(sbi).root_reserved_blocks; 349 350 if (wanted_reserved_segments * sbi->blocks_per_seg > 351 avail_user_block_count) { 352 f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u", 353 wanted_reserved_segments, 354 avail_user_block_count >> sbi->log_blocks_per_seg); 355 return -ENOSPC; 356 } 357 358 SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments; 359 360 f2fs_info(sbi, "IO align feature needs additional reserved segment: %u", 361 wanted_reserved_segments); 362 363 return 0; 364 } 365 366 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 367 { 368 if (!F2FS_OPTION(sbi).unusable_cap_perc) 369 return; 370 371 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 372 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 373 else 374 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 375 F2FS_OPTION(sbi).unusable_cap_perc; 376 377 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 378 F2FS_OPTION(sbi).unusable_cap, 379 F2FS_OPTION(sbi).unusable_cap_perc); 380 } 381 382 static void init_once(void *foo) 383 { 384 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 385 386 inode_init_once(&fi->vfs_inode); 387 } 388 389 #ifdef CONFIG_QUOTA 390 static const char * const quotatypes[] = INITQFNAMES; 391 #define QTYPE2NAME(t) (quotatypes[t]) 392 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 393 substring_t *args) 394 { 395 struct f2fs_sb_info *sbi = F2FS_SB(sb); 396 char *qname; 397 int ret = -EINVAL; 398 399 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 400 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 401 return -EINVAL; 402 } 403 if (f2fs_sb_has_quota_ino(sbi)) { 404 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 405 return 0; 406 } 407 408 qname = match_strdup(args); 409 if (!qname) { 410 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 411 return -ENOMEM; 412 } 413 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 414 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 415 ret = 0; 416 else 417 f2fs_err(sbi, "%s quota file already specified", 418 QTYPE2NAME(qtype)); 419 goto errout; 420 } 421 if (strchr(qname, '/')) { 422 f2fs_err(sbi, "quotafile must be on filesystem root"); 423 goto errout; 424 } 425 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 426 set_opt(sbi, QUOTA); 427 return 0; 428 errout: 429 kfree(qname); 430 return ret; 431 } 432 433 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 434 { 435 struct f2fs_sb_info *sbi = F2FS_SB(sb); 436 437 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 438 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 439 return -EINVAL; 440 } 441 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 442 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 443 return 0; 444 } 445 446 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 447 { 448 /* 449 * We do the test below only for project quotas. 'usrquota' and 450 * 'grpquota' mount options are allowed even without quota feature 451 * to support legacy quotas in quota files. 452 */ 453 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 454 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 455 return -1; 456 } 457 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 458 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 459 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 460 if (test_opt(sbi, USRQUOTA) && 461 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 462 clear_opt(sbi, USRQUOTA); 463 464 if (test_opt(sbi, GRPQUOTA) && 465 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 466 clear_opt(sbi, GRPQUOTA); 467 468 if (test_opt(sbi, PRJQUOTA) && 469 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 470 clear_opt(sbi, PRJQUOTA); 471 472 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 473 test_opt(sbi, PRJQUOTA)) { 474 f2fs_err(sbi, "old and new quota format mixing"); 475 return -1; 476 } 477 478 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 479 f2fs_err(sbi, "journaled quota format not specified"); 480 return -1; 481 } 482 } 483 484 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 485 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 486 F2FS_OPTION(sbi).s_jquota_fmt = 0; 487 } 488 return 0; 489 } 490 #endif 491 492 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 493 const char *opt, 494 const substring_t *arg, 495 bool is_remount) 496 { 497 struct f2fs_sb_info *sbi = F2FS_SB(sb); 498 struct fs_parameter param = { 499 .type = fs_value_is_string, 500 .string = arg->from ? arg->from : "", 501 }; 502 struct fscrypt_dummy_policy *policy = 503 &F2FS_OPTION(sbi).dummy_enc_policy; 504 int err; 505 506 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 507 f2fs_warn(sbi, "test_dummy_encryption option not supported"); 508 return -EINVAL; 509 } 510 511 if (!f2fs_sb_has_encrypt(sbi)) { 512 f2fs_err(sbi, "Encrypt feature is off"); 513 return -EINVAL; 514 } 515 516 /* 517 * This mount option is just for testing, and it's not worthwhile to 518 * implement the extra complexity (e.g. RCU protection) that would be 519 * needed to allow it to be set or changed during remount. We do allow 520 * it to be specified during remount, but only if there is no change. 521 */ 522 if (is_remount && !fscrypt_is_dummy_policy_set(policy)) { 523 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 524 return -EINVAL; 525 } 526 527 err = fscrypt_parse_test_dummy_encryption(¶m, policy); 528 if (err) { 529 if (err == -EEXIST) 530 f2fs_warn(sbi, 531 "Can't change test_dummy_encryption on remount"); 532 else if (err == -EINVAL) 533 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 534 opt); 535 else 536 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 537 opt, err); 538 return -EINVAL; 539 } 540 err = fscrypt_add_test_dummy_key(sb, policy); 541 if (err) { 542 f2fs_warn(sbi, "Error adding test dummy encryption key [%d]", 543 err); 544 return err; 545 } 546 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 547 return 0; 548 } 549 550 #ifdef CONFIG_F2FS_FS_COMPRESSION 551 /* 552 * 1. The same extension name cannot not appear in both compress and non-compress extension 553 * at the same time. 554 * 2. If the compress extension specifies all files, the types specified by the non-compress 555 * extension will be treated as special cases and will not be compressed. 556 * 3. Don't allow the non-compress extension specifies all files. 557 */ 558 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 559 { 560 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 561 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 562 int ext_cnt, noext_cnt, index = 0, no_index = 0; 563 564 ext = F2FS_OPTION(sbi).extensions; 565 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 566 noext = F2FS_OPTION(sbi).noextensions; 567 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 568 569 if (!noext_cnt) 570 return 0; 571 572 for (no_index = 0; no_index < noext_cnt; no_index++) { 573 if (!strcasecmp("*", noext[no_index])) { 574 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 575 return -EINVAL; 576 } 577 for (index = 0; index < ext_cnt; index++) { 578 if (!strcasecmp(ext[index], noext[no_index])) { 579 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 580 ext[index]); 581 return -EINVAL; 582 } 583 } 584 } 585 return 0; 586 } 587 588 #ifdef CONFIG_F2FS_FS_LZ4 589 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 590 { 591 #ifdef CONFIG_F2FS_FS_LZ4HC 592 unsigned int level; 593 #endif 594 595 if (strlen(str) == 3) { 596 F2FS_OPTION(sbi).compress_level = 0; 597 return 0; 598 } 599 600 #ifdef CONFIG_F2FS_FS_LZ4HC 601 str += 3; 602 603 if (str[0] != ':') { 604 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 605 return -EINVAL; 606 } 607 if (kstrtouint(str + 1, 10, &level)) 608 return -EINVAL; 609 610 if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) { 611 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 612 return -EINVAL; 613 } 614 615 F2FS_OPTION(sbi).compress_level = level; 616 return 0; 617 #else 618 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 619 return -EINVAL; 620 #endif 621 } 622 #endif 623 624 #ifdef CONFIG_F2FS_FS_ZSTD 625 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 626 { 627 unsigned int level; 628 int len = 4; 629 630 if (strlen(str) == len) { 631 F2FS_OPTION(sbi).compress_level = 0; 632 return 0; 633 } 634 635 str += len; 636 637 if (str[0] != ':') { 638 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 639 return -EINVAL; 640 } 641 if (kstrtouint(str + 1, 10, &level)) 642 return -EINVAL; 643 644 if (!level || level > zstd_max_clevel()) { 645 f2fs_info(sbi, "invalid zstd compress level: %d", level); 646 return -EINVAL; 647 } 648 649 F2FS_OPTION(sbi).compress_level = level; 650 return 0; 651 } 652 #endif 653 #endif 654 655 static int parse_options(struct super_block *sb, char *options, bool is_remount) 656 { 657 struct f2fs_sb_info *sbi = F2FS_SB(sb); 658 substring_t args[MAX_OPT_ARGS]; 659 #ifdef CONFIG_F2FS_FS_COMPRESSION 660 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 661 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 662 int ext_cnt, noext_cnt; 663 #endif 664 char *p, *name; 665 int arg = 0; 666 kuid_t uid; 667 kgid_t gid; 668 int ret; 669 670 if (!options) 671 goto default_check; 672 673 while ((p = strsep(&options, ",")) != NULL) { 674 int token; 675 676 if (!*p) 677 continue; 678 /* 679 * Initialize args struct so we know whether arg was 680 * found; some options take optional arguments. 681 */ 682 args[0].to = args[0].from = NULL; 683 token = match_token(p, f2fs_tokens, args); 684 685 switch (token) { 686 case Opt_gc_background: 687 name = match_strdup(&args[0]); 688 689 if (!name) 690 return -ENOMEM; 691 if (!strcmp(name, "on")) { 692 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 693 } else if (!strcmp(name, "off")) { 694 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 695 } else if (!strcmp(name, "sync")) { 696 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 697 } else { 698 kfree(name); 699 return -EINVAL; 700 } 701 kfree(name); 702 break; 703 case Opt_disable_roll_forward: 704 set_opt(sbi, DISABLE_ROLL_FORWARD); 705 break; 706 case Opt_norecovery: 707 /* this option mounts f2fs with ro */ 708 set_opt(sbi, NORECOVERY); 709 if (!f2fs_readonly(sb)) 710 return -EINVAL; 711 break; 712 case Opt_discard: 713 if (!f2fs_hw_support_discard(sbi)) { 714 f2fs_warn(sbi, "device does not support discard"); 715 break; 716 } 717 set_opt(sbi, DISCARD); 718 break; 719 case Opt_nodiscard: 720 if (f2fs_hw_should_discard(sbi)) { 721 f2fs_warn(sbi, "discard is required for zoned block devices"); 722 return -EINVAL; 723 } 724 clear_opt(sbi, DISCARD); 725 break; 726 case Opt_noheap: 727 set_opt(sbi, NOHEAP); 728 break; 729 case Opt_heap: 730 clear_opt(sbi, NOHEAP); 731 break; 732 #ifdef CONFIG_F2FS_FS_XATTR 733 case Opt_user_xattr: 734 set_opt(sbi, XATTR_USER); 735 break; 736 case Opt_nouser_xattr: 737 clear_opt(sbi, XATTR_USER); 738 break; 739 case Opt_inline_xattr: 740 set_opt(sbi, INLINE_XATTR); 741 break; 742 case Opt_noinline_xattr: 743 clear_opt(sbi, INLINE_XATTR); 744 break; 745 case Opt_inline_xattr_size: 746 if (args->from && match_int(args, &arg)) 747 return -EINVAL; 748 set_opt(sbi, INLINE_XATTR_SIZE); 749 F2FS_OPTION(sbi).inline_xattr_size = arg; 750 break; 751 #else 752 case Opt_user_xattr: 753 f2fs_info(sbi, "user_xattr options not supported"); 754 break; 755 case Opt_nouser_xattr: 756 f2fs_info(sbi, "nouser_xattr options not supported"); 757 break; 758 case Opt_inline_xattr: 759 f2fs_info(sbi, "inline_xattr options not supported"); 760 break; 761 case Opt_noinline_xattr: 762 f2fs_info(sbi, "noinline_xattr options not supported"); 763 break; 764 #endif 765 #ifdef CONFIG_F2FS_FS_POSIX_ACL 766 case Opt_acl: 767 set_opt(sbi, POSIX_ACL); 768 break; 769 case Opt_noacl: 770 clear_opt(sbi, POSIX_ACL); 771 break; 772 #else 773 case Opt_acl: 774 f2fs_info(sbi, "acl options not supported"); 775 break; 776 case Opt_noacl: 777 f2fs_info(sbi, "noacl options not supported"); 778 break; 779 #endif 780 case Opt_active_logs: 781 if (args->from && match_int(args, &arg)) 782 return -EINVAL; 783 if (arg != 2 && arg != 4 && 784 arg != NR_CURSEG_PERSIST_TYPE) 785 return -EINVAL; 786 F2FS_OPTION(sbi).active_logs = arg; 787 break; 788 case Opt_disable_ext_identify: 789 set_opt(sbi, DISABLE_EXT_IDENTIFY); 790 break; 791 case Opt_inline_data: 792 set_opt(sbi, INLINE_DATA); 793 break; 794 case Opt_inline_dentry: 795 set_opt(sbi, INLINE_DENTRY); 796 break; 797 case Opt_noinline_dentry: 798 clear_opt(sbi, INLINE_DENTRY); 799 break; 800 case Opt_flush_merge: 801 set_opt(sbi, FLUSH_MERGE); 802 break; 803 case Opt_noflush_merge: 804 clear_opt(sbi, FLUSH_MERGE); 805 break; 806 case Opt_nobarrier: 807 set_opt(sbi, NOBARRIER); 808 break; 809 case Opt_fastboot: 810 set_opt(sbi, FASTBOOT); 811 break; 812 case Opt_extent_cache: 813 set_opt(sbi, EXTENT_CACHE); 814 break; 815 case Opt_noextent_cache: 816 clear_opt(sbi, EXTENT_CACHE); 817 break; 818 case Opt_noinline_data: 819 clear_opt(sbi, INLINE_DATA); 820 break; 821 case Opt_data_flush: 822 set_opt(sbi, DATA_FLUSH); 823 break; 824 case Opt_reserve_root: 825 if (args->from && match_int(args, &arg)) 826 return -EINVAL; 827 if (test_opt(sbi, RESERVE_ROOT)) { 828 f2fs_info(sbi, "Preserve previous reserve_root=%u", 829 F2FS_OPTION(sbi).root_reserved_blocks); 830 } else { 831 F2FS_OPTION(sbi).root_reserved_blocks = arg; 832 set_opt(sbi, RESERVE_ROOT); 833 } 834 break; 835 case Opt_resuid: 836 if (args->from && match_int(args, &arg)) 837 return -EINVAL; 838 uid = make_kuid(current_user_ns(), arg); 839 if (!uid_valid(uid)) { 840 f2fs_err(sbi, "Invalid uid value %d", arg); 841 return -EINVAL; 842 } 843 F2FS_OPTION(sbi).s_resuid = uid; 844 break; 845 case Opt_resgid: 846 if (args->from && match_int(args, &arg)) 847 return -EINVAL; 848 gid = make_kgid(current_user_ns(), arg); 849 if (!gid_valid(gid)) { 850 f2fs_err(sbi, "Invalid gid value %d", arg); 851 return -EINVAL; 852 } 853 F2FS_OPTION(sbi).s_resgid = gid; 854 break; 855 case Opt_mode: 856 name = match_strdup(&args[0]); 857 858 if (!name) 859 return -ENOMEM; 860 if (!strcmp(name, "adaptive")) { 861 if (f2fs_sb_has_blkzoned(sbi)) { 862 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 863 kfree(name); 864 return -EINVAL; 865 } 866 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 867 } else if (!strcmp(name, "lfs")) { 868 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 869 } else if (!strcmp(name, "fragment:segment")) { 870 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 871 } else if (!strcmp(name, "fragment:block")) { 872 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 873 } else { 874 kfree(name); 875 return -EINVAL; 876 } 877 kfree(name); 878 break; 879 case Opt_io_size_bits: 880 if (args->from && match_int(args, &arg)) 881 return -EINVAL; 882 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) { 883 f2fs_warn(sbi, "Not support %d, larger than %d", 884 1 << arg, BIO_MAX_VECS); 885 return -EINVAL; 886 } 887 F2FS_OPTION(sbi).write_io_size_bits = arg; 888 break; 889 #ifdef CONFIG_F2FS_FAULT_INJECTION 890 case Opt_fault_injection: 891 if (args->from && match_int(args, &arg)) 892 return -EINVAL; 893 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 894 set_opt(sbi, FAULT_INJECTION); 895 break; 896 897 case Opt_fault_type: 898 if (args->from && match_int(args, &arg)) 899 return -EINVAL; 900 f2fs_build_fault_attr(sbi, 0, arg); 901 set_opt(sbi, FAULT_INJECTION); 902 break; 903 #else 904 case Opt_fault_injection: 905 f2fs_info(sbi, "fault_injection options not supported"); 906 break; 907 908 case Opt_fault_type: 909 f2fs_info(sbi, "fault_type options not supported"); 910 break; 911 #endif 912 case Opt_lazytime: 913 sb->s_flags |= SB_LAZYTIME; 914 break; 915 case Opt_nolazytime: 916 sb->s_flags &= ~SB_LAZYTIME; 917 break; 918 #ifdef CONFIG_QUOTA 919 case Opt_quota: 920 case Opt_usrquota: 921 set_opt(sbi, USRQUOTA); 922 break; 923 case Opt_grpquota: 924 set_opt(sbi, GRPQUOTA); 925 break; 926 case Opt_prjquota: 927 set_opt(sbi, PRJQUOTA); 928 break; 929 case Opt_usrjquota: 930 