xref: /openbmc/linux/fs/f2fs/super.c (revision e40573a4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/fs_context.h>
12 #include <linux/sched/mm.h>
13 #include <linux/statfs.h>
14 #include <linux/buffer_head.h>
15 #include <linux/kthread.h>
16 #include <linux/parser.h>
17 #include <linux/mount.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/random.h>
21 #include <linux/exportfs.h>
22 #include <linux/blkdev.h>
23 #include <linux/quotaops.h>
24 #include <linux/f2fs_fs.h>
25 #include <linux/sysfs.h>
26 #include <linux/quota.h>
27 #include <linux/unicode.h>
28 #include <linux/part_stat.h>
29 #include <linux/zstd.h>
30 #include <linux/lz4.h>
31 
32 #include "f2fs.h"
33 #include "node.h"
34 #include "segment.h"
35 #include "xattr.h"
36 #include "gc.h"
37 #include "iostat.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/f2fs.h>
41 
42 static struct kmem_cache *f2fs_inode_cachep;
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 
46 const char *f2fs_fault_name[FAULT_MAX] = {
47 	[FAULT_KMALLOC]		= "kmalloc",
48 	[FAULT_KVMALLOC]	= "kvmalloc",
49 	[FAULT_PAGE_ALLOC]	= "page alloc",
50 	[FAULT_PAGE_GET]	= "page get",
51 	[FAULT_ALLOC_NID]	= "alloc nid",
52 	[FAULT_ORPHAN]		= "orphan",
53 	[FAULT_BLOCK]		= "no more block",
54 	[FAULT_DIR_DEPTH]	= "too big dir depth",
55 	[FAULT_EVICT_INODE]	= "evict_inode fail",
56 	[FAULT_TRUNCATE]	= "truncate fail",
57 	[FAULT_READ_IO]		= "read IO error",
58 	[FAULT_CHECKPOINT]	= "checkpoint error",
59 	[FAULT_DISCARD]		= "discard error",
60 	[FAULT_WRITE_IO]	= "write IO error",
61 	[FAULT_SLAB_ALLOC]	= "slab alloc",
62 	[FAULT_DQUOT_INIT]	= "dquot initialize",
63 	[FAULT_LOCK_OP]		= "lock_op",
64 };
65 
66 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
67 							unsigned int type)
68 {
69 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
70 
71 	if (rate) {
72 		atomic_set(&ffi->inject_ops, 0);
73 		ffi->inject_rate = rate;
74 	}
75 
76 	if (type)
77 		ffi->inject_type = type;
78 
79 	if (!rate && !type)
80 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
81 }
82 #endif
83 
84 /* f2fs-wide shrinker description */
85 static struct shrinker f2fs_shrinker_info = {
86 	.scan_objects = f2fs_shrink_scan,
87 	.count_objects = f2fs_shrink_count,
88 	.seeks = DEFAULT_SEEKS,
89 };
90 
91 enum {
92 	Opt_gc_background,
93 	Opt_disable_roll_forward,
94 	Opt_norecovery,
95 	Opt_discard,
96 	Opt_nodiscard,
97 	Opt_noheap,
98 	Opt_heap,
99 	Opt_user_xattr,
100 	Opt_nouser_xattr,
101 	Opt_acl,
102 	Opt_noacl,
103 	Opt_active_logs,
104 	Opt_disable_ext_identify,
105 	Opt_inline_xattr,
106 	Opt_noinline_xattr,
107 	Opt_inline_xattr_size,
108 	Opt_inline_data,
109 	Opt_inline_dentry,
110 	Opt_noinline_dentry,
111 	Opt_flush_merge,
112 	Opt_noflush_merge,
113 	Opt_nobarrier,
114 	Opt_fastboot,
115 	Opt_extent_cache,
116 	Opt_noextent_cache,
117 	Opt_noinline_data,
118 	Opt_data_flush,
119 	Opt_reserve_root,
120 	Opt_resgid,
121 	Opt_resuid,
122 	Opt_mode,
123 	Opt_io_size_bits,
124 	Opt_fault_injection,
125 	Opt_fault_type,
126 	Opt_lazytime,
127 	Opt_nolazytime,
128 	Opt_quota,
129 	Opt_noquota,
130 	Opt_usrquota,
131 	Opt_grpquota,
132 	Opt_prjquota,
133 	Opt_usrjquota,
134 	Opt_grpjquota,
135 	Opt_prjjquota,
136 	Opt_offusrjquota,
137 	Opt_offgrpjquota,
138 	Opt_offprjjquota,
139 	Opt_jqfmt_vfsold,
140 	Opt_jqfmt_vfsv0,
141 	Opt_jqfmt_vfsv1,
142 	Opt_alloc,
143 	Opt_fsync,
144 	Opt_test_dummy_encryption,
145 	Opt_inlinecrypt,
146 	Opt_checkpoint_disable,
147 	Opt_checkpoint_disable_cap,
148 	Opt_checkpoint_disable_cap_perc,
149 	Opt_checkpoint_enable,
150 	Opt_checkpoint_merge,
151 	Opt_nocheckpoint_merge,
152 	Opt_compress_algorithm,
153 	Opt_compress_log_size,
154 	Opt_compress_extension,
155 	Opt_nocompress_extension,
156 	Opt_compress_chksum,
157 	Opt_compress_mode,
158 	Opt_compress_cache,
159 	Opt_atgc,
160 	Opt_gc_merge,
161 	Opt_nogc_merge,
162 	Opt_discard_unit,
163 	Opt_memory_mode,
164 	Opt_err,
165 };
166 
167 static match_table_t f2fs_tokens = {
168 	{Opt_gc_background, "background_gc=%s"},
169 	{Opt_disable_roll_forward, "disable_roll_forward"},
170 	{Opt_norecovery, "norecovery"},
171 	{Opt_discard, "discard"},
172 	{Opt_nodiscard, "nodiscard"},
173 	{Opt_noheap, "no_heap"},
174 	{Opt_heap, "heap"},
175 	{Opt_user_xattr, "user_xattr"},
176 	{Opt_nouser_xattr, "nouser_xattr"},
177 	{Opt_acl, "acl"},
178 	{Opt_noacl, "noacl"},
179 	{Opt_active_logs, "active_logs=%u"},
180 	{Opt_disable_ext_identify, "disable_ext_identify"},
181 	{Opt_inline_xattr, "inline_xattr"},
182 	{Opt_noinline_xattr, "noinline_xattr"},
183 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
184 	{Opt_inline_data, "inline_data"},
185 	{Opt_inline_dentry, "inline_dentry"},
186 	{Opt_noinline_dentry, "noinline_dentry"},
187 	{Opt_flush_merge, "flush_merge"},
188 	{Opt_noflush_merge, "noflush_merge"},
189 	{Opt_nobarrier, "nobarrier"},
190 	{Opt_fastboot, "fastboot"},
191 	{Opt_extent_cache, "extent_cache"},
192 	{Opt_noextent_cache, "noextent_cache"},
193 	{Opt_noinline_data, "noinline_data"},
194 	{Opt_data_flush, "data_flush"},
195 	{Opt_reserve_root, "reserve_root=%u"},
196 	{Opt_resgid, "resgid=%u"},
197 	{Opt_resuid, "resuid=%u"},
198 	{Opt_mode, "mode=%s"},
199 	{Opt_io_size_bits, "io_bits=%u"},
200 	{Opt_fault_injection, "fault_injection=%u"},
201 	{Opt_fault_type, "fault_type=%u"},
202 	{Opt_lazytime, "lazytime"},
203 	{Opt_nolazytime, "nolazytime"},
204 	{Opt_quota, "quota"},
205 	{Opt_noquota, "noquota"},
206 	{Opt_usrquota, "usrquota"},
207 	{Opt_grpquota, "grpquota"},
208 	{Opt_prjquota, "prjquota"},
209 	{Opt_usrjquota, "usrjquota=%s"},
210 	{Opt_grpjquota, "grpjquota=%s"},
211 	{Opt_prjjquota, "prjjquota=%s"},
212 	{Opt_offusrjquota, "usrjquota="},
213 	{Opt_offgrpjquota, "grpjquota="},
214 	{Opt_offprjjquota, "prjjquota="},
215 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
216 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
217 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
218 	{Opt_alloc, "alloc_mode=%s"},
219 	{Opt_fsync, "fsync_mode=%s"},
220 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
221 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
222 	{Opt_inlinecrypt, "inlinecrypt"},
223 	{Opt_checkpoint_disable, "checkpoint=disable"},
224 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
225 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
226 	{Opt_checkpoint_enable, "checkpoint=enable"},
227 	{Opt_checkpoint_merge, "checkpoint_merge"},
228 	{Opt_nocheckpoint_merge, "nocheckpoint_merge"},
229 	{Opt_compress_algorithm, "compress_algorithm=%s"},
230 	{Opt_compress_log_size, "compress_log_size=%u"},
231 	{Opt_compress_extension, "compress_extension=%s"},
232 	{Opt_nocompress_extension, "nocompress_extension=%s"},
233 	{Opt_compress_chksum, "compress_chksum"},
234 	{Opt_compress_mode, "compress_mode=%s"},
235 	{Opt_compress_cache, "compress_cache"},
236 	{Opt_atgc, "atgc"},
237 	{Opt_gc_merge, "gc_merge"},
238 	{Opt_nogc_merge, "nogc_merge"},
239 	{Opt_discard_unit, "discard_unit=%s"},
240 	{Opt_memory_mode, "memory=%s"},
241 	{Opt_err, NULL},
242 };
243 
244 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
245 {
246 	struct va_format vaf;
247 	va_list args;
248 	int level;
249 
250 	va_start(args, fmt);
251 
252 	level = printk_get_level(fmt);
253 	vaf.fmt = printk_skip_level(fmt);
254 	vaf.va = &args;
255 	printk("%c%cF2FS-fs (%s): %pV\n",
256 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
257 
258 	va_end(args);
259 }
260 
261 #if IS_ENABLED(CONFIG_UNICODE)
262 static const struct f2fs_sb_encodings {
263 	__u16 magic;
264 	char *name;
265 	unsigned int version;
266 } f2fs_sb_encoding_map[] = {
267 	{F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
268 };
269 
270 static const struct f2fs_sb_encodings *
271 f2fs_sb_read_encoding(const struct f2fs_super_block *sb)
272 {
273 	__u16 magic = le16_to_cpu(sb->s_encoding);
274 	int i;
275 
276 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
277 		if (magic == f2fs_sb_encoding_map[i].magic)
278 			return &f2fs_sb_encoding_map[i];
279 
280 	return NULL;
281 }
282 
283 struct kmem_cache *f2fs_cf_name_slab;
284 static int __init f2fs_create_casefold_cache(void)
285 {
286 	f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
287 							F2FS_NAME_LEN);
288 	if (!f2fs_cf_name_slab)
289 		return -ENOMEM;
290 	return 0;
291 }
292 
293 static void f2fs_destroy_casefold_cache(void)
294 {
295 	kmem_cache_destroy(f2fs_cf_name_slab);
296 }
297 #else
298 static int __init f2fs_create_casefold_cache(void) { return 0; }
299 static void f2fs_destroy_casefold_cache(void) { }
300 #endif
301 
302 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
303 {
304 	block_t limit = min((sbi->user_block_count << 1) / 1000,
305 			sbi->user_block_count - sbi->reserved_blocks);
306 
307 	/* limit is 0.2% */
308 	if (test_opt(sbi, RESERVE_ROOT) &&
309 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
310 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
311 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
312 			  F2FS_OPTION(sbi).root_reserved_blocks);
313 	}
314 	if (!test_opt(sbi, RESERVE_ROOT) &&
315 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
316 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
317 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
318 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
319 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
320 			  from_kuid_munged(&init_user_ns,
321 					   F2FS_OPTION(sbi).s_resuid),
322 			  from_kgid_munged(&init_user_ns,
323 					   F2FS_OPTION(sbi).s_resgid));
324 }
325 
326 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi)
327 {
328 	unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec;
329 	unsigned int avg_vblocks;
330 	unsigned int wanted_reserved_segments;
331 	block_t avail_user_block_count;
332 
333 	if (!F2FS_IO_ALIGNED(sbi))
334 		return 0;
335 
336 	/* average valid block count in section in worst case */
337 	avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi);
338 
339 	/*
340 	 * we need enough free space when migrating one section in worst case
341 	 */
342 	wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) *
343 						reserved_segments(sbi);
344 	wanted_reserved_segments -= reserved_segments(sbi);
345 
346 	avail_user_block_count = sbi->user_block_count -
347 				sbi->current_reserved_blocks -
348 				F2FS_OPTION(sbi).root_reserved_blocks;
349 
350 	if (wanted_reserved_segments * sbi->blocks_per_seg >
351 					avail_user_block_count) {
352 		f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u",
353 			wanted_reserved_segments,
354 			avail_user_block_count >> sbi->log_blocks_per_seg);
355 		return -ENOSPC;
356 	}
357 
358 	SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments;
359 
360 	f2fs_info(sbi, "IO align feature needs additional reserved segment: %u",
361 			 wanted_reserved_segments);
362 
363 	return 0;
364 }
365 
366 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
367 {
368 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
369 		return;
370 
371 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
372 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
373 	else
374 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
375 					F2FS_OPTION(sbi).unusable_cap_perc;
376 
377 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
378 			F2FS_OPTION(sbi).unusable_cap,
379 			F2FS_OPTION(sbi).unusable_cap_perc);
380 }
381 
382 static void init_once(void *foo)
383 {
384 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
385 
386 	inode_init_once(&fi->vfs_inode);
387 }
388 
389 #ifdef CONFIG_QUOTA
390 static const char * const quotatypes[] = INITQFNAMES;
391 #define QTYPE2NAME(t) (quotatypes[t])
392 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
393 							substring_t *args)
394 {
395 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
396 	char *qname;
397 	int ret = -EINVAL;
398 
399 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
400 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
401 		return -EINVAL;
402 	}
403 	if (f2fs_sb_has_quota_ino(sbi)) {
404 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
405 		return 0;
406 	}
407 
408 	qname = match_strdup(args);
409 	if (!qname) {
410 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
411 		return -ENOMEM;
412 	}
413 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
414 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
415 			ret = 0;
416 		else
417 			f2fs_err(sbi, "%s quota file already specified",
418 				 QTYPE2NAME(qtype));
419 		goto errout;
420 	}
421 	if (strchr(qname, '/')) {
422 		f2fs_err(sbi, "quotafile must be on filesystem root");
423 		goto errout;
424 	}
425 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
426 	set_opt(sbi, QUOTA);
427 	return 0;
428 errout:
429 	kfree(qname);
430 	return ret;
431 }
432 
433 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
434 {
435 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
436 
437 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
438 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
439 		return -EINVAL;
440 	}
441 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
442 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
443 	return 0;
444 }
445 
446 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
447 {
448 	/*
449 	 * We do the test below only for project quotas. 'usrquota' and
450 	 * 'grpquota' mount options are allowed even without quota feature
451 	 * to support legacy quotas in quota files.
452 	 */
453 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
454 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
455 		return -1;
456 	}
457 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
458 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
459 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
460 		if (test_opt(sbi, USRQUOTA) &&
461 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
462 			clear_opt(sbi, USRQUOTA);
463 
464 		if (test_opt(sbi, GRPQUOTA) &&
465 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
466 			clear_opt(sbi, GRPQUOTA);
467 
468 		if (test_opt(sbi, PRJQUOTA) &&
469 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
470 			clear_opt(sbi, PRJQUOTA);
471 
472 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
473 				test_opt(sbi, PRJQUOTA)) {
474 			f2fs_err(sbi, "old and new quota format mixing");
475 			return -1;
476 		}
477 
478 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
479 			f2fs_err(sbi, "journaled quota format not specified");
480 			return -1;
481 		}
482 	}
483 
484 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
485 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
486 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
487 	}
488 	return 0;
489 }
490 #endif
491 
492 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
493 					  const char *opt,
494 					  const substring_t *arg,
495 					  bool is_remount)
496 {
497 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
498 	struct fs_parameter param = {
499 		.type = fs_value_is_string,
500 		.string = arg->from ? arg->from : "",
501 	};
502 	struct fscrypt_dummy_policy *policy =
503 		&F2FS_OPTION(sbi).dummy_enc_policy;
504 	int err;
505 
506 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
507 		f2fs_warn(sbi, "test_dummy_encryption option not supported");
508 		return -EINVAL;
509 	}
510 
511 	if (!f2fs_sb_has_encrypt(sbi)) {
512 		f2fs_err(sbi, "Encrypt feature is off");
513 		return -EINVAL;
514 	}
515 
516 	/*
517 	 * This mount option is just for testing, and it's not worthwhile to
518 	 * implement the extra complexity (e.g. RCU protection) that would be
519 	 * needed to allow it to be set or changed during remount.  We do allow
520 	 * it to be specified during remount, but only if there is no change.
521 	 */
522 	if (is_remount && !fscrypt_is_dummy_policy_set(policy)) {
523 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
524 		return -EINVAL;
525 	}
526 
527 	err = fscrypt_parse_test_dummy_encryption(&param, policy);
528 	if (err) {
529 		if (err == -EEXIST)
530 			f2fs_warn(sbi,
531 				  "Can't change test_dummy_encryption on remount");
532 		else if (err == -EINVAL)
533 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
534 				  opt);
535 		else
536 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
537 				  opt, err);
538 		return -EINVAL;
539 	}
540 	err = fscrypt_add_test_dummy_key(sb, policy);
541 	if (err) {
542 		f2fs_warn(sbi, "Error adding test dummy encryption key [%d]",
543 			  err);
544 		return err;
545 	}
546 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
547 	return 0;
548 }
549 
550 #ifdef CONFIG_F2FS_FS_COMPRESSION
551 /*
552  * 1. The same extension name cannot not appear in both compress and non-compress extension
553  * at the same time.
554  * 2. If the compress extension specifies all files, the types specified by the non-compress
555  * extension will be treated as special cases and will not be compressed.
556  * 3. Don't allow the non-compress extension specifies all files.
