1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/sched/mm.h> 12 #include <linux/statfs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 #include <linux/unicode.h> 27 #include <linux/part_stat.h> 28 #include <linux/zstd.h> 29 #include <linux/lz4.h> 30 31 #include "f2fs.h" 32 #include "node.h" 33 #include "segment.h" 34 #include "xattr.h" 35 #include "gc.h" 36 #include "iostat.h" 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/f2fs.h> 40 41 static struct kmem_cache *f2fs_inode_cachep; 42 43 #ifdef CONFIG_F2FS_FAULT_INJECTION 44 45 const char *f2fs_fault_name[FAULT_MAX] = { 46 [FAULT_KMALLOC] = "kmalloc", 47 [FAULT_KVMALLOC] = "kvmalloc", 48 [FAULT_PAGE_ALLOC] = "page alloc", 49 [FAULT_PAGE_GET] = "page get", 50 [FAULT_ALLOC_NID] = "alloc nid", 51 [FAULT_ORPHAN] = "orphan", 52 [FAULT_BLOCK] = "no more block", 53 [FAULT_DIR_DEPTH] = "too big dir depth", 54 [FAULT_EVICT_INODE] = "evict_inode fail", 55 [FAULT_TRUNCATE] = "truncate fail", 56 [FAULT_READ_IO] = "read IO error", 57 [FAULT_CHECKPOINT] = "checkpoint error", 58 [FAULT_DISCARD] = "discard error", 59 [FAULT_WRITE_IO] = "write IO error", 60 [FAULT_SLAB_ALLOC] = "slab alloc", 61 [FAULT_DQUOT_INIT] = "dquot initialize", 62 [FAULT_LOCK_OP] = "lock_op", 63 }; 64 65 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 66 unsigned int type) 67 { 68 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 69 70 if (rate) { 71 atomic_set(&ffi->inject_ops, 0); 72 ffi->inject_rate = rate; 73 } 74 75 if (type) 76 ffi->inject_type = type; 77 78 if (!rate && !type) 79 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 80 } 81 #endif 82 83 /* f2fs-wide shrinker description */ 84 static struct shrinker f2fs_shrinker_info = { 85 .scan_objects = f2fs_shrink_scan, 86 .count_objects = f2fs_shrink_count, 87 .seeks = DEFAULT_SEEKS, 88 }; 89 90 enum { 91 Opt_gc_background, 92 Opt_disable_roll_forward, 93 Opt_norecovery, 94 Opt_discard, 95 Opt_nodiscard, 96 Opt_noheap, 97 Opt_heap, 98 Opt_user_xattr, 99 Opt_nouser_xattr, 100 Opt_acl, 101 Opt_noacl, 102 Opt_active_logs, 103 Opt_disable_ext_identify, 104 Opt_inline_xattr, 105 Opt_noinline_xattr, 106 Opt_inline_xattr_size, 107 Opt_inline_data, 108 Opt_inline_dentry, 109 Opt_noinline_dentry, 110 Opt_flush_merge, 111 Opt_noflush_merge, 112 Opt_nobarrier, 113 Opt_fastboot, 114 Opt_extent_cache, 115 Opt_noextent_cache, 116 Opt_noinline_data, 117 Opt_data_flush, 118 Opt_reserve_root, 119 Opt_resgid, 120 Opt_resuid, 121 Opt_mode, 122 Opt_io_size_bits, 123 Opt_fault_injection, 124 Opt_fault_type, 125 Opt_lazytime, 126 Opt_nolazytime, 127 Opt_quota, 128 Opt_noquota, 129 Opt_usrquota, 130 Opt_grpquota, 131 Opt_prjquota, 132 Opt_usrjquota, 133 Opt_grpjquota, 134 Opt_prjjquota, 135 Opt_offusrjquota, 136 Opt_offgrpjquota, 137 Opt_offprjjquota, 138 Opt_jqfmt_vfsold, 139 Opt_jqfmt_vfsv0, 140 Opt_jqfmt_vfsv1, 141 Opt_alloc, 142 Opt_fsync, 143 Opt_test_dummy_encryption, 144 Opt_inlinecrypt, 145 Opt_checkpoint_disable, 146 Opt_checkpoint_disable_cap, 147 Opt_checkpoint_disable_cap_perc, 148 Opt_checkpoint_enable, 149 Opt_checkpoint_merge, 150 Opt_nocheckpoint_merge, 151 Opt_compress_algorithm, 152 Opt_compress_log_size, 153 Opt_compress_extension, 154 Opt_nocompress_extension, 155 Opt_compress_chksum, 156 Opt_compress_mode, 157 Opt_compress_cache, 158 Opt_atgc, 159 Opt_gc_merge, 160 Opt_nogc_merge, 161 Opt_discard_unit, 162 Opt_err, 163 }; 164 165 static match_table_t f2fs_tokens = { 166 {Opt_gc_background, "background_gc=%s"}, 167 {Opt_disable_roll_forward, "disable_roll_forward"}, 168 {Opt_norecovery, "norecovery"}, 169 {Opt_discard, "discard"}, 170 {Opt_nodiscard, "nodiscard"}, 171 {Opt_noheap, "no_heap"}, 172 {Opt_heap, "heap"}, 173 {Opt_user_xattr, "user_xattr"}, 174 {Opt_nouser_xattr, "nouser_xattr"}, 175 {Opt_acl, "acl"}, 176 {Opt_noacl, "noacl"}, 177 {Opt_active_logs, "active_logs=%u"}, 178 {Opt_disable_ext_identify, "disable_ext_identify"}, 179 {Opt_inline_xattr, "inline_xattr"}, 180 {Opt_noinline_xattr, "noinline_xattr"}, 181 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 182 {Opt_inline_data, "inline_data"}, 183 {Opt_inline_dentry, "inline_dentry"}, 184 {Opt_noinline_dentry, "noinline_dentry"}, 185 {Opt_flush_merge, "flush_merge"}, 186 {Opt_noflush_merge, "noflush_merge"}, 187 {Opt_nobarrier, "nobarrier"}, 188 {Opt_fastboot, "fastboot"}, 189 {Opt_extent_cache, "extent_cache"}, 190 {Opt_noextent_cache, "noextent_cache"}, 191 {Opt_noinline_data, "noinline_data"}, 192 {Opt_data_flush, "data_flush"}, 193 {Opt_reserve_root, "reserve_root=%u"}, 194 {Opt_resgid, "resgid=%u"}, 195 {Opt_resuid, "resuid=%u"}, 196 {Opt_mode, "mode=%s"}, 197 {Opt_io_size_bits, "io_bits=%u"}, 198 {Opt_fault_injection, "fault_injection=%u"}, 199 {Opt_fault_type, "fault_type=%u"}, 200 {Opt_lazytime, "lazytime"}, 201 {Opt_nolazytime, "nolazytime"}, 202 {Opt_quota, "quota"}, 203 {Opt_noquota, "noquota"}, 204 {Opt_usrquota, "usrquota"}, 205 {Opt_grpquota, "grpquota"}, 206 {Opt_prjquota, "prjquota"}, 207 {Opt_usrjquota, "usrjquota=%s"}, 208 {Opt_grpjquota, "grpjquota=%s"}, 209 {Opt_prjjquota, "prjjquota=%s"}, 210 {Opt_offusrjquota, "usrjquota="}, 211 {Opt_offgrpjquota, "grpjquota="}, 212 {Opt_offprjjquota, "prjjquota="}, 213 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 214 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 215 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 216 {Opt_alloc, "alloc_mode=%s"}, 217 {Opt_fsync, "fsync_mode=%s"}, 218 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 219 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 220 {Opt_inlinecrypt, "inlinecrypt"}, 221 {Opt_checkpoint_disable, "checkpoint=disable"}, 222 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 223 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 224 {Opt_checkpoint_enable, "checkpoint=enable"}, 225 {Opt_checkpoint_merge, "checkpoint_merge"}, 226 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 227 {Opt_compress_algorithm, "compress_algorithm=%s"}, 228 {Opt_compress_log_size, "compress_log_size=%u"}, 229 {Opt_compress_extension, "compress_extension=%s"}, 230 {Opt_nocompress_extension, "nocompress_extension=%s"}, 231 {Opt_compress_chksum, "compress_chksum"}, 232 {Opt_compress_mode, "compress_mode=%s"}, 233 {Opt_compress_cache, "compress_cache"}, 234 {Opt_atgc, "atgc"}, 235 {Opt_gc_merge, "gc_merge"}, 236 {Opt_nogc_merge, "nogc_merge"}, 237 {Opt_discard_unit, "discard_unit=%s"}, 238 {Opt_err, NULL}, 239 }; 240 241 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 242 { 243 struct va_format vaf; 244 va_list args; 245 int level; 246 247 va_start(args, fmt); 248 249 level = printk_get_level(fmt); 250 vaf.fmt = printk_skip_level(fmt); 251 vaf.va = &args; 252 printk("%c%cF2FS-fs (%s): %pV\n", 253 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 254 255 va_end(args); 256 } 257 258 #if IS_ENABLED(CONFIG_UNICODE) 259 static const struct f2fs_sb_encodings { 260 __u16 magic; 261 char *name; 262 unsigned int version; 263 } f2fs_sb_encoding_map[] = { 264 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 265 }; 266 267 static const struct f2fs_sb_encodings * 268 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 269 { 270 __u16 magic = le16_to_cpu(sb->s_encoding); 271 int i; 272 273 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 274 if (magic == f2fs_sb_encoding_map[i].magic) 275 return &f2fs_sb_encoding_map[i]; 276 277 return NULL; 278 } 279 280 struct kmem_cache *f2fs_cf_name_slab; 281 static int __init f2fs_create_casefold_cache(void) 282 { 283 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 284 F2FS_NAME_LEN); 285 if (!f2fs_cf_name_slab) 286 return -ENOMEM; 287 return 0; 288 } 289 290 static