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 931 if (ret) 932 return ret; 933 break; 934 case Opt_grpjquota: 935 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 936 if (ret) 937 return ret; 938 break; 939 case Opt_prjjquota: 940 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 941 if (ret) 942 return ret; 943 break; 944 case Opt_offusrjquota: 945 ret = f2fs_clear_qf_name(sb, USRQUOTA); 946 if (ret) 947 return ret; 948 break; 949 case Opt_offgrpjquota: 950 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 951 if (ret) 952 return ret; 953 break; 954 case Opt_offprjjquota: 955 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 956 if (ret) 957 return ret; 958 break; 959 case Opt_jqfmt_vfsold: 960 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 961 break; 962 case Opt_jqfmt_vfsv0: 963 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 964 break; 965 case Opt_jqfmt_vfsv1: 966 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 967 break; 968 case Opt_noquota: 969 clear_opt(sbi, QUOTA); 970 clear_opt(sbi, USRQUOTA); 971 clear_opt(sbi, GRPQUOTA); 972 clear_opt(sbi, PRJQUOTA); 973 break; 974 #else 975 case Opt_quota: 976 case Opt_usrquota: 977 case Opt_grpquota: 978 case Opt_prjquota: 979 case Opt_usrjquota: 980 case Opt_grpjquota: 981 case Opt_prjjquota: 982 case Opt_offusrjquota: 983 case Opt_offgrpjquota: 984 case Opt_offprjjquota: 985 case Opt_jqfmt_vfsold: 986 case Opt_jqfmt_vfsv0: 987 case Opt_jqfmt_vfsv1: 988 case Opt_noquota: 989 f2fs_info(sbi, "quota operations not supported"); 990 break; 991 #endif 992 case Opt_alloc: 993 name = match_strdup(&args[0]); 994 if (!name) 995 return -ENOMEM; 996 997 if (!strcmp(name, "default")) { 998 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 999 } else if (!strcmp(name, "reuse")) { 1000 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 1001 } else { 1002 kfree(name); 1003 return -EINVAL; 1004 } 1005 kfree(name); 1006 break; 1007 case Opt_fsync: 1008 name = match_strdup(&args[0]); 1009 if (!name) 1010 return -ENOMEM; 1011 if (!strcmp(name, "posix")) { 1012 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1013 } else if (!strcmp(name, "strict")) { 1014 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 1015 } else if (!strcmp(name, "nobarrier")) { 1016 F2FS_OPTION(sbi).fsync_mode = 1017 FSYNC_MODE_NOBARRIER; 1018 } else { 1019 kfree(name); 1020 return -EINVAL; 1021 } 1022 kfree(name); 1023 break; 1024 case Opt_test_dummy_encryption: 1025 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 1026 is_remount); 1027 if (ret) 1028 return ret; 1029 break; 1030 case Opt_inlinecrypt: 1031 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1032 sb->s_flags |= SB_INLINECRYPT; 1033 #else 1034 f2fs_info(sbi, "inline encryption not supported"); 1035 #endif 1036 break; 1037 case Opt_checkpoint_disable_cap_perc: 1038 if (args->from && match_int(args, &arg)) 1039 return -EINVAL; 1040 if (arg < 0 || arg > 100) 1041 return -EINVAL; 1042 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1043 set_opt(sbi, DISABLE_CHECKPOINT); 1044 break; 1045 case Opt_checkpoint_disable_cap: 1046 if (args->from && match_int(args, &arg)) 1047 return -EINVAL; 1048 F2FS_OPTION(sbi).unusable_cap = arg; 1049 set_opt(sbi, DISABLE_CHECKPOINT); 1050 break; 1051 case Opt_checkpoint_disable: 1052 set_opt(sbi, DISABLE_CHECKPOINT); 1053 break; 1054 case Opt_checkpoint_enable: 1055 clear_opt(sbi, DISABLE_CHECKPOINT); 1056 break; 1057 case Opt_checkpoint_merge: 1058 set_opt(sbi, MERGE_CHECKPOINT); 1059 break; 1060 case Opt_nocheckpoint_merge: 1061 clear_opt(sbi, MERGE_CHECKPOINT); 1062 break; 1063 #ifdef CONFIG_F2FS_FS_COMPRESSION 1064 case Opt_compress_algorithm: 1065 if (!f2fs_sb_has_compression(sbi)) { 1066 f2fs_info(sbi, "Image doesn't support compression"); 1067 break; 1068 } 1069 name = match_strdup(&args[0]); 1070 if (!name) 1071 return -ENOMEM; 1072 if (!strcmp(name, "lzo")) { 1073 #ifdef CONFIG_F2FS_FS_LZO 1074 F2FS_OPTION(sbi).compress_level = 0; 1075 F2FS_OPTION(sbi).compress_algorithm = 1076 COMPRESS_LZO; 1077 #else 1078 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1079 #endif 1080 } else if (!strncmp(name, "lz4", 3)) { 1081 #ifdef CONFIG_F2FS_FS_LZ4 1082 ret = f2fs_set_lz4hc_level(sbi, name); 1083 if (ret) { 1084 kfree(name); 1085 return -EINVAL; 1086 } 1087 F2FS_OPTION(sbi).compress_algorithm = 1088 COMPRESS_LZ4; 1089 #else 1090 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1091 #endif 1092 } else if (!strncmp(name, "zstd", 4)) { 1093 #ifdef CONFIG_F2FS_FS_ZSTD 1094 ret = f2fs_set_zstd_level(sbi, name); 1095 if (ret) { 1096 kfree(name); 1097 return -EINVAL; 1098 } 1099 F2FS_OPTION(sbi).compress_algorithm = 1100 COMPRESS_ZSTD; 1101 #else 1102 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1103 #endif 1104 } else if (!strcmp(name, "lzo-rle")) { 1105 #ifdef CONFIG_F2FS_FS_LZORLE 1106 F2FS_OPTION(sbi).compress_level = 0; 1107 F2FS_OPTION(sbi).compress_algorithm = 1108 COMPRESS_LZORLE; 1109 #else 1110 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1111 #endif 1112 } else { 1113 kfree(name); 1114 return -EINVAL; 1115 } 1116 kfree(name); 1117 break; 1118 case Opt_compress_log_size: 1119 if (!f2fs_sb_has_compression(sbi)) { 1120 f2fs_info(sbi, "Image doesn't support compression"); 1121 break; 1122 } 1123 if (args->from && match_int(args, &arg)) 1124 return -EINVAL; 1125 if (arg < MIN_COMPRESS_LOG_SIZE || 1126 arg > MAX_COMPRESS_LOG_SIZE) { 1127 f2fs_err(sbi, 1128 "Compress cluster log size is out of range"); 1129 return -EINVAL; 1130 } 1131 F2FS_OPTION(sbi).compress_log_size = arg; 1132 break; 1133 case Opt_compress_extension: 1134 if (!f2fs_sb_has_compression(sbi)) { 1135 f2fs_info(sbi, "Image doesn't support compression"); 1136 break; 1137 } 1138 name = match_strdup(&args[0]); 1139 if (!name) 1140 return -ENOMEM; 1141 1142 ext = F2FS_OPTION(sbi).extensions; 1143 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1144 1145 if (strlen(name) >= F2FS_EXTENSION_LEN || 1146 ext_cnt >= COMPRESS_EXT_NUM) { 1147 f2fs_err(sbi, 1148 "invalid extension length/number"); 1149 kfree(name); 1150 return -EINVAL; 1151 } 1152 1153 strcpy(ext[ext_cnt], name); 1154 F2FS_OPTION(sbi).compress_ext_cnt++; 1155 kfree(name); 1156 break; 1157 case Opt_nocompress_extension: 1158 if (!f2fs_sb_has_compression(sbi)) { 1159 f2fs_info(sbi, "Image doesn't support compression"); 1160 break; 1161 } 1162 name = match_strdup(&args[0]); 1163 if (!name) 1164 return -ENOMEM; 1165 1166 noext = F2FS_OPTION(sbi).noextensions; 1167 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1168 1169 if (strlen(name) >= F2FS_EXTENSION_LEN || 1170 noext_cnt >= COMPRESS_EXT_NUM) { 1171 f2fs_err(sbi, 1172 "invalid extension length/number"); 1173 kfree(name); 1174 return -EINVAL; 1175 } 1176 1177 strcpy(noext[noext_cnt], name); 1178 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1179 kfree(name); 1180 break; 1181 case Opt_compress_chksum: 1182 F2FS_OPTION(sbi).compress_chksum = true; 1183 break; 1184 case Opt_compress_mode: 1185 name = match_strdup(&args[0]); 1186 if (!name) 1187 return -ENOMEM; 1188 if (!strcmp(name, "fs")) { 1189 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1190 } else if (!strcmp(name, "user")) { 1191 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1192 } else { 1193 kfree(name); 1194 return -EINVAL; 1195 } 1196 kfree(name); 1197 break; 1198 case Opt_compress_cache: 1199 set_opt(sbi, COMPRESS_CACHE); 1200 break; 1201 #else 1202 case Opt_compress_algorithm: 1203 case Opt_compress_log_size: 1204 case Opt_compress_extension: 1205 case Opt_nocompress_extension: 1206 case Opt_compress_chksum: 1207 case Opt_compress_mode: 1208 case Opt_compress_cache: 1209 f2fs_info(sbi, "compression options not supported"); 1210 break; 1211 #endif 1212 case Opt_atgc: 1213 set_opt(sbi, ATGC); 1214 break; 1215 case Opt_gc_merge: 1216 set_opt(sbi, GC_MERGE); 1217 break; 1218 case Opt_nogc_merge: 1219 clear_opt(sbi, GC_MERGE); 1220 break; 1221 case Opt_discard_unit: 1222 name = match_strdup(&args[0]); 1223 if (!name) 1224 return -ENOMEM; 1225 if (!strcmp(name, "block")) { 1226 F2FS_OPTION(sbi).discard_unit = 1227 DISCARD_UNIT_BLOCK; 1228 } else if (!strcmp(name, "segment")) { 1229 F2FS_OPTION(sbi).discard_unit = 1230 DISCARD_UNIT_SEGMENT; 1231 } else if (!strcmp(name, "section")) { 1232 F2FS_OPTION(sbi).discard_unit = 1233 DISCARD_UNIT_SECTION; 1234 } else { 1235 kfree(name); 1236 return -EINVAL; 1237 } 1238 kfree(name); 1239 break; 1240 case Opt_memory_mode: 1241 name = match_strdup(&args[0]); 1242 if (!name) 1243 return -ENOMEM; 1244 if (!strcmp(name, "normal")) { 1245 F2FS_OPTION(sbi).memory_mode = 1246 MEMORY_MODE_NORMAL; 1247 } else if (!strcmp(name, "low")) { 1248 F2FS_OPTION(sbi).memory_mode = 1249 MEMORY_MODE_LOW; 1250 } else { 1251 kfree(name); 1252 return -EINVAL; 1253 } 1254 kfree(name); 1255 break; 1256 default: 1257 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1258 p); 1259 return -EINVAL; 1260 } 1261 } 1262 default_check: 1263 #ifdef CONFIG_QUOTA 1264 if (f2fs_check_quota_options(sbi)) 1265 return -EINVAL; 1266 #else 1267 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1268 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1269 return -EINVAL; 1270 } 1271 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1272 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1273 return -EINVAL; 1274 } 1275 #endif 1276 #if !IS_ENABLED(CONFIG_UNICODE) 1277 if (f2fs_sb_has_casefold(sbi)) { 1278 f2fs_err(sbi, 1279 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1280 return -EINVAL; 1281 } 1282 #endif 1283 /* 1284 * The BLKZONED feature indicates that the drive was formatted with 1285 * zone alignment optimization. This is optional for host-aware 1286 * devices, but mandatory for host-managed zoned block devices. 1287 */ 1288 #ifndef CONFIG_BLK_DEV_ZONED 1289 if (f2fs_sb_has_blkzoned(sbi)) { 1290 f2fs_err(sbi, "Zoned block device support is not enabled"); 1291 return -EINVAL; 1292 } 1293 #endif 1294 if (f2fs_sb_has_blkzoned(sbi)) { 1295 if (F2FS_OPTION(sbi).discard_unit != 1296 DISCARD_UNIT_SECTION) { 1297 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1298 F2FS_OPTION(sbi).discard_unit = 1299 DISCARD_UNIT_SECTION; 1300 } 1301 } 1302 1303 #ifdef CONFIG_F2FS_FS_COMPRESSION 1304 if (f2fs_test_compress_extension(sbi)) { 1305 f2fs_err(sbi, "invalid compress or nocompress extension"); 1306 return -EINVAL; 1307 } 1308 #endif 1309 1310 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) { 1311 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO", 1312 F2FS_IO_SIZE_KB(sbi)); 1313 return -EINVAL; 1314 } 1315 1316 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1317 int min_size, max_size; 1318 1319 if (!f2fs_sb_has_extra_attr(sbi) || 1320 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1321 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1322 return -EINVAL; 1323 } 1324 if (!test_opt(sbi, INLINE_XATTR)) { 1325 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1326 return -EINVAL; 1327 } 1328 1329 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 1330 max_size = MAX_INLINE_XATTR_SIZE; 1331 1332 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1333 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1334 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1335 min_size, max_size); 1336 return -EINVAL; 1337 } 1338 } 1339 1340 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) { 1341 f2fs_err(sbi, "LFS not compatible with checkpoint=disable"); 1342 return -EINVAL; 1343 } 1344 1345 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1346 f2fs_err(sbi, "Allow to mount readonly mode only"); 1347 return -EROFS; 1348 } 1349 return 0; 1350 } 1351 1352 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1353 { 1354 struct f2fs_inode_info *fi; 1355 1356 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) { 1357 f2fs_show_injection_info(F2FS_SB(sb), FAULT_SLAB_ALLOC); 1358 return NULL; 1359 } 1360 1361 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1362 if (!fi) 1363 return NULL; 1364 1365 init_once((void *) fi); 1366 1367 /* Initialize f2fs-specific inode info */ 1368 atomic_set(&fi->dirty_pages, 0); 1369 atomic_set(&fi->i_compr_blocks, 0); 1370 init_f2fs_rwsem(&fi->i_sem); 1371 spin_lock_init(&fi->i_size_lock); 1372 INIT_LIST_HEAD(&fi->dirty_list); 1373 INIT_LIST_HEAD(&fi->gdirty_list); 1374 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1375 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1376 init_f2fs_rwsem(&fi->i_xattr_sem); 1377 1378 /* Will be used by directory only */ 1379 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1380 1381 return &fi->vfs_inode; 1382 } 1383 1384 static int f2fs_drop_inode(struct inode *inode) 1385 { 1386 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1387 int ret; 1388 1389 /* 1390 * during filesystem shutdown, if checkpoint is disabled, 1391 * drop useless meta/node dirty pages. 1392 */ 1393 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1394 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1395 inode->i_ino == F2FS_META_INO(sbi)) { 1396 trace_f2fs_drop_inode(inode, 1); 1397 return 1; 1398 } 1399 } 1400 1401 /* 1402 * This is to avoid a deadlock condition like below. 1403 * writeback_single_inode(inode) 1404 * - f2fs_write_data_page 1405 * - f2fs_gc -> iput -> evict 1406 * - inode_wait_for_writeback(inode) 1407 */ 1408 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1409 if (!inode->i_nlink && !is_bad_inode(inode)) { 1410 /* to avoid evict_inode call simultaneously */ 1411 atomic_inc(&inode->i_count); 1412 spin_unlock(&inode->i_lock); 1413 1414 f2fs_abort_atomic_write(inode, true); 1415 1416 /* should remain fi->extent_tree for writepage */ 1417 f2fs_destroy_extent_node(inode); 1418 1419 sb_start_intwrite(inode->i_sb); 1420 f2fs_i_size_write(inode, 0); 1421 1422 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1423 inode, NULL, 0, DATA); 1424 truncate_inode_pages_final(inode->i_mapping); 1425 1426 if (F2FS_HAS_BLOCKS(inode)) 1427 f2fs_truncate(inode); 1428 1429 sb_end_intwrite(inode->i_sb); 1430 1431 spin_lock(&inode->i_lock); 1432 atomic_dec(&inode->i_count); 1433 } 1434 trace_f2fs_drop_inode(inode, 0); 1435 return 0; 1436 } 1437 ret = generic_drop_inode(inode); 1438 if (!ret) 1439 ret = fscrypt_drop_inode(inode); 1440 trace_f2fs_drop_inode(inode, ret); 1441 return ret; 1442 } 1443 1444 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1445 { 1446 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1447 int ret = 0; 1448 1449 spin_lock(&sbi->inode_lock[DIRTY_META]); 1450 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1451 ret = 1; 1452 } else { 1453 set_inode_flag(inode, FI_DIRTY_INODE); 1454 stat_inc_dirty_inode(sbi, DIRTY_META); 1455 } 1456 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1457 list_add_tail(&F2FS_I(inode)->gdirty_list, 1458 &sbi->inode_list[DIRTY_META]); 1459 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1460 } 1461 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1462 return ret; 1463 } 1464 1465 void f2fs_inode_synced(struct inode *inode) 1466 { 1467 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1468 1469 spin_lock(&sbi->inode_lock[DIRTY_META]); 1470 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1471 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1472 return; 1473 } 1474 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1475 list_del_init(&F2FS_I(inode)->gdirty_list); 1476 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1477 } 1478 clear_inode_flag(inode, FI_DIRTY_INODE); 1479 clear_inode_flag(inode, FI_AUTO_RECOVER); 1480 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1481 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1482 } 1483 1484 /* 1485 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1486 * 1487 * We should call set_dirty_inode to write the dirty inode through write_inode. 