557  */
558 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi)
559 {
560 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
561 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
562 	int ext_cnt, noext_cnt, index = 0, no_index = 0;
563 
564 	ext = F2FS_OPTION(sbi).extensions;
565 	ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
566 	noext = F2FS_OPTION(sbi).noextensions;
567 	noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
568 
569 	if (!noext_cnt)
570 		return 0;
571 
572 	for (no_index = 0; no_index < noext_cnt; no_index++) {
573 		if (!strcasecmp("*", noext[no_index])) {
574 			f2fs_info(sbi, "Don't allow the nocompress extension specifies all files");
575 			return -EINVAL;
576 		}
577 		for (index = 0; index < ext_cnt; index++) {
578 			if (!strcasecmp(ext[index], noext[no_index])) {
579 				f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension",
580 						ext[index]);
581 				return -EINVAL;
582 			}
583 		}
584 	}
585 	return 0;
586 }
587 
588 #ifdef CONFIG_F2FS_FS_LZ4
589 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
590 {
591 #ifdef CONFIG_F2FS_FS_LZ4HC
592 	unsigned int level;
593 #endif
594 
595 	if (strlen(str) == 3) {
596 		F2FS_OPTION(sbi).compress_level = 0;
597 		return 0;
598 	}
599 
600 #ifdef CONFIG_F2FS_FS_LZ4HC
601 	str += 3;
602 
603 	if (str[0] != ':') {
604 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
605 		return -EINVAL;
606 	}
607 	if (kstrtouint(str + 1, 10, &level))
608 		return -EINVAL;
609 
610 	if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) {
611 		f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
612 		return -EINVAL;
613 	}
614 
615 	F2FS_OPTION(sbi).compress_level = level;
616 	return 0;
617 #else
618 	f2fs_info(sbi, "kernel doesn't support lz4hc compression");
619 	return -EINVAL;
620 #endif
621 }
622 #endif
623 
624 #ifdef CONFIG_F2FS_FS_ZSTD
625 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
626 {
627 	unsigned int level;
628 	int len = 4;
629 
630 	if (strlen(str) == len) {
631 		F2FS_OPTION(sbi).compress_level = 0;
632 		return 0;
633 	}
634 
635 	str += len;
636 
637 	if (str[0] != ':') {
638 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
639 		return -EINVAL;
640 	}
641 	if (kstrtouint(str + 1, 10, &level))
642 		return -EINVAL;
643 
644 	if (!level || level > zstd_max_clevel()) {
645 		f2fs_info(sbi, "invalid zstd compress level: %d", level);
646 		return -EINVAL;
647 	}
648 
649 	F2FS_OPTION(sbi).compress_level = level;
650 	return 0;
651 }
652 #endif
653 #endif
654 
655 static int parse_options(struct super_block *sb, char *options, bool is_remount)
656 {
657 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
658 	substring_t args[MAX_OPT_ARGS];
659 #ifdef CONFIG_F2FS_FS_COMPRESSION
660 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
661 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
662 	int ext_cnt, noext_cnt;
663 #endif
664 	char *p, *name;
665 	int arg = 0;
666 	kuid_t uid;
667 	kgid_t gid;
668 	int ret;
669 
670 	if (!options)
671 		goto default_check;
672 
673 	while ((p = strsep(&options, ",")) != NULL) {
674 		int token;
675 
676 		if (!*p)
677 			continue;
678 		/*
679 		 * Initialize args struct so we know whether arg was
680 		 * found; some options take optional arguments.
681 		 */
682 		args[0].to = args[0].from = NULL;
683 		token = match_token(p, f2fs_tokens, args);
684 
685 		switch (token) {
686 		case Opt_gc_background:
687 			name = match_strdup(&args[0]);
688 
689 			if (!name)
690 				return -ENOMEM;
691 			if (!strcmp(name, "on")) {
692 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
693 			} else if (!strcmp(name, "off")) {
694 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
695 			} else if (!strcmp(name, "sync")) {
696 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
697 			} else {
698 				kfree(name);
699 				return -EINVAL;
700 			}
701 			kfree(name);
702 			break;
703 		case Opt_disable_roll_forward:
704 			set_opt(sbi, DISABLE_ROLL_FORWARD);
705 			break;
706 		case Opt_norecovery:
707 			/* this option mounts f2fs with ro */
708 			set_opt(sbi, NORECOVERY);
709 			if (!f2fs_readonly(sb))
710 				return -EINVAL;
711 			break;
712 		case Opt_discard:
713 			if (!f2fs_hw_support_discard(sbi)) {
714 				f2fs_warn(sbi, "device does not support discard");
715 				break;
716 			}
717 			set_opt(sbi, DISCARD);
718 			break;
719 		case Opt_nodiscard:
720 			if (f2fs_hw_should_discard(sbi)) {
721 				f2fs_warn(sbi, "discard is required for zoned block devices");
722 				return -EINVAL;
723 			}
724 			clear_opt(sbi, DISCARD);
725 			break;
726 		case Opt_noheap:
727 			set_opt(sbi, NOHEAP);
728 			break;
729 		case Opt_heap:
730 			clear_opt(sbi, NOHEAP);
731 			break;
732 #ifdef CONFIG_F2FS_FS_XATTR
733 		case Opt_user_xattr:
734 			set_opt(sbi, XATTR_USER);
735 			break;
736 		case Opt_nouser_xattr:
737 			clear_opt(sbi, XATTR_USER);
738 			break;
739 		case Opt_inline_xattr:
740 			set_opt(sbi, INLINE_XATTR);
741 			break;
742 		case Opt_noinline_xattr:
743 			clear_opt(sbi, INLINE_XATTR);
744 			break;
745 		case Opt_inline_xattr_size:
746 			if (args->from && match_int(args, &arg))
747 				return -EINVAL;
748 			set_opt(sbi, INLINE_XATTR_SIZE);
749 			F2FS_OPTION(sbi).inline_xattr_size = arg;
750 			break;
751 #else
752 		case Opt_user_xattr:
753 			f2fs_info(sbi, "user_xattr options not supported");
754 			break;
755 		case Opt_nouser_xattr:
756 			f2fs_info(sbi, "nouser_xattr options not supported");
757 			break;
758 		case Opt_inline_xattr:
759 			f2fs_info(sbi, "inline_xattr options not supported");
760 			break;
761 		case Opt_noinline_xattr:
762 			f2fs_info(sbi, "noinline_xattr options not supported");
763 			break;
764 #endif
765 #ifdef CONFIG_F2FS_FS_POSIX_ACL
766 		case Opt_acl:
767 			set_opt(sbi, POSIX_ACL);
768 			break;
769 		case Opt_noacl:
770 			clear_opt(sbi, POSIX_ACL);
771 			break;
772 #else
773 		case Opt_acl:
774 			f2fs_info(sbi, "acl options not supported");
775 			break;
776 		case Opt_noacl:
777 			f2fs_info(sbi, "noacl options not supported");
778 			break;
779 #endif
780 		case Opt_active_logs:
781 			if (args->from && match_int(args, &arg))
782 				return -EINVAL;
783 			if (arg != 2 && arg != 4 &&
784 				arg != NR_CURSEG_PERSIST_TYPE)
785 				return -EINVAL;
786 			F2FS_OPTION(sbi).active_logs = arg;
787 			break;
788 		case Opt_disable_ext_identify:
789 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
790 			break;
791 		case Opt_inline_data:
792 			set_opt(sbi, INLINE_DATA);
793 			break;
794 		case Opt_inline_dentry:
795 			set_opt(sbi, INLINE_DENTRY);
796 			break;
797 		case Opt_noinline_dentry:
798 			clear_opt(sbi, INLINE_DENTRY);
799 			break;
800 		case Opt_flush_merge:
801 			set_opt(sbi, FLUSH_MERGE);
802 			break;
803 		case Opt_noflush_merge:
804 			clear_opt(sbi, FLUSH_MERGE);
805 			break;
806 		case Opt_nobarrier:
807 			set_opt(sbi, NOBARRIER);
808 			break;
809 		case Opt_fastboot:
810 			set_opt(sbi, FASTBOOT);
811 			break;
812 		case Opt_extent_cache:
813 			set_opt(sbi, EXTENT_CACHE);
814 			break;
815 		case Opt_noextent_cache:
816 			clear_opt(sbi, EXTENT_CACHE);
817 			break;
818 		case Opt_noinline_data:
819 			clear_opt(sbi, INLINE_DATA);
820 			break;
821 		case Opt_data_flush:
822 			set_opt(sbi, DATA_FLUSH);
823 			break;
824 		case Opt_reserve_root:
825 			if (args->from && match_int(args, &arg))
826 				return -EINVAL;
827 			if (test_opt(sbi, RESERVE_ROOT)) {
828 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
829 					  F2FS_OPTION(sbi).root_reserved_blocks);
830 			} else {
831 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
832 				set_opt(sbi, RESERVE_ROOT);
833 			}
834 			break;
835 		case Opt_resuid:
836 			if (args->from && match_int(args, &arg))
837 				return -EINVAL;
838 			uid = make_kuid(current_user_ns(), arg);
839 			if (!uid_valid(uid)) {
840 				f2fs_err(sbi, "Invalid uid value %d", arg);
841 				return -EINVAL;
842 			}
843 			F2FS_OPTION(sbi).s_resuid = uid;
844 			break;
845 		case Opt_resgid:
846 			if (args->from && match_int(args, &arg))
847 				return -EINVAL;
848 			gid = make_kgid(current_user_ns(), arg);
849 			if (!gid_valid(gid)) {
850 				f2fs_err(sbi, "Invalid gid value %d", arg);
851 				return -EINVAL;
852 			}
853 			F2FS_OPTION(sbi).s_resgid = gid;
854 			break;
855 		case Opt_mode:
856 			name = match_strdup(&args[0]);
857 
858 			if (!name)
859 				return -ENOMEM;
860 			if (!strcmp(name, "adaptive")) {
861 				if (f2fs_sb_has_blkzoned(sbi)) {
862 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
863 					kfree(name);
864 					return -EINVAL;
865 				}
866 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
867 			} else if (!strcmp(name, "lfs")) {
868 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
869 			} else if (!strcmp(name, "fragment:segment")) {
870 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG;
871 			} else if (!strcmp(name, "fragment:block")) {
872 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK;
873 			} else {
874 				kfree(name);
875 				return -EINVAL;
876 			}
877 			kfree(name);
878 			break;
879 		case Opt_io_size_bits:
880 			if (args->from && match_int(args, &arg))
881 				return -EINVAL;
882 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) {
883 				f2fs_warn(sbi, "Not support %d, larger than %d",
884 					  1 << arg, BIO_MAX_VECS);
885 				return -EINVAL;
886 			}
887 			F2FS_OPTION(sbi).write_io_size_bits = arg;
888 			break;
889 #ifdef CONFIG_F2FS_FAULT_INJECTION
890 		case Opt_fault_injection:
891 			if (args->from && match_int(args, &arg))
892 				return -EINVAL;
893 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
894 			set_opt(sbi, FAULT_INJECTION);
895 			break;
896 
897 		case Opt_fault_type:
898 			if (args->from && match_int(args, &arg))
899 				return -EINVAL;
900 			f2fs_build_fault_attr(sbi, 0, arg);
901 			set_opt(sbi, FAULT_INJECTION);
902 			break;
903 #else
904 		case Opt_fault_injection:
905 			f2fs_info(sbi, "fault_injection options not supported");
906 			break;
907 
908 		case Opt_fault_type:
909 			f2fs_info(sbi, "fault_type options not supported");
910 			break;
911 #endif
912 		case Opt_lazytime:
913 			sb->s_flags |= SB_LAZYTIME;
914 			break;
915 		case Opt_nolazytime:
916 			sb->s_flags &= ~SB_LAZYTIME;
917 			break;
918 #ifdef CONFIG_QUOTA
919 		case Opt_quota:
920 		case Opt_usrquota:
921 			set_opt(sbi, USRQUOTA);
922 			break;
923 		case Opt_grpquota:
924 			set_opt(sbi, GRPQUOTA);
925 			break;
926 		case Opt_prjquota:
927 			set_opt(sbi, PRJQUOTA);
928 			break;
929 		case Opt_usrjquota:
930 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
931 			if (ret)
932 				return ret;
933 			break;
934 		case Opt_grpjquota:
935 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
936 			if (ret)
937 				return ret;
938 			break;
939 		case Opt_prjjquota:
940 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
941 			if (ret)
942 				return ret;
943 			break;
944 		case Opt_offusrjquota:
945 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
946 			if (ret)
947 				return ret;
948 			break;
949 		case Opt_offgrpjquota:
950 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
951 			if (ret)
952 				return ret;
953 			break;
954 		case Opt_offprjjquota:
955 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
956 			if (ret)
957 				return ret;
958 			break;
959 		case Opt_jqfmt_vfsold:
960 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
961 			break;
962 		case Opt_jqfmt_vfsv0:
963 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
964 			break;
965 		case Opt_jqfmt_vfsv1:
966 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
967 			break;
968 		case Opt_noquota:
969 			clear_opt(sbi, QUOTA);
970 			clear_opt(sbi, USRQUOTA);
971 			clear_opt(sbi, GRPQUOTA);
972 			clear_opt(sbi, PRJQUOTA);
973 			break;
974 #else
975 		case Opt_quota:
976 		case Opt_usrquota:
977 		case Opt_grpquota:
978 		case Opt_prjquota:
979 		case Opt_usrjquota:
980 		case Opt_grpjquota:
981 		case Opt_prjjquota:
982 		case Opt_offusrjquota:
983 		case Opt_offgrpjquota:
984 		case Opt_offprjjquota:
985 		case Opt_jqfmt_vfsold:
986 		case Opt_jqfmt_vfsv0:
987 		case Opt_jqfmt_vfsv1:
988 		case Opt_noquota:
989 			f2fs_info(sbi, "quota operations not supported");
990 			break;
991 #endif
992 		case Opt_alloc:
993 			name = match_strdup(&args[0]);
994 			if (!name)
995 				return -ENOMEM;
996 
997 			if (!strcmp(name, "default")) {
998 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
999 			} else if (!strcmp(name, "reuse")) {
1000 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
1001 			} else {
1002 				kfree(name);
1003 				return -EINVAL;
1004 			}
1005 			kfree(name);
1006 			break;
1007 		case Opt_fsync:
1008 			name = match_strdup(&args[0]);
1009 			if (!name)
1010 				return -ENOMEM;
1011 			if (!strcmp(name, "posix")) {
1012 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1013 			} else if (!strcmp(name, "strict")) {
1014 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
1015 			} else if (!strcmp(name, "nobarrier")) {
1016 				F2FS_OPTION(sbi).fsync_mode =
1017 							FSYNC_MODE_NOBARRIER;
1018 			} else {
1019 				kfree(name);
1020 				return -EINVAL;
1021 			}
1022 			kfree(name);
1023 			break;
1024 		case Opt_test_dummy_encryption:
1025 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
1026 							     is_remount);
1027 			if (ret)
1028 				return ret;
1029 			break;
1030 		case Opt_inlinecrypt:
1031 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
1032 			sb->s_flags |= SB_INLINECRYPT;
1033 #else
1034 			f2fs_info(sbi, "inline encryption not supported");
1035 #endif
1036 			break;
1037 		case Opt_checkpoint_disable_cap_perc:
1038 			if (args->from && match_int(args, &arg))
1039 				return -EINVAL;
1040 			if (arg < 0 || arg > 100)
1041 				return -EINVAL;
1042 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
1043 			set_opt(sbi, DISABLE_CHECKPOINT);
1044 			break;
1045 		case Opt_checkpoint_disable_cap:
1046 			if (args->from && match_int(args, &arg))
1047 				return -EINVAL;
1048 			F2FS_OPTION(sbi).unusable_cap = arg;
1049 			set_opt(sbi, DISABLE_CHECKPOINT);
1050 			break;
1051 		case Opt_checkpoint_disable:
1052 			set_opt(sbi, DISABLE_CHECKPOINT);
1053 			break;
1054 		case Opt_checkpoint_enable:
1055 			clear_opt(sbi, DISABLE_CHECKPOINT);
1056 			break;
1057 		case Opt_checkpoint_merge:
1058 			set_opt(sbi, MERGE_CHECKPOINT);
1059 			break;
1060 		case Opt_nocheckpoint_merge:
1061 			clear_opt(sbi, MERGE_CHECKPOINT);
1062 			break;
1063 #ifdef CONFIG_F2FS_FS_COMPRESSION
1064 		case Opt_compress_algorithm:
1065 			if (!f2fs_sb_has_compression(sbi)) {
1066 				f2fs_info(sbi, "Image doesn't support compression");
1067 				break;
1068 			}
1069 			name = match_strdup(&args[0]);
1070 			if (!name)
1071 				return -ENOMEM;
1072 			if (!strcmp(name, "lzo")) {
1073 #ifdef CONFIG_F2FS_FS_LZO
1074 				F2FS_OPTION(sbi).compress_level = 0;
1075 				F2FS_OPTION(sbi).compress_algorithm =
1076 								COMPRESS_LZO;
1077 #else
1078 				f2fs_info(sbi, "kernel doesn't support lzo compression");
1079 #endif
1080 			} else if (!strncmp(name, "lz4", 3)) {
1081 #ifdef CONFIG_F2FS_FS_LZ4
1082 				ret = f2fs_set_lz4hc_level(sbi, name);
1083 				if (ret) {
1084 					kfree(name);
1085 					return -EINVAL;
1086 				}
1087 				F2FS_OPTION(sbi).compress_algorithm =
1088 								COMPRESS_LZ4;
1089 #else
1090 				f2fs_info(sbi, "kernel doesn't support lz4 compression");
1091 #endif
1092 			} else if (!strncmp(name, "zstd", 4)) {
1093 #ifdef CONFIG_F2FS_FS_ZSTD
1094 				ret = f2fs_set_zstd_level(sbi, name);
1095 				if (ret) {
1096 					kfree(name);
1097 					return -EINVAL;
1098 				}
1099 				F2FS_OPTION(sbi).compress_algorithm =
1100 								COMPRESS_ZSTD;
1101 #else
1102 				f2fs_info(sbi, "kernel doesn't support zstd compression");
1103 #endif
1104 			} else if (!strcmp(name, "lzo-rle")) {
1105 #ifdef CONFIG_F2FS_FS_LZORLE
1106 				F2FS_OPTION(sbi).compress_level = 0;
1107 				F2FS_OPTION(sbi).compress_algorithm =
1108 								COMPRESS_LZORLE;
1109 #else
1110 				f2fs_info(sbi, "kernel doesn't support lzorle compression");
1111 #endif
1112 			} else {
1113 				kfree(name);
1114 				return -EINVAL;
1115 			}
1116 			kfree(name);
1117 			break;
1118 		case Opt_compress_log_size:
1119 			if (!f2fs_sb_has_compression(sbi)) {
1120 				f2fs_info(sbi, "Image doesn't support compression");
1121 				break;
1122 			}
1123 			if (args->from && match_int(args, &arg))
1124 				return -EINVAL;
1125 			if (arg < MIN_COMPRESS_LOG_SIZE ||
1126 				arg > MAX_COMPRESS_LOG_SIZE) {
1127 				f2fs_err(sbi,
1128 					"Compress cluster log size is out of range");
1129 				return -EINVAL;
1130 			}
1131 			F2FS_OPTION(sbi).compress_log_size = arg;
1132 			break;
1133 		case Opt_compress_extension:
1134 			if (!f2fs_sb_has_compression(sbi)) {
1135 				f2fs_info(sbi, "Image doesn't support compression");
1136 				break;
1137 			}
1138 			name = match_strdup(&args[0]);
1139 			if (!name)
1140 				return -ENOMEM;
1141 
1142 			ext = F2FS_OPTION(sbi).extensions;
1143 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1144 
1145 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1146 				ext_cnt >= COMPRESS_EXT_NUM) {
1147 				f2fs_err(sbi,
1148 					"invalid extension length/number");
1149 				kfree(name);
1150 				return -EINVAL;
1151 			}
1152 
1153 			strcpy(ext[ext_cnt], name);
1154 			F2FS_OPTION(sbi).compress_ext_cnt++;
1155 			kfree(name);
1156 			break;
1157 		case Opt_nocompress_extension:
1158 			if (!f2fs_sb_has_compression(sbi)) {
1159 				f2fs_info(sbi, "Image doesn't support compression");
1160 				break;
1161 			}
1162 			name = match_strdup(&args[0]);
1163 			if (!name)
1164 				return -ENOMEM;
1165 
1166 			noext = F2FS_OPTION(sbi).noextensions;
1167 			noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
1168 
1169 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1170 				noext_cnt >= COMPRESS_EXT_NUM) {
1171 				f2fs_err(sbi,
1172 					"invalid extension length/number");
1173 				kfree(name);
1174 				return -EINVAL;
1175 			}
1176 
1177 			strcpy(noext[noext_cnt], name);
1178 			F2FS_OPTION(sbi).nocompress_ext_cnt++;
1179 			kfree(name);
1180 			break;
1181 		case Opt_compress_chksum:
1182 			F2FS_OPTION(sbi).compress_chksum = true;
1183 			break;
1184 		case Opt_compress_mode:
1185 			name = match_strdup(&args[0]);
1186 			if (!name)
1187 				return -ENOMEM;
1188 			if (!strcmp(name, "fs")) {
1189 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1190 			} else if (!strcmp(name, "user")) {
1191 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
1192 			} else {
1193 				kfree(name);
1194 				return -EINVAL;
1195 			}
1196 			kfree(name);
1197 			break;
1198 		case Opt_compress_cache:
1199 			set_opt(sbi, COMPRESS_CACHE);
1200 			break;
1201 #else
1202 		case Opt_compress_algorithm:
1203 		case Opt_compress_log_size:
1204 		case Opt_compress_extension:
1205 		case Opt_nocompress_extension:
1206 		case Opt_compress_chksum:
1207 		case Opt_compress_mode:
1208 		case Opt_compress_cache:
1209 			f2fs_info(sbi, "compression options not supported");
1210 			break;
1211 #endif
1212 		case Opt_atgc:
1213 			set_opt(sbi, ATGC);
1214 			break;
1215 		case Opt_gc_merge:
1216 			set_opt(sbi, GC_MERGE);
1217 			break;
1218 		case Opt_nogc_merge:
1219 			clear_opt(sbi, GC_MERGE);
1220 			break;
1221 		case Opt_discard_unit:
1222 			name = match_strdup(&args[0]);
1223 			if (!name)
1224 				return -ENOMEM;
1225 			if (!strcmp(name, "block")) {
1226 				F2FS_OPTION(sbi).discard_unit =
1227 						DISCARD_UNIT_BLOCK;
1228 			} else if (!strcmp(name, "segment")) {
1229 				F2FS_OPTION(sbi).discard_unit =
1230 						DISCARD_UNIT_SEGMENT;
1231 			} else if (!strcmp(name, "section")) {
1232 				F2FS_OPTION(sbi).discard_unit =
1233 						DISCARD_UNIT_SECTION;
1234 			} else {
1235 				kfree(name);
1236 				return -EINVAL;
1237 			}
1238 			kfree(name);
1239 			break;
1240 		case Opt_memory_mode:
1241 			name = match_strdup(&args[0]);
1242 			if (!name)
1243 				return -ENOMEM;
1244 			if (!strcmp(name, "normal")) {
1245 				F2FS_OPTION(sbi).memory_mode =
1246 						MEMORY_MODE_NORMAL;
1247 			} else if (!strcmp(name, "low")) {
1248 				F2FS_OPTION(sbi).memory_mode =
1249 						MEMORY_MODE_LOW;
1250 			} else {
1251 				kfree(name);
1252 				return -EINVAL;
1253 			}
1254 			kfree(name);
1255 			break;
1256 		default:
1257 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1258 				 p);
1259 			return -EINVAL;
1260 		}
1261 	}
1262 default_check:
1263 #ifdef CONFIG_QUOTA
1264 	if (f2fs_check_quota_options(sbi))
1265 		return -EINVAL;
1266 #else
1267 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1268 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1269 		return -EINVAL;
1270 	}
1271 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1272 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1273 		return -EINVAL;
1274 	}
1275 #endif
1276 #if !IS_ENABLED(CONFIG_UNICODE)
1277 	if (f2fs_sb_has_casefold(sbi)) {
1278 		f2fs_err(sbi,
1279 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1280 		return -EINVAL;
1281 	}
1282 #endif
1283 	/*
1284 	 * The BLKZONED feature indicates that the drive was formatted with
1285 	 * zone alignment optimization. This is optional for host-aware
1286 	 * devices, but mandatory for host-managed zoned block devices.