void f2fs_destroy_casefold_cache(void) 291 { 292 kmem_cache_destroy(f2fs_cf_name_slab); 293 } 294 #else 295 static int __init f2fs_create_casefold_cache(void) { return 0; } 296 static void f2fs_destroy_casefold_cache(void) { } 297 #endif 298 299 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 300 { 301 block_t limit = min((sbi->user_block_count << 1) / 1000, 302 sbi->user_block_count - sbi->reserved_blocks); 303 304 /* limit is 0.2% */ 305 if (test_opt(sbi, RESERVE_ROOT) && 306 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 307 F2FS_OPTION(sbi).root_reserved_blocks = limit; 308 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 309 F2FS_OPTION(sbi).root_reserved_blocks); 310 } 311 if (!test_opt(sbi, RESERVE_ROOT) && 312 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 313 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 314 !gid_eq(F2FS_OPTION(sbi).s_resgid, 315 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 316 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 317 from_kuid_munged(&init_user_ns, 318 F2FS_OPTION(sbi).s_resuid), 319 from_kgid_munged(&init_user_ns, 320 F2FS_OPTION(sbi).s_resgid)); 321 } 322 323 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi) 324 { 325 unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec; 326 unsigned int avg_vblocks; 327 unsigned int wanted_reserved_segments; 328 block_t avail_user_block_count; 329 330 if (!F2FS_IO_ALIGNED(sbi)) 331 return 0; 332 333 /* average valid block count in section in worst case */ 334 avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi); 335 336 /* 337 * we need enough free space when migrating one section in worst case 338 */ 339 wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) * 340 reserved_segments(sbi); 341 wanted_reserved_segments -= reserved_segments(sbi); 342 343 avail_user_block_count = sbi->user_block_count - 344 sbi->current_reserved_blocks - 345 F2FS_OPTION(sbi).root_reserved_blocks; 346 347 if (wanted_reserved_segments * sbi->blocks_per_seg > 348 avail_user_block_count) { 349 f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u", 350 wanted_reserved_segments, 351 avail_user_block_count >> sbi->log_blocks_per_seg); 352 return -ENOSPC; 353 } 354 355 SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments; 356 357 f2fs_info(sbi, "IO align feature needs additional reserved segment: %u", 358 wanted_reserved_segments); 359 360 return 0; 361 } 362 363 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 364 { 365 if (!F2FS_OPTION(sbi).unusable_cap_perc) 366 return; 367 368 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 369 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 370 else 371 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 372 F2FS_OPTION(sbi).unusable_cap_perc; 373 374 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 375 F2FS_OPTION(sbi).unusable_cap, 376 F2FS_OPTION(sbi).unusable_cap_perc); 377 } 378 379 static void init_once(void *foo) 380 { 381 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 382 383 inode_init_once(&fi->vfs_inode); 384 } 385 386 #ifdef CONFIG_QUOTA 387 static const char * const quotatypes[] = INITQFNAMES; 388 #define QTYPE2NAME(t) (quotatypes[t]) 389 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 390 substring_t *args) 391 { 392 struct f2fs_sb_info *sbi = F2FS_SB(sb); 393 char *qname; 394 int ret = -EINVAL; 395 396 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 397 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 398 return -EINVAL; 399 } 400 if (f2fs_sb_has_quota_ino(sbi)) { 401 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 402 return 0; 403 } 404 405 qname = match_strdup(args); 406 if (!qname) { 407 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 408 return -ENOMEM; 409 } 410 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 