1488 */ 1489 static void f2fs_dirty_inode(struct inode *inode, int flags) 1490 { 1491 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1492 1493 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1494 inode->i_ino == F2FS_META_INO(sbi)) 1495 return; 1496 1497 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1498 clear_inode_flag(inode, FI_AUTO_RECOVER); 1499 1500 f2fs_inode_dirtied(inode, false); 1501 } 1502 1503 static void f2fs_free_inode(struct inode *inode) 1504 { 1505 fscrypt_free_inode(inode); 1506 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1507 } 1508 1509 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1510 { 1511 percpu_counter_destroy(&sbi->total_valid_inode_count); 1512 percpu_counter_destroy(&sbi->rf_node_block_count); 1513 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1514 } 1515 1516 static void destroy_device_list(struct f2fs_sb_info *sbi) 1517 { 1518 int i; 1519 1520 for (i = 0; i < sbi->s_ndevs; i++) { 1521 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1522 #ifdef CONFIG_BLK_DEV_ZONED 1523 kvfree(FDEV(i).blkz_seq); 1524 #endif 1525 } 1526 kvfree(sbi->devs); 1527 } 1528 1529 static void f2fs_put_super(struct super_block *sb) 1530 { 1531 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1532 int i; 1533 bool dropped; 1534 1535 /* unregister procfs/sysfs entries in advance to avoid race case */ 1536 f2fs_unregister_sysfs(sbi); 1537 1538 f2fs_quota_off_umount(sb); 1539 1540 /* prevent remaining shrinker jobs */ 1541 mutex_lock(&sbi->umount_mutex); 1542 1543 /* 1544 * flush all issued checkpoints and stop checkpoint issue thread. 1545 * after then, all checkpoints should be done by each process context. 1546 */ 1547 f2fs_stop_ckpt_thread(sbi); 1548 1549 /* 1550 * We don't need to do checkpoint when superblock is clean. 1551 * But, the previous checkpoint was not done by umount, it needs to do 1552 * clean checkpoint again. 1553 */ 1554 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1555 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1556 struct cp_control cpc = { 1557 .reason = CP_UMOUNT, 1558 }; 1559 f2fs_write_checkpoint(sbi, &cpc); 1560 } 1561 1562 /* be sure to wait for any on-going discard commands */ 1563 dropped = f2fs_issue_discard_timeout(sbi); 1564 1565 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1566 !sbi->discard_blks && !dropped) { 1567 struct cp_control cpc = { 1568 .reason = CP_UMOUNT | CP_TRIMMED, 1569 }; 1570 f2fs_write_checkpoint(sbi, &cpc); 1571 } 1572 1573 /* 1574 * normally superblock is clean, so we need to release this. 1575 * In addition, EIO will skip do checkpoint, we need this as well. 1576 */ 1577 f2fs_release_ino_entry(sbi, true); 1578 1579 f2fs_leave_shrinker(sbi); 1580 mutex_unlock(&sbi->umount_mutex); 1581 1582 /* our cp_error case, we can wait for any writeback page */ 1583 f2fs_flush_merged_writes(sbi); 1584 1585 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1586 1587 f2fs_bug_on(sbi, sbi->fsync_node_num); 1588 1589 f2fs_destroy_compress_inode(sbi); 1590 1591 iput(sbi->node_inode); 1592 sbi->node_inode = NULL; 1593 1594 iput(sbi->meta_inode); 1595 sbi->meta_inode = NULL; 1596 1597 /* 1598 * iput() can update stat information, if f2fs_write_checkpoint() 1599 * above failed with error. 1600 */ 1601 f2fs_destroy_stats(sbi); 1602 1603 /* destroy f2fs internal modules */ 1604 f2fs_destroy_node_manager(sbi); 1605 f2fs_destroy_segment_manager(sbi); 1606 1607 f2fs_destroy_post_read_wq(sbi); 1608 1609 kvfree(sbi->ckpt); 1610 1611 sb->s_fs_info = NULL; 1612 if (sbi->s_chksum_driver) 1613 crypto_free_shash(sbi->s_chksum_driver); 1614 kfree(sbi->raw_super); 1615 1616 destroy_device_list(sbi); 1617 f2fs_destroy_page_array_cache(sbi); 1618 f2fs_destroy_xattr_caches(sbi); 1619 mempool_destroy(sbi->write_io_dummy); 1620 #ifdef CONFIG_QUOTA 1621 for (i = 0; i < MAXQUOTAS; i++) 1622 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1623 #endif 1624 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1625 destroy_percpu_info(sbi); 1626 f2fs_destroy_iostat(sbi); 1627 for (i = 0; i < NR_PAGE_TYPE; i++) 1628 kvfree(sbi->write_io[i]); 1629 #if IS_ENABLED(CONFIG_UNICODE) 1630 utf8_unload(sb->s_encoding); 1631 #endif 1632 kfree(sbi); 1633 } 1634 1635 int f2fs_sync_fs(struct super_block *sb, int sync) 1636 { 1637 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1638 int err = 0; 1639 1640 if (unlikely(f2fs_cp_error(sbi))) 1641 return 0; 1642 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1643 return 0; 1644 1645 trace_f2fs_sync_fs(sb, sync); 1646 1647 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1648 return -EAGAIN; 1649 1650 if (sync) 1651 err = f2fs_issue_checkpoint(sbi); 1652 1653 return err; 1654 } 1655 1656 static int f2fs_freeze(struct super_block *sb) 1657 { 1658 if (f2fs_readonly(sb)) 1659 return 0; 1660 1661 /* IO error happened before */ 1662 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1663 return -EIO; 1664 1665 /* must be clean, since sync_filesystem() was already called */ 1666 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1667 return -EINVAL; 1668 1669 /* ensure no checkpoint required */ 1670 if (!llist_empty(&F2FS_SB(sb)->cprc_info.issue_list)) 1671 return -EINVAL; 1672 1673 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 1674 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1675 return 0; 1676 } 1677 1678 static int f2fs_unfreeze(struct super_block *sb) 1679 { 1680 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1681 return 0; 1682 } 1683 1684 #ifdef CONFIG_QUOTA 1685 static int f2fs_statfs_project(struct super_block *sb, 1686 kprojid_t projid, struct kstatfs *buf) 1687 { 1688 struct kqid qid; 1689 struct dquot *dquot; 1690 u64 limit; 1691 u64 curblock; 1692 1693 qid = make_kqid_projid(projid); 1694 dquot = dqget(sb, qid); 1695 if (IS_ERR(dquot)) 1696 return PTR_ERR(dquot); 1697 spin_lock(&dquot->dq_dqb_lock); 1698 1699 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1700 dquot->dq_dqb.dqb_bhardlimit); 1701 if (limit) 1702 limit >>= sb->s_blocksize_bits; 1703 1704 if (limit && buf->f_blocks > limit) { 1705 curblock = (dquot->dq_dqb.dqb_curspace + 1706 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1707 buf->f_blocks = limit; 1708 buf->f_bfree = buf->f_bavail = 1709 (buf->f_blocks > curblock) ? 1710 (buf->f_blocks - curblock) : 0; 1711 } 1712 1713 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1714 dquot->dq_dqb.dqb_ihardlimit); 1715 1716 if (limit && buf->f_files > limit) { 1717 buf->f_files = limit; 1718 buf->f_ffree = 1719 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1720 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1721 } 1722 1723 spin_unlock(&dquot->dq_dqb_lock); 1724 dqput(dquot); 1725 return 0; 1726 } 1727 #endif 1728 1729 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1730 { 1731 struct super_block *sb = dentry->d_sb; 1732 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1733 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1734 block_t total_count, user_block_count, start_count; 1735 u64 avail_node_count; 1736 unsigned int total_valid_node_count; 1737 1738 total_count = le64_to_cpu(sbi->raw_super->block_count); 1739 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1740 buf->f_type = F2FS_SUPER_MAGIC; 1741 buf->f_bsize = sbi->blocksize; 1742 1743 buf->f_blocks = total_count - start_count; 1744 1745 spin_lock(&sbi->stat_lock); 1746 1747 user_block_count = sbi->user_block_count; 1748 total_valid_node_count = valid_node_count(sbi); 1749 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1750 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1751 sbi->current_reserved_blocks; 1752 1753 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1754 buf->f_bfree = 0; 1755 else 1756 buf->f_bfree -= sbi->unusable_block_count; 1757 spin_unlock(&sbi->stat_lock); 1758 1759 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1760 buf->f_bavail = buf->f_bfree - 1761 F2FS_OPTION(sbi).root_reserved_blocks; 1762 else 1763 buf->f_bavail = 0; 1764 1765 if (avail_node_count > user_block_count) { 1766 buf->f_files = user_block_count; 1767 buf->f_ffree = buf->f_bavail; 1768 } else { 1769 buf->f_files = avail_node_count; 1770 buf->f_ffree = min(avail_node_count - total_valid_node_count, 1771 buf->f_bavail); 1772 } 1773 1774 buf->f_namelen = F2FS_NAME_LEN; 1775 buf->f_fsid = u64_to_fsid(id); 1776 1777 #ifdef CONFIG_QUOTA 1778 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1779 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1780 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1781 } 1782 #endif 1783 return 0; 1784 } 1785 1786 static inline void f2fs_show_quota_options(struct seq_file *seq, 1787 struct super_block *sb) 1788 { 1789 #ifdef CONFIG_QUOTA 1790 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1791 1792 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1793 char *fmtname = ""; 1794 1795 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1796 case QFMT_VFS_OLD: 1797 fmtname = "vfsold"; 1798 break; 1799 case QFMT_VFS_V0: 1800 fmtname = "vfsv0"; 1801 break; 1802 case QFMT_VFS_V1: 1803 fmtname = "vfsv1"; 1804 break; 1805 } 1806 seq_printf(seq, ",jqfmt=%s", fmtname); 1807 } 1808 1809 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1810 seq_show_option(seq, "usrjquota", 1811 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1812 1813 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1814 seq_show_option(seq, "grpjquota", 1815 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1816 1817 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1818 seq_show_option(seq, "prjjquota", 1819 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1820 #endif 1821 } 1822 1823 #ifdef CONFIG_F2FS_FS_COMPRESSION 1824 static inline void f2fs_show_compress_options(struct seq_file *seq, 1825 struct super_block *sb) 1826 { 1827 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1828 char *algtype = ""; 1829 int i; 1830 1831 if (!f2fs_sb_has_compression(sbi)) 1832 return; 1833 1834 switch (F2FS_OPTION(sbi).compress_algorithm) { 1835 case COMPRESS_LZO: 1836 algtype = "lzo"; 1837 break; 1838 case COMPRESS_LZ4: 1839 algtype = "lz4"; 1840 break; 1841 case COMPRESS_ZSTD: 1842 algtype = "zstd"; 1843 break; 1844 case COMPRESS_LZORLE: 1845 algtype = "lzo-rle"; 1846 break; 1847 } 1848 seq_printf(seq, ",compress_algorithm=%s", algtype); 1849 1850 if (F2FS_OPTION(sbi).compress_level) 1851 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1852 1853 seq_printf(seq, ",compress_log_size=%u", 1854 F2FS_OPTION(sbi).compress_log_size); 1855 1856 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1857 seq_printf(seq, ",compress_extension=%s", 1858 F2FS_OPTION(sbi).extensions[i]); 1859 } 1860 1861 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1862 seq_printf(seq, ",nocompress_extension=%s", 1863 F2FS_OPTION(sbi).noextensions[i]); 1864 } 1865 1866 if (F2FS_OPTION(sbi).compress_chksum) 1867 seq_puts(seq, ",compress_chksum"); 1868 1869 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1870 seq_printf(seq, ",compress_mode=%s", "fs"); 1871 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1872 seq_printf(seq, ",compress_mode=%s", "user"); 1873 1874 if (test_opt(sbi, COMPRESS_CACHE)) 1875 seq_puts(seq, ",compress_cache"); 1876 } 1877 #endif 1878 1879 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1880 { 1881 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1882 1883 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1884 seq_printf(seq, ",background_gc=%s", "sync"); 1885 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1886 seq_printf(seq, ",background_gc=%s", "on"); 1887 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1888 seq_printf(seq, ",background_gc=%s", "off"); 1889 1890 if (test_opt(sbi, GC_MERGE)) 1891 seq_puts(seq, ",gc_merge"); 1892 1893 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1894 seq_puts(seq, ",disable_roll_forward"); 1895 if (test_opt(sbi, NORECOVERY)) 1896 seq_puts(seq, ",norecovery"); 1897 if (test_opt(sbi, DISCARD)) 1898 seq_puts(seq, ",discard"); 1899 else 1900 seq_puts(seq, ",nodiscard"); 1901 if (test_opt(sbi, NOHEAP)) 1902 seq_puts(seq, ",no_heap"); 1903 else 1904 seq_puts(seq, ",heap"); 1905 #ifdef CONFIG_F2FS_FS_XATTR 1906 if (test_opt(sbi, XATTR_USER)) 1907 seq_puts(seq, ",user_xattr"); 1908 else 1909 seq_puts(seq, ",nouser_xattr"); 1910 if (test_opt(sbi, INLINE_XATTR)) 1911 seq_puts(seq, ",inline_xattr"); 1912 else 1913 seq_puts(seq, ",noinline_xattr"); 1914 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1915 seq_printf(seq, ",inline_xattr_size=%u", 1916 F2FS_OPTION(sbi).inline_xattr_size); 1917 #endif 1918 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1919 if (test_opt(sbi, POSIX_ACL)) 1920 seq_puts(seq, ",acl"); 1921 else 1922 seq_puts(seq, ",noacl"); 1923 #endif 1924 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1925 seq_puts(seq, ",disable_ext_identify"); 1926 if (test_opt(sbi, INLINE_DATA)) 1927 seq_puts(seq, ",inline_data"); 1928 else 1929 seq_puts(seq, ",noinline_data"); 1930 if (test_opt(sbi, INLINE_DENTRY)) 1931 seq_puts(seq, ",inline_dentry"); 1932 else 1933 seq_puts(seq, ",noinline_dentry"); 1934 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1935 seq_puts(seq, ",flush_merge"); 1936 if (test_opt(sbi, NOBARRIER)) 1937 seq_puts(seq, ",nobarrier"); 1938 if (test_opt(sbi, FASTBOOT)) 1939 seq_puts(seq, ",fastboot"); 1940 if (test_opt(sbi, EXTENT_CACHE)) 1941 seq_puts(seq, ",extent_cache"); 1942 else 1943 seq_puts(seq, ",noextent_cache"); 1944 if (test_opt(sbi, DATA_FLUSH)) 1945 seq_puts(seq, ",data_flush"); 1946 1947 seq_puts(seq, ",mode="); 1948 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 1949 seq_puts(seq, "adaptive"); 1950 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 1951 seq_puts(seq, "lfs"); 1952 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 1953 seq_puts(seq, "fragment:segment"); 1954 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 1955 seq_puts(seq, "fragment:block"); 1956 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1957 if (test_opt(sbi, RESERVE_ROOT)) 1958 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1959 F2FS_OPTION(sbi).root_reserved_blocks, 1960 from_kuid_munged(&init_user_ns, 1961 F2FS_OPTION(sbi).s_resuid), 1962 from_kgid_munged(&init_user_ns, 1963 F2FS_OPTION(sbi).s_resgid)); 1964 if (F2FS_IO_SIZE_BITS(sbi)) 1965 seq_printf(seq, ",io_bits=%u", 1966 F2FS_OPTION(sbi).write_io_size_bits); 1967 #ifdef CONFIG_F2FS_FAULT_INJECTION 1968 if (test_opt(sbi, FAULT_INJECTION)) { 1969 seq_printf(seq, ",fault_injection=%u", 1970 F2FS_OPTION(sbi).fault_info.inject_rate); 1971 seq_printf(seq, ",fault_type=%u", 1972 F2FS_OPTION(sbi).fault_info.inject_type); 1973 } 1974 #endif 1975 #ifdef CONFIG_QUOTA 1976 if (test_opt(sbi, QUOTA)) 1977 seq_puts(seq, ",quota"); 1978 if (test_opt(sbi, USRQUOTA)) 1979 seq_puts(seq, ",usrquota"); 1980 if (test_opt(sbi, GRPQUOTA)) 1981 seq_puts(seq, ",grpquota"); 1982 if (test_opt(sbi, PRJQUOTA)) 1983 seq_puts(seq, ",prjquota"); 1984 #endif 1985 f2fs_show_quota_options(seq, sbi->sb); 1986 1987 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 1988 1989 if (sbi->sb->s_flags & SB_INLINECRYPT) 1990 seq_puts(seq, ",inlinecrypt"); 1991 1992 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1993 seq_printf(seq, ",alloc_mode=%s", "default"); 1994 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1995 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1996 1997 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1998 seq_printf(seq, ",checkpoint=disable:%u", 1999 F2FS_OPTION(sbi).unusable_cap); 2000 if (test_opt(sbi, MERGE_CHECKPOINT)) 2001 seq_puts(seq, ",checkpoint_merge"); 2002 else 2003 seq_puts(seq, ",nocheckpoint_merge"); 2004 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 2005 seq_printf(seq, ",fsync_mode=%s", "posix"); 2006 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 2007 seq_printf(seq, ",fsync_mode=%s", "strict"); 2008 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 2009 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 2010 2011 #ifdef CONFIG_F2FS_FS_COMPRESSION 2012 f2fs_show_compress_options(seq, sbi->sb); 2013 #endif 2014 2015 if (test_opt(sbi, ATGC)) 2016 seq_puts(seq, ",atgc"); 2017 2018 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 2019 