1287 	 */
1288 #ifndef CONFIG_BLK_DEV_ZONED
1289 	if (f2fs_sb_has_blkzoned(sbi)) {
1290 		f2fs_err(sbi, "Zoned block device support is not enabled");
1291 		return -EINVAL;
1292 	}
1293 #endif
1294 	if (f2fs_sb_has_blkzoned(sbi)) {
1295 		if (F2FS_OPTION(sbi).discard_unit !=
1296 						DISCARD_UNIT_SECTION) {
1297 			f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default");
1298 			F2FS_OPTION(sbi).discard_unit =
1299 					DISCARD_UNIT_SECTION;
1300 		}
1301 	}
1302 
1303 #ifdef CONFIG_F2FS_FS_COMPRESSION
1304 	if (f2fs_test_compress_extension(sbi)) {
1305 		f2fs_err(sbi, "invalid compress or nocompress extension");
1306 		return -EINVAL;
1307 	}
1308 #endif
1309 
1310 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
1311 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
1312 			 F2FS_IO_SIZE_KB(sbi));
1313 		return -EINVAL;
1314 	}
1315 
1316 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1317 		int min_size, max_size;
1318 
1319 		if (!f2fs_sb_has_extra_attr(sbi) ||
1320 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
1321 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1322 			return -EINVAL;
1323 		}
1324 		if (!test_opt(sbi, INLINE_XATTR)) {
1325 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1326 			return -EINVAL;
1327 		}
1328 
1329 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1330 		max_size = MAX_INLINE_XATTR_SIZE;
1331 
1332 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1333 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1334 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1335 				 min_size, max_size);
1336 			return -EINVAL;
1337 		}
1338 	}
1339 
1340 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1341 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable");
1342 		return -EINVAL;
1343 	}
1344 
1345 	if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1346 		f2fs_err(sbi, "Allow to mount readonly mode only");
1347 		return -EROFS;
1348 	}
1349 	return 0;
1350 }
1351 
1352 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1353 {
1354 	struct f2fs_inode_info *fi;
1355 
1356 	if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) {
1357 		f2fs_show_injection_info(F2FS_SB(sb), FAULT_SLAB_ALLOC);
1358 		return NULL;
1359 	}
1360 
1361 	fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO);
1362 	if (!fi)
1363 		return NULL;
1364 
1365 	init_once((void *) fi);
1366 
1367 	/* Initialize f2fs-specific inode info */
1368 	atomic_set(&fi->dirty_pages, 0);
1369 	atomic_set(&fi->i_compr_blocks, 0);
1370 	init_f2fs_rwsem(&fi->i_sem);
1371 	spin_lock_init(&fi->i_size_lock);
1372 	INIT_LIST_HEAD(&fi->dirty_list);
1373 	INIT_LIST_HEAD(&fi->gdirty_list);
1374 	init_f2fs_rwsem(&fi->i_gc_rwsem[READ]);
1375 	init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]);
1376 	init_f2fs_rwsem(&fi->i_xattr_sem);
1377 
1378 	/* Will be used by directory only */
1379 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1380 
1381 	return &fi->vfs_inode;
1382 }
1383 
1384 static int f2fs_drop_inode(struct inode *inode)
1385 {
1386 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1387 	int ret;
1388 
1389 	/*
1390 	 * during filesystem shutdown, if checkpoint is disabled,
1391 	 * drop useless meta/node dirty pages.
1392 	 */
1393 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1394 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1395 			inode->i_ino == F2FS_META_INO(sbi)) {
1396 			trace_f2fs_drop_inode(inode, 1);
1397 			return 1;
1398 		}
1399 	}
1400 
1401 	/*
1402 	 * This is to avoid a deadlock condition like below.
1403 	 * writeback_single_inode(inode)
1404 	 *  - f2fs_write_data_page
1405 	 *    - f2fs_gc -> iput -> evict
1406 	 *       - inode_wait_for_writeback(inode)
1407 	 */
1408 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1409 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1410 			/* to avoid evict_inode call simultaneously */
1411 			atomic_inc(&inode->i_count);
1412 			spin_unlock(&inode->i_lock);
1413 
1414 			f2fs_abort_atomic_write(inode, true);
1415 
1416 			/* should remain fi->extent_tree for writepage */
1417 			f2fs_destroy_extent_node(inode);
1418 
1419 			sb_start_intwrite(inode->i_sb);
1420 			f2fs_i_size_write(inode, 0);
1421 
1422 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1423 					inode, NULL, 0, DATA);
1424 			truncate_inode_pages_final(inode->i_mapping);
1425 
1426 			if (F2FS_HAS_BLOCKS(inode))
1427 				f2fs_truncate(inode);
1428 
1429 			sb_end_intwrite(inode->i_sb);
1430 
1431 			spin_lock(&inode->i_lock);
1432 			atomic_dec(&inode->i_count);
1433 		}
1434 		trace_f2fs_drop_inode(inode, 0);
1435 		return 0;
1436 	}
1437 	ret = generic_drop_inode(inode);
1438 	if (!ret)
1439 		ret = fscrypt_drop_inode(inode);
1440 	trace_f2fs_drop_inode(inode, ret);
1441 	return ret;
1442 }
1443 
1444 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1445 {
1446 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1447 	int ret = 0;
1448 
1449 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1450 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1451 		ret = 1;
1452 	} else {
1453 		set_inode_flag(inode, FI_DIRTY_INODE);
1454 		stat_inc_dirty_inode(sbi, DIRTY_META);
1455 	}
1456 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1457 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1458 				&sbi->inode_list[DIRTY_META]);
1459 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1460 	}
1461 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1462 	return ret;
1463 }
1464 
1465 void f2fs_inode_synced(struct inode *inode)
1466 {
1467 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1468 
1469 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1470 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1471 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1472 		return;
1473 	}
1474 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1475 		list_del_init(&F2FS_I(inode)->gdirty_list);
1476 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1477 	}
1478 	clear_inode_flag(inode, FI_DIRTY_INODE);
1479 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1480 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1481 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1482 }
1483 
1484 /*
1485  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1486  *
1487  * We should call set_dirty_inode to write the dirty inode through write_inode.
1488  */
1489 static void f2fs_dirty_inode(struct inode *inode, int flags)
1490 {
1491 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1492 
1493 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1494 			inode->i_ino == F2FS_META_INO(sbi))
1495 		return;
1496 
1497 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1498 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1499 
1500 	f2fs_inode_dirtied(inode, false);
1501 }
1502 
1503 static void f2fs_free_inode(struct inode *inode)
1504 {
1505 	fscrypt_free_inode(inode);
1506 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1507 }
1508 
1509 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1510 {
1511 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1512 	percpu_counter_destroy(&sbi->rf_node_block_count);
1513 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1514 }
1515 
1516 static void destroy_device_list(struct f2fs_sb_info *sbi)
1517 {
1518 	int i;
1519 
1520 	for (i = 0; i < sbi->s_ndevs; i++) {
1521 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1522 #ifdef CONFIG_BLK_DEV_ZONED
1523 		kvfree(FDEV(i).blkz_seq);
1524 #endif
1525 	}
1526 	kvfree(sbi->devs);
1527 }
1528 
1529 static void f2fs_put_super(struct super_block *sb)
1530 {
1531 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1532 	int i;
1533 	bool dropped;
1534 
1535 	/* unregister procfs/sysfs entries in advance to avoid race case */
1536 	f2fs_unregister_sysfs(sbi);
1537 
1538 	f2fs_quota_off_umount(sb);
1539 
1540 	/* prevent remaining shrinker jobs */
1541 	mutex_lock(&sbi->umount_mutex);
1542 
1543 	/*
1544 	 * flush all issued checkpoints and stop checkpoint issue thread.
1545 	 * after then, all checkpoints should be done by each process context.
1546 	 */
1547 	f2fs_stop_ckpt_thread(sbi);
1548 
1549 	/*
1550 	 * We don't need to do checkpoint when superblock is clean.
1551 	 * But, the previous checkpoint was not done by umount, it needs to do
1552 	 * clean checkpoint again.
1553 	 */
1554 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1555 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1556 		struct cp_control cpc = {
1557 			.reason = CP_UMOUNT,
1558 		};
1559 		f2fs_write_checkpoint(sbi, &cpc);
1560 	}
1561 
1562 	/* be sure to wait for any on-going discard commands */
1563 	dropped = f2fs_issue_discard_timeout(sbi);
1564 
1565 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1566 					!sbi->discard_blks && !dropped) {
1567 		struct cp_control cpc = {
1568 			.reason = CP_UMOUNT | CP_TRIMMED,
1569 		};
1570 		f2fs_write_checkpoint(sbi, &cpc);
1571 	}
1572 
1573 	/*
1574 	 * normally superblock is clean, so we need to release this.
1575 	 * In addition, EIO will skip do checkpoint, we need this as well.
1576 	 */
1577 	f2fs_release_ino_entry(sbi, true);
1578 
1579 	f2fs_leave_shrinker(sbi);
1580 	mutex_unlock(&sbi->umount_mutex);
1581 
1582 	/* our cp_error case, we can wait for any writeback page */
1583 	f2fs_flush_merged_writes(sbi);
1584 
1585 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1586 
1587 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1588 
1589 	f2fs_destroy_compress_inode(sbi);
1590 
1591 	iput(sbi->node_inode);
1592 	sbi->node_inode = NULL;
1593 
1594 	iput(sbi->meta_inode);
1595 	sbi->meta_inode = NULL;
1596 
1597 	/*
1598 	 * iput() can update stat information, if f2fs_write_checkpoint()
1599 	 * above failed with error.
1600 	 */
1601 	f2fs_destroy_stats(sbi);
1602 
1603 	/* destroy f2fs internal modules */
1604 	f2fs_destroy_node_manager(sbi);
1605 	f2fs_destroy_segment_manager(sbi);
1606 
1607 	f2fs_destroy_post_read_wq(sbi);
1608 
1609 	kvfree(sbi->ckpt);
1610 
1611 	sb->s_fs_info = NULL;
1612 	if (sbi->s_chksum_driver)
1613 		crypto_free_shash(sbi->s_chksum_driver);
1614 	kfree(sbi->raw_super);
1615 
1616 	destroy_device_list(sbi);
1617 	f2fs_destroy_page_array_cache(sbi);
1618 	f2fs_destroy_xattr_caches(sbi);
1619 	mempool_destroy(sbi->write_io_dummy);
1620 #ifdef CONFIG_QUOTA
1621 	for (i = 0; i < MAXQUOTAS; i++)
1622 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1623 #endif
1624 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1625 	destroy_percpu_info(sbi);
1626 	f2fs_destroy_iostat(sbi);
1627 	for (i = 0; i < NR_PAGE_TYPE; i++)
1628 		kvfree(sbi->write_io[i]);
1629 #if IS_ENABLED(CONFIG_UNICODE)
1630 	utf8_unload(sb->s_encoding);
1631 #endif
1632 	kfree(sbi);
1633 }
1634 
1635 int f2fs_sync_fs(struct super_block *sb, int sync)
1636 {
1637 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1638 	int err = 0;
1639 
1640 	if (unlikely(f2fs_cp_error(sbi)))
1641 		return 0;
1642 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1643 		return 0;
1644 
1645 	trace_f2fs_sync_fs(sb, sync);
1646 
1647 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1648 		return -EAGAIN;
1649 
1650 	if (sync)
1651 		err = f2fs_issue_checkpoint(sbi);
1652 
1653 	return err;
1654 }
1655 
1656 static int f2fs_freeze(struct super_block *sb)
1657 {
1658 	if (f2fs_readonly(sb))
1659 		return 0;
1660 
1661 	/* IO error happened before */
1662 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1663 		return -EIO;
1664 
1665 	/* must be clean, since sync_filesystem() was already called */
1666 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1667 		return -EINVAL;
1668 
1669 	/* ensure no checkpoint required */
1670 	if (!llist_empty(&F2FS_SB(sb)->cprc_info.issue_list))
1671 		return -EINVAL;
1672 
1673 	/* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */
1674 	set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1675 	return 0;
1676 }
1677 
1678 static int f2fs_unfreeze(struct super_block *sb)
1679 {
1680 	clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1681 	return 0;
1682 }
1683 
1684 #ifdef CONFIG_QUOTA
1685 static int f2fs_statfs_project(struct super_block *sb,
1686 				kprojid_t projid, struct kstatfs *buf)
1687 {
1688 	struct kqid qid;
1689 	struct dquot *dquot;
1690 	u64 limit;
1691 	u64 curblock;
1692 
1693 	qid = make_kqid_projid(projid);
1694 	dquot = dqget(sb, qid);
1695 	if (IS_ERR(dquot))
1696 		return PTR_ERR(dquot);
1697 	spin_lock(&dquot->dq_dqb_lock);
1698 
1699 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1700 					dquot->dq_dqb.dqb_bhardlimit);
1701 	if (limit)
1702 		limit >>= sb->s_blocksize_bits;
1703 
1704 	if (limit && buf->f_blocks > limit) {
1705 		curblock = (dquot->dq_dqb.dqb_curspace +
1706 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1707 		buf->f_blocks = limit;
1708 		buf->f_bfree = buf->f_bavail =
1709 			(buf->f_blocks > curblock) ?