411 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 412 ret = 0; 413 else 414 f2fs_err(sbi, "%s quota file already specified", 415 QTYPE2NAME(qtype)); 416 goto errout; 417 } 418 if (strchr(qname, '/')) { 419 f2fs_err(sbi, "quotafile must be on filesystem root"); 420 goto errout; 421 } 422 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 423 set_opt(sbi, QUOTA); 424 return 0; 425 errout: 426 kfree(qname); 427 return ret; 428 } 429 430 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 431 { 432 struct f2fs_sb_info *sbi = F2FS_SB(sb); 433 434 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 435 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 436 return -EINVAL; 437 } 438 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 439 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 440 return 0; 441 } 442 443 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 444 { 445 /* 446 * We do the test below only for project quotas. 'usrquota' and 447 * 'grpquota' mount options are allowed even without quota feature 448 * to support legacy quotas in quota files. 449 */ 450 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 451 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 452 return -1; 453 } 454 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 455 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 456 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 457 if (test_opt(sbi, USRQUOTA) && 458 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 459 clear_opt(sbi, USRQUOTA); 460 461 if (test_opt(sbi, GRPQUOTA) && 462 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 463 clear_opt(sbi, GRPQUOTA); 464 465 if (test_opt(sbi, PRJQUOTA) && 466 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 467 clear_opt(sbi, PRJQUOTA); 468 469 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 470 test_opt(sbi, PRJQUOTA)) { 471 f2fs_err(sbi, "old and new quota format mixing"); 472 return -1; 473 } 474 475 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 476 f2fs_err(sbi, "journaled quota format not specified"); 477 return -1; 478 } 479 } 480 481 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 482 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 483 F2FS_OPTION(sbi).s_jquota_fmt = 0; 484 } 485 return 0; 486 } 487 #endif 488 489 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 490 const char *opt, 491 const substring_t *arg, 492 bool is_remount) 493 { 494 struct f2fs_sb_info *sbi = F2FS_SB(sb); 495 #ifdef CONFIG_FS_ENCRYPTION 496 int err; 497 498 if (!f2fs_sb_has_encrypt(sbi)) { 499 f2fs_err(sbi, "Encrypt feature is off"); 500 return -EINVAL; 501 } 502 503 /* 504 * This mount option is just for testing, and it's not worthwhile to 505 * implement the extra complexity (e.g. RCU protection) that would be 506 * needed to allow it to be set or changed during remount. We do allow 507 * it to be specified during remount, but only if there is no change. 508 */ 509 if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) { 510 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 511 return -EINVAL; 512 } 513 err = fscrypt_set_test_dummy_encryption( 514 sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy); 515 if (err) { 516 if (err == -EEXIST) 517 f2fs_warn(sbi, 518 "Can't change test_dummy_encryption on remount"); 519 else if (err == -EINVAL) 520 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 521 opt); 522 else 523 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 524 opt, err); 525 return -EINVAL; 526 } 527 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 528 #else 529 f2fs_warn(sbi, "Test dummy encryption mount option ignored"); 530 #endif 531 return 0; 532 } 533 534 #ifdef CONFIG_F2FS_FS_COMPRESSION 535 /* 536 * 1. The same extension name cannot not appear in both compress and non-compress extension 537 * at the same time. 538 * 2. If the compress extension specifies all files, the types specified by the non-compress 539 * extension will be treated as special cases and will not be compressed. 