seq_printf(seq, ",discard_unit=%s", "block"); 2020 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2021 seq_printf(seq, ",discard_unit=%s", "segment"); 2022 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2023 seq_printf(seq, ",discard_unit=%s", "section"); 2024 2025 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL) 2026 seq_printf(seq, ",memory=%s", "normal"); 2027 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW) 2028 seq_printf(seq, ",memory=%s", "low"); 2029 2030 return 0; 2031 } 2032 2033 static void default_options(struct f2fs_sb_info *sbi) 2034 { 2035 /* init some FS parameters */ 2036 if (f2fs_sb_has_readonly(sbi)) 2037 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2038 else 2039 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2040 2041 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2042 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2043 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2044 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2045 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2046 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2047 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2048 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2049 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2050 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2051 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL; 2052 2053 sbi->sb->s_flags &= ~SB_INLINECRYPT; 2054 2055 set_opt(sbi, INLINE_XATTR); 2056 set_opt(sbi, INLINE_DATA); 2057 set_opt(sbi, INLINE_DENTRY); 2058 set_opt(sbi, EXTENT_CACHE); 2059 set_opt(sbi, NOHEAP); 2060 clear_opt(sbi, DISABLE_CHECKPOINT); 2061 set_opt(sbi, MERGE_CHECKPOINT); 2062 F2FS_OPTION(sbi).unusable_cap = 0; 2063 sbi->sb->s_flags |= SB_LAZYTIME; 2064 set_opt(sbi, FLUSH_MERGE); 2065 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2066 set_opt(sbi, DISCARD); 2067 if (f2fs_sb_has_blkzoned(sbi)) { 2068 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2069 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2070 } else { 2071 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2072 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2073 } 2074 2075 #ifdef CONFIG_F2FS_FS_XATTR 2076 set_opt(sbi, XATTR_USER); 2077 #endif 2078 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2079 set_opt(sbi, POSIX_ACL); 2080 #endif 2081 2082 f2fs_build_fault_attr(sbi, 0, 0); 2083 } 2084 2085 #ifdef CONFIG_QUOTA 2086 static int f2fs_enable_quotas(struct super_block *sb); 2087 #endif 2088 2089 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2090 { 2091 unsigned int s_flags = sbi->sb->s_flags; 2092 struct cp_control cpc; 2093 unsigned int gc_mode = sbi->gc_mode; 2094 int err = 0; 2095 int ret; 2096 block_t unusable; 2097 2098 if (s_flags & SB_RDONLY) { 2099 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2100 return -EINVAL; 2101 } 2102 sbi->sb->s_flags |= SB_ACTIVE; 2103 2104 /* check if we need more GC first */ 2105 unusable = f2fs_get_unusable_blocks(sbi); 2106 if (!f2fs_disable_cp_again(sbi, unusable)) 2107 goto skip_gc; 2108 2109 f2fs_update_time(sbi, DISABLE_TIME); 2110 2111 sbi->gc_mode = GC_URGENT_HIGH; 2112 2113 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2114 struct f2fs_gc_control gc_control = { 2115 .victim_segno = NULL_SEGNO, 2116 .init_gc_type = FG_GC, 2117 .should_migrate_blocks = false, 2118 .err_gc_skipped = true, 2119 .nr_free_secs = 1 }; 2120 2121 f2fs_down_write(&sbi->gc_lock); 2122 err = f2fs_gc(sbi, &gc_control); 2123 if (err == -ENODATA) { 2124 err = 0; 2125 break; 2126 } 2127 if (err && err != -EAGAIN) 2128 break; 2129 } 2130 2131 ret = sync_filesystem(sbi->sb); 2132 if (ret || err) { 2133 err = ret ? ret : err; 2134 goto restore_flag; 2135 } 2136 2137 unusable = f2fs_get_unusable_blocks(sbi); 2138 if (f2fs_disable_cp_again(sbi, unusable)) { 2139 err = -EAGAIN; 2140 goto restore_flag; 2141 } 2142 2143 skip_gc: 2144 f2fs_down_write(&sbi->gc_lock); 2145 cpc.reason = CP_PAUSE; 2146 set_sbi_flag(sbi, SBI_CP_DISABLED); 2147 err = f2fs_write_checkpoint(sbi, &cpc); 2148 if (err) 2149 goto out_unlock; 2150 2151 spin_lock(&sbi->stat_lock); 2152 sbi->unusable_block_count = unusable; 2153 spin_unlock(&sbi->stat_lock); 2154 2155 out_unlock: 2156 f2fs_up_write(&sbi->gc_lock); 2157 restore_flag: 2158 sbi->gc_mode = gc_mode; 2159 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2160 return err; 2161 } 2162 2163 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2164 { 2165 int retry = DEFAULT_RETRY_IO_COUNT; 2166 2167 /* we should flush all the data to keep data consistency */ 2168 do { 2169 sync_inodes_sb(sbi->sb); 2170 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2171 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2172 2173 if (unlikely(retry < 0)) 2174 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2175 2176 f2fs_down_write(&sbi->gc_lock); 2177 f2fs_dirty_to_prefree(sbi); 2178 2179 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2180 set_sbi_flag(sbi, SBI_IS_DIRTY); 2181 f2fs_up_write(&sbi->gc_lock); 2182 2183 f2fs_sync_fs(sbi->sb, 1); 2184 } 2185 2186 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2187 { 2188 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2189 struct f2fs_mount_info org_mount_opt; 2190 unsigned long old_sb_flags; 2191 int err; 2192 bool need_restart_gc = false, need_stop_gc = false; 2193 bool need_restart_ckpt = false, need_stop_ckpt = false; 2194 bool need_restart_flush = false, need_stop_flush = false; 2195 bool need_restart_discard = false, need_stop_discard = false; 2196 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 2197 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2198 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 2199 bool no_atgc = !test_opt(sbi, ATGC); 2200 bool no_discard = !test_opt(sbi, DISCARD); 2201 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2202 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2203 struct discard_cmd_control *dcc; 2204 #ifdef CONFIG_QUOTA 2205 int i, j; 2206 #endif 2207 2208 /* 2209 * Save the old mount options in case we 2210 * need to restore them. 2211 */ 2212 org_mount_opt = sbi->mount_opt; 2213 old_sb_flags = sb->s_flags; 2214 2215 #ifdef CONFIG_QUOTA 2216 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2217 for (i = 0; i < MAXQUOTAS; i++) { 2218 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2219 org_mount_opt.s_qf_names[i] = 2220 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2221 GFP_KERNEL); 2222 if (!org_mount_opt.s_qf_names[i]) { 2223 for (j = 0; j < i; j++) 2224 kfree(org_mount_opt.s_qf_names[j]); 2225 return -ENOMEM; 2226 } 2227 } else { 2228 org_mount_opt.s_qf_names[i] = NULL; 2229 } 2230 } 2231 #endif 2232 2233 /* recover superblocks we couldn't write due to previous RO mount */ 2234 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2235 err = f2fs_commit_super(sbi, false); 2236 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2237 err); 2238 if (!err) 2239 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2240 } 2241 2242 default_options(sbi); 2243 2244 /* parse mount options */ 2245 err = parse_options(sb, data, true); 2246 if (err) 2247 goto restore_opts; 2248 2249 /* 2250 * Previous and new state of filesystem is RO, 2251 * so skip checking GC and FLUSH_MERGE conditions. 2252 */ 2253 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2254 goto skip; 2255 2256 if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) { 2257 err = -EROFS; 2258 goto restore_opts; 2259 } 2260 2261 #ifdef CONFIG_QUOTA 2262 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2263 err = dquot_suspend(sb, -1); 2264 if (err < 0) 2265 goto restore_opts; 2266 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2267 /* dquot_resume needs RW */ 2268 sb->s_flags &= ~SB_RDONLY; 2269 if (sb_any_quota_suspended(sb)) { 2270 dquot_resume(sb, -1); 2271 } else if (f2fs_sb_has_quota_ino(sbi)) { 2272 err = f2fs_enable_quotas(sb); 2273 if (err) 2274 goto restore_opts; 2275 } 2276 } 2277 #endif 2278 /* disallow enable atgc dynamically */ 2279 if (no_atgc == !!test_opt(sbi, ATGC)) { 2280 err = -EINVAL; 2281 f2fs_warn(sbi, "switch atgc option is not allowed"); 2282 goto restore_opts; 2283 } 2284 2285 /* disallow enable/disable extent_cache dynamically */ 2286 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 2287 err = -EINVAL; 2288 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2289 goto restore_opts; 2290 } 2291 2292 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 2293 err = -EINVAL; 2294 f2fs_warn(sbi, "switch io_bits option is not allowed"); 2295 goto restore_opts; 2296 } 2297 2298 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2299 err = -EINVAL; 2300 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2301 goto restore_opts; 2302 } 2303 2304 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2305 err = -EINVAL; 2306 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2307 goto restore_opts; 2308 } 2309 2310 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2311 err = -EINVAL; 2312 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2313 goto restore_opts; 2314 } 2315 2316 /* 2317 * We stop the GC thread if FS is mounted as RO 2318 * or if background_gc = off is passed in mount 2319 * option. Also sync the filesystem. 2320 */ 2321 if ((*flags & SB_RDONLY) || 2322 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2323 !test_opt(sbi, GC_MERGE))) { 2324 if (sbi->gc_thread) { 2325 f2fs_stop_gc_thread(sbi); 2326 need_restart_gc = true; 2327 } 2328 } else if (!sbi->gc_thread) { 2329 err = f2fs_start_gc_thread(sbi); 2330 if (err) 2331 goto restore_opts; 2332 need_stop_gc = true; 2333 } 2334 2335 if (*flags & SB_RDONLY) { 2336 sync_inodes_sb(sb); 2337 2338 set_sbi_flag(sbi, SBI_IS_DIRTY); 2339 set_sbi_flag(sbi, SBI_IS_CLOSE); 2340 f2fs_sync_fs(sb, 1); 2341 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2342 } 2343 2344 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2345 !test_opt(sbi, MERGE_CHECKPOINT)) { 2346 f2fs_stop_ckpt_thread(sbi); 2347 need_restart_ckpt = true; 2348 } else { 2349 err = f2fs_start_ckpt_thread(sbi); 2350 if (err) { 2351 f2fs_err(sbi, 2352 "Failed to start F2FS issue_checkpoint_thread (%d)", 2353 err); 2354 goto restore_gc; 2355 } 2356 need_stop_ckpt = true; 2357 } 2358 2359 /* 2360 * We stop issue flush thread if FS is mounted as RO 2361 * or if flush_merge is not passed in mount option. 2362 */ 2363 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2364 clear_opt(sbi, FLUSH_MERGE); 2365 f2fs_destroy_flush_cmd_control(sbi, false); 2366 need_restart_flush = true; 2367 } else { 2368 err = f2fs_create_flush_cmd_control(sbi); 2369 if (err) 2370 goto restore_ckpt; 2371 need_stop_flush = true; 2372 } 2373 2374 if (no_discard == !!test_opt(sbi, DISCARD)) { 2375 if (test_opt(sbi, DISCARD)) { 2376 err = f2fs_start_discard_thread(sbi); 2377 if (err) 2378 goto restore_flush; 2379 need_stop_discard = true; 2380 } else { 2381 dcc = SM_I(sbi)->dcc_info; 2382 f2fs_stop_discard_thread(sbi); 2383 if (atomic_read(&dcc->discard_cmd_cnt)) 2384 f2fs_issue_discard_timeout(sbi); 2385 need_restart_discard = true; 2386 } 2387 } 2388 2389 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2390 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2391 err = f2fs_disable_checkpoint(sbi); 2392 if (err) 2393 goto restore_discard; 2394 } else { 2395 f2fs_enable_checkpoint(sbi); 2396 } 2397 } 2398 2399 skip: 2400 #ifdef CONFIG_QUOTA 2401 /* Release old quota file names */ 2402 for (i = 0; i < MAXQUOTAS; i++) 2403 kfree(org_mount_opt.s_qf_names[i]); 2404 #endif 2405 /* Update the POSIXACL Flag */ 2406 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2407 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2408 2409 limit_reserve_root(sbi); 2410 adjust_unusable_cap_perc(sbi); 2411 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2412 return 0; 2413 restore_discard: 2414 if (need_restart_discard) { 2415 if (f2fs_start_discard_thread(sbi)) 2416 f2fs_warn(sbi, "discard has been stopped"); 2417 } else if (need_stop_discard) { 2418 f2fs_stop_discard_thread(sbi); 2419 } 2420 restore_flush: 2421 if (need_restart_flush) { 2422 if (f2fs_create_flush_cmd_control(sbi)) 2423 f2fs_warn(sbi, "background flush thread has stopped"); 2424 } else if (need_stop_flush) { 2425 clear_opt(sbi, FLUSH_MERGE); 2426 f2fs_destroy_flush_cmd_control(sbi, false); 2427 } 2428 restore_ckpt: 2429 if (need_restart_ckpt) { 2430 if (f2fs_start_ckpt_thread(sbi)) 2431 f2fs_warn(sbi, "background ckpt thread has stopped"); 2432 } else if (need_stop_ckpt) { 2433 f2fs_stop_ckpt_thread(sbi); 2434 } 2435 restore_gc: 2436 if (need_restart_gc) { 2437 if (f2fs_start_gc_thread(sbi)) 2438 f2fs_warn(sbi, "background gc thread has stopped"); 2439 } else if (need_stop_gc) { 2440 f2fs_stop_gc_thread(sbi); 2441 } 2442 restore_opts: 2443 #ifdef CONFIG_QUOTA 2444 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2445 for (i = 0; i < MAXQUOTAS; i++) { 2446 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2447 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2448 } 2449 #endif 2450 sbi->mount_opt = org_mount_opt; 2451 sb->s_flags = old_sb_flags; 2452 return err; 2453 } 2454 2455 #ifdef CONFIG_QUOTA 2456 /* Read data from quotafile */ 2457 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2458 size_t len, loff_t off) 2459 { 2460 struct inode *inode = sb_dqopt(sb)->files[type]; 2461 struct address_space *mapping = inode->i_mapping; 2462 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2463 int offset = off & (sb->s_blocksize - 1); 2464 int tocopy; 2465 size_t toread; 2466 loff_t i_size = i_size_read(inode); 2467 struct page *page; 2468 char *kaddr; 2469 2470 if (off > i_size) 2471 return 0; 2472 2473 if (off + len > i_size) 2474 len = i_size - off; 2475 toread = len; 2476 while (toread > 0) { 2477 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2478 repeat: 2479 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2480 if (IS_ERR(page)) { 2481 if (PTR_ERR(page) == -ENOMEM) { 2482 memalloc_retry_wait(GFP_NOFS); 2483 goto repeat; 2484 } 2485 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2486 return PTR_ERR(page); 2487 } 2488 2489 lock_page(page); 2490 2491 if (unlikely(page->mapping != mapping)) { 2492 f2fs_put_page(page, 1); 2493 goto repeat; 2494 } 2495 if (unlikely(!PageUptodate(page))) { 2496 f2fs_put_page(page, 1); 2497 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2498 return -EIO; 2499 } 2500 2501 kaddr = kmap_atomic(page); 2502 memcpy(data, kaddr + offset, tocopy); 2503 kunmap_atomic(kaddr); 2504 f2fs_put_page(page, 1); 2505 2506 offset = 0; 2507 toread -= tocopy; 2508 data += tocopy; 2509 blkidx++; 2510 } 2511 return len; 2512 } 2513 2514 /* Write to quotafile */ 2515 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2516 const char *data, size_t len, loff_t off) 2517 { 2518 struct inode *inode = sb_dqopt(sb)->files[type]; 2519 struct address_space *mapping = inode->i_mapping; 2520 const struct address_space_operations *a_ops = mapping->a_ops; 2521 int offset = off & (sb->s_blocksize - 1); 2522 size_t towrite = len; 2523 struct page *page; 2524 void *fsdata = NULL; 2525 char *kaddr; 2526 int err = 0; 2527 int tocopy; 2528 2529 while (towrite > 0) { 2530 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2531 towrite); 2532 retry: 2533 err = a_ops->write_begin(NULL, mapping, off, tocopy, 2534 &page, &fsdata); 2535 if (unlikely(err)) { 2536 if (err == -ENOMEM) { 2537 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2538 goto retry; 2539 } 2540 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2541 break; 2542 } 2543 2544 kaddr = kmap_atomic(page); 2545 memcpy(kaddr + offset, data, tocopy); 2546 kunmap_atomic(kaddr); 2547 flush_dcache_page(page); 2548 2549 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2550 page, fsdata); 2551 offset = 0; 2552 towrite -= tocopy; 2553 off += tocopy; 2554 data += tocopy; 2555 cond_resched(); 2556 } 2557 2558 if (len == towrite) 2559 return err; 2560 inode->i_mtime = inode->i_ctime = current_time(inode); 2561 