1710 			 (buf->f_blocks - curblock) : 0;
1711 	}
1712 
1713 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1714 					dquot->dq_dqb.dqb_ihardlimit);
1715 
1716 	if (limit && buf->f_files > limit) {
1717 		buf->f_files = limit;
1718 		buf->f_ffree =
1719 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1720 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1721 	}
1722 
1723 	spin_unlock(&dquot->dq_dqb_lock);
1724 	dqput(dquot);
1725 	return 0;
1726 }
1727 #endif
1728 
1729 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1730 {
1731 	struct super_block *sb = dentry->d_sb;
1732 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1733 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1734 	block_t total_count, user_block_count, start_count;
1735 	u64 avail_node_count;
1736 	unsigned int total_valid_node_count;
1737 
1738 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1739 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1740 	buf->f_type = F2FS_SUPER_MAGIC;
1741 	buf->f_bsize = sbi->blocksize;
1742 
1743 	buf->f_blocks = total_count - start_count;
1744 
1745 	spin_lock(&sbi->stat_lock);
1746 
1747 	user_block_count = sbi->user_block_count;
1748 	total_valid_node_count = valid_node_count(sbi);
1749 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1750 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1751 						sbi->current_reserved_blocks;
1752 
1753 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1754 		buf->f_bfree = 0;
1755 	else
1756 		buf->f_bfree -= sbi->unusable_block_count;
1757 	spin_unlock(&sbi->stat_lock);
1758 
1759 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1760 		buf->f_bavail = buf->f_bfree -
1761 				F2FS_OPTION(sbi).root_reserved_blocks;
1762 	else
1763 		buf->f_bavail = 0;
1764 
1765 	if (avail_node_count > user_block_count) {
1766 		buf->f_files = user_block_count;
1767 		buf->f_ffree = buf->f_bavail;
1768 	} else {
1769 		buf->f_files = avail_node_count;
1770 		buf->f_ffree = min(avail_node_count - total_valid_node_count,
1771 					buf->f_bavail);
1772 	}
1773 
1774 	buf->f_namelen = F2FS_NAME_LEN;
1775 	buf->f_fsid    = u64_to_fsid(id);
1776 
1777 #ifdef CONFIG_QUOTA
1778 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1779 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1780 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1781 	}
1782 #endif
1783 	return 0;
1784 }
1785 
1786 static inline void f2fs_show_quota_options(struct seq_file *seq,
1787 					   struct super_block *sb)
1788 {
1789 #ifdef CONFIG_QUOTA
1790 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1791 
1792 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1793 		char *fmtname = "";
1794 
1795 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1796 		case QFMT_VFS_OLD:
1797 			fmtname = "vfsold";
1798 			break;
1799 		case QFMT_VFS_V0:
1800 			fmtname = "vfsv0";
1801 			break;
1802 		case QFMT_VFS_V1:
1803 			fmtname = "vfsv1";
1804 			break;
1805 		}
1806 		seq_printf(seq, ",jqfmt=%s", fmtname);
1807 	}
1808 
1809 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1810 		seq_show_option(seq, "usrjquota",
1811 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1812 
1813 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1814 		seq_show_option(seq, "grpjquota",
1815 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1816 
1817 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1818 		seq_show_option(seq, "prjjquota",
1819 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1820 #endif
1821 }
1822 
1823 #ifdef CONFIG_F2FS_FS_COMPRESSION
1824 static inline void f2fs_show_compress_options(struct seq_file *seq,
1825 							struct super_block *sb)
1826 {
1827 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1828 	char *algtype = "";
1829 	int i;
1830 
1831 	if (!f2fs_sb_has_compression(sbi))
1832 		return;
1833 
1834 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1835 	case COMPRESS_LZO:
1836 		algtype = "lzo";
1837 		break;
1838 	case COMPRESS_LZ4:
1839 		algtype = "lz4";
1840 		break;
1841 	case COMPRESS_ZSTD:
1842 		algtype = "zstd";
1843 		break;
1844 	case COMPRESS_LZORLE:
1845 		algtype = "lzo-rle";
1846 		break;
1847 	}
1848 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1849 
1850 	if (F2FS_OPTION(sbi).compress_level)
1851 		seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
1852 
1853 	seq_printf(seq, ",compress_log_size=%u",
1854 			F2FS_OPTION(sbi).compress_log_size);
1855 
1856 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1857 		seq_printf(seq, ",compress_extension=%s",
1858 			F2FS_OPTION(sbi).extensions[i]);
1859 	}
1860 
1861 	for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
1862 		seq_printf(seq, ",nocompress_extension=%s",
1863 			F2FS_OPTION(sbi).noextensions[i]);
1864 	}
1865 
1866 	if (F2FS_OPTION(sbi).compress_chksum)
1867 		seq_puts(seq, ",compress_chksum");
1868 
1869 	if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1870 		seq_printf(seq, ",compress_mode=%s", "fs");
1871 	else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1872 		seq_printf(seq, ",compress_mode=%s", "user");
1873 
1874 	if (test_opt(sbi, COMPRESS_CACHE))
1875 		seq_puts(seq, ",compress_cache");
1876 }
1877 #endif
1878 
1879 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1880 {
1881 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1882 
1883 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1884 		seq_printf(seq, ",background_gc=%s", "sync");
1885 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1886 		seq_printf(seq, ",background_gc=%s", "on");
1887 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1888 		seq_printf(seq, ",background_gc=%s", "off");
1889 
1890 	if (test_opt(sbi, GC_MERGE))
1891 		seq_puts(seq, ",gc_merge");
1892 
1893 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1894 		seq_puts(seq, ",disable_roll_forward");
1895 	if (test_opt(sbi, NORECOVERY))
1896 		seq_puts(seq, ",norecovery");
1897 	if (test_opt(sbi, DISCARD))
1898 		seq_puts(seq, ",discard");
1899 	else
1900 		seq_puts(seq, ",nodiscard");
1901 	if (test_opt(sbi, NOHEAP))
1902 		seq_puts(seq, ",no_heap");
1903 	else
1904 		seq_puts(seq, ",heap");
1905 #ifdef CONFIG_F2FS_FS_XATTR
1906 	if (test_opt(sbi, XATTR_USER))
1907 		seq_puts(seq, ",user_xattr");
1908 	else
1909 		seq_puts(seq, ",nouser_xattr");
1910 	if (test_opt(sbi, INLINE_XATTR))
1911 		seq_puts(seq, ",inline_xattr");
1912 	else
1913 		seq_puts(seq, ",noinline_xattr");
1914 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1915 		seq_printf(seq, ",inline_xattr_size=%u",
1916 					F2FS_OPTION(sbi).inline_xattr_size);
1917 #endif
1918 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1919 	if (test_opt(sbi, POSIX_ACL))
1920 		seq_puts(seq, ",acl");
1921 	else
1922 		seq_puts(seq, ",noacl");
1923 #endif
1924 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1925 		seq_puts(seq, ",disable_ext_identify");
1926 	if (test_opt(sbi, INLINE_DATA))
1927 		seq_puts(seq, ",inline_data");
1928 	else
1929 		seq_puts(seq, ",noinline_data");
1930 	if (test_opt(sbi, INLINE_DENTRY))
1931 		seq_puts(seq, ",inline_dentry");
1932 	else
1933 		seq_puts(seq, ",noinline_dentry");
1934 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1935 		seq_puts(seq, ",flush_merge");
1936 	if (test_opt(sbi, NOBARRIER))
1937 		seq_puts(seq, ",nobarrier");
1938 	if (test_opt(sbi, FASTBOOT))
1939 		seq_puts(seq, ",fastboot");
1940 	if (test_opt(sbi, EXTENT_CACHE))
1941 		seq_puts(seq, ",extent_cache");
1942 	else
1943 		seq_puts(seq, ",noextent_cache");
1944 	if (test_opt(sbi, DATA_FLUSH))
1945 		seq_puts(seq, ",data_flush");
1946 
1947 	seq_puts(seq, ",mode=");
1948 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1949 		seq_puts(seq, "adaptive");
1950 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1951 		seq_puts(seq, "lfs");
1952 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG)
1953 		seq_puts(seq, "fragment:segment");
1954 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
1955 		seq_puts(seq, "fragment:block");
1956 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1957 	if (test_opt(sbi, RESERVE_ROOT))
1958 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1959 				F2FS_OPTION(sbi).root_reserved_blocks,
1960 				from_kuid_munged(&init_user_ns,
1961 					F2FS_OPTION(sbi).s_resuid),
1962 				from_kgid_munged(&init_user_ns,
1963 					F2FS_OPTION(sbi).s_resgid));
1964 	if (F2FS_IO_SIZE_BITS(sbi))
1965 		seq_printf(seq, ",io_bits=%u",
1966 				F2FS_OPTION(sbi).write_io_size_bits);
1967 #ifdef CONFIG_F2FS_FAULT_INJECTION
1968 	if (test_opt(sbi, FAULT_INJECTION)) {
1969 		seq_printf(seq, ",fault_injection=%u",
1970 				F2FS_OPTION(sbi).fault_info.inject_rate);
1971 		seq_printf(seq, ",fault_type=%u",
1972 				F2FS_OPTION(sbi).fault_info.inject_type);
1973 	}
1974 #endif
1975 #ifdef CONFIG_QUOTA
1976 	if (test_opt(sbi, QUOTA))
1977 		seq_puts(seq, ",quota");
1978 	if (test_opt(sbi, USRQUOTA))
1979 		seq_puts(seq, ",usrquota");
1980 	if (test_opt(sbi, GRPQUOTA))
1981 		seq_puts(seq, ",grpquota");
1982 	if (test_opt(sbi, PRJQUOTA))
1983 		seq_puts(seq, ",prjquota");
1984 #endif
1985 	f2fs_show_quota_options(seq, sbi->sb);
1986 
1987 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1988 
1989 	if (sbi->sb->s_flags & SB_INLINECRYPT)
1990 		seq_puts(seq, ",inlinecrypt");
1991 
1992 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1993 		seq_printf(seq, ",alloc_mode=%s", "default");
1994 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1995 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1996 
1997 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1998 		seq_printf(seq, ",checkpoint=disable:%u",
1999 				F2FS_OPTION(sbi).unusable_cap);
2000 	if (test_opt(sbi, MERGE_CHECKPOINT))
2001 		seq_puts(seq, ",checkpoint_merge");
2002 	else
2003 		seq_puts(seq, ",nocheckpoint_merge");
2004 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
2005 		seq_printf(seq, ",fsync_mode=%s", "posix");
2006 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
2007 		seq_printf(seq, ",fsync_mode=%s", "strict");
2008 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
2009 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
2010 
2011 #ifdef CONFIG_F2FS_FS_COMPRESSION
2012 	f2fs_show_compress_options(seq, sbi->sb);
2013 #endif
2014 
2015 	if (test_opt(sbi, ATGC))
2016 		seq_puts(seq, ",atgc");
2017 
2018 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK)
2019 		seq_printf(seq, ",discard_unit=%s", "block");
2020 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2021 		seq_printf(seq, ",discard_unit=%s", "segment");
2022 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2023 		seq_printf(seq, ",discard_unit=%s", "section");
2024 
2025 	if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL)
2026 		seq_printf(seq, ",memory=%s", "normal");
2027 	else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW)
2028 		seq_printf(seq, ",memory=%s", "low");
2029 
2030 	return 0;
2031 }
2032 
2033 static void default_options(struct f2fs_sb_info *sbi)
2034 {
2035 	/* init some FS parameters */
2036 	if (f2fs_sb_has_readonly(sbi))
2037 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
2038 	else
2039 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
2040 
2041 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
2042 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
2043 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
2044 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2045 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2046 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
2047 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
2048 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
2049 	F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
2050 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
2051 	F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL;
2052 
2053 	sbi->sb->s_flags &= ~SB_INLINECRYPT;
2054 
2055 	set_opt(sbi, INLINE_XATTR);
2056 	set_opt(sbi, INLINE_DATA);
2057 	set_opt(sbi, INLINE_DENTRY);
2058 	set_opt(sbi, EXTENT_CACHE);
2059 	set_opt(sbi, NOHEAP);
2060 	clear_opt(sbi, DISABLE_CHECKPOINT);
2061 	set_opt(sbi, MERGE_CHECKPOINT);
2062 	F2FS_OPTION(sbi).unusable_cap = 0;
2063 	sbi->sb->s_flags |= SB_LAZYTIME;
2064 	set_opt(sbi, FLUSH_MERGE);
2065 	if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi))
2066 		set_opt(sbi, DISCARD);
2067 	if (f2fs_sb_has_blkzoned(sbi)) {
2068 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
2069 		F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION;
2070 	} else {
2071 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
2072 		F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK;
2073 	}
2074 
2075 #ifdef CONFIG_F2FS_FS_XATTR
2076 	set_opt(sbi, XATTR_USER);
2077 #endif
2078 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2079 	set_opt(sbi, POSIX_ACL);
2080 #endif
2081 
2082 	f2fs_build_fault_attr(sbi, 0, 0);
2083 }
2084 
2085 #ifdef CONFIG_QUOTA
2086 static int f2fs_enable_quotas(struct super_block *sb);
2087 #endif
2088 
2089 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
2090 {
2091 	unsigned int s_flags = sbi->sb->s_flags;
2092 	struct cp_control cpc;
2093 	unsigned int gc_mode = sbi->gc_mode;
2094 	int err = 0;
2095 	int ret;
2096 	block_t unusable;
2097 
2098 	if (s_flags & SB_RDONLY) {
2099 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
2100 		return -EINVAL;
2101 	}
2102 	sbi->sb->s_flags |= SB_ACTIVE;
2103 
2104 	/* check if we need more GC first */
2105 	unusable = f2fs_get_unusable_blocks(sbi);
2106 	if (!f2fs_disable_cp_again(sbi, unusable))
2107 		goto skip_gc;
2108 
2109 	f2fs_update_time(sbi, DISABLE_TIME);
2110 
2111 	sbi->gc_mode = GC_URGENT_HIGH;
2112 
2113 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2114 		struct f2fs_gc_control gc_control = {
2115 			.victim_segno = NULL_SEGNO,
2116 			.init_gc_type = FG_GC,
2117 			.should_migrate_blocks = false,
2118 			.err_gc_skipped = true,
2119 			.nr_free_secs = 1 };
2120 
2121 		f2fs_down_write(&sbi->gc_lock);
2122 		err = f2fs_gc(sbi, &gc_control);
2123 		if (err == -ENODATA) {
2124 			err = 0;
2125 			break;
2126 		}
2127 		if (err && err != -EAGAIN)
2128 			break;
2129 	}
2130 
2131 	ret = sync_filesystem(sbi->sb);
2132 	if (ret || err) {
2133 		err = ret ? ret : err;
2134 		goto restore_flag;
2135 	}
2136 
2137 	unusable = f2fs_get_unusable_blocks(sbi);
2138 	if (f2fs_disable_cp_again(sbi, unusable)) {
2139 		err = -EAGAIN;
2140 		goto restore_flag;
2141 	}
2142 
2143 skip_gc:
2144 	f2fs_down_write(&sbi->gc_lock);
2145 	cpc.reason = CP_PAUSE;
2146 	set_sbi_flag(sbi, SBI_CP_DISABLED);
2147 	err = f2fs_write_checkpoint(sbi, &cpc);
2148 	if (err)
2149 		goto out_unlock;
2150 
2151 	spin_lock(&sbi->stat_lock);
2152 	sbi->unusable_block_count = unusable;
2153 	spin_unlock(&sbi->stat_lock);
2154 
2155 out_unlock:
2156 	f2fs_up_write(&sbi->gc_lock);
2157 restore_flag:
2158 	sbi->gc_mode = gc_mode;
2159 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
2160 	return err;
2161 }
2162 
2163 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2164 {
2165 	int retry = DEFAULT_RETRY_IO_COUNT;
2166 
2167 	/* we should flush all the data to keep data consistency */
2168 	do {
2169 		sync_inodes_sb(sbi->sb);
2170 		f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2171 	} while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
2172 
2173 	if (unlikely(retry < 0))
2174 		f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
2175 
2176 	f2fs_down_write(&sbi->gc_lock);
2177 	f2fs_dirty_to_prefree(sbi);
2178 
2179 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
2180 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2181 	f2fs_up_write(&sbi->gc_lock);
2182 
2183 	f2fs_sync_fs(sbi->sb, 1);
2184 }
2185 
2186 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
2187 {
2188 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2189 	struct f2fs_mount_info org_mount_opt;
2190 	unsigned long old_sb_flags;
2191 	int err;
2192 	bool need_restart_gc = false, need_stop_gc = false;
2193 	bool need_restart_ckpt = false, need_stop_ckpt = false;
2194 	bool need_restart_flush = false, need_stop_flush = false;
2195 	bool need_restart_discard = false, need_stop_discard = false;
2196 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
2197 	bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT);
2198 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
2199 	bool no_atgc = !test_opt(sbi, ATGC);
2200 	bool no_discard = !test_opt(sbi, DISCARD);
2201 	bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2202 	bool block_unit_discard = f2fs_block_unit_discard(sbi);
2203 	struct discard_cmd_control *dcc;
2204 #ifdef CONFIG_QUOTA
2205 	int i, j;
2206 #endif
2207 
2208 	/*
2209 	 * Save the old mount options in case we
2210 	 * need to restore them.
2211 	 */
2212 	org_mount_opt = sbi->mount_opt;
2213 	old_sb_flags = sb->s_flags;
2214 
2215 #ifdef CONFIG_QUOTA
2216 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2217 	for (i = 0; i < MAXQUOTAS; i++) {
2218 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2219 			org_mount_opt.s_qf_names[i] =
2220 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2221 				GFP_KERNEL);
2222 			if (!org_mount_opt.s_qf_names[i]) {
2223 				for (j = 0; j < i; j++)
2224 					kfree(org_mount_opt.s_qf_names[j]);
2225 				return -ENOMEM;
2226 			}
2227 		} else {
2228 			org_mount_opt.s_qf_names[i] = NULL;
2229 		}
2230 	}
2231 #endif
2232 
2233 	/* recover superblocks we couldn't write due to previous RO mount */
2234 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2235 		err = f2fs_commit_super(sbi, false);
2236 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2237 			  err);
2238 		if (!err)
2239 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2240 	}
2241 
2242 	default_options(sbi);
2243 
2244 	/* parse mount options */
2245 	err = parse_options(sb, data, true);
2246 	if (err)
2247 		goto restore_opts;
2248 
2249 	/*
2250 	 * Previous and new state of filesystem is RO,
2251 	 * so skip checking GC and FLUSH_MERGE conditions.
2252 	 */
2253 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
2254 		goto skip;
2255 
2256 	if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) {
2257 		err = -EROFS;
2258 		goto restore_opts;
2259 	}
2260 
2261 #ifdef CONFIG_QUOTA
2262 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
2263 		err = dquot_suspend(sb, -1);
2264 		if (err < 0)
2265 			goto restore_opts;
2266 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
2267 		/* dquot_resume needs RW */
2268 		sb->s_flags &= ~SB_RDONLY;
2269 		if (sb_any_quota_suspended(sb)) {
2270 			dquot_resume(sb, -1);
2271 		} else if (f2fs_sb_has_quota_ino(sbi)) {
2272 			err = f2fs_enable_quotas(sb);
2273 			if (err)
2274 				goto restore_opts;
2275 		}
2276 	}
2277 #endif
2278 	/* disallow enable atgc dynamically */
2279 	if (no_atgc == !!test_opt(sbi, ATGC)) {
2280 		err = -EINVAL;
2281 		f2fs_warn(sbi, "switch atgc option is not allowed");
2282 		goto restore_opts;
2283 	}
2284 
2285 	/* disallow enable/disable extent_cache dynamically */
2286 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
2287 		err = -EINVAL;
2288 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
2289 		goto restore_opts;
2290 	}
2291 
2292 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
2293 		err = -EINVAL;
2294 		f2fs_warn(sbi, "switch io_bits option is not allowed");
2295 		goto restore_opts;
2296 	}
2297 
2298 	if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2299 		err = -EINVAL;
2300 		f2fs_warn(sbi, "switch compress_cache option is not allowed");
2301 		goto restore_opts;
2302 	}
2303 
2304 	if (block_unit_discard != f2fs_block_unit_discard(sbi)) {
2305 		err = -EINVAL;
2306 		f2fs_warn(sbi, "switch discard_unit option is not allowed");
2307 		goto restore_opts;
2308 	}
2309 
2310 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2311 		err = -EINVAL;
2312 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2313 		goto restore_opts;
2314 	}
2315 
2316 	/*
2317 	 * We stop the GC thread if FS is mounted as RO
2318 	 * or if background_gc = off is passed in mount
2319 	 * option. Also sync the filesystem.