540 * 3. Don't allow the non-compress extension specifies all files. 541 */ 542 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 543 { 544 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 545 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 546 int ext_cnt, noext_cnt, index = 0, no_index = 0; 547 548 ext = F2FS_OPTION(sbi).extensions; 549 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 550 noext = F2FS_OPTION(sbi).noextensions; 551 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 552 553 if (!noext_cnt) 554 return 0; 555 556 for (no_index = 0; no_index < noext_cnt; no_index++) { 557 if (!strcasecmp("*", noext[no_index])) { 558 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 559 return -EINVAL; 560 } 561 for (index = 0; index < ext_cnt; index++) { 562 if (!strcasecmp(ext[index], noext[no_index])) { 563 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 564 ext[index]); 565 return -EINVAL; 566 } 567 } 568 } 569 return 0; 570 } 571 572 #ifdef CONFIG_F2FS_FS_LZ4 573 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 574 { 575 #ifdef CONFIG_F2FS_FS_LZ4HC 576 unsigned int level; 577 #endif 578 579 if (strlen(str) == 3) { 580 F2FS_OPTION(sbi).compress_level = 0; 581 return 0; 582 } 583 584 #ifdef CONFIG_F2FS_FS_LZ4HC 585 str += 3; 586 587 if (str[0] != ':') { 588 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 589 return -EINVAL; 590 } 591 if (kstrtouint(str + 1, 10, &level)) 592 return -EINVAL; 593 594 if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) { 595 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 596 return -EINVAL; 597 } 598 599 F2FS_OPTION(sbi).compress_level = level; 600 return 0; 601 #else 602 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 603 return -EINVAL; 604 #endif 605 } 606 #endif 607 608 #ifdef CONFIG_F2FS_FS_ZSTD 609 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 610 { 611 unsigned int level; 612 int len = 4; 613 614 if (strlen(str) == len) { 615 F2FS_OPTION(sbi).compress_level = 0; 616 return 0; 617 } 618 619 str += len; 620 621 if (str[0] != ':') { 622 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 623 return -EINVAL; 624 } 625 if (kstrtouint(str + 1, 10, &level)) 626 return -EINVAL; 627 628 if (!level || level > zstd_max_clevel()) { 629 f2fs_info(sbi, "invalid zstd compress level: %d", level); 630 return -EINVAL; 631 } 632 633 F2FS_OPTION(sbi).compress_level = level; 634 return 0; 635 } 636 #endif 637 #endif 638 639 static int parse_options(struct super_block *sb, char *options, bool is_remount) 640 { 641 struct f2fs_sb_info *sbi = F2FS_SB(sb); 642 substring_t args[MAX_OPT_ARGS]; 643 #ifdef CONFIG_F2FS_FS_COMPRESSION 644 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 645 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 646 int ext_cnt, noext_cnt; 647 #endif 648 char *p, *name; 649 int arg = 0; 650 kuid_t uid; 651 kgid_t gid; 652 int ret; 653 654 if (!options) 655 goto default_check; 656 657 while ((p = strsep(&options, ",")) != NULL) { 658 int token; 659 660 if (!*p) 661 continue; 662 /* 663 * Initialize args struct so we know whether arg was 664 * found; some options take optional arguments. 