f2fs_mark_inode_dirty_sync(inode, false); 2562 return len - towrite; 2563 } 2564 2565 int f2fs_dquot_initialize(struct inode *inode) 2566 { 2567 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) { 2568 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_DQUOT_INIT); 2569 return -ESRCH; 2570 } 2571 2572 return dquot_initialize(inode); 2573 } 2574 2575 static struct dquot **f2fs_get_dquots(struct inode *inode) 2576 { 2577 return F2FS_I(inode)->i_dquot; 2578 } 2579 2580 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2581 { 2582 return &F2FS_I(inode)->i_reserved_quota; 2583 } 2584 2585 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2586 { 2587 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2588 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2589 return 0; 2590 } 2591 2592 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2593 F2FS_OPTION(sbi).s_jquota_fmt, type); 2594 } 2595 2596 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2597 { 2598 int enabled = 0; 2599 int i, err; 2600 2601 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2602 err = f2fs_enable_quotas(sbi->sb); 2603 if (err) { 2604 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2605 return 0; 2606 } 2607 return 1; 2608 } 2609 2610 for (i = 0; i < MAXQUOTAS; i++) { 2611 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2612 err = f2fs_quota_on_mount(sbi, i); 2613 if (!err) { 2614 enabled = 1; 2615 continue; 2616 } 2617 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2618 err, i); 2619 } 2620 } 2621 return enabled; 2622 } 2623 2624 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2625 unsigned int flags) 2626 { 2627 struct inode *qf_inode; 2628 unsigned long qf_inum; 2629 int err; 2630 2631 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2632 2633 qf_inum = f2fs_qf_ino(sb, type); 2634 if (!qf_inum) 2635 return -EPERM; 2636 2637 qf_inode = f2fs_iget(sb, qf_inum); 2638 if (IS_ERR(qf_inode)) { 2639 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2640 return PTR_ERR(qf_inode); 2641 } 2642 2643 /* Don't account quota for quota files to avoid recursion */ 2644 qf_inode->i_flags |= S_NOQUOTA; 2645 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2646 iput(qf_inode); 2647 return err; 2648 } 2649 2650 static int f2fs_enable_quotas(struct super_block *sb) 2651 { 2652 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2653 int type, err = 0; 2654 unsigned long qf_inum; 2655 bool quota_mopt[MAXQUOTAS] = { 2656 test_opt(sbi, USRQUOTA), 2657 test_opt(sbi, GRPQUOTA), 2658 test_opt(sbi, PRJQUOTA), 2659 }; 2660 2661 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2662 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2663 return 0; 2664 } 2665 2666 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2667 2668 for (type = 0; type < MAXQUOTAS; type++) { 2669 qf_inum = f2fs_qf_ino(sb, type); 2670 if (qf_inum) { 2671 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2672 DQUOT_USAGE_ENABLED | 2673 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2674 if (err) { 2675 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2676 type, err); 2677 for (type--; type >= 0; type--) 2678 dquot_quota_off(sb, type); 2679 set_sbi_flag(F2FS_SB(sb), 2680 SBI_QUOTA_NEED_REPAIR); 2681 return err; 2682 } 2683 } 2684 } 2685 return 0; 2686 } 2687 2688 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2689 { 2690 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2691 struct address_space *mapping = dqopt->files[type]->i_mapping; 2692 int ret = 0; 2693 2694 ret = dquot_writeback_dquots(sbi->sb, type); 2695 if (ret) 2696 goto out; 2697 2698 ret = filemap_fdatawrite(mapping); 2699 if (ret) 2700 goto out; 2701 2702 /* if we are using journalled quota */ 2703 if (is_journalled_quota(sbi)) 2704 goto out; 2705 2706 ret = filemap_fdatawait(mapping); 2707 2708 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2709 out: 2710 if (ret) 2711 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2712 return ret; 2713 } 2714 2715 int f2fs_quota_sync(struct super_block *sb, int type) 2716 { 2717 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2718 struct quota_info *dqopt = sb_dqopt(sb); 2719 int cnt; 2720 int ret = 0; 2721 2722 /* 2723 * Now when everything is written we can discard the pagecache so 2724 * that userspace sees the changes. 2725 */ 2726 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2727 2728 if (type != -1 && cnt != type) 2729 continue; 2730 2731 if (!sb_has_quota_active(sb, cnt)) 2732 continue; 2733 2734 if (!f2fs_sb_has_quota_ino(sbi)) 2735 inode_lock(dqopt->files[cnt]); 2736 2737 /* 2738 * do_quotactl 2739 * f2fs_quota_sync 2740 * f2fs_down_read(quota_sem) 2741 * dquot_writeback_dquots() 2742 * f2fs_dquot_commit 2743 * block_operation 2744 * f2fs_down_read(quota_sem) 2745 */ 2746 f2fs_lock_op(sbi); 2747 f2fs_down_read(&sbi->quota_sem); 2748 2749 ret = f2fs_quota_sync_file(sbi, cnt); 2750 2751 f2fs_up_read(&sbi->quota_sem); 2752 f2fs_unlock_op(sbi); 2753 2754 if (!f2fs_sb_has_quota_ino(sbi)) 2755 inode_unlock(dqopt->files[cnt]); 2756 2757 if (ret) 2758 break; 2759 } 2760 return ret; 2761 } 2762 2763 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2764 const struct path *path) 2765 { 2766 struct inode *inode; 2767 int err; 2768 2769 /* if quota sysfile exists, deny enabling quota with specific file */ 2770 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2771 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2772 return -EBUSY; 2773 } 2774 2775 err = f2fs_quota_sync(sb, type); 2776 if (err) 2777 return err; 2778 2779 err = dquot_quota_on(sb, type, format_id, path); 2780 if (err) 2781 return err; 2782 2783 inode = d_inode(path->dentry); 2784 2785 inode_lock(inode); 2786 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2787 f2fs_set_inode_flags(inode); 2788 inode_unlock(inode); 2789 f2fs_mark_inode_dirty_sync(inode, false); 2790 2791 return 0; 2792 } 2793 2794 static int __f2fs_quota_off(struct super_block *sb, int type) 2795 { 2796 struct inode *inode = sb_dqopt(sb)->files[type]; 2797 int err; 2798 2799 if (!inode || !igrab(inode)) 2800 return dquot_quota_off(sb, type); 2801 2802 err = f2fs_quota_sync(sb, type); 2803 if (err) 2804 goto out_put; 2805 2806 err = dquot_quota_off(sb, type); 2807 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2808 goto out_put; 2809 2810 inode_lock(inode); 2811 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2812 f2fs_set_inode_flags(inode); 2813 inode_unlock(inode); 2814 f2fs_mark_inode_dirty_sync(inode, false); 2815 out_put: 2816 iput(inode); 2817 return err; 2818 } 2819 2820 static int f2fs_quota_off(struct super_block *sb, int type) 2821 { 2822 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2823 int err; 2824 2825 err = __f2fs_quota_off(sb, type); 2826 2827 /* 2828 * quotactl can shutdown journalled quota, result in inconsistence 2829 * between quota record and fs data by following updates, tag the 2830 * flag to let fsck be aware of it. 2831 */ 2832 if (is_journalled_quota(sbi)) 2833 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2834 return err; 2835 } 2836 2837 void f2fs_quota_off_umount(struct super_block *sb) 2838 { 2839 int type; 2840 int err; 2841 2842 for (type = 0; type < MAXQUOTAS; type++) { 2843 err = __f2fs_quota_off(sb, type); 2844 if (err) { 2845 int ret = dquot_quota_off(sb, type); 2846 2847 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 2848 type, err, ret); 2849 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2850 } 2851 } 2852 /* 2853 * In case of checkpoint=disable, we must flush quota blocks. 2854 * This can cause NULL exception for node_inode in end_io, since 2855 * put_super already dropped it. 2856 */ 2857 sync_filesystem(sb); 2858 } 2859 2860 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2861 { 2862 struct quota_info *dqopt = sb_dqopt(sb); 2863 int type; 2864 2865 for (type = 0; type < MAXQUOTAS; type++) { 2866 if (!dqopt->files[type]) 2867 continue; 2868 f2fs_inode_synced(dqopt->files[type]); 2869 } 2870 } 2871 2872 static int f2fs_dquot_commit(struct dquot *dquot) 2873 { 2874 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2875 int ret; 2876 2877 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 2878 ret = dquot_commit(dquot); 2879 if (ret < 0) 2880 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2881 f2fs_up_read(&sbi->quota_sem); 2882 return ret; 2883 } 2884 2885 static int f2fs_dquot_acquire(struct dquot *dquot) 2886 { 2887 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2888 int ret; 2889 2890 f2fs_down_read(&sbi->quota_sem); 2891 ret = dquot_acquire(dquot); 2892 if (ret < 0) 2893 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2894 f2fs_up_read(&sbi->quota_sem); 2895 return ret; 2896 } 2897 2898 static int f2fs_dquot_release(struct dquot *dquot) 2899 { 2900 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2901 int ret = dquot_release(dquot); 2902 2903 if (ret < 0) 2904 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2905 return ret; 2906 } 2907 2908 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2909 { 2910 struct super_block *sb = dquot->dq_sb; 2911 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2912 int ret = dquot_mark_dquot_dirty(dquot); 2913 2914 /* if we are using journalled quota */ 2915 if (is_journalled_quota(sbi)) 2916 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2917 2918 return ret; 2919 } 2920 2921 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2922 { 2923 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2924 int ret = dquot_commit_info(sb, type); 2925 2926 if (ret < 0) 2927 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2928 return ret; 2929 } 2930 2931 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2932 { 2933 *projid = F2FS_I(inode)->i_projid; 2934 return 0; 2935 } 2936 2937 static const struct dquot_operations f2fs_quota_operations = { 2938 .get_reserved_space = f2fs_get_reserved_space, 2939 .write_dquot = f2fs_dquot_commit, 2940 .acquire_dquot = f2fs_dquot_acquire, 2941 .release_dquot = f2fs_dquot_release, 2942 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2943 .write_info = f2fs_dquot_commit_info, 2944 .alloc_dquot = dquot_alloc, 2945 .destroy_dquot = dquot_destroy, 2946 .get_projid = f2fs_get_projid, 2947 .get_next_id = dquot_get_next_id, 2948 }; 2949 2950 static const struct quotactl_ops f2fs_quotactl_ops = { 2951 .quota_on = f2fs_quota_on, 2952 .quota_off = f2fs_quota_off, 2953 .quota_sync = f2fs_quota_sync, 2954 .get_state = dquot_get_state, 2955 .set_info = dquot_set_dqinfo, 2956 .get_dqblk = dquot_get_dqblk, 2957 .set_dqblk = dquot_set_dqblk, 2958 .get_nextdqblk = dquot_get_next_dqblk, 2959 }; 2960 #else 2961 int f2fs_dquot_initialize(struct inode *inode) 2962 { 2963 return 0; 2964 } 2965 2966 int f2fs_quota_sync(struct super_block *sb, int type) 2967 { 2968 return 0; 2969 } 2970 2971 void f2fs_quota_off_umount(struct super_block *sb) 2972 { 2973 } 2974 #endif 2975 2976 static const struct super_operations f2fs_sops = { 2977 .alloc_inode = f2fs_alloc_inode, 2978 .free_inode = f2fs_free_inode, 2979 .drop_inode = f2fs_drop_inode, 2980 .write_inode = f2fs_write_inode, 2981 .dirty_inode = f2fs_dirty_inode, 2982 .show_options = f2fs_show_options, 2983 #ifdef CONFIG_QUOTA 2984 .quota_read = f2fs_quota_read, 2985 .quota_write = f2fs_quota_write, 2986 .get_dquots = f2fs_get_dquots, 2987 #endif 2988 .evict_inode = f2fs_evict_inode, 2989 .put_super = f2fs_put_super, 2990 .sync_fs = f2fs_sync_fs, 2991 .freeze_fs = f2fs_freeze, 2992 .unfreeze_fs = f2fs_unfreeze, 2993 .statfs = f2fs_statfs, 2994 .remount_fs = f2fs_remount, 2995 }; 2996 2997 #ifdef CONFIG_FS_ENCRYPTION 2998 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2999 { 3000 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3001 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3002 ctx, len, NULL); 3003 } 3004 3005 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 3006 void *fs_data) 3007 { 3008 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3009 3010 /* 3011 * Encrypting the root directory is not allowed because fsck 3012 * expects lost+found directory to exist and remain unencrypted 3013 * if LOST_FOUND feature is enabled. 3014 * 3015 */ 3016 if (f2fs_sb_has_lost_found(sbi) && 3017 inode->i_ino == F2FS_ROOT_INO(sbi)) 3018 return -EPERM; 3019 3020 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3021 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3022 ctx, len, fs_data, XATTR_CREATE); 3023 } 3024 3025 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 3026 { 3027 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 3028 } 3029 3030 static bool f2fs_has_stable_inodes(struct super_block *sb) 3031 { 3032 return true; 3033 } 3034 3035 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 3036 int *ino_bits_ret, int *lblk_bits_ret) 3037 { 3038 *ino_bits_ret = 8 * sizeof(nid_t); 3039 *lblk_bits_ret = 8 * sizeof(block_t); 3040 } 3041 3042 static int f2fs_get_num_devices(struct super_block *sb) 3043 { 3044 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3045 3046 if (f2fs_is_multi_device(sbi)) 3047 return sbi->s_ndevs; 3048 return 1; 3049 } 3050 3051 static void f2fs_get_devices(struct super_block *sb, 3052 struct request_queue **devs) 3053 { 3054 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3055 int i; 3056 3057 for (i = 0; i < sbi->s_ndevs; i++) 3058 devs[i] = bdev_get_queue(FDEV(i).bdev); 3059 } 3060 3061 static const struct fscrypt_operations f2fs_cryptops = { 3062 .key_prefix = "f2fs:", 3063 .get_context = f2fs_get_context, 3064 .set_context = f2fs_set_context, 3065 .get_dummy_policy = f2fs_get_dummy_policy, 3066 .empty_dir = f2fs_empty_dir, 3067 .has_stable_inodes = f2fs_has_stable_inodes, 3068 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 3069 .get_num_devices = f2fs_get_num_devices, 3070 .get_devices = f2fs_get_devices, 3071 }; 3072 #endif 3073 3074 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3075 u64 ino, u32 generation) 3076 { 3077 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3078 struct inode *inode; 3079 3080 if (f2fs_check_nid_range(sbi, ino)) 3081 return ERR_PTR(-ESTALE); 3082 3083 /* 3084 * f2fs_iget isn't quite right if the inode is currently unallocated! 