2320 	 */
2321 	if ((*flags & SB_RDONLY) ||
2322 			(F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2323 			!test_opt(sbi, GC_MERGE))) {
2324 		if (sbi->gc_thread) {
2325 			f2fs_stop_gc_thread(sbi);
2326 			need_restart_gc = true;
2327 		}
2328 	} else if (!sbi->gc_thread) {
2329 		err = f2fs_start_gc_thread(sbi);
2330 		if (err)
2331 			goto restore_opts;
2332 		need_stop_gc = true;
2333 	}
2334 
2335 	if (*flags & SB_RDONLY) {
2336 		sync_inodes_sb(sb);
2337 
2338 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2339 		set_sbi_flag(sbi, SBI_IS_CLOSE);
2340 		f2fs_sync_fs(sb, 1);
2341 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
2342 	}
2343 
2344 	if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2345 			!test_opt(sbi, MERGE_CHECKPOINT)) {
2346 		f2fs_stop_ckpt_thread(sbi);
2347 		need_restart_ckpt = true;
2348 	} else {
2349 		err = f2fs_start_ckpt_thread(sbi);
2350 		if (err) {
2351 			f2fs_err(sbi,
2352 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
2353 			    err);
2354 			goto restore_gc;
2355 		}
2356 		need_stop_ckpt = true;
2357 	}
2358 
2359 	/*
2360 	 * We stop issue flush thread if FS is mounted as RO
2361 	 * or if flush_merge is not passed in mount option.
2362 	 */
2363 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2364 		clear_opt(sbi, FLUSH_MERGE);
2365 		f2fs_destroy_flush_cmd_control(sbi, false);
2366 		need_restart_flush = true;
2367 	} else {
2368 		err = f2fs_create_flush_cmd_control(sbi);
2369 		if (err)
2370 			goto restore_ckpt;
2371 		need_stop_flush = true;
2372 	}
2373 
2374 	if (no_discard == !!test_opt(sbi, DISCARD)) {
2375 		if (test_opt(sbi, DISCARD)) {
2376 			err = f2fs_start_discard_thread(sbi);
2377 			if (err)
2378 				goto restore_flush;
2379 			need_stop_discard = true;
2380 		} else {
2381 			dcc = SM_I(sbi)->dcc_info;
2382 			f2fs_stop_discard_thread(sbi);
2383 			if (atomic_read(&dcc->discard_cmd_cnt))
2384 				f2fs_issue_discard_timeout(sbi);
2385 			need_restart_discard = true;
2386 		}
2387 	}
2388 
2389 	if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) {
2390 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2391 			err = f2fs_disable_checkpoint(sbi);
2392 			if (err)
2393 				goto restore_discard;
2394 		} else {
2395 			f2fs_enable_checkpoint(sbi);
2396 		}
2397 	}
2398 
2399 skip:
2400 #ifdef CONFIG_QUOTA
2401 	/* Release old quota file names */
2402 	for (i = 0; i < MAXQUOTAS; i++)
2403 		kfree(org_mount_opt.s_qf_names[i]);
2404 #endif
2405 	/* Update the POSIXACL Flag */
2406 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2407 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2408 
2409 	limit_reserve_root(sbi);
2410 	adjust_unusable_cap_perc(sbi);
2411 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2412 	return 0;
2413 restore_discard:
2414 	if (need_restart_discard) {
2415 		if (f2fs_start_discard_thread(sbi))
2416 			f2fs_warn(sbi, "discard has been stopped");
2417 	} else if (need_stop_discard) {
2418 		f2fs_stop_discard_thread(sbi);
2419 	}
2420 restore_flush:
2421 	if (need_restart_flush) {
2422 		if (f2fs_create_flush_cmd_control(sbi))
2423 			f2fs_warn(sbi, "background flush thread has stopped");
2424 	} else if (need_stop_flush) {
2425 		clear_opt(sbi, FLUSH_MERGE);
2426 		f2fs_destroy_flush_cmd_control(sbi, false);
2427 	}
2428 restore_ckpt:
2429 	if (need_restart_ckpt) {
2430 		if (f2fs_start_ckpt_thread(sbi))
2431 			f2fs_warn(sbi, "background ckpt thread has stopped");
2432 	} else if (need_stop_ckpt) {
2433 		f2fs_stop_ckpt_thread(sbi);
2434 	}
2435 restore_gc:
2436 	if (need_restart_gc) {
2437 		if (f2fs_start_gc_thread(sbi))
2438 			f2fs_warn(sbi, "background gc thread has stopped");
2439 	} else if (need_stop_gc) {
2440 		f2fs_stop_gc_thread(sbi);
2441 	}
2442 restore_opts:
2443 #ifdef CONFIG_QUOTA
2444 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2445 	for (i = 0; i < MAXQUOTAS; i++) {
2446 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2447 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2448 	}
2449 #endif
2450 	sbi->mount_opt = org_mount_opt;
2451 	sb->s_flags = old_sb_flags;
2452 	return err;
2453 }
2454 
2455 #ifdef CONFIG_QUOTA
2456 /* Read data from quotafile */
2457 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2458 			       size_t len, loff_t off)
2459 {
2460 	struct inode *inode = sb_dqopt(sb)->files[type];
2461 	struct address_space *mapping = inode->i_mapping;
2462 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
2463 	int offset = off & (sb->s_blocksize - 1);
2464 	int tocopy;
2465 	size_t toread;
2466 	loff_t i_size = i_size_read(inode);
2467 	struct page *page;
2468 	char *kaddr;
2469 
2470 	if (off > i_size)
2471 		return 0;
2472 
2473 	if (off + len > i_size)
2474 		len = i_size - off;
2475 	toread = len;
2476 	while (toread > 0) {
2477 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2478 repeat:
2479 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2480 		if (IS_ERR(page)) {
2481 			if (PTR_ERR(page) == -ENOMEM) {
2482 				memalloc_retry_wait(GFP_NOFS);
2483 				goto repeat;
2484 			}
2485 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2486 			return PTR_ERR(page);
2487 		}
2488 
2489 		lock_page(page);
2490 
2491 		if (unlikely(page->mapping != mapping)) {
2492 			f2fs_put_page(page, 1);
2493 			goto repeat;
2494 		}
2495 		if (unlikely(!PageUptodate(page))) {
2496 			f2fs_put_page(page, 1);
2497 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2498 			return -EIO;
2499 		}
2500 
2501 		kaddr = kmap_atomic(page);
2502 		memcpy(data, kaddr + offset, tocopy);
2503 		kunmap_atomic(kaddr);
2504 		f2fs_put_page(page, 1);
2505 
2506 		offset = 0;
2507 		toread -= tocopy;
2508 		data += tocopy;
2509 		blkidx++;
2510 	}
2511 	return len;
2512 }
2513 
2514 /* Write to quotafile */
2515 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2516 				const char *data, size_t len, loff_t off)
2517 {
2518 	struct inode *inode = sb_dqopt(sb)->files[type];
2519 	struct address_space *mapping = inode->i_mapping;
2520 	const struct address_space_operations *a_ops = mapping->a_ops;
2521 	int offset = off & (sb->s_blocksize - 1);
2522 	size_t towrite = len;
2523 	struct page *page;
2524 	void *fsdata = NULL;
2525 	char *kaddr;
2526 	int err = 0;
2527 	int tocopy;
2528 
2529 	while (towrite > 0) {
2530 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2531 								towrite);
2532 retry:
2533 		err = a_ops->write_begin(NULL, mapping, off, tocopy,
2534 							&page, &fsdata);
2535 		if (unlikely(err)) {
2536 			if (err == -ENOMEM) {
2537 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2538 				goto retry;
2539 			}
2540 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2541 			break;
2542 		}
2543 
2544 		kaddr = kmap_atomic(page);
2545 		memcpy(kaddr + offset, data, tocopy);
2546 		kunmap_atomic(kaddr);
2547 		flush_dcache_page(page);
2548 
2549 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2550 						page, fsdata);
2551 		offset = 0;
2552 		towrite -= tocopy;
2553 		off += tocopy;
2554 		data += tocopy;
2555 		cond_resched();
2556 	}
2557 
2558 	if (len == towrite)
2559 		return err;
2560 	inode->i_mtime = inode->i_ctime = current_time(inode);
2561 	f2fs_mark_inode_dirty_sync(inode, false);
2562 	return len - towrite;
2563 }
2564 
2565 int f2fs_dquot_initialize(struct inode *inode)
2566 {
2567 	if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) {
2568 		f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_DQUOT_INIT);
2569 		return -ESRCH;
2570 	}
2571 
2572 	return dquot_initialize(inode);
2573 }
2574 
2575 static struct dquot **f2fs_get_dquots(struct inode *inode)
2576 {
2577 	return F2FS_I(inode)->i_dquot;
2578 }
2579 
2580 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2581 {
2582 	return &F2FS_I(inode)->i_reserved_quota;
2583 }
2584 
2585 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2586 {
2587 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2588 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2589 		return 0;
2590 	}
2591 
2592 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2593 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2594 }
2595 
2596 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2597 {
2598 	int enabled = 0;
2599 	int i, err;
2600 
2601 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2602 		err = f2fs_enable_quotas(sbi->sb);
2603 		if (err) {
2604 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2605 			return 0;
2606 		}
2607 		return 1;
2608 	}
2609 
2610 	for (i = 0; i < MAXQUOTAS; i++) {
2611 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2612 			err = f2fs_quota_on_mount(sbi, i);
2613 			if (!err) {
2614 				enabled = 1;
2615 				continue;
2616 			}
2617 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2618 				 err, i);
2619 		}
2620 	}
2621 	return enabled;
2622 }
2623 
2624 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2625 			     unsigned int flags)
2626 {
2627 	struct inode *qf_inode;
2628 	unsigned long qf_inum;
2629 	int err;
2630 
2631 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2632 
2633 	qf_inum = f2fs_qf_ino(sb, type);
2634 	if (!qf_inum)
2635 		return -EPERM;
2636 
2637 	qf_inode = f2fs_iget(sb, qf_inum);
2638 	if (IS_ERR(qf_inode)) {
2639 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2640 		return PTR_ERR(qf_inode);
2641 	}
2642 
2643 	/* Don't account quota for quota files to avoid recursion */
2644 	qf_inode->i_flags |= S_NOQUOTA;
2645 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2646 	iput(qf_inode);
2647 	return err;
2648 }
2649 
2650 static int f2fs_enable_quotas(struct super_block *sb)
2651 {
2652 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2653 	int type, err = 0;
2654 	unsigned long qf_inum;
2655 	bool quota_mopt[MAXQUOTAS] = {
2656 		test_opt(sbi, USRQUOTA),
2657 		test_opt(sbi, GRPQUOTA),
2658 		test_opt(sbi, PRJQUOTA),
2659 	};
2660 
2661 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2662 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2663 		return 0;
2664 	}
2665 
2666 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2667 
2668 	for (type = 0; type < MAXQUOTAS; type++) {
2669 		qf_inum = f2fs_qf_ino(sb, type);
2670 		if (qf_inum) {
2671 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2672 				DQUOT_USAGE_ENABLED |
2673 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2674 			if (err) {
2675 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2676 					 type, err);
2677 				for (type--; type >= 0; type--)
2678 					dquot_quota_off(sb, type);
2679 				set_sbi_flag(F2FS_SB(sb),
2680 						SBI_QUOTA_NEED_REPAIR);
2681 				return err;
2682 			}
2683 		}
2684 	}
2685 	return 0;
2686 }
2687 
2688 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2689 {
2690 	struct quota_info *dqopt = sb_dqopt(sbi->sb);
2691 	struct address_space *mapping = dqopt->files[type]->i_mapping;
2692 	int ret = 0;
2693 
2694 	ret = dquot_writeback_dquots(sbi->sb, type);
2695 	if (ret)
2696 		goto out;
2697 
2698 	ret = filemap_fdatawrite(mapping);
2699 	if (ret)
2700 		goto out;
2701 
2702 	/* if we are using journalled quota */
2703 	if (is_journalled_quota(sbi))
2704 		goto out;
2705 
2706 	ret = filemap_fdatawait(mapping);
2707 
2708 	truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2709 out:
2710 	if (ret)
2711 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2712 	return ret;
2713 }
2714 
2715 int f2fs_quota_sync(struct super_block *sb, int type)
2716 {
2717 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2718 	struct quota_info *dqopt = sb_dqopt(sb);
2719 	int cnt;
2720 	int ret = 0;
2721 
2722 	/*
2723 	 * Now when everything is written we can discard the pagecache so
2724 	 * that userspace sees the changes.
2725 	 */
2726 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2727 
2728 		if (type != -1 && cnt != type)
2729 			continue;
2730 
2731 		if (!sb_has_quota_active(sb, cnt))
2732 			continue;
2733 
2734 		if (!f2fs_sb_has_quota_ino(sbi))
2735 			inode_lock(dqopt->files[cnt]);
2736 
2737 		/*
2738 		 * do_quotactl
2739 		 *  f2fs_quota_sync
2740 		 *  f2fs_down_read(quota_sem)
2741 		 *  dquot_writeback_dquots()
2742 		 *  f2fs_dquot_commit
2743 		 *			      block_operation
2744 		 *			      f2fs_down_read(quota_sem)
2745 		 */
2746 		f2fs_lock_op(sbi);
2747 		f2fs_down_read(&sbi->quota_sem);
2748 
2749 		ret = f2fs_quota_sync_file(sbi, cnt);
2750 
2751 		f2fs_up_read(&sbi->quota_sem);
2752 		f2fs_unlock_op(sbi);
2753 
2754 		if (!f2fs_sb_has_quota_ino(sbi))
2755 			inode_unlock(dqopt->files[cnt]);
2756 
2757 		if (ret)
2758 			break;
2759 	}
2760 	return ret;
2761 }
2762 
2763 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2764 							const struct path *path)
2765 {
2766 	struct inode *inode;
2767 	int err;
2768 
2769 	/* if quota sysfile exists, deny enabling quota with specific file */
2770 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2771 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2772 		return -EBUSY;
2773 	}
2774 
2775 	err = f2fs_quota_sync(sb, type);
2776 	if (err)
2777 		return err;
2778 
2779 	err = dquot_quota_on(sb, type, format_id, path);
2780 	if (err)
2781 		return err;
2782 
2783 	inode = d_inode(path->dentry);
2784 
2785 	inode_lock(inode);
2786 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2787 	f2fs_set_inode_flags(inode);
2788 	inode_unlock(inode);
2789 	f2fs_mark_inode_dirty_sync(inode, false);
2790 
2791 	return 0;
2792 }
2793 
2794 static int __f2fs_quota_off(struct super_block *sb, int type)
2795 {
2796 	struct inode *inode = sb_dqopt(sb)->files[type];
2797 	int err;
2798 
2799 	if (!inode || !igrab(inode))
2800 		return dquot_quota_off(sb, type);
2801 
2802 	err = f2fs_quota_sync(sb, type);
2803 	if (err)
2804 		goto out_put;
2805 
2806 	err = dquot_quota_off(sb, type);
2807 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2808 		goto out_put;
2809 
2810 	inode_lock(inode);
2811 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2812 	f2fs_set_inode_flags(inode);
2813 	inode_unlock(inode);
2814 	f2fs_mark_inode_dirty_sync(inode, false);
2815 out_put:
2816 	iput(inode);
2817 	return err;
2818 }
2819 
2820 static int f2fs_quota_off(struct super_block *sb, int type)
2821 {
2822 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2823 	int err;
2824 
2825 	err = __f2fs_quota_off(sb, type);
2826 
2827 	/*
2828 	 * quotactl can shutdown journalled quota, result in inconsistence
2829 	 * between quota record and fs data by following updates, tag the
2830 	 * flag to let fsck be aware of it.
2831 	 */
2832 	if (is_journalled_quota(sbi))
2833 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2834 	return err;
2835 }
2836 
2837 void f2fs_quota_off_umount(struct super_block *sb)
2838 {
2839 	int type;
2840 	int err;
2841 
2842 	for (type = 0; type < MAXQUOTAS; type++) {
2843 		err = __f2fs_quota_off(sb, type);
2844 		if (err) {
2845 			int ret = dquot_quota_off(sb, type);
2846 
2847 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2848 				 type, err, ret);
2849 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2850 		}
2851 	}
2852 	/*
2853 	 * In case of checkpoint=disable, we must flush quota blocks.
2854 	 * This can cause NULL exception for node_inode in end_io, since
2855 	 * put_super already dropped it.