665 */ 666 args[0].to = args[0].from = NULL; 667 token = match_token(p, f2fs_tokens, args); 668 669 switch (token) { 670 case Opt_gc_background: 671 name = match_strdup(&args[0]); 672 673 if (!name) 674 return -ENOMEM; 675 if (!strcmp(name, "on")) { 676 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 677 } else if (!strcmp(name, "off")) { 678 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 679 } else if (!strcmp(name, "sync")) { 680 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 681 } else { 682 kfree(name); 683 return -EINVAL; 684 } 685 kfree(name); 686 break; 687 case Opt_disable_roll_forward: 688 set_opt(sbi, DISABLE_ROLL_FORWARD); 689 break; 690 case Opt_norecovery: 691 /* this option mounts f2fs with ro */ 692 set_opt(sbi, NORECOVERY); 693 if (!f2fs_readonly(sb)) 694 return -EINVAL; 695 break; 696 case Opt_discard: 697 if (!f2fs_hw_support_discard(sbi)) { 698 f2fs_warn(sbi, "device does not support discard"); 699 break; 700 } 701 set_opt(sbi, DISCARD); 702 break; 703 case Opt_nodiscard: 704 if (f2fs_hw_should_discard(sbi)) { 705 f2fs_warn(sbi, "discard is required for zoned block devices"); 706 return -EINVAL; 707 } 708 clear_opt(sbi, DISCARD); 709 break; 710 case Opt_noheap: 711 set_opt(sbi, NOHEAP); 712 break; 713 case Opt_heap: 714 clear_opt(sbi, NOHEAP); 715 break; 716 #ifdef CONFIG_F2FS_FS_XATTR 717 case Opt_user_xattr: 718 set_opt(sbi, XATTR_USER); 719 break; 720 case Opt_nouser_xattr: 721 clear_opt(sbi, XATTR_USER); 722 break; 723 case Opt_inline_xattr: 724 set_opt(sbi, INLINE_XATTR); 725 break; 726 case Opt_noinline_xattr: 727 clear_opt(sbi, INLINE_XATTR); 728 break; 729 case Opt_inline_xattr_size: 730 if (args->from && match_int(args, &arg)) 731 return -EINVAL; 732 set_opt(sbi, INLINE_XATTR_SIZE); 733 F2FS_OPTION(sbi).inline_xattr_size = arg; 734 break; 735 #else 736 case Opt_user_xattr: 737 f2fs_info(sbi, "user_xattr options not supported"); 738 break; 739 case Opt_nouser_xattr: 740 f2fs_info(sbi, "nouser_xattr options not supported"); 741 break; 742 case Opt_inline_xattr: 743 f2fs_info(sbi, "inline_xattr options not supported"); 744 break; 745 case Opt_noinline_xattr: 746 f2fs_info(sbi, "noinline_xattr options not supported"); 747 break; 748 #endif 749 #ifdef CONFIG_F2FS_FS_POSIX_ACL 750 case Opt_acl: 751 set_opt(sbi, POSIX_ACL); 752 break; 753 case Opt_noacl: 754 clear_opt(sbi, POSIX_ACL); 755 break; 756 #else 757 case Opt_acl: 758 f2fs_info(sbi, "acl options not supported"); 759 break; 760 case Opt_noacl: 761 f2fs_info(sbi, "noacl options not supported"); 762 break; 763 #endif 764 case Opt_active_logs: 765 if (args->from && match_int(args, &arg)) 766 return -EINVAL; 767 if (arg != 2 && arg != 4 && 768 arg != NR_CURSEG_PERSIST_TYPE) 769 return -EINVAL; 770 F2FS_OPTION(sbi).active_logs = arg; 771 break; 772 case Opt_disable_ext_identify: 773 set_opt(sbi, DISABLE_EXT_IDENTIFY); 774 break; 775 case Opt_inline_data: 776 set_opt(sbi, INLINE_DATA); 777 break; 778 case Opt_inline_dentry: 779 set_opt(sbi, INLINE_DENTRY); 780 break; 781 case Opt_noinline_dentry: 782 clear_opt(sbi, INLINE_DENTRY); 783 break; 784 case Opt_flush_merge: 785 set_opt(sbi, FLUSH_MERGE); 786 break; 787 case Opt_noflush_merge: 788 clear_opt(sbi, FLUSH_MERGE); 789 break; 790 case Opt_nobarrier: 791 set_opt(sbi, NOBARRIER); 792 break; 793 case Opt_fastboot: 794 set_opt(sbi, FASTBOOT); 795 break; 796 case Opt_extent_cache: 797 set_opt(sbi, EXTENT_CACHE); 798 break; 799 case Opt_noextent_cache: 800 clear_opt(sbi, EXTENT_CACHE); 801 break; 802 case Opt_noinline_data: 803 clear_opt(sbi, INLINE_DATA); 804 break; 805 case Opt_data_flush: 806 set_opt(sbi, DATA_FLUSH); 807 break; 808 case Opt_reserve_root: 809 if (args->from && match_int(args, &arg)) 810 return -EINVAL; 811 if (test_opt(sbi, RESERVE_ROOT)) { 812 f2fs_info(sbi, "Preserve previous reserve_root=%u", 813 F2FS_OPTION(sbi).root_reserved_blocks); 814 } else { 815 F2FS_OPTION(sbi).root_reserved_blocks = arg; 816 set_opt(sbi, RESERVE_ROOT); 817 } 818 break; 819 case Opt_resuid: 820 if (args->from && match_int(args, &arg)) 821 return -EINVAL; 822 uid = make_kuid(current_user_ns(), arg); 823 if (!uid_valid(uid)) { 824 f2fs_err(sbi, "Invalid uid value %d", arg); 825 return -EINVAL; 826 } 827 F2FS_OPTION(sbi).s_resuid = uid; 828 break; 829 case Opt_resgid: 