3085 * However f2fs_iget currently does appropriate checks to handle stale 3086 * inodes so everything is OK. 3087 */ 3088 inode = f2fs_iget(sb, ino); 3089 if (IS_ERR(inode)) 3090 return ERR_CAST(inode); 3091 if (unlikely(generation && inode->i_generation != generation)) { 3092 /* we didn't find the right inode.. */ 3093 iput(inode); 3094 return ERR_PTR(-ESTALE); 3095 } 3096 return inode; 3097 } 3098 3099 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3100 int fh_len, int fh_type) 3101 { 3102 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3103 f2fs_nfs_get_inode); 3104 } 3105 3106 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3107 int fh_len, int fh_type) 3108 { 3109 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3110 f2fs_nfs_get_inode); 3111 } 3112 3113 static const struct export_operations f2fs_export_ops = { 3114 .fh_to_dentry = f2fs_fh_to_dentry, 3115 .fh_to_parent = f2fs_fh_to_parent, 3116 .get_parent = f2fs_get_parent, 3117 }; 3118 3119 loff_t max_file_blocks(struct inode *inode) 3120 { 3121 loff_t result = 0; 3122 loff_t leaf_count; 3123 3124 /* 3125 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3126 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3127 * space in inode.i_addr, it will be more safe to reassign 3128 * result as zero. 3129 */ 3130 3131 if (inode && f2fs_compressed_file(inode)) 3132 leaf_count = ADDRS_PER_BLOCK(inode); 3133 else 3134 leaf_count = DEF_ADDRS_PER_BLOCK; 3135 3136 /* two direct node blocks */ 3137 result += (leaf_count * 2); 3138 3139 /* two indirect node blocks */ 3140 leaf_count *= NIDS_PER_BLOCK; 3141 result += (leaf_count * 2); 3142 3143 /* one double indirect node block */ 3144 leaf_count *= NIDS_PER_BLOCK; 3145 result += leaf_count; 3146 3147 return result; 3148 } 3149 3150 static int __f2fs_commit_super(struct buffer_head *bh, 3151 struct f2fs_super_block *super) 3152 { 3153 lock_buffer(bh); 3154 if (super) 3155 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 3156 set_buffer_dirty(bh); 3157 unlock_buffer(bh); 3158 3159 /* it's rare case, we can do fua all the time */ 3160 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 3161 } 3162 3163 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3164 struct buffer_head *bh) 3165 { 3166 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3167 (bh->b_data + F2FS_SUPER_OFFSET); 3168 struct super_block *sb = sbi->sb; 3169 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3170 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3171 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3172 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3173 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3174 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3175 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3176 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3177 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3178 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3179 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3180 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3181 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3182 u64 main_end_blkaddr = main_blkaddr + 3183 (segment_count_main << log_blocks_per_seg); 3184 u64 seg_end_blkaddr = segment0_blkaddr + 3185 (segment_count << log_blocks_per_seg); 3186 3187 if (segment0_blkaddr != cp_blkaddr) { 3188 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3189 segment0_blkaddr, cp_blkaddr); 3190 return true; 3191 } 3192 3193 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3194 sit_blkaddr) { 3195 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3196 cp_blkaddr, sit_blkaddr, 3197 segment_count_ckpt << log_blocks_per_seg); 3198 return true; 3199 } 3200 3201 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3202 nat_blkaddr) { 3203 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3204 sit_blkaddr, nat_blkaddr, 3205 segment_count_sit << log_blocks_per_seg); 3206 return true; 3207 } 3208 3209 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3210 ssa_blkaddr) { 3211 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3212 nat_blkaddr, ssa_blkaddr, 3213 segment_count_nat << log_blocks_per_seg); 3214 return true; 3215 } 3216 3217 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3218 main_blkaddr) { 3219 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3220 ssa_blkaddr, main_blkaddr, 3221 segment_count_ssa << log_blocks_per_seg); 3222 return true; 3223 } 3224 3225 if (main_end_blkaddr > seg_end_blkaddr) { 3226 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3227 main_blkaddr, seg_end_blkaddr, 3228 segment_count_main << log_blocks_per_seg); 3229 return true; 3230 } else if (main_end_blkaddr < seg_end_blkaddr) { 3231 int err = 0; 3232 char *res; 3233 3234 /* fix in-memory information all the time */ 3235 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3236 segment0_blkaddr) >> log_blocks_per_seg); 3237 3238 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 3239 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3240 res = "internally"; 3241 } else { 3242 err = __f2fs_commit_super(bh, NULL); 3243 res = err ? "failed" : "done"; 3244 } 3245 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3246 res, main_blkaddr, seg_end_blkaddr, 3247 segment_count_main << log_blocks_per_seg); 3248 if (err) 3249 return true; 3250 } 3251 return false; 3252 } 3253 3254 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3255 struct buffer_head *bh) 3256 { 3257 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3258 block_t total_sections, blocks_per_seg; 3259 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3260 (bh->b_data + F2FS_SUPER_OFFSET); 3261 size_t crc_offset = 0; 3262 __u32 crc = 0; 3263 3264 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3265 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3266 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3267 return -EINVAL; 3268 } 3269 3270 /* Check checksum_offset and crc in superblock */ 3271 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3272 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3273 if (crc_offset != 3274 offsetof(struct f2fs_super_block, crc)) { 3275 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3276 crc_offset); 3277 return -EFSCORRUPTED; 3278 } 3279 crc = le32_to_cpu(raw_super->crc); 3280 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3281 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3282 return -EFSCORRUPTED; 3283 } 3284 } 3285 3286 /* Currently, support only 4KB block size */ 3287 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3288 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3289 le32_to_cpu(raw_super->log_blocksize), 3290 F2FS_BLKSIZE_BITS); 3291 return -EFSCORRUPTED; 3292 } 3293 3294 /* check log blocks per segment */ 3295 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3296 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3297 le32_to_cpu(raw_super->log_blocks_per_seg)); 3298 return -EFSCORRUPTED; 3299 } 3300 3301 /* Currently, support 512/1024/2048/4096 bytes sector size */ 3302 if (le32_to_cpu(raw_super->log_sectorsize) > 3303 F2FS_MAX_LOG_SECTOR_SIZE || 3304 le32_to_cpu(raw_super->log_sectorsize) < 3305 F2FS_MIN_LOG_SECTOR_SIZE) { 3306 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3307 le32_to_cpu(raw_super->log_sectorsize)); 3308 return -EFSCORRUPTED; 3309 } 3310 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3311 le32_to_cpu(raw_super->log_sectorsize) != 3312 F2FS_MAX_LOG_SECTOR_SIZE) { 3313 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3314 le32_to_cpu(raw_super->log_sectors_per_block), 3315 le32_to_cpu(raw_super->log_sectorsize)); 3316 return -EFSCORRUPTED; 3317 } 3318 3319 segment_count = le32_to_cpu(raw_super->segment_count); 3320 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3321 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3322 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3323 total_sections = le32_to_cpu(raw_super->section_count); 3324 3325 /* blocks_per_seg should be 512, given the above check */ 3326 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 3327 3328 if (segment_count > F2FS_MAX_SEGMENT || 3329 segment_count < F2FS_MIN_SEGMENTS) { 3330 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3331 return -EFSCORRUPTED; 3332 } 3333 3334 if (total_sections > segment_count_main || total_sections < 1 || 3335 segs_per_sec > segment_count || !segs_per_sec) { 3336 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3337 segment_count, total_sections, segs_per_sec); 3338 return -EFSCORRUPTED; 3339 } 3340 3341 if (segment_count_main != total_sections * segs_per_sec) { 3342 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3343 segment_count_main, total_sections, segs_per_sec); 3344 return -EFSCORRUPTED; 3345 } 3346 3347 if ((segment_count / segs_per_sec) < total_sections) { 3348 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3349 segment_count, segs_per_sec, total_sections); 3350 return -EFSCORRUPTED; 3351 } 3352 3353 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3354 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3355 segment_count, le64_to_cpu(raw_super->block_count)); 3356 return -EFSCORRUPTED; 3357 } 3358 3359 if (RDEV(0).path[0]) { 3360 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3361 int i = 1; 3362 3363 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3364 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3365 i++; 3366 } 3367 if (segment_count != dev_seg_count) { 3368 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3369 segment_count, dev_seg_count); 3370 return -EFSCORRUPTED; 3371 } 3372 } else { 3373 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3374 !bdev_is_zoned(sbi->sb->s_bdev)) { 3375 f2fs_info(sbi, "Zoned block device path is missing"); 3376 return -EFSCORRUPTED; 3377 } 3378 } 3379 3380 if (secs_per_zone > total_sections || !secs_per_zone) { 3381 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3382 secs_per_zone, total_sections); 3383 return -EFSCORRUPTED; 3384 } 3385 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3386 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3387 (le32_to_cpu(raw_super->extension_count) + 3388 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3389 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3390 le32_to_cpu(raw_super->extension_count), 3391 raw_super->hot_ext_count, 3392 F2FS_MAX_EXTENSION); 3393 return -EFSCORRUPTED; 3394 } 3395 3396 if (le32_to_cpu(raw_super->cp_payload) >= 3397 (blocks_per_seg - F2FS_CP_PACKS - 3398 NR_CURSEG_PERSIST_TYPE)) { 3399 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3400 le32_to_cpu(raw_super->cp_payload), 3401 blocks_per_seg - F2FS_CP_PACKS - 3402 NR_CURSEG_PERSIST_TYPE); 3403 return -EFSCORRUPTED; 3404 } 3405 3406 /* check reserved ino info */ 3407 if (le32_to_cpu(raw_super->node_ino) != 1 || 3408 le32_to_cpu(raw_super->meta_ino) != 2 || 3409 le32_to_cpu(raw_super->root_ino) != 3) { 3410 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3411 le32_to_cpu(raw_super->node_ino), 3412 le32_to_cpu(raw_super->meta_ino), 3413 le32_to_cpu(raw_super->root_ino)); 3414 return -EFSCORRUPTED; 3415 } 3416 3417 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3418 if (sanity_check_area_boundary(sbi, bh)) 3419 return -EFSCORRUPTED; 3420 3421 return 0; 3422 } 3423 3424 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3425 { 3426 unsigned int total, fsmeta; 3427 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3428 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3429 unsigned int ovp_segments, reserved_segments; 3430 unsigned int main_segs, blocks_per_seg; 3431 unsigned int sit_segs, nat_segs; 3432 unsigned int sit_bitmap_size, nat_bitmap_size; 3433 unsigned int log_blocks_per_seg; 3434 unsigned int segment_count_main; 3435 unsigned int cp_pack_start_sum, cp_payload; 3436 block_t user_block_count, valid_user_blocks; 3437 block_t avail_node_count, valid_node_count; 3438 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3439 int i, j; 3440 3441 total = le32_to_cpu(raw_super->segment_count); 3442 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3443 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3444 fsmeta += sit_segs; 3445 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3446 fsmeta += nat_segs; 3447 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3448 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3449 3450 if (unlikely(fsmeta >= total)) 3451 return 1; 3452 3453 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3454 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3455 3456 if (!f2fs_sb_has_readonly(sbi) && 3457 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3458 ovp_segments == 0 || reserved_segments == 0)) { 3459 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3460 return 1; 3461 } 3462 user_block_count = le64_to_cpu(ckpt->user_block_count); 3463 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3464 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3465 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3466 if (!user_block_count || user_block_count >= 3467 segment_count_main << log_blocks_per_seg) { 3468 f2fs_err(sbi, "Wrong user_block_count: %u", 3469 user_block_count); 3470 return 1; 3471 } 3472 3473 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3474 if (valid_user_blocks > user_block_count) { 3475 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3476 valid_user_blocks, user_block_count); 3477 return 1; 3478 } 3479 3480 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3481 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3482 if (valid_node_count > avail_node_count) { 3483 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3484 valid_node_count, avail_node_count); 3485 return 1; 3486 } 3487 3488 main_segs = le32_to_cpu(raw_super->segment_count_main); 3489 blocks_per_seg = sbi->blocks_per_seg; 3490 3491 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3492 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3493 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3494 return 1; 3495 3496 if (f2fs_sb_has_readonly(sbi)) 3497 goto check_data; 3498 3499 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3500 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3501 le32_to_cpu(ckpt->cur_node_segno[j])) { 3502 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3503 i, j, 3504 le32_to_cpu(ckpt->cur_node_segno[i])); 3505 return 1; 3506 } 3507 } 3508 } 3509 check_data: 3510 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3511 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3512 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3513 return 1; 3514 3515 if (f2fs_sb_has_readonly(sbi)) 3516 goto skip_cross; 3517 3518 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3519 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3520 le32_to_cpu(ckpt->cur_data_segno[j])) { 3521 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3522 i, j, 3523 le32_to_cpu(ckpt->cur_data_segno[i])); 3524 return 1; 3525 } 3526 } 3527 } 3528 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3529 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3530 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3531 le32_to_cpu(ckpt->cur_data_segno[j])) { 3532 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3533 i, j, 3534 le32_to_cpu(ckpt->cur_node_segno[i])); 3535 return 1; 3536 } 3537 } 3538 } 3539 skip_cross: 3540 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3541 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3542 3543 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3544 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3545 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3546 sit_bitmap_size, nat_bitmap_size); 3547 return 1; 3548 } 3549 3550 cp_pack_start_sum = __start_sum_addr(sbi); 3551 cp_payload = __cp_payload(sbi); 3552 if (cp_pack_start_sum < cp_payload + 1 || 3553 cp_pack_start_sum > blocks_per_seg - 1 - 3554 NR_CURSEG_PERSIST_TYPE) { 3555 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3556 cp_pack_start_sum); 3557 return 1; 3558 } 3559 3560 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3561 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3562 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3563 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3564 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3565 le32_to_cpu(ckpt->checksum_offset)); 3566 return 1; 3567 } 3568 3569 nat_blocks = nat_segs << log_blocks_per_seg; 3570 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3571 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3572 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3573 (cp_payload + F2FS_CP_PACKS + 3574 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3575 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3576 cp_payload, nat_bits_blocks); 3577 return 1; 3578 } 3579 3580 if (unlikely(f2fs_cp_error(sbi))) { 3581 f2fs_err(sbi, "A bug case: need to run fsck"); 3582 return 1; 3583 } 3584 return 0; 3585 } 3586 3587 static void init_sb_info(struct f2fs_sb_info *sbi) 3588 { 3589 struct f2fs_super_block *raw_super = sbi->raw_super; 3590 int i; 3591 3592 sbi->log_sectors_per_block = 3593 le32_to_cpu(raw_super->log_sectors_per_block); 3594 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3595 sbi->blocksize = 1 << sbi->log_blocksize; 3596 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3597 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 3598 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3599 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3600 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3601 sbi->total_node_count = 3602 (le32_to_cpu(raw_super->segment_count_nat) / 2) 3603 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 3604 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3605 