2856 	 */
2857 	sync_filesystem(sb);
2858 }
2859 
2860 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2861 {
2862 	struct quota_info *dqopt = sb_dqopt(sb);
2863 	int type;
2864 
2865 	for (type = 0; type < MAXQUOTAS; type++) {
2866 		if (!dqopt->files[type])
2867 			continue;
2868 		f2fs_inode_synced(dqopt->files[type]);
2869 	}
2870 }
2871 
2872 static int f2fs_dquot_commit(struct dquot *dquot)
2873 {
2874 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2875 	int ret;
2876 
2877 	f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2878 	ret = dquot_commit(dquot);
2879 	if (ret < 0)
2880 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2881 	f2fs_up_read(&sbi->quota_sem);
2882 	return ret;
2883 }
2884 
2885 static int f2fs_dquot_acquire(struct dquot *dquot)
2886 {
2887 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2888 	int ret;
2889 
2890 	f2fs_down_read(&sbi->quota_sem);
2891 	ret = dquot_acquire(dquot);
2892 	if (ret < 0)
2893 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2894 	f2fs_up_read(&sbi->quota_sem);
2895 	return ret;
2896 }
2897 
2898 static int f2fs_dquot_release(struct dquot *dquot)
2899 {
2900 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2901 	int ret = dquot_release(dquot);
2902 
2903 	if (ret < 0)
2904 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2905 	return ret;
2906 }
2907 
2908 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2909 {
2910 	struct super_block *sb = dquot->dq_sb;
2911 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2912 	int ret = dquot_mark_dquot_dirty(dquot);
2913 
2914 	/* if we are using journalled quota */
2915 	if (is_journalled_quota(sbi))
2916 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2917 
2918 	return ret;
2919 }
2920 
2921 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2922 {
2923 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2924 	int ret = dquot_commit_info(sb, type);
2925 
2926 	if (ret < 0)
2927 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2928 	return ret;
2929 }
2930 
2931 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2932 {
2933 	*projid = F2FS_I(inode)->i_projid;
2934 	return 0;
2935 }
2936 
2937 static const struct dquot_operations f2fs_quota_operations = {
2938 	.get_reserved_space = f2fs_get_reserved_space,
2939 	.write_dquot	= f2fs_dquot_commit,
2940 	.acquire_dquot	= f2fs_dquot_acquire,
2941 	.release_dquot	= f2fs_dquot_release,
2942 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2943 	.write_info	= f2fs_dquot_commit_info,
2944 	.alloc_dquot	= dquot_alloc,
2945 	.destroy_dquot	= dquot_destroy,
2946 	.get_projid	= f2fs_get_projid,
2947 	.get_next_id	= dquot_get_next_id,
2948 };
2949 
2950 static const struct quotactl_ops f2fs_quotactl_ops = {
2951 	.quota_on	= f2fs_quota_on,
2952 	.quota_off	= f2fs_quota_off,
2953 	.quota_sync	= f2fs_quota_sync,
2954 	.get_state	= dquot_get_state,
2955 	.set_info	= dquot_set_dqinfo,
2956 	.get_dqblk	= dquot_get_dqblk,
2957 	.set_dqblk	= dquot_set_dqblk,
2958 	.get_nextdqblk	= dquot_get_next_dqblk,
2959 };
2960 #else
2961 int f2fs_dquot_initialize(struct inode *inode)
2962 {
2963 	return 0;
2964 }
2965 
2966 int f2fs_quota_sync(struct super_block *sb, int type)
2967 {
2968 	return 0;
2969 }
2970 
2971 void f2fs_quota_off_umount(struct super_block *sb)
2972 {
2973 }
2974 #endif
2975 
2976 static const struct super_operations f2fs_sops = {
2977 	.alloc_inode	= f2fs_alloc_inode,
2978 	.free_inode	= f2fs_free_inode,
2979 	.drop_inode	= f2fs_drop_inode,
2980 	.write_inode	= f2fs_write_inode,
2981 	.dirty_inode	= f2fs_dirty_inode,
2982 	.show_options	= f2fs_show_options,
2983 #ifdef CONFIG_QUOTA
2984 	.quota_read	= f2fs_quota_read,
2985 	.quota_write	= f2fs_quota_write,
2986 	.get_dquots	= f2fs_get_dquots,
2987 #endif
2988 	.evict_inode	= f2fs_evict_inode,
2989 	.put_super	= f2fs_put_super,
2990 	.sync_fs	= f2fs_sync_fs,
2991 	.freeze_fs	= f2fs_freeze,
2992 	.unfreeze_fs	= f2fs_unfreeze,
2993 	.statfs		= f2fs_statfs,
2994 	.remount_fs	= f2fs_remount,
2995 };
2996 
2997 #ifdef CONFIG_FS_ENCRYPTION
2998 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2999 {
3000 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3001 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3002 				ctx, len, NULL);
3003 }
3004 
3005 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
3006 							void *fs_data)
3007 {
3008 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3009 
3010 	/*
3011 	 * Encrypting the root directory is not allowed because fsck
3012 	 * expects lost+found directory to exist and remain unencrypted
3013 	 * if LOST_FOUND feature is enabled.
3014 	 *
3015 	 */
3016 	if (f2fs_sb_has_lost_found(sbi) &&
3017 			inode->i_ino == F2FS_ROOT_INO(sbi))
3018 		return -EPERM;
3019 
3020 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3021 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3022 				ctx, len, fs_data, XATTR_CREATE);
3023 }
3024 
3025 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
3026 {
3027 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
3028 }
3029 
3030 static bool f2fs_has_stable_inodes(struct super_block *sb)
3031 {
3032 	return true;
3033 }
3034 
3035 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
3036 				       int *ino_bits_ret, int *lblk_bits_ret)
3037 {
3038 	*ino_bits_ret = 8 * sizeof(nid_t);
3039 	*lblk_bits_ret = 8 * sizeof(block_t);
3040 }
3041 
3042 static int f2fs_get_num_devices(struct super_block *sb)
3043 {
3044 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3045 
3046 	if (f2fs_is_multi_device(sbi))
3047 		return sbi->s_ndevs;
3048 	return 1;
3049 }
3050 
3051 static void f2fs_get_devices(struct super_block *sb,
3052 			     struct request_queue **devs)
3053 {
3054 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3055 	int i;
3056 
3057 	for (i = 0; i < sbi->s_ndevs; i++)
3058 		devs[i] = bdev_get_queue(FDEV(i).bdev);
3059 }
3060 
3061 static const struct fscrypt_operations f2fs_cryptops = {
3062 	.key_prefix		= "f2fs:",
3063 	.get_context		= f2fs_get_context,
3064 	.set_context		= f2fs_set_context,
3065 	.get_dummy_policy	= f2fs_get_dummy_policy,
3066 	.empty_dir		= f2fs_empty_dir,
3067 	.has_stable_inodes	= f2fs_has_stable_inodes,
3068 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
3069 	.get_num_devices	= f2fs_get_num_devices,
3070 	.get_devices		= f2fs_get_devices,
3071 };
3072 #endif
3073 
3074 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
3075 		u64 ino, u32 generation)
3076 {
3077 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3078 	struct inode *inode;
3079 
3080 	if (f2fs_check_nid_range(sbi, ino))
3081 		return ERR_PTR(-ESTALE);
3082 
3083 	/*
3084 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
3085 	 * However f2fs_iget currently does appropriate checks to handle stale
3086 	 * inodes so everything is OK.
3087 	 */
3088 	inode = f2fs_iget(sb, ino);
3089 	if (IS_ERR(inode))
3090 		return ERR_CAST(inode);
3091 	if (unlikely(generation && inode->i_generation != generation)) {
3092 		/* we didn't find the right inode.. */
3093 		iput(inode);
3094 		return ERR_PTR(-ESTALE);
3095 	}
3096 	return inode;
3097 }
3098 
3099 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3100 		int fh_len, int fh_type)
3101 {
3102 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
3103 				    f2fs_nfs_get_inode);
3104 }
3105 
3106 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
3107 		int fh_len, int fh_type)
3108 {
3109 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
3110 				    f2fs_nfs_get_inode);
3111 }
3112 
3113 static const struct export_operations f2fs_export_ops = {
3114 	.fh_to_dentry = f2fs_fh_to_dentry,
3115 	.fh_to_parent = f2fs_fh_to_parent,
3116 	.get_parent = f2fs_get_parent,
3117 };
3118 
3119 loff_t max_file_blocks(struct inode *inode)
3120 {
3121 	loff_t result = 0;
3122 	loff_t leaf_count;
3123 
3124 	/*
3125 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
3126 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
3127 	 * space in inode.i_addr, it will be more safe to reassign
3128 	 * result as zero.
3129 	 */
3130 
3131 	if (inode && f2fs_compressed_file(inode))
3132 		leaf_count = ADDRS_PER_BLOCK(inode);
3133 	else
3134 		leaf_count = DEF_ADDRS_PER_BLOCK;
3135 
3136 	/* two direct node blocks */
3137 	result += (leaf_count * 2);
3138 
3139 	/* two indirect node blocks */
3140 	leaf_count *= NIDS_PER_BLOCK;
3141 	result += (leaf_count * 2);
3142 
3143 	/* one double indirect node block */
3144 	leaf_count *= NIDS_PER_BLOCK;
3145 	result += leaf_count;
3146 
3147 	return result;
3148 }
3149 
3150 static int __f2fs_commit_super(struct buffer_head *bh,
3151 			struct f2fs_super_block *super)
3152 {
3153 	lock_buffer(bh);
3154 	if (super)
3155 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
3156 	set_buffer_dirty(bh);
3157 	unlock_buffer(bh);
3158 
3159 	/* it's rare case, we can do fua all the time */
3160 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
3161 }
3162 
3163 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
3164 					struct buffer_head *bh)
3165 {
3166 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3167 					(bh->b_data + F2FS_SUPER_OFFSET);
3168 	struct super_block *sb = sbi->sb;
3169 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3170 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
3171 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
3172 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
3173 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3174 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3175 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
3176 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
3177 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
3178 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
3179 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3180 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
3181 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3182 	u64 main_end_blkaddr = main_blkaddr +
3183 				(segment_count_main << log_blocks_per_seg);
3184 	u64 seg_end_blkaddr = segment0_blkaddr +
3185 				(segment_count << log_blocks_per_seg);
3186 
3187 	if (segment0_blkaddr != cp_blkaddr) {
3188 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3189 			  segment0_blkaddr, cp_blkaddr);
3190 		return true;
3191 	}
3192 
3193 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3194 							sit_blkaddr) {
3195 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3196 			  cp_blkaddr, sit_blkaddr,
3197 			  segment_count_ckpt << log_blocks_per_seg);
3198 		return true;
3199 	}
3200 
3201 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3202 							nat_blkaddr) {
3203 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3204 			  sit_blkaddr, nat_blkaddr,
3205 			  segment_count_sit << log_blocks_per_seg);
3206 		return true;
3207 	}
3208 
3209 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3210 							ssa_blkaddr) {
3211 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3212 			  nat_blkaddr, ssa_blkaddr,
3213 			  segment_count_nat << log_blocks_per_seg);
3214 		return true;
3215 	}
3216 
3217 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3218 							main_blkaddr) {
3219 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3220 			  ssa_blkaddr, main_blkaddr,
3221 			  segment_count_ssa << log_blocks_per_seg);
3222 		return true;
3223 	}
3224 
3225 	if (main_end_blkaddr > seg_end_blkaddr) {
3226 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3227 			  main_blkaddr, seg_end_blkaddr,
3228 			  segment_count_main << log_blocks_per_seg);
3229 		return true;
3230 	} else if (main_end_blkaddr < seg_end_blkaddr) {
3231 		int err = 0;
3232 		char *res;
3233 
3234 		/* fix in-memory information all the time */
3235 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3236 				segment0_blkaddr) >> log_blocks_per_seg);
3237 
3238 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
3239 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3240 			res = "internally";
3241 		} else {
3242 			err = __f2fs_commit_super(bh, NULL);
3243 			res = err ? "failed" : "done";
3244 		}
3245 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3246 			  res, main_blkaddr, seg_end_blkaddr,
3247 			  segment_count_main << log_blocks_per_seg);
3248 		if (err)
3249 			return true;
3250 	}
3251 	return false;
3252 }
3253 
3254 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3255 				struct buffer_head *bh)
3256 {
3257 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3258 	block_t total_sections, blocks_per_seg;
3259 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3260 					(bh->b_data + F2FS_SUPER_OFFSET);
3261 	size_t crc_offset = 0;
3262 	__u32 crc = 0;
3263 
3264 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3265 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3266 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3267 		return -EINVAL;
3268 	}
3269 
3270 	/* Check checksum_offset and crc in superblock */
3271 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3272 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
3273 		if (crc_offset !=
3274 			offsetof(struct f2fs_super_block, crc)) {
3275 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3276 				  crc_offset);
3277 			return -EFSCORRUPTED;
3278 		}
3279 		crc = le32_to_cpu(raw_super->crc);
3280 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
3281 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3282 			return -EFSCORRUPTED;
3283 		}
3284 	}
3285 
3286 	/* Currently, support only 4KB block size */
3287 	if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3288 		f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3289 			  le32_to_cpu(raw_super->log_blocksize),
3290 			  F2FS_BLKSIZE_BITS);
3291 		return -EFSCORRUPTED;
3292 	}
3293 
3294 	/* check log blocks per segment */
3295 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3296 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3297 			  le32_to_cpu(raw_super->log_blocks_per_seg));
3298 		return -EFSCORRUPTED;
3299 	}
3300 
3301 	/* Currently, support 512/1024/2048/4096 bytes sector size */
3302 	if (le32_to_cpu(raw_super->log_sectorsize) >
3303 				F2FS_MAX_LOG_SECTOR_SIZE ||
3304 		le32_to_cpu(raw_super->log_sectorsize) <
3305 				F2FS_MIN_LOG_SECTOR_SIZE) {
3306 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
3307 			  le32_to_cpu(raw_super->log_sectorsize));
3308 		return -EFSCORRUPTED;
3309 	}
3310 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
3311 		le32_to_cpu(raw_super->log_sectorsize) !=
3312 			F2FS_MAX_LOG_SECTOR_SIZE) {
3313 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3314 			  le32_to_cpu(raw_super->log_sectors_per_block),
3315 			  le32_to_cpu(raw_super->log_sectorsize));
3316 		return -EFSCORRUPTED;
3317 	}
3318 
3319 	segment_count = le32_to_cpu(raw_super->segment_count);
3320 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3321 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3322 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3323 	total_sections = le32_to_cpu(raw_super->section_count);
3324 
3325 	/* blocks_per_seg should be 512, given the above check */
3326 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
3327 
3328 	if (segment_count > F2FS_MAX_SEGMENT ||
3329 				segment_count < F2FS_MIN_SEGMENTS) {
3330 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3331 		return -EFSCORRUPTED;
3332 	}
3333 
3334 	if (total_sections > segment_count_main || total_sections < 1 ||
3335 			segs_per_sec > segment_count || !segs_per_sec) {
3336 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3337 			  segment_count, total_sections, segs_per_sec);
3338 		return -EFSCORRUPTED;
3339 	}
3340 
3341 	if (segment_count_main != total_sections * segs_per_sec) {
3342 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3343 			  segment_count_main, total_sections, segs_per_sec);
3344 		return -EFSCORRUPTED;
3345 	}
3346 
3347 	if ((segment_count / segs_per_sec) < total_sections) {
3348 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3349 			  segment_count, segs_per_sec, total_sections);
3350 		return -EFSCORRUPTED;
3351 	}
3352 
3353 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3354 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3355 			  segment_count, le64_to_cpu(raw_super->block_count));
3356 		return -EFSCORRUPTED;
3357 	}
3358 
3359 	if (RDEV(0).path[0]) {
3360 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3361 		int i = 1;
3362 
3363 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
3364 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3365 			i++;
3366 		}
3367 		if (segment_count != dev_seg_count) {
3368 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3369 					segment_count, dev_seg_count);
3370 			return -EFSCORRUPTED;
3371 		}
3372 	} else {
3373 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3374 					!bdev_is_zoned(sbi->sb->s_bdev)) {
3375 			f2fs_info(sbi, "Zoned block device path is missing");
3376 			return -EFSCORRUPTED;
3377 		}
3378 	}
3379 
3380 	if (secs_per_zone > total_sections || !secs_per_zone) {
3381 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3382 			  secs_per_zone, total_sections);
3383 		return -EFSCORRUPTED;
3384 	}
3385 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3386 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3387 			(le32_to_cpu(raw_super->extension_count) +
3388 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3389 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3390 			  le32_to_cpu(raw_super->extension_count),
3391 			  raw_super->hot_ext_count,
3392 			  F2FS_MAX_EXTENSION);
3393 		return -EFSCORRUPTED;
3394 	}
3395 
3396 	if (le32_to_cpu(raw_super->cp_payload) >=
3397 				(blocks_per_seg - F2FS_CP_PACKS -
3398 				NR_CURSEG_PERSIST_TYPE)) {
3399 		f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
3400 			  le32_to_cpu(raw_super->cp_payload),
3401 			  blocks_per_seg - F2FS_CP_PACKS -
3402 			  NR_CURSEG_PERSIST_TYPE);
3403 		return -EFSCORRUPTED;
3404 	}
3405 
3406 	/* check reserved ino info */
3407 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
3408 		le32_to_cpu(raw_super->meta_ino) != 2 ||
3409 		le32_to_cpu(raw_super->root_ino) != 3) {
3410 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3411 			  le32_to_cpu(raw_super->node_ino),
3412 			  le32_to_cpu(raw_super->meta_ino),
3413 			  le32_to_cpu(raw_super->root_ino));
3414 		return -EFSCORRUPTED;
3415 	}
3416 
3417 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3418 	if (sanity_check_area_boundary(sbi, bh))
3419 		return -EFSCORRUPTED;
3420 
3421 	return 0;
3422 }
3423 
3424 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3425 {
3426 	unsigned int total, fsmeta;
3427 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3428 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3429 	unsigned int ovp_segments, reserved_segments;
3430 	unsigned int main_segs, blocks_per_seg;
3431 	unsigned int sit_segs, nat_segs;
3432 	unsigned int sit_bitmap_size, nat_bitmap_size;
3433 	unsigned int log_blocks_per_seg;
3434 	unsigned int segment_count_main;
3435 	unsigned int cp_pack_start_sum, cp_payload;
3436 	block_t user_block_count, valid_user_blocks;
3437 	block_t avail_node_count, valid_node_count;
3438 	unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3439 	int i, j;
3440 
3441 	total = le32_to_cpu(raw_super->segment_count);
3442 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3443 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3444 	fsmeta += sit_segs;
3445 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3446 	fsmeta += nat_segs;
3447 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3448 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3449 
3450 	if (unlikely(fsmeta >= total))
3451 		return 1;
3452 
3453 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3454 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3455 
3456 	if (!f2fs_sb_has_readonly(sbi) &&
3457 			unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3458 			ovp_segments == 0 || reserved_segments == 0)) {
3459 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3460 		return 1;
3461 	}
3462 	user_block_count = le64_to_cpu(ckpt->user_block_count);
3463 	segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
3464 			(f2fs_sb_has_readonly(sbi) ? 1 : 0);
3465 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3466 	if (!user_block_count || user_block_count >=
3467 			segment_count_main << log_blocks_per_seg) {
3468 		f2fs_err(sbi, "Wrong user_block_count: %u",
3469 			 user_block_count);
3470 		return 1;
3471 	}
3472 
3473 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3474 	if (valid_user_blocks > user_block_count) {
3475 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3476 			 valid_user_blocks, user_block_count);
3477 		return 1;
3478 	}
3479 
3480 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3481 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3482 	if (valid_node_count > avail_node_count) {
3483 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3484 			 valid_node_count, avail_node_count);
3485 		return 1;
3486 	}
3487 
3488 	main_segs = le32_to_cpu(raw_super->segment_count_main);
3489 	blocks_per_seg = sbi->blocks_per_seg;
3490 
3491 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3492 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3493 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3494 			return 1;
3495 
3496 		if (f2fs_sb_has_readonly(sbi))
3497 			goto check_data;
3498 
3499 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3500 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3501 				le32_to_cpu(ckpt->cur_node_segno[j])) {
3502 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3503 					 i, j,
3504 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3505 				return 1;
3506 			}
3507 		}
3508 	}
3509 check_data:
3510 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3511 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3512 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3513 			return 1;
3514 
3515 		if (f2fs_sb_has_readonly(sbi))
3516 			goto skip_cross;
3517 
3518 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3519 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3520 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3521 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3522 					 i, j,
3523 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3524 				return 1;
3525 			}
3526 		}
3527 	}
3528 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3529 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3530 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3531 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3532 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3533 					 i, j,
3534 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3535 				return 1;
3536 			}
3537 		}
3538 	}
3539 skip_cross:
3540 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3541 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3542 
3543 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3544 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3545 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3546 			 sit_bitmap_size, nat_bitmap_size);
3547 		return 1;
3548 	}
3549 
3550 	cp_pack_start_sum = __start_sum_addr(sbi);
3551 	cp_payload = __cp_payload(sbi);
3552 	if (cp_pack_start_sum < cp_payload + 1 ||
3553 		cp_pack_start_sum > blocks_per_seg - 1 -
3554 			NR_CURSEG_PERSIST_TYPE) {
3555 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3556 			 cp_pack_start_sum);
3557 		return 1;
3558 	}
3559 
3560 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3561 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3562 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3563 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3564 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3565 			  le32_to_cpu(ckpt->checksum_offset));