830 if (args->from && match_int(args, &arg)) 831 return -EINVAL; 832 gid = make_kgid(current_user_ns(), arg); 833 if (!gid_valid(gid)) { 834 f2fs_err(sbi, "Invalid gid value %d", arg); 835 return -EINVAL; 836 } 837 F2FS_OPTION(sbi).s_resgid = gid; 838 break; 839 case Opt_mode: 840 name = match_strdup(&args[0]); 841 842 if (!name) 843 return -ENOMEM; 844 if (!strcmp(name, "adaptive")) { 845 if (f2fs_sb_has_blkzoned(sbi)) { 846 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 847 kfree(name); 848 return -EINVAL; 849 } 850 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 851 } else if (!strcmp(name, "lfs")) { 852 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 853 } else if (!strcmp(name, "fragment:segment")) { 854 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 855 } else if (!strcmp(name, "fragment:block")) { 856 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 857 } else { 858 kfree(name); 859 return -EINVAL; 860 } 861 kfree(name); 862 break; 863 case Opt_io_size_bits: 864 if (args->from && match_int(args, &arg)) 865 return -EINVAL; 866 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) { 867 f2fs_warn(sbi, "Not support %d, larger than %d", 868 1 << arg, BIO_MAX_VECS); 869 return -EINVAL; 870 } 871 F2FS_OPTION(sbi).write_io_size_bits = arg; 872 break; 873 #ifdef CONFIG_F2FS_FAULT_INJECTION 874 case Opt_fault_injection: 875 if (args->from && match_int(args, &arg)) 876 return -EINVAL; 877 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 878 set_opt(sbi, FAULT_INJECTION); 879 break; 880 881 case Opt_fault_type: 882 if (args->from && match_int(args, &arg)) 883 return -EINVAL; 884 f2fs_build_fault_attr(sbi, 0, arg); 885 set_opt(sbi, FAULT_INJECTION); 886 break; 887 #else 888 case Opt_fault_injection: 889 f2fs_info(sbi, "fault_injection options not supported"); 890 break; 891 892 case Opt_fault_type: 893 f2fs_info(sbi, "fault_type options not supported"); 894 break; 895 #endif 896 case Opt_lazytime: 897 sb->s_flags |= SB_LAZYTIME; 898 break; 899 case Opt_nolazytime: 900 sb->s_flags &= ~SB_LAZYTIME; 901 break; 902 #ifdef CONFIG_QUOTA 903 case Opt_quota: 904 case Opt_usrquota: 905 set_opt(sbi, USRQUOTA); 906 break; 907 case Opt_grpquota: 908 set_opt(sbi, GRPQUOTA); 909 break; 910 case Opt_prjquota: 911 set_opt(sbi, PRJQUOTA); 912 break; 913 case Opt_usrjquota: 914 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 915 if (ret) 916 return ret; 917 break; 918 case Opt_grpjquota: 919 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 920 if (ret) 921 return ret; 922 break; 923 case Opt_prjjquota: 924 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 925 if (ret) 926 return ret; 927 break; 928 case Opt_offusrjquota: 929 ret = f2fs_clear_qf_name(sb, USRQUOTA); 930 if (ret) 931 return ret; 932 break; 933 case Opt_offgrpjquota: 934 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 935 if (ret) 936 return ret; 937 break; 938 case Opt_offprjjquota: 939 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 940 if (ret) 941 return ret; 942 break; 943 case Opt_jqfmt_vfsold: 944 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 945 break; 946 case Opt_jqfmt_vfsv0: 947 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 948 break; 949 case Opt_jqfmt_vfsv1: 950 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 951 break; 952 case Opt_noquota: 953 clear_opt(sbi, QUOTA); 954 clear_opt(sbi, USRQUOTA); 955 clear_opt(sbi, GRPQUOTA); 956 clear_opt(sbi, PRJQUOTA); 957 break; 958 #else 959 case Opt_quota: 960 case Opt_usrquota: 961 case Opt_grpquota: 962 case Opt_prjquota: 963 case Opt_usrjquota: 964 case Opt_grpjquota: 965 case Opt_prjjquota: 966 case Opt_offusrjquota: 967 case Opt_offgrpjquota: 968 case Opt_offprjjquota: 969 case Opt_jqfmt_vfsold: 970 case Opt_jqfmt_vfsv0: 971 case Opt_jqfmt_vfsv1: 972 case Opt_noquota: 