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3606 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3607 sbi->cur_victim_sec = NULL_SECNO; 3608 sbi->gc_mode = GC_NORMAL; 3609 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3610 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3611 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3612 sbi->migration_granularity = sbi->segs_per_sec; 3613 sbi->seq_file_ra_mul = MIN_RA_MUL; 3614 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3615 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3616 spin_lock_init(&sbi->gc_urgent_high_lock); 3617 atomic64_set(&sbi->current_atomic_write, 0); 3618 3619 sbi->dir_level = DEF_DIR_LEVEL; 3620 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3621 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3622 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3623 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3624 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3625 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3626 DEF_UMOUNT_DISCARD_TIMEOUT; 3627 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3628 3629 for (i = 0; i < NR_COUNT_TYPE; i++) 3630 atomic_set(&sbi->nr_pages[i], 0); 3631 3632 for (i = 0; i < META; i++) 3633 atomic_set(&sbi->wb_sync_req[i], 0); 3634 3635 INIT_LIST_HEAD(&sbi->s_list); 3636 mutex_init(&sbi->umount_mutex); 3637 init_f2fs_rwsem(&sbi->io_order_lock); 3638 spin_lock_init(&sbi->cp_lock); 3639 3640 sbi->dirty_device = 0; 3641 spin_lock_init(&sbi->dev_lock); 3642 3643 init_f2fs_rwsem(&sbi->sb_lock); 3644 init_f2fs_rwsem(&sbi->pin_sem); 3645 } 3646 3647 static int init_percpu_info(struct f2fs_sb_info *sbi) 3648 { 3649 int err; 3650 3651 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3652 if (err) 3653 return err; 3654 3655 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 3656 if (err) 3657 goto err_valid_block; 3658 3659 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3660 GFP_KERNEL); 3661 if (err) 3662 goto err_node_block; 3663 return 0; 3664 3665 err_node_block: 3666 percpu_counter_destroy(&sbi->rf_node_block_count); 3667 err_valid_block: 3668 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3669 return err; 3670 } 3671 3672 #ifdef CONFIG_BLK_DEV_ZONED 3673 3674 struct f2fs_report_zones_args { 3675 struct f2fs_sb_info *sbi; 3676 struct f2fs_dev_info *dev; 3677 }; 3678 3679 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3680 void *data) 3681 { 3682 struct f2fs_report_zones_args *rz_args = data; 3683 block_t unusable_blocks = (zone->len - zone->capacity) >> 3684 F2FS_LOG_SECTORS_PER_BLOCK; 3685 3686 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3687 return 0; 3688 3689 set_bit(idx, rz_args->dev->blkz_seq); 3690 if (!rz_args->sbi->unusable_blocks_per_sec) { 3691 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; 3692 return 0; 3693 } 3694 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { 3695 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); 3696 return -EINVAL; 3697 } 3698 return 0; 3699 } 3700 3701 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3702 { 3703 struct block_device *bdev = FDEV(devi).bdev; 3704 sector_t nr_sectors = bdev_nr_sectors(bdev); 3705 struct f2fs_report_zones_args rep_zone_arg; 3706 u64 zone_sectors; 3707 int ret; 3708 3709 if (!f2fs_sb_has_blkzoned(sbi)) 3710 return 0; 3711 3712 zone_sectors = bdev_zone_sectors(bdev); 3713 if (!is_power_of_2(zone_sectors)) { 3714 f2fs_err(sbi, "F2FS does not support non power of 2 zone sizes\n"); 3715 return -EINVAL; 3716 } 3717 3718 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3719 SECTOR_TO_BLOCK(zone_sectors)) 3720 return -EINVAL; 3721 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors); 3722 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 3723 __ilog2_u32(sbi->blocks_per_blkz)) 3724 return -EINVAL; 3725 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 3726 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 3727 sbi->log_blocks_per_blkz; 3728 if (nr_sectors & (zone_sectors - 1)) 3729 FDEV(devi).nr_blkz++; 3730 3731 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3732 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3733 * sizeof(unsigned long), 3734 GFP_KERNEL); 3735 if (!FDEV(devi).blkz_seq) 3736 return -ENOMEM; 3737 3738 rep_zone_arg.sbi = sbi; 3739 rep_zone_arg.dev = &FDEV(devi); 3740 3741 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3742 &rep_zone_arg); 3743 if (ret < 0) 3744 return ret; 3745 return 0; 3746 } 3747 #endif 3748 3749 /* 3750 * Read f2fs raw super block. 3751 * Because we have two copies of super block, so read both of them 3752 * to get the first valid one. If any one of them is broken, we pass 3753 * them recovery flag back to the caller. 3754 */ 3755 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3756 struct f2fs_super_block **raw_super, 3757 int *valid_super_block, int *recovery) 3758 { 3759 struct super_block *sb = sbi->sb; 3760 int block; 3761 struct buffer_head *bh; 3762 struct f2fs_super_block *super; 3763 int err = 0; 3764 3765 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3766 if (!super) 3767 return -ENOMEM; 3768 3769 for (block = 0; block < 2; block++) { 3770 bh = sb_bread(sb, block); 3771 if (!bh) { 3772 f2fs_err(sbi, "Unable to read %dth superblock", 3773 block + 1); 3774 err = -EIO; 3775 *recovery = 1; 3776 continue; 3777 } 3778 3779 /* sanity checking of raw super */ 3780 err = sanity_check_raw_super(sbi, bh); 3781 if (err) { 3782 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3783 block + 1); 3784 brelse(bh); 3785 *recovery = 1; 3786 continue; 3787 } 3788 3789 if (!*raw_super) { 3790 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3791 sizeof(*super)); 3792 *valid_super_block = block; 3793 *raw_super = super; 3794 } 3795 brelse(bh); 3796 } 3797 3798 /* No valid superblock */ 3799 if (!*raw_super) 3800 kfree(super); 3801 else 3802 err = 0; 3803 3804 return err; 3805 } 3806 3807 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3808 { 3809 struct buffer_head *bh; 3810 __u32 crc = 0; 3811 int err; 3812 3813 if ((recover && f2fs_readonly(sbi->sb)) || 3814 bdev_read_only(sbi->sb->s_bdev)) { 3815 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3816 return -EROFS; 3817 } 3818 3819 /* we should update superblock crc here */ 3820 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3821 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3822 offsetof(struct f2fs_super_block, crc)); 3823 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3824 } 3825 3826 /* write back-up superblock first */ 3827 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3828 if (!bh) 3829 return -EIO; 3830 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3831 brelse(bh); 3832 3833 /* if we are in recovery path, skip writing valid superblock */ 3834 if (recover || err) 3835 return err; 3836 3837 /* write current valid superblock */ 3838 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3839 if (!bh) 3840 return -EIO; 3841 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3842 brelse(bh); 3843 return err; 3844 } 3845 3846 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 3847 { 3848 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3849 unsigned int max_devices = MAX_DEVICES; 3850 unsigned int logical_blksize; 3851 int i; 3852 3853 /* Initialize single device information */ 3854 if (!RDEV(0).path[0]) { 3855 if (!bdev_is_zoned(sbi->sb->s_bdev)) 3856 return 0; 3857 max_devices = 1; 3858 } 3859 3860 /* 3861 * Initialize multiple devices information, or single 3862 * zoned block device information. 3863 */ 3864 sbi->devs = f2fs_kzalloc(sbi, 3865 array_size(max_devices, 3866 sizeof(struct f2fs_dev_info)), 3867 GFP_KERNEL); 3868 if (!sbi->devs) 3869 return -ENOMEM; 3870 3871 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 3872 sbi->aligned_blksize = true; 3873 3874 for (i = 0; i < max_devices; i++) { 3875 3876 if (i > 0 && !RDEV(i).path[0]) 3877 break; 3878 3879 if (max_devices == 1) { 3880 /* Single zoned block device mount */ 3881 FDEV(0).bdev = 3882 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 3883 sbi->sb->s_mode, sbi->sb->s_type); 3884 } else { 3885 /* Multi-device mount */ 3886 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 3887 FDEV(i).total_segments = 3888 le32_to_cpu(RDEV(i).total_segments); 3889 if (i == 0) { 3890 FDEV(i).start_blk = 0; 3891 FDEV(i).end_blk = FDEV(i).start_blk + 3892 (FDEV(i).total_segments << 3893 sbi->log_blocks_per_seg) - 1 + 3894 le32_to_cpu(raw_super->segment0_blkaddr); 3895 } else { 3896 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 3897 FDEV(i).end_blk = FDEV(i).start_blk + 3898 (FDEV(i).total_segments << 3899 sbi->log_blocks_per_seg) - 1; 3900 } 3901 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 3902 sbi->sb->s_mode, sbi->sb->s_type); 3903 } 3904 if (IS_ERR(FDEV(i).bdev)) 3905 return PTR_ERR(FDEV(i).bdev); 3906 3907 /* to release errored devices */ 3908 sbi->s_ndevs = i + 1; 3909 3910 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 3911 sbi->aligned_blksize = false; 3912 3913 #ifdef CONFIG_BLK_DEV_ZONED 3914 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3915 !f2fs_sb_has_blkzoned(sbi)) { 3916 f2fs_err(sbi, "Zoned block device feature not enabled"); 3917 return -EINVAL; 3918 } 3919 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3920 if (init_blkz_info(sbi, i)) { 3921 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 3922 return -EINVAL; 3923 } 3924 if (max_devices == 1) 3925 break; 3926 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3927 i, FDEV(i).path, 3928 FDEV(i).total_segments, 3929 FDEV(i).start_blk, FDEV(i).end_blk, 3930 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3931 "Host-aware" : "Host-managed"); 3932 continue; 3933 } 3934 #endif 3935 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3936 i, FDEV(i).path, 3937 FDEV(i).total_segments, 3938 FDEV(i).start_blk, FDEV(i).end_blk); 3939 } 3940 f2fs_info(sbi, 3941 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3942 return 0; 3943 } 3944 3945 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 3946 { 3947 #if IS_ENABLED(CONFIG_UNICODE) 3948 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 3949 const struct f2fs_sb_encodings *encoding_info; 3950 struct unicode_map *encoding; 3951 __u16 encoding_flags; 3952 3953 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 3954 if (!encoding_info) { 3955 f2fs_err(sbi, 3956 "Encoding requested by superblock is unknown"); 3957 return -EINVAL; 3958 } 3959 3960 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 3961 encoding = utf8_load(encoding_info->version); 3962 if (IS_ERR(encoding)) { 3963 f2fs_err(sbi, 3964 "can't mount with superblock charset: %s-%u.%u.%u " 3965 "not supported by the kernel. flags: 0x%x.", 3966 encoding_info->name, 3967 unicode_major(encoding_info->version), 3968 unicode_minor(encoding_info->version), 3969 unicode_rev(encoding_info->version), 3970 encoding_flags); 3971 return PTR_ERR(encoding); 3972 } 3973 f2fs_info(sbi, "Using encoding defined by superblock: " 3974 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 3975 unicode_major(encoding_info->version), 3976 unicode_minor(encoding_info->version), 3977 unicode_rev(encoding_info->version), 3978 encoding_flags); 3979 3980 sbi->sb->s_encoding = encoding; 3981 sbi->sb->s_encoding_flags = encoding_flags; 3982 } 3983 #else 3984 if (f2fs_sb_has_casefold(sbi)) { 3985 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 3986 return -EINVAL; 3987 } 3988 #endif 3989 return 0; 3990 } 3991 3992 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3993 { 3994 struct f2fs_sm_info *sm_i = SM_I(sbi); 3995 3996 /* adjust parameters according to the volume size */ 3997 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3998 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3999 if (f2fs_block_unit_discard(sbi)) 4000 sm_i->dcc_info->discard_granularity = 1; 4001 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE | 4002 1 << F2FS_IPU_HONOR_OPU_WRITE; 4003 } 4004 4005 sbi->readdir_ra = 1; 4006 } 4007 4008 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 4009 { 4010 struct f2fs_sb_info *sbi; 4011 struct f2fs_super_block *raw_super; 4012 struct inode *root; 4013 int err; 4014 bool skip_recovery = false, need_fsck = false; 4015 char *options = NULL; 4016 int recovery, i, valid_super_block; 4017 struct curseg_info *seg_i; 4018 int retry_cnt = 1; 4019 4020 try_onemore: 4021 err = -EINVAL; 4022 raw_super = NULL; 4023 valid_super_block = -1; 4024 recovery = 0; 4025 4026 /* allocate memory for f2fs-specific super block info */ 4027 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 4028 if (!sbi) 4029 return -ENOMEM; 4030 4031 sbi->sb = sb; 4032 4033 /* Load the checksum driver */ 4034 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 4035 if (IS_ERR(sbi->s_chksum_driver)) { 4036 f2fs_err(sbi, "Cannot load crc32 driver."); 4037 err = PTR_ERR(sbi->s_chksum_driver); 4038 sbi->s_chksum_driver = NULL; 4039 goto free_sbi; 4040 } 4041 4042 /* set a block size */ 4043 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 4044 f2fs_err(sbi, "unable to set blocksize"); 4045 goto free_sbi; 4046 } 4047 4048 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4049 &recovery); 4050 if (err) 4051 goto free_sbi; 4052 4053 sb->s_fs_info = sbi; 4054 sbi->raw_super = raw_super; 4055 4056 /* precompute checksum seed for metadata */ 4057 if (f2fs_sb_has_inode_chksum(sbi)) 4058 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 4059 sizeof(raw_super->uuid)); 4060 4061 default_options(sbi); 4062 /* parse mount options */ 4063 options = kstrdup((const char *)data, GFP_KERNEL); 4064 if (data && !options) { 4065 err = -ENOMEM; 4066 goto free_sb_buf; 4067 } 4068 4069 err = parse_options(sb, options, false); 4070 if (err) 4071 goto free_options; 4072 4073 sb->s_maxbytes = max_file_blocks(NULL) << 4074 le32_to_cpu(raw_super->log_blocksize); 4075 sb->s_max_links = F2FS_LINK_MAX; 4076 4077 err = f2fs_setup_casefold(sbi); 4078 if (err) 4079 goto free_options; 4080 4081 #ifdef CONFIG_QUOTA 4082 sb->dq_op = &f2fs_quota_operations; 4083 sb->s_qcop = &f2fs_quotactl_ops; 4084 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4085 4086 if (f2fs_sb_has_quota_ino(sbi)) { 4087 for (i = 0; i < MAXQUOTAS; i++) { 4088 if (f2fs_qf_ino(sbi->sb, i)) 4089 sbi->nquota_files++; 4090 } 4091 } 4092 #endif 4093 4094 sb->s_op = &f2fs_sops; 4095 #ifdef CONFIG_FS_ENCRYPTION 4096 sb->s_cop = &f2fs_cryptops; 4097 #endif 4098 #ifdef CONFIG_FS_VERITY 4099 sb->s_vop = &f2fs_verityops; 4100 #endif 4101 sb->s_xattr = f2fs_xattr_handlers; 4102 sb->s_export_op = &f2fs_export_ops; 4103 sb->s_magic = F2FS_SUPER_MAGIC; 4104 sb->s_time_gran = 1; 4105 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4106 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4107 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 4108 sb->s_iflags |= SB_I_CGROUPWB; 4109 4110 /* init f2fs-specific super block info */ 4111 sbi->valid_super_block = valid_super_block; 4112 init_f2fs_rwsem(&sbi->gc_lock); 4113 mutex_init(&sbi->writepages); 4114 init_f2fs_rwsem(&sbi->cp_global_sem); 4115 init_f2fs_rwsem(&sbi->node_write); 4116 init_f2fs_rwsem(&sbi->node_change); 4117 4118 /* disallow all the data/node/meta page writes */ 4119 set_sbi_flag(sbi, SBI_POR_DOING); 4120 spin_lock_init(&sbi->stat_lock); 4121 4122 err = f2fs_init_write_merge_io(sbi); 4123 if (err) 4124 goto free_bio_info; 4125 4126 init_f2fs_rwsem(&sbi->cp_rwsem); 4127 init_f2fs_rwsem(&sbi->quota_sem); 4128 init_waitqueue_head(&sbi->cp_wait); 4129 init_sb_info(sbi); 4130 4131 err = f2fs_init_iostat(sbi); 4132 if (err) 4133 goto free_bio_info; 4134 4135 err = init_percpu_info(sbi); 4136 if (err) 4137 goto free_iostat; 4138 4139 if (F2FS_IO_ALIGNED(sbi)) { 4140 sbi->write_io_dummy = 4141 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 4142 if (!sbi->write_io_dummy) { 4143 err = -ENOMEM; 4144 goto free_percpu; 4145 } 4146 } 4147 4148 /* init per sbi slab cache */ 4149 err = f2fs_init_xattr_caches(sbi); 4150 if (err) 4151 goto