3566 		return 1;
3567 	}
3568 
3569 	nat_blocks = nat_segs << log_blocks_per_seg;
3570 	nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
3571 	nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3572 	if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
3573 		(cp_payload + F2FS_CP_PACKS +
3574 		NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
3575 		f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
3576 			  cp_payload, nat_bits_blocks);
3577 		return 1;
3578 	}
3579 
3580 	if (unlikely(f2fs_cp_error(sbi))) {
3581 		f2fs_err(sbi, "A bug case: need to run fsck");
3582 		return 1;
3583 	}
3584 	return 0;
3585 }
3586 
3587 static void init_sb_info(struct f2fs_sb_info *sbi)
3588 {
3589 	struct f2fs_super_block *raw_super = sbi->raw_super;
3590 	int i;
3591 
3592 	sbi->log_sectors_per_block =
3593 		le32_to_cpu(raw_super->log_sectors_per_block);
3594 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3595 	sbi->blocksize = 1 << sbi->log_blocksize;
3596 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3597 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3598 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3599 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3600 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3601 	sbi->total_node_count =
3602 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3603 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3604 	F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3605 	F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3606 	F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3607 	sbi->cur_victim_sec = NULL_SECNO;
3608 	sbi->gc_mode = GC_NORMAL;
3609 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3610 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3611 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3612 	sbi->migration_granularity = sbi->segs_per_sec;
3613 	sbi->seq_file_ra_mul = MIN_RA_MUL;
3614 	sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE;
3615 	sbi->max_fragment_hole = DEF_FRAGMENT_SIZE;
3616 	spin_lock_init(&sbi->gc_urgent_high_lock);
3617 	atomic64_set(&sbi->current_atomic_write, 0);
3618 
3619 	sbi->dir_level = DEF_DIR_LEVEL;
3620 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3621 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3622 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3623 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3624 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3625 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3626 				DEF_UMOUNT_DISCARD_TIMEOUT;
3627 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3628 
3629 	for (i = 0; i < NR_COUNT_TYPE; i++)
3630 		atomic_set(&sbi->nr_pages[i], 0);
3631 
3632 	for (i = 0; i < META; i++)
3633 		atomic_set(&sbi->wb_sync_req[i], 0);
3634 
3635 	INIT_LIST_HEAD(&sbi->s_list);
3636 	mutex_init(&sbi->umount_mutex);
3637 	init_f2fs_rwsem(&sbi->io_order_lock);
3638 	spin_lock_init(&sbi->cp_lock);
3639 
3640 	sbi->dirty_device = 0;
3641 	spin_lock_init(&sbi->dev_lock);
3642 
3643 	init_f2fs_rwsem(&sbi->sb_lock);
3644 	init_f2fs_rwsem(&sbi->pin_sem);
3645 }
3646 
3647 static int init_percpu_info(struct f2fs_sb_info *sbi)
3648 {
3649 	int err;
3650 
3651 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3652 	if (err)
3653 		return err;
3654 
3655 	err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL);
3656 	if (err)
3657 		goto err_valid_block;
3658 
3659 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3660 								GFP_KERNEL);
3661 	if (err)
3662 		goto err_node_block;
3663 	return 0;
3664 
3665 err_node_block:
3666 	percpu_counter_destroy(&sbi->rf_node_block_count);
3667 err_valid_block:
3668 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
3669 	return err;
3670 }
3671 
3672 #ifdef CONFIG_BLK_DEV_ZONED
3673 
3674 struct f2fs_report_zones_args {
3675 	struct f2fs_sb_info *sbi;
3676 	struct f2fs_dev_info *dev;
3677 };
3678 
3679 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3680 			      void *data)
3681 {
3682 	struct f2fs_report_zones_args *rz_args = data;
3683 	block_t unusable_blocks = (zone->len - zone->capacity) >>
3684 					F2FS_LOG_SECTORS_PER_BLOCK;
3685 
3686 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3687 		return 0;
3688 
3689 	set_bit(idx, rz_args->dev->blkz_seq);
3690 	if (!rz_args->sbi->unusable_blocks_per_sec) {
3691 		rz_args->sbi->unusable_blocks_per_sec = unusable_blocks;
3692 		return 0;
3693 	}
3694 	if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) {
3695 		f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n");
3696 		return -EINVAL;
3697 	}
3698 	return 0;
3699 }
3700 
3701 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3702 {
3703 	struct block_device *bdev = FDEV(devi).bdev;
3704 	sector_t nr_sectors = bdev_nr_sectors(bdev);
3705 	struct f2fs_report_zones_args rep_zone_arg;
3706 	u64 zone_sectors;
3707 	int ret;
3708 
3709 	if (!f2fs_sb_has_blkzoned(sbi))
3710 		return 0;
3711 
3712 	zone_sectors = bdev_zone_sectors(bdev);
3713 	if (!is_power_of_2(zone_sectors)) {
3714 		f2fs_err(sbi, "F2FS does not support non power of 2 zone sizes\n");
3715 		return -EINVAL;
3716 	}
3717 
3718 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3719 				SECTOR_TO_BLOCK(zone_sectors))
3720 		return -EINVAL;
3721 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors);
3722 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3723 				__ilog2_u32(sbi->blocks_per_blkz))
3724 		return -EINVAL;
3725 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3726 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3727 					sbi->log_blocks_per_blkz;
3728 	if (nr_sectors & (zone_sectors - 1))
3729 		FDEV(devi).nr_blkz++;
3730 
3731 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3732 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3733 					* sizeof(unsigned long),
3734 					GFP_KERNEL);
3735 	if (!FDEV(devi).blkz_seq)
3736 		return -ENOMEM;
3737 
3738 	rep_zone_arg.sbi = sbi;
3739 	rep_zone_arg.dev = &FDEV(devi);
3740 
3741 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3742 				  &rep_zone_arg);
3743 	if (ret < 0)
3744 		return ret;
3745 	return 0;
3746 }
3747 #endif
3748 
3749 /*
3750  * Read f2fs raw super block.
3751  * Because we have two copies of super block, so read both of them
3752  * to get the first valid one. If any one of them is broken, we pass
3753  * them recovery flag back to the caller.
3754  */
3755 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3756 			struct f2fs_super_block **raw_super,
3757 			int *valid_super_block, int *recovery)
3758 {
3759 	struct super_block *sb = sbi->sb;
3760 	int block;
3761 	struct buffer_head *bh;
3762 	struct f2fs_super_block *super;
3763 	int err = 0;
3764 
3765 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3766 	if (!super)
3767 		return -ENOMEM;
3768 
3769 	for (block = 0; block < 2; block++) {
3770 		bh = sb_bread(sb, block);
3771 		if (!bh) {
3772 			f2fs_err(sbi, "Unable to read %dth superblock",
3773 				 block + 1);
3774 			err = -EIO;
3775 			*recovery = 1;
3776 			continue;
3777 		}
3778 
3779 		/* sanity checking of raw super */
3780 		err = sanity_check_raw_super(sbi, bh);
3781 		if (err) {
3782 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3783 				 block + 1);
3784 			brelse(bh);
3785 			*recovery = 1;
3786 			continue;
3787 		}
3788 
3789 		if (!*raw_super) {
3790 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3791 							sizeof(*super));
3792 			*valid_super_block = block;
3793 			*raw_super = super;
3794 		}
3795 		brelse(bh);
3796 	}
3797 
3798 	/* No valid superblock */
3799 	if (!*raw_super)
3800 		kfree(super);
3801 	else
3802 		err = 0;
3803 
3804 	return err;
3805 }
3806 
3807 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3808 {
3809 	struct buffer_head *bh;
3810 	__u32 crc = 0;
3811 	int err;
3812 
3813 	if ((recover && f2fs_readonly(sbi->sb)) ||
3814 				bdev_read_only(sbi->sb->s_bdev)) {
3815 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3816 		return -EROFS;
3817 	}
3818 
3819 	/* we should update superblock crc here */
3820 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3821 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3822 				offsetof(struct f2fs_super_block, crc));
3823 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3824 	}
3825 
3826 	/* write back-up superblock first */
3827 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3828 	if (!bh)
3829 		return -EIO;
3830 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3831 	brelse(bh);
3832 
3833 	/* if we are in recovery path, skip writing valid superblock */
3834 	if (recover || err)
3835 		return err;
3836 
3837 	/* write current valid superblock */
3838 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3839 	if (!bh)
3840 		return -EIO;
3841 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3842 	brelse(bh);
3843 	return err;
3844 }
3845 
3846 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3847 {
3848 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3849 	unsigned int max_devices = MAX_DEVICES;
3850 	unsigned int logical_blksize;
3851 	int i;
3852 
3853 	/* Initialize single device information */
3854 	if (!RDEV(0).path[0]) {
3855 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3856 			return 0;
3857 		max_devices = 1;
3858 	}
3859 
3860 	/*
3861 	 * Initialize multiple devices information, or single
3862 	 * zoned block device information.
3863 	 */
3864 	sbi->devs = f2fs_kzalloc(sbi,
3865 				 array_size(max_devices,
3866 					    sizeof(struct f2fs_dev_info)),
3867 				 GFP_KERNEL);
3868 	if (!sbi->devs)
3869 		return -ENOMEM;
3870 
3871 	logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev);
3872 	sbi->aligned_blksize = true;
3873 
3874 	for (i = 0; i < max_devices; i++) {
3875 
3876 		if (i > 0 && !RDEV(i).path[0])
3877 			break;
3878 
3879 		if (max_devices == 1) {
3880 			/* Single zoned block device mount */
3881 			FDEV(0).bdev =
3882 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3883 					sbi->sb->s_mode, sbi->sb->s_type);
3884 		} else {
3885 			/* Multi-device mount */
3886 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3887 			FDEV(i).total_segments =
3888 				le32_to_cpu(RDEV(i).total_segments);
3889 			if (i == 0) {
3890 				FDEV(i).start_blk = 0;
3891 				FDEV(i).end_blk = FDEV(i).start_blk +
3892 				    (FDEV(i).total_segments <<
3893 				    sbi->log_blocks_per_seg) - 1 +
3894 				    le32_to_cpu(raw_super->segment0_blkaddr);
3895 			} else {
3896 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3897 				FDEV(i).end_blk = FDEV(i).start_blk +
3898 					(FDEV(i).total_segments <<
3899 					sbi->log_blocks_per_seg) - 1;
3900 			}
3901 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3902 					sbi->sb->s_mode, sbi->sb->s_type);
3903 		}
3904 		if (IS_ERR(FDEV(i).bdev))
3905 			return PTR_ERR(FDEV(i).bdev);
3906 
3907 		/* to release errored devices */
3908 		sbi->s_ndevs = i + 1;
3909 
3910 		if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev))
3911 			sbi->aligned_blksize = false;
3912 
3913 #ifdef CONFIG_BLK_DEV_ZONED
3914 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3915 				!f2fs_sb_has_blkzoned(sbi)) {
3916 			f2fs_err(sbi, "Zoned block device feature not enabled");
3917 			return -EINVAL;
3918 		}
3919 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3920 			if (init_blkz_info(sbi, i)) {
3921 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3922 				return -EINVAL;
3923 			}
3924 			if (max_devices == 1)
3925 				break;
3926 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3927 				  i, FDEV(i).path,
3928 				  FDEV(i).total_segments,
3929 				  FDEV(i).start_blk, FDEV(i).end_blk,
3930 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3931 				  "Host-aware" : "Host-managed");
3932 			continue;
3933 		}
3934 #endif
3935 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3936 			  i, FDEV(i).path,
3937 			  FDEV(i).total_segments,
3938 			  FDEV(i).start_blk, FDEV(i).end_blk);
3939 	}
3940 	f2fs_info(sbi,
3941 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3942 	return 0;
3943 }
3944 
3945 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3946 {
3947 #if IS_ENABLED(CONFIG_UNICODE)
3948 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3949 		const struct f2fs_sb_encodings *encoding_info;
3950 		struct unicode_map *encoding;
3951 		__u16 encoding_flags;
3952 
3953 		encoding_info = f2fs_sb_read_encoding(sbi->raw_super);
3954 		if (!encoding_info) {
3955 			f2fs_err(sbi,
3956 				 "Encoding requested by superblock is unknown");
3957 			return -EINVAL;
3958 		}
3959 
3960 		encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags);
3961 		encoding = utf8_load(encoding_info->version);
3962 		if (IS_ERR(encoding)) {
3963 			f2fs_err(sbi,
3964 				 "can't mount with superblock charset: %s-%u.%u.%u "
3965 				 "not supported by the kernel. flags: 0x%x.",
3966 				 encoding_info->name,
3967 				 unicode_major(encoding_info->version),
3968 				 unicode_minor(encoding_info->version),
3969 				 unicode_rev(encoding_info->version),
3970 				 encoding_flags);
3971 			return PTR_ERR(encoding);
3972 		}
3973 		f2fs_info(sbi, "Using encoding defined by superblock: "
3974 			 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
3975 			 unicode_major(encoding_info->version),
3976 			 unicode_minor(encoding_info->version),
3977 			 unicode_rev(encoding_info->version),
3978 			 encoding_flags);
3979 
3980 		sbi->sb->s_encoding = encoding;
3981 		sbi->sb->s_encoding_flags = encoding_flags;
3982 	}
3983 #else
3984 	if (f2fs_sb_has_casefold(sbi)) {
3985 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3986 		return -EINVAL;
3987 	}
3988 #endif
3989 	return 0;
3990 }
3991 
3992 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3993 {
3994 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3995 
3996 	/* adjust parameters according to the volume size */
3997 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3998 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3999 		if (f2fs_block_unit_discard(sbi))
4000 			sm_i->dcc_info->discard_granularity = 1;
4001 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE |
4002 					1 << F2FS_IPU_HONOR_OPU_WRITE;
4003 	}
4004 
4005 	sbi->readdir_ra = 1;
4006 }
4007 
4008 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
4009 {
4010 	struct f2fs_sb_info *sbi;
4011 	struct f2fs_super_block *raw_super;
4012 	struct inode *root;
4013 	int err;
4014 	bool skip_recovery = false, need_fsck = false;
4015 	char *options = NULL;
4016 	int recovery, i, valid_super_block;
4017 	struct curseg_info *seg_i;
4018 	int retry_cnt = 1;
4019 
4020 try_onemore:
4021 	err = -EINVAL;
4022 	raw_super = NULL;
4023 	valid_super_block = -1;
4024 	recovery = 0;
4025 
4026 	/* allocate memory for f2fs-specific super block info */
4027 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
4028 	if (!sbi)
4029 		return -ENOMEM;
4030 
4031 	sbi->sb = sb;
4032 
4033 	/* Load the checksum driver */
4034 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
4035 	if (IS_ERR(sbi->s_chksum_driver)) {
4036 		f2fs_err(sbi, "Cannot load crc32 driver.");
4037 		err = PTR_ERR(sbi->s_chksum_driver);
4038 		sbi->s_chksum_driver = NULL;
4039 		goto free_sbi;
4040 	}
4041 
4042 	/* set a block size */
4043 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
4044 		f2fs_err(sbi, "unable to set blocksize");
4045 		goto free_sbi;
4046 	}
4047 
4048 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
4049 								&recovery);
4050 	if (err)
4051 		goto free_sbi;
4052 
4053 	sb->s_fs_info = sbi;
4054 	sbi->raw_super = raw_super;
4055 
4056 	/* precompute checksum seed for metadata */
4057 	if (f2fs_sb_has_inode_chksum(sbi))
4058 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
4059 						sizeof(raw_super->uuid));
4060 
4061 	default_options(sbi);
4062 	/* parse mount options */
4063 	options = kstrdup((const char *)data, GFP_KERNEL);
4064 	if (data && !options) {
4065 		err = -ENOMEM;
4066 		goto free_sb_buf;
4067 	}
4068 
4069 	err = parse_options(sb, options, false);
4070 	if (err)
4071 		goto free_options;
4072 
4073 	sb->s_maxbytes = max_file_blocks(NULL) <<
4074 				le32_to_cpu(raw_super->log_blocksize);
4075 	sb->s_max_links = F2FS_LINK_MAX;
4076 
4077 	err = f2fs_setup_casefold(sbi);
4078 	if (err)
4079 		goto free_options;
4080 
4081 #ifdef CONFIG_QUOTA
4082 	sb->dq_op = &f2fs_quota_operations;
4083 	sb->s_qcop = &f2fs_quotactl_ops;
4084 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4085 
4086 	if (f2fs_sb_has_quota_ino(sbi)) {
4087 		for (i = 0; i < MAXQUOTAS; i++) {
4088 			if (f2fs_qf_ino(sbi->sb, i))
4089 				sbi->nquota_files++;
4090 		}
4091 	}
4092 #endif
4093 
4094 	sb->s_op = &f2fs_sops;
4095 #ifdef CONFIG_FS_ENCRYPTION
4096 	sb->s_cop = &f2fs_cryptops;
4097 #endif
4098 #ifdef CONFIG_FS_VERITY
4099 	sb->s_vop = &f2fs_verityops;
4100 #endif
4101 	sb->s_xattr = f2fs_xattr_handlers;
4102 	sb->s_export_op = &f2fs_export_ops;
4103 	sb->s_magic = F2FS_SUPER_MAGIC;
4104 	sb->s_time_gran = 1;
4105 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4106 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
4107 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
4108 	sb->s_iflags |= SB_I_CGROUPWB;
4109 
4110 	/* init f2fs-specific super block info */
4111 	sbi->valid_super_block = valid_super_block;
4112 	init_f2fs_rwsem(&sbi->gc_lock);
4113 	mutex_init(&sbi->writepages);
4114 	init_f2fs_rwsem(&sbi->cp_global_sem);
4115 	init_f2fs_rwsem(&sbi->node_write);
4116 	init_f2fs_rwsem(&sbi->node_change);
4117 
4118 	/* disallow all the data/node/meta page writes */
4119 	set_sbi_flag(sbi, SBI_POR_DOING);
4120 	spin_lock_init(&sbi->stat_lock);
4121 
4122 	err = f2fs_init_write_merge_io(sbi);
4123 	if (err)
4124 		goto free_bio_info;
4125 
4126 	init_f2fs_rwsem(&sbi->cp_rwsem);
4127 	init_f2fs_rwsem(&sbi->quota_sem);
4128 	init_waitqueue_head(&sbi->cp_wait);
4129 	init_sb_info(sbi);
4130 
4131 	err = f2fs_init_iostat(sbi);
4132 	if (err)
4133 		goto free_bio_info;
4134 
4135 	err = init_percpu_info(sbi);
4136 	if (err)
4137 		goto free_iostat;
4138 
4139 	if (F2FS_IO_ALIGNED(sbi)) {
4140 		sbi->write_io_dummy =
4141 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
4142 		if (!sbi->write_io_dummy) {
4143 			err = -ENOMEM;
4144 			goto free_percpu;
4145 		}
4146 	}
4147 
4148 	/* init per sbi slab cache */
4149 	err = f2fs_init_xattr_caches(sbi);
4150 	if (err)
4151 		goto free_io_dummy;
4152 	err = f2fs_init_page_array_cache(sbi);
4153 	if (err)
4154 		goto free_xattr_cache;
4155 
4156 	/* get an inode for meta space */
4157 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
4158 	if (IS_ERR(sbi->meta_inode)) {
4159 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
4160 		err = PTR_ERR(sbi->meta_inode);
4161 		goto free_page_array_cache;
4162 	}
4163 
4164 	err = f2fs_get_valid_checkpoint(sbi);
4165 	if (err) {
4166 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
4167 		goto free_meta_inode;
4168 	}
4169 
4170 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
4171 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
4172 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
4173 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4174 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
4175 	}
4176 
4177 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
4178 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4179 
4180 	/* Initialize device list */
4181 	err = f2fs_scan_devices(sbi);
4182 	if (err) {
4183 		f2fs_err(sbi, "Failed to find devices");
4184 		goto free_devices;
4185 	}
4186 
4187 	err = f2fs_init_post_read_wq(sbi);
4188 	if (err) {
4189 		f2fs_err(sbi, "Failed to initialize post read workqueue");
4190 		goto free_devices;
4191 	}
4192 
4193 	sbi->total_valid_node_count =
4194 				le32_to_cpu(sbi->ckpt->valid_node_count);
4195 	percpu_counter_set(&sbi->total_valid_inode_count,
4196 				le32_to_cpu(sbi->ckpt->valid_inode_count));
4197 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
4198 	sbi->total_valid_block_count =
4199 				le64_to_cpu(sbi->ckpt->valid_block_count);
4200 	sbi->last_valid_block_count = sbi->total_valid_block_count;
4201 	sbi->reserved_blocks = 0;
4202 	sbi->current_reserved_blocks = 0;
4203 	limit_reserve_root(sbi);
4204 	adjust_unusable_cap_perc(sbi);
4205 
4206 	for (i = 0; i < NR_INODE_TYPE; i++) {
4207 		INIT_LIST_HEAD(&sbi->inode_list[i]);
4208 		spin_lock_init(&sbi->inode_lock[i]);
4209 	}
4210 	mutex_init(&sbi->flush_lock);
4211 
4212 	f2fs_init_extent_cache_info(sbi);
4213 
4214 	f2fs_init_ino_entry_info(sbi);
4215 
4216 	f2fs_init_fsync_node_info(sbi);
4217 
4218 	/* setup checkpoint request control and start checkpoint issue thread */
4219 	f2fs_init_ckpt_req_control(sbi);
4220 	if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
4221 			test_opt(sbi, MERGE_CHECKPOINT)) {
4222 		err = f2fs_start_ckpt_thread(sbi);
4223 		if (err) {
4224 			f2fs_err(sbi,
4225 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
4226 			    err);
4227 			goto stop_ckpt_thread;
4228 		}
4229 	}
4230 
4231 	/* setup f2fs internal modules */
4232 	err = f2fs_build_segment_manager(sbi);
4233 	if (err) {
4234 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
4235 			 err);
4236 		goto free_sm;
4237 	}
4238 	err = f2fs_build_node_manager(sbi);
4239 	if (err) {
4240 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
4241 			 err);
4242 		goto free_nm;
4243 	}
4244 
4245 	err = adjust_reserved_segment(sbi);
4246 	if (err)
4247 		goto free_nm;
4248 
4249 	/* For write statistics */
4250 	sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
4251 
4252 	/* Read accumulated write IO statistics if exists */
4253 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
4254 	if (__exist_node_summaries(sbi))
4255 		sbi->kbytes_written =
4256 			le64_to_cpu(seg_i->journal->info.kbytes_written);
4257 
4258 	f2fs_build_gc_manager(sbi);
4259 
4260 	err = f2fs_build_stats(sbi);
4261 	if (err)
4262 		goto free_nm;
4263 
4264 	/* get an inode for node space */
4265 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
4266 	if (IS_ERR(sbi->node_inode)) {
4267 		f2fs_err(sbi, "Failed to read node inode");
4268 		err = PTR_ERR(sbi->node_inode);
4269 		goto free_stats;
4270 	}
4271 
4272 	/* read root inode and dentry */
4273 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
4274 	if (IS_ERR(root)) {
4275 		f2fs_err(sbi, "Failed to read root inode");
4276 		err = PTR_ERR(root);
4277 		goto free_node_inode;
4278 	}
4279 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
4280 			!root->i_size || !root->i_nlink) {
4281 		iput(root);
4282 		err = -EINVAL;
4283 		goto free_node_inode;
4284 	}
4285 
4286 	sb->s_root = d_make_root(root); /* allocate root dentry */
4287 	if (!sb->s_root) {
4288 		err = -ENOMEM;
4289 		goto free_node_inode;
4290 	}
4291 
4292 	err = f2fs_init_compress_inode(sbi);
4293 	if (err)
4294 		goto free_root_inode;
4295 
4296 	err = f2fs_register_sysfs(sbi);
4297 	if (err)
4298 		goto free_compress_inode;
4299 
4300 #ifdef CONFIG_QUOTA
4301 	/* Enable quota usage during mount */
4302 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
4303 		err = f2fs_enable_quotas(sb);
4304 		if (err)
4305 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
4306 	}
4307 #endif
4308 	/* if there are any orphan inodes, free them */
4309 	err = f2fs_recover_orphan_inodes(sbi);
4310 	if (err)
4311 		goto free_meta;
4312 
4313 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
4314 		goto reset_checkpoint;
4315 
4316 	/* recover fsynced data */
4317 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
4318 			!test_opt(sbi, NORECOVERY)) {
4319 		/*
4320 		 * mount should be failed, when device has readonly mode, and
4321 		 * previous checkpoint was not done by clean system shutdown.