free_io_dummy; 4152 err = f2fs_init_page_array_cache(sbi); 4153 if (err) 4154 goto free_xattr_cache; 4155 4156 /* get an inode for meta space */ 4157 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4158 if (IS_ERR(sbi->meta_inode)) { 4159 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4160 err = PTR_ERR(sbi->meta_inode); 4161 goto free_page_array_cache; 4162 } 4163 4164 err = f2fs_get_valid_checkpoint(sbi); 4165 if (err) { 4166 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4167 goto free_meta_inode; 4168 } 4169 4170 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4171 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4172 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4173 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4174 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4175 } 4176 4177 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4178 set_sbi_flag(sbi, SBI_NEED_FSCK); 4179 4180 /* Initialize device list */ 4181 err = f2fs_scan_devices(sbi); 4182 if (err) { 4183 f2fs_err(sbi, "Failed to find devices"); 4184 goto free_devices; 4185 } 4186 4187 err = f2fs_init_post_read_wq(sbi); 4188 if (err) { 4189 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4190 goto free_devices; 4191 } 4192 4193 sbi->total_valid_node_count = 4194 le32_to_cpu(sbi->ckpt->valid_node_count); 4195 percpu_counter_set(&sbi->total_valid_inode_count, 4196 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4197 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4198 sbi->total_valid_block_count = 4199 le64_to_cpu(sbi->ckpt->valid_block_count); 4200 sbi->last_valid_block_count = sbi->total_valid_block_count; 4201 sbi->reserved_blocks = 0; 4202 sbi->current_reserved_blocks = 0; 4203 limit_reserve_root(sbi); 4204 adjust_unusable_cap_perc(sbi); 4205 4206 for (i = 0; i < NR_INODE_TYPE; i++) { 4207 INIT_LIST_HEAD(&sbi->inode_list[i]); 4208 spin_lock_init(&sbi->inode_lock[i]); 4209 } 4210 mutex_init(&sbi->flush_lock); 4211 4212 f2fs_init_extent_cache_info(sbi); 4213 4214 f2fs_init_ino_entry_info(sbi); 4215 4216 f2fs_init_fsync_node_info(sbi); 4217 4218 /* setup checkpoint request control and start checkpoint issue thread */ 4219 f2fs_init_ckpt_req_control(sbi); 4220 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4221 test_opt(sbi, MERGE_CHECKPOINT)) { 4222 err = f2fs_start_ckpt_thread(sbi); 4223 if (err) { 4224 f2fs_err(sbi, 4225 "Failed to start F2FS issue_checkpoint_thread (%d)", 4226 err); 4227 goto stop_ckpt_thread; 4228 } 4229 } 4230 4231 /* setup f2fs internal modules */ 4232 err = f2fs_build_segment_manager(sbi); 4233 if (err) { 4234 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4235 err); 4236 goto free_sm; 4237 } 4238 err = f2fs_build_node_manager(sbi); 4239 if (err) { 4240 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4241 err); 4242 goto free_nm; 4243 } 4244 4245 err = adjust_reserved_segment(sbi); 4246 if (err) 4247 goto free_nm; 4248 4249 /* For write statistics */ 4250 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4251 4252 /* Read accumulated write IO statistics if exists */ 4253 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4254 if (__exist_node_summaries(sbi)) 4255 sbi->kbytes_written = 4256 le64_to_cpu(seg_i->journal->info.kbytes_written); 4257 4258 f2fs_build_gc_manager(sbi); 4259 4260 err = f2fs_build_stats(sbi); 4261 if (err) 4262 goto free_nm; 4263 4264 /* get an inode for node space */ 4265 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4266 if (IS_ERR(sbi->node_inode)) { 4267 f2fs_err(sbi, "Failed to read node inode"); 4268 err = PTR_ERR(sbi->node_inode); 4269 goto free_stats; 4270 } 4271 4272 /* read root inode and dentry */ 4273 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4274 if (IS_ERR(root)) { 4275 f2fs_err(sbi, "Failed to read root inode"); 4276 err = PTR_ERR(root); 4277 goto free_node_inode; 4278 } 4279 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4280 !root->i_size || !root->i_nlink) { 4281 iput(root); 4282 err = -EINVAL; 4283 goto free_node_inode; 4284 } 4285 4286 sb->s_root = d_make_root(root); /* allocate root dentry */ 4287 if (!sb->s_root) { 4288 err = -ENOMEM; 4289 goto free_node_inode; 4290 } 4291 4292 err = f2fs_init_compress_inode(sbi); 4293 if (err) 4294 goto free_root_inode; 4295 4296 err = f2fs_register_sysfs(sbi); 4297 if (err) 4298 goto free_compress_inode; 4299 4300 #ifdef CONFIG_QUOTA 4301 /* Enable quota usage during mount */ 4302 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4303 err = f2fs_enable_quotas(sb); 4304 if (err) 4305 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4306 } 4307 #endif 4308 /* if there are any orphan inodes, free them */ 4309 err = f2fs_recover_orphan_inodes(sbi); 4310 if (err) 4311 goto free_meta; 4312 4313 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4314 goto reset_checkpoint; 4315 4316 /* recover fsynced data */ 4317 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4318 !test_opt(sbi, NORECOVERY)) { 4319 /* 4320 * mount should be failed, when device has readonly mode, and 4321 * previous checkpoint was not done by clean system shutdown. 4322 */ 4323 if (f2fs_hw_is_readonly(sbi)) { 4324 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4325 err = f2fs_recover_fsync_data(sbi, true); 4326 if (err > 0) { 4327 err = -EROFS; 4328 f2fs_err(sbi, "Need to recover fsync data, but " 4329 "write access unavailable, please try " 4330 "mount w/ disable_roll_forward or norecovery"); 4331 } 4332 if (err < 0) 4333 goto free_meta; 4334 } 4335 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4336 goto reset_checkpoint; 4337 } 4338 4339 if (need_fsck) 4340 set_sbi_flag(sbi, SBI_NEED_FSCK); 4341 4342 if (skip_recovery) 4343 goto reset_checkpoint; 4344 4345 err = f2fs_recover_fsync_data(sbi, false); 4346 if (err < 0) { 4347 if (err != -ENOMEM) 4348 skip_recovery = true; 4349 need_fsck = true; 4350 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4351 err); 4352 goto free_meta; 4353 } 4354 } else { 4355 err = f2fs_recover_fsync_data(sbi, true); 4356 4357 if (!f2fs_readonly(sb) && err > 0) { 4358 err = -EINVAL; 4359 f2fs_err(sbi, "Need to recover fsync data"); 4360 goto free_meta; 4361 } 4362 } 4363 4364 /* 4365 * If the f2fs is not readonly and fsync data recovery succeeds, 4366 * check zoned block devices' write pointer consistency. 4367 */ 4368 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 4369 err = f2fs_check_write_pointer(sbi); 4370 if (err) 4371 goto free_meta; 4372 } 4373 4374 reset_checkpoint: 4375 f2fs_init_inmem_curseg(sbi); 4376 4377 /* f2fs_recover_fsync_data() cleared this already */ 4378 clear_sbi_flag(sbi, SBI_POR_DOING); 4379 4380 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4381 err = f2fs_disable_checkpoint(sbi); 4382 if (err) 4383 goto sync_free_meta; 4384 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4385 f2fs_enable_checkpoint(sbi); 4386 } 4387 4388 /* 4389 * If filesystem is not mounted as read-only then 4390 * do start the gc_thread. 4391 */ 4392 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4393 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4394 /* After POR, we can run background GC thread.*/ 4395 err = f2fs_start_gc_thread(sbi); 4396 if (err) 4397 goto sync_free_meta; 4398 } 4399 kvfree(options); 4400 4401 /* recover broken superblock */ 4402 if (recovery) { 4403 err = f2fs_commit_super(sbi, true); 4404 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4405 sbi->valid_super_block ? 1 : 2, err); 4406 } 4407 4408 f2fs_join_shrinker(sbi); 4409 4410 f2fs_tuning_parameters(sbi); 4411 4412 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4413 cur_cp_version(F2FS_CKPT(sbi))); 4414 f2fs_update_time(sbi, CP_TIME); 4415 f2fs_update_time(sbi, REQ_TIME); 4416 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4417 return 0; 4418 4419 sync_free_meta: 4420 /* safe to flush all the data */ 4421 sync_filesystem(sbi->sb); 4422 retry_cnt = 0; 4423 4424 free_meta: 4425 #ifdef CONFIG_QUOTA 4426 f2fs_truncate_quota_inode_pages(sb); 4427 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4428 f2fs_quota_off_umount(sbi->sb); 4429 #endif 4430 /* 4431 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4432 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4433 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4434 * falls into an infinite loop in f2fs_sync_meta_pages(). 4435 */ 4436 truncate_inode_pages_final(META_MAPPING(sbi)); 4437 /* evict some inodes being cached by GC */ 4438 evict_inodes(sb); 4439 f2fs_unregister_sysfs(sbi); 4440 free_compress_inode: 4441 f2fs_destroy_compress_inode(sbi); 4442 free_root_inode: 4443 dput(sb->s_root); 4444 sb->s_root = NULL; 4445 free_node_inode: 4446 f2fs_release_ino_entry(sbi, true); 4447 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4448 iput(sbi->node_inode); 4449 sbi->node_inode = NULL; 4450 free_stats: 4451 f2fs_destroy_stats(sbi); 4452 free_nm: 4453 /* stop discard thread before destroying node manager */ 4454 f2fs_stop_discard_thread(sbi); 4455 f2fs_destroy_node_manager(sbi); 4456 free_sm: 4457 f2fs_destroy_segment_manager(sbi); 4458 f2fs_destroy_post_read_wq(sbi); 4459 stop_ckpt_thread: 4460 f2fs_stop_ckpt_thread(sbi); 4461 free_devices: 4462 destroy_device_list(sbi); 4463 kvfree(sbi->ckpt); 4464 free_meta_inode: 4465 make_bad_inode(sbi->meta_inode); 4466 iput(sbi->meta_inode); 4467 sbi->meta_inode = NULL; 4468 free_page_array_cache: 4469 f2fs_destroy_page_array_cache(sbi); 4470 free_xattr_cache: 4471 f2fs_destroy_xattr_caches(sbi); 4472 free_io_dummy: 4473 mempool_destroy(sbi->write_io_dummy); 4474 free_percpu: 4475 destroy_percpu_info(sbi); 4476 free_iostat: 4477 f2fs_destroy_iostat(sbi); 4478 free_bio_info: 4479 for (i = 0; i < NR_PAGE_TYPE; i++) 4480 kvfree(sbi->write_io[i]); 4481 4482 #if IS_ENABLED(CONFIG_UNICODE) 4483 utf8_unload(sb->s_encoding); 4484 sb->s_encoding = NULL; 4485 #endif 4486 free_options: 4487 #ifdef CONFIG_QUOTA 4488 for (i = 0; i < MAXQUOTAS; i++) 4489 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4490 #endif 4491 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4492 kvfree(options); 4493 free_sb_buf: 4494 kfree(raw_super); 4495 free_sbi: 4496 if (sbi->s_chksum_driver) 4497 crypto_free_shash(sbi->s_chksum_driver); 4498 kfree(sbi); 4499 4500 /* give only one another chance */ 4501 if (retry_cnt > 0 && skip_recovery) { 4502 retry_cnt--; 4503 shrink_dcache_sb(sb); 4504 goto try_onemore; 4505 } 4506 return err; 4507 } 4508 4509 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4510 const char *dev_name, void *data) 4511 { 4512 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4513 } 4514 4515 static void kill_f2fs_super(struct super_block *sb) 4516 { 4517 if (sb->s_root) { 4518 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4519 4520 set_sbi_flag(sbi, SBI_IS_CLOSE); 4521 f2fs_stop_gc_thread(sbi); 4522 f2fs_stop_discard_thread(sbi); 4523 4524 #ifdef CONFIG_F2FS_FS_COMPRESSION 4525 /* 4526 * latter evict_inode() can bypass checking and invalidating 4527 * compress inode cache. 4528 */ 4529 if (test_opt(sbi, COMPRESS_CACHE)) 4530 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4531 #endif 4532 4533 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4534 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4535 struct cp_control cpc = { 4536 .reason = CP_UMOUNT, 4537 }; 4538 f2fs_write_checkpoint(sbi, &cpc); 4539 } 4540 4541 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4542 sb->s_flags &= ~SB_RDONLY; 4543 } 4544 kill_block_super(sb); 4545 } 4546 4547 static struct file_system_type f2fs_fs_type = { 4548 .owner = THIS_MODULE, 4549 .name = "f2fs", 4550 .mount = f2fs_mount, 4551 .kill_sb = kill_f2fs_super, 4552 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 4553 }; 4554 MODULE_ALIAS_FS("f2fs"); 4555 4556 static int __init init_inodecache(void) 4557 { 4558 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4559 sizeof(struct f2fs_inode_info), 0, 4560 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4561 if (!f2fs_inode_cachep) 4562 return -ENOMEM; 4563 return 0; 4564 } 4565 4566 static void destroy_inodecache(void) 4567 { 4568 /* 4569 * Make sure all delayed rcu free inodes are flushed before we 4570 * destroy cache. 4571 */ 4572 rcu_barrier(); 4573 kmem_cache_destroy(f2fs_inode_cachep); 4574 } 4575 4576 static int __init init_f2fs_fs(void) 4577 { 4578 int err; 4579 4580 if (PAGE_SIZE != F2FS_BLKSIZE) { 4581 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 4582 PAGE_SIZE, F2FS_BLKSIZE); 4583 return -EINVAL; 4584 } 4585 4586 err = init_inodecache(); 4587 if (err) 4588 goto fail; 4589 err = f2fs_create_node_manager_caches(); 4590 if (err) 4591 goto free_inodecache; 4592 err = f2fs_create_segment_manager_caches(); 4593 if (err) 4594 goto free_node_manager_caches; 4595 err = f2fs_create_checkpoint_caches(); 4596 if (err) 4597 goto free_segment_manager_caches; 4598 err = f2fs_create_recovery_cache(); 4599 if (err) 4600 goto free_checkpoint_caches; 4601 err = f2fs_create_extent_cache(); 4602 if (err) 4603 goto free_recovery_cache; 4604 err = f2fs_create_garbage_collection_cache(); 4605 if (err) 4606 goto free_extent_cache; 4607 err = f2fs_init_sysfs(); 4608 if (err) 4609 goto free_garbage_collection_cache; 4610 err = register_shrinker(&f2fs_shrinker_info, "f2fs-shrinker"); 4611 if (err) 4612 goto free_sysfs; 4613 err = register_filesystem(&f2fs_fs_type); 4614 if (err) 4615 goto free_shrinker; 4616 f2fs_create_root_stats(); 4617 err = f2fs_init_post_read_processing(); 4618 if (err) 4619 goto free_root_stats; 4620 err = f2fs_init_iostat_processing(); 4621 if (err) 4622 goto free_post_read; 4623 err = f2fs_init_bio_entry_cache(); 4624 if (err) 4625 goto free_iostat; 4626 err = f2fs_init_bioset(); 4627 if (err) 4628 goto free_bio_enrty_cache; 4629 err = f2fs_init_compress_mempool(); 4630 if (err) 4631 goto free_bioset; 4632 err = f2fs_init_compress_cache(); 4633 if (err) 4634 goto free_compress_mempool; 4635 err = f2fs_create_casefold_cache(); 4636 if (err) 4637 goto free_compress_cache; 4638 return 0; 4639 free_compress_cache: 4640 f2fs_destroy_compress_cache(); 4641 free_compress_mempool: 4642 f2fs_destroy_compress_mempool(); 4643 free_bioset: 4644 f2fs_destroy_bioset(); 4645 free_bio_enrty_cache: 4646 f2fs_destroy_bio_entry_cache(); 4647 free_iostat: 4648 f2fs_destroy_iostat_processing(); 4649 free_post_read: 4650 f2fs_destroy_post_read_processing(); 4651 free_root_stats: 4652 f2fs_destroy_root_stats(); 4653 unregister_filesystem(&f2fs_fs_type); 4654 free_shrinker: 4655 unregister_shrinker(&f2fs_shrinker_info); 4656 free_sysfs: 4657 f2fs_exit_sysfs(); 4658 free_garbage_collection_cache: 4659 f2fs_destroy_garbage_collection_cache(); 4660 free_extent_cache: 4661 f2fs_destroy_extent_cache(); 4662 free_recovery_cache: 4663 f2fs_destroy_recovery_cache(); 4664 free_checkpoint_caches: 4665 f2fs_destroy_checkpoint_caches(); 4666 free_segment_manager_caches: 4667 f2fs_destroy_segment_manager_caches(); 4668 free_node_manager_caches: 4669 f2fs_destroy_node_manager_caches(); 4670 free_inodecache: 4671 destroy_inodecache(); 4672 fail: 4673 return err; 4674 } 4675 4676 static void __exit exit_f2fs_fs(void) 4677 { 4678 f2fs_destroy_casefold_cache(); 4679 f2fs_destroy_compress_cache(); 4680 f2fs_destroy_compress_mempool(); 4681 f2fs_destroy_bioset(); 4682 f2fs_destroy_bio_entry_cache(); 4683 f2fs_destroy_iostat_processing(); 4684 f2fs_destroy_post_read_processing(); 4685 f2fs_destroy_root_stats(); 4686 unregister_filesystem(&f2fs_fs_type); 4687 unregister_shrinker(&f2fs_shrinker_info); 4688 f2fs_exit_sysfs(); 4689 f2fs_destroy_garbage_collection_cache(); 4690 f2fs_destroy_extent_cache(); 4691 f2fs_destroy_recovery_cache(); 4692 f2fs_destroy_checkpoint_caches(); 4693 f2fs_destroy_segment_manager_caches(); 4694 f2fs_destroy_node_manager_caches(); 4695 destroy_inodecache(); 4696 } 4697 4698 module_init(init_f2fs_fs) 4699 module_exit(exit_f2fs_fs) 4700 4701 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 4702 MODULE_DESCRIPTION("Flash Friendly File System"); 4703 MODULE_LICENSE("GPL"); 4704 MODULE_SOFTDEP("pre: crc32"); 4705 4706