4322 		 */
4323 		if (f2fs_hw_is_readonly(sbi)) {
4324 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4325 				err = f2fs_recover_fsync_data(sbi, true);
4326 				if (err > 0) {
4327 					err = -EROFS;
4328 					f2fs_err(sbi, "Need to recover fsync data, but "
4329 						"write access unavailable, please try "
4330 						"mount w/ disable_roll_forward or norecovery");
4331 				}
4332 				if (err < 0)
4333 					goto free_meta;
4334 			}
4335 			f2fs_info(sbi, "write access unavailable, skipping recovery");
4336 			goto reset_checkpoint;
4337 		}
4338 
4339 		if (need_fsck)
4340 			set_sbi_flag(sbi, SBI_NEED_FSCK);
4341 
4342 		if (skip_recovery)
4343 			goto reset_checkpoint;
4344 
4345 		err = f2fs_recover_fsync_data(sbi, false);
4346 		if (err < 0) {
4347 			if (err != -ENOMEM)
4348 				skip_recovery = true;
4349 			need_fsck = true;
4350 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
4351 				 err);
4352 			goto free_meta;
4353 		}
4354 	} else {
4355 		err = f2fs_recover_fsync_data(sbi, true);
4356 
4357 		if (!f2fs_readonly(sb) && err > 0) {
4358 			err = -EINVAL;
4359 			f2fs_err(sbi, "Need to recover fsync data");
4360 			goto free_meta;
4361 		}
4362 	}
4363 
4364 	/*
4365 	 * If the f2fs is not readonly and fsync data recovery succeeds,
4366 	 * check zoned block devices' write pointer consistency.
4367 	 */
4368 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
4369 		err = f2fs_check_write_pointer(sbi);
4370 		if (err)
4371 			goto free_meta;
4372 	}
4373 
4374 reset_checkpoint:
4375 	f2fs_init_inmem_curseg(sbi);
4376 
4377 	/* f2fs_recover_fsync_data() cleared this already */
4378 	clear_sbi_flag(sbi, SBI_POR_DOING);
4379 
4380 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
4381 		err = f2fs_disable_checkpoint(sbi);
4382 		if (err)
4383 			goto sync_free_meta;
4384 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
4385 		f2fs_enable_checkpoint(sbi);
4386 	}
4387 
4388 	/*
4389 	 * If filesystem is not mounted as read-only then
4390 	 * do start the gc_thread.
4391 	 */
4392 	if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
4393 		test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
4394 		/* After POR, we can run background GC thread.*/
4395 		err = f2fs_start_gc_thread(sbi);
4396 		if (err)
4397 			goto sync_free_meta;
4398 	}
4399 	kvfree(options);
4400 
4401 	/* recover broken superblock */
4402 	if (recovery) {
4403 		err = f2fs_commit_super(sbi, true);
4404 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
4405 			  sbi->valid_super_block ? 1 : 2, err);
4406 	}
4407 
4408 	f2fs_join_shrinker(sbi);
4409 
4410 	f2fs_tuning_parameters(sbi);
4411 
4412 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
4413 		    cur_cp_version(F2FS_CKPT(sbi)));
4414 	f2fs_update_time(sbi, CP_TIME);
4415 	f2fs_update_time(sbi, REQ_TIME);
4416 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4417 	return 0;
4418 
4419 sync_free_meta:
4420 	/* safe to flush all the data */
4421 	sync_filesystem(sbi->sb);
4422 	retry_cnt = 0;
4423 
4424 free_meta:
4425 #ifdef CONFIG_QUOTA
4426 	f2fs_truncate_quota_inode_pages(sb);
4427 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4428 		f2fs_quota_off_umount(sbi->sb);
4429 #endif
4430 	/*
4431 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4432 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4433 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4434 	 * falls into an infinite loop in f2fs_sync_meta_pages().
4435 	 */
4436 	truncate_inode_pages_final(META_MAPPING(sbi));
4437 	/* evict some inodes being cached by GC */
4438 	evict_inodes(sb);
4439 	f2fs_unregister_sysfs(sbi);
4440 free_compress_inode:
4441 	f2fs_destroy_compress_inode(sbi);
4442 free_root_inode:
4443 	dput(sb->s_root);
4444 	sb->s_root = NULL;
4445 free_node_inode:
4446 	f2fs_release_ino_entry(sbi, true);
4447 	truncate_inode_pages_final(NODE_MAPPING(sbi));
4448 	iput(sbi->node_inode);
4449 	sbi->node_inode = NULL;
4450 free_stats:
4451 	f2fs_destroy_stats(sbi);
4452 free_nm:
4453 	/* stop discard thread before destroying node manager */
4454 	f2fs_stop_discard_thread(sbi);
4455 	f2fs_destroy_node_manager(sbi);
4456 free_sm:
4457 	f2fs_destroy_segment_manager(sbi);
4458 	f2fs_destroy_post_read_wq(sbi);
4459 stop_ckpt_thread:
4460 	f2fs_stop_ckpt_thread(sbi);
4461 free_devices:
4462 	destroy_device_list(sbi);
4463 	kvfree(sbi->ckpt);
4464 free_meta_inode:
4465 	make_bad_inode(sbi->meta_inode);
4466 	iput(sbi->meta_inode);
4467 	sbi->meta_inode = NULL;
4468 free_page_array_cache:
4469 	f2fs_destroy_page_array_cache(sbi);
4470 free_xattr_cache:
4471 	f2fs_destroy_xattr_caches(sbi);
4472 free_io_dummy:
4473 	mempool_destroy(sbi->write_io_dummy);
4474 free_percpu:
4475 	destroy_percpu_info(sbi);
4476 free_iostat:
4477 	f2fs_destroy_iostat(sbi);
4478 free_bio_info:
4479 	for (i = 0; i < NR_PAGE_TYPE; i++)
4480 		kvfree(sbi->write_io[i]);
4481 
4482 #if IS_ENABLED(CONFIG_UNICODE)
4483 	utf8_unload(sb->s_encoding);
4484 	sb->s_encoding = NULL;
4485 #endif
4486 free_options:
4487 #ifdef CONFIG_QUOTA
4488 	for (i = 0; i < MAXQUOTAS; i++)
4489 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4490 #endif
4491 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4492 	kvfree(options);
4493 free_sb_buf:
4494 	kfree(raw_super);
4495 free_sbi:
4496 	if (sbi->s_chksum_driver)
4497 		crypto_free_shash(sbi->s_chksum_driver);
4498 	kfree(sbi);
4499 
4500 	/* give only one another chance */
4501 	if (retry_cnt > 0 && skip_recovery) {
4502 		retry_cnt--;
4503 		shrink_dcache_sb(sb);
4504 		goto try_onemore;
4505 	}
4506 	return err;
4507 }
4508 
4509 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4510 			const char *dev_name, void *data)
4511 {
4512 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4513 }
4514 
4515 static void kill_f2fs_super(struct super_block *sb)
4516 {
4517 	if (sb->s_root) {
4518 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
4519 
4520 		set_sbi_flag(sbi, SBI_IS_CLOSE);
4521 		f2fs_stop_gc_thread(sbi);
4522 		f2fs_stop_discard_thread(sbi);
4523 
4524 #ifdef CONFIG_F2FS_FS_COMPRESSION
4525 		/*
4526 		 * latter evict_inode() can bypass checking and invalidating
4527 		 * compress inode cache.
4528 		 */
4529 		if (test_opt(sbi, COMPRESS_CACHE))
4530 			truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
4531 #endif
4532 
4533 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4534 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4535 			struct cp_control cpc = {
4536 				.reason = CP_UMOUNT,
4537 			};
4538 			f2fs_write_checkpoint(sbi, &cpc);
4539 		}
4540 
4541 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4542 			sb->s_flags &= ~SB_RDONLY;
4543 	}
4544 	kill_block_super(sb);
4545 }
4546 
4547 static struct file_system_type f2fs_fs_type = {
4548 	.owner		= THIS_MODULE,
4549 	.name		= "f2fs",
4550 	.mount		= f2fs_mount,
4551 	.kill_sb	= kill_f2fs_super,
4552 	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
4553 };
4554 MODULE_ALIAS_FS("f2fs");
4555 
4556 static int __init init_inodecache(void)
4557 {
4558 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4559 			sizeof(struct f2fs_inode_info), 0,
4560 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4561 	if (!f2fs_inode_cachep)
4562 		return -ENOMEM;
4563 	return 0;
4564 }
4565 
4566 static void destroy_inodecache(void)
4567 {
4568 	/*
4569 	 * Make sure all delayed rcu free inodes are flushed before we
4570 	 * destroy cache.
4571 	 */
4572 	rcu_barrier();
4573 	kmem_cache_destroy(f2fs_inode_cachep);
4574 }
4575 
4576 static int __init init_f2fs_fs(void)
4577 {
4578 	int err;
4579 
4580 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4581 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4582 				PAGE_SIZE, F2FS_BLKSIZE);
4583 		return -EINVAL;
4584 	}
4585 
4586 	err = init_inodecache();
4587 	if (err)
4588 		goto fail;
4589 	err = f2fs_create_node_manager_caches();
4590 	if (err)
4591 		goto free_inodecache;
4592 	err = f2fs_create_segment_manager_caches();
4593 	if (err)
4594 		goto free_node_manager_caches;
4595 	err = f2fs_create_checkpoint_caches();
4596 	if (err)
4597 		goto free_segment_manager_caches;
4598 	err = f2fs_create_recovery_cache();
4599 	if (err)
4600 		goto free_checkpoint_caches;
4601 	err = f2fs_create_extent_cache();
4602 	if (err)
4603 		goto free_recovery_cache;
4604 	err = f2fs_create_garbage_collection_cache();
4605 	if (err)
4606 		goto free_extent_cache;
4607 	err = f2fs_init_sysfs();
4608 	if (err)
4609 		goto free_garbage_collection_cache;
4610 	err = register_shrinker(&f2fs_shrinker_info, "f2fs-shrinker");
4611 	if (err)
4612 		goto free_sysfs;
4613 	err = register_filesystem(&f2fs_fs_type);
4614 	if (err)
4615 		goto free_shrinker;
4616 	f2fs_create_root_stats();
4617 	err = f2fs_init_post_read_processing();
4618 	if (err)
4619 		goto free_root_stats;
4620 	err = f2fs_init_iostat_processing();
4621 	if (err)
4622 		goto free_post_read;
4623 	err = f2fs_init_bio_entry_cache();
4624 	if (err)
4625 		goto free_iostat;
4626 	err = f2fs_init_bioset();
4627 	if (err)
4628 		goto free_bio_enrty_cache;
4629 	err = f2fs_init_compress_mempool();
4630 	if (err)
4631 		goto free_bioset;
4632 	err = f2fs_init_compress_cache();
4633 	if (err)
4634 		goto free_compress_mempool;
4635 	err = f2fs_create_casefold_cache();
4636 	if (err)
4637 		goto free_compress_cache;
4638 	return 0;
4639 free_compress_cache:
4640 	f2fs_destroy_compress_cache();
4641 free_compress_mempool:
4642 	f2fs_destroy_compress_mempool();
4643 free_bioset:
4644 	f2fs_destroy_bioset();
4645 free_bio_enrty_cache:
4646 	f2fs_destroy_bio_entry_cache();
4647 free_iostat:
4648 	f2fs_destroy_iostat_processing();
4649 free_post_read:
4650 	f2fs_destroy_post_read_processing();
4651 free_root_stats:
4652 	f2fs_destroy_root_stats();
4653 	unregister_filesystem(&f2fs_fs_type);
4654 free_shrinker:
4655 	unregister_shrinker(&f2fs_shrinker_info);
4656 free_sysfs:
4657 	f2fs_exit_sysfs();
4658 free_garbage_collection_cache:
4659 	f2fs_destroy_garbage_collection_cache();
4660 free_extent_cache:
4661 	f2fs_destroy_extent_cache();
4662 free_recovery_cache:
4663 	f2fs_destroy_recovery_cache();
4664 free_checkpoint_caches:
4665 	f2fs_destroy_checkpoint_caches();
4666 free_segment_manager_caches:
4667 	f2fs_destroy_segment_manager_caches();
4668 free_node_manager_caches:
4669 	f2fs_destroy_node_manager_caches();
4670 free_inodecache:
4671 	destroy_inodecache();
4672 fail:
4673 	return err;
4674 }
4675 
4676 static void __exit exit_f2fs_fs(void)
4677 {
4678 	f2fs_destroy_casefold_cache();
4679 	f2fs_destroy_compress_cache();
4680 	f2fs_destroy_compress_mempool();
4681 	f2fs_destroy_bioset();
4682 	f2fs_destroy_bio_entry_cache();
4683 	f2fs_destroy_iostat_processing();
4684 	f2fs_destroy_post_read_processing();
4685 	f2fs_destroy_root_stats();
4686 	unregister_filesystem(&f2fs_fs_type);
4687 	unregister_shrinker(&f2fs_shrinker_info);
4688 	f2fs_exit_sysfs();
4689 	f2fs_destroy_garbage_collection_cache();
4690 	f2fs_destroy_extent_cache();
4691 	f2fs_destroy_recovery_cache();
4692 	f2fs_destroy_checkpoint_caches();
4693 	f2fs_destroy_segment_manager_caches();
4694 	f2fs_destroy_node_manager_caches();
4695 	destroy_inodecache();
4696 }
4697 
4698 module_init(init_f2fs_fs)
4699 module_exit(exit_f2fs_fs)
4700 
4701 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4702 MODULE_DESCRIPTION("Flash Friendly File System");
4703 MODULE_LICENSE("GPL");
4704 MODULE_SOFTDEP("pre: crc32");
4705 
4706