973 f2fs_info(sbi, "quota operations not supported"); 974 break; 975 #endif 976 case Opt_alloc: 977 name = match_strdup(&args[0]); 978 if (!name) 979 return -ENOMEM; 980 981 if (!strcmp(name, "default")) { 982 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 983 } else if (!strcmp(name, "reuse")) { 984 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 985 } else { 986 kfree(name); 987 return -EINVAL; 988 } 989 kfree(name); 990 break; 991 case Opt_fsync: 992 name = match_strdup(&args[0]); 993 if (!name) 994 return -ENOMEM; 995 if (!strcmp(name, "posix")) { 996 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 997 } else if (!strcmp(name, "strict")) { 998 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 999 } else if (!strcmp(name, "nobarrier")) { 1000 F2FS_OPTION(sbi).fsync_mode = 1001 FSYNC_MODE_NOBARRIER; 1002 } else { 1003 kfree(name); 1004 return -EINVAL; 1005 } 1006 kfree(name); 1007 break; 1008 case Opt_test_dummy_encryption: 1009 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 1010 is_remount); 1011 if (ret) 1012 return ret; 1013 break; 1014 case Opt_inlinecrypt: 1015 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1016 sb->s_flags |= SB_INLINECRYPT; 1017 #else 1018 f2fs_info(sbi, "inline encryption not supported"); 1019 #endif 1020 break; 1021 case Opt_checkpoint_disable_cap_perc: 1022 if (args->from && match_int(args, &arg)) 1023 return -EINVAL; 1024 if (arg < 0 || arg > 100) 1025 return -EINVAL; 1026 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1027 set_opt(sbi, DISABLE_CHECKPOINT); 1028 break; 1029 case Opt_checkpoint_disable_cap: 1030 if (args->from && match_int(args, &arg)) 1031 return -EINVAL; 1032 F2FS_OPTION(sbi).unusable_cap = arg; 1033 set_opt(sbi, DISABLE_CHECKPOINT); 1034 break; 1035 case Opt_checkpoint_disable: 1036 set_opt(sbi, DISABLE_CHECKPOINT); 1037 break; 1038 case Opt_checkpoint_enable: 1039 clear_opt(sbi, DISABLE_CHECKPOINT); 1040 break; 1041 case Opt_checkpoint_merge: 1042 set_opt(sbi, MERGE_CHECKPOINT); 1043 break; 1044 case Opt_nocheckpoint_merge: 1045 clear_opt(sbi, MERGE_CHECKPOINT); 1046 break; 1047 #ifdef CONFIG_F2FS_FS_COMPRESSION 1048 case Opt_compress_algorithm: 1049 if (!f2fs_sb_has_compression(sbi)) { 1050 f2fs_info(sbi, "Image doesn't support compression"); 1051 break; 1052 } 1053 name = match_strdup(&args[0]); 1054 if (!name) 1055 return -ENOMEM; 1056 if (!strcmp(name, "lzo")) { 1057 #ifdef CONFIG_F2FS_FS_LZO 1058 F2FS_OPTION(sbi).compress_level = 0; 1059 F2FS_OPTION(sbi).compress_algorithm = 1060 COMPRESS_LZO; 1061 #else 1062 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1063 #endif 1064 } else if (!strncmp(name, "lz4", 3)) { 1065 #ifdef CONFIG_F2FS_FS_LZ4 1066 ret = f2fs_set_lz4hc_level(sbi, name); 1067 if (ret) { 1068 kfree(name); 1069 return -EINVAL; 1070 } 1071 F2FS_OPTION(sbi).compress_algorithm = 1072 COMPRESS_LZ4; 1073 #else 1074 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1075 #endif 1076 } else if (!strncmp(name, "zstd", 4)) { 1077 #ifdef CONFIG_F2FS_FS_ZSTD 1078 ret = f2fs_set_zstd_level(sbi, name); 1079 if (ret) { 1080 kfree(name); 1081 return -EINVAL; 1082 } 1083 F2FS_OPTION(sbi).compress_algorithm = 1084 COMPRESS_ZSTD; 1085 #else 1086 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1087 #endif 1088 } else if (!strcmp(name, "lzo-rle")) { 1089 #ifdef CONFIG_F2FS_FS_LZORLE 1090 F2FS_OPTION(sbi).compress_level = 0; 1091 F2FS_OPTION(sbi).compress_algorithm = 1092 COMPRESS_LZORLE; 1093 #else 1094 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1095 #endif 1096 } else { 1097 kfree(name); 1098 return -EINVAL; 1099 } 1100 kfree(name); 1101 break; 1102 case Opt_compress_log_size: 1103 if (!f2fs_sb_has_compression(sbi)) { 1104 f2fs_info(sbi, "Image doesn't support compression"); 1105 break; 1106 } 1107 if (args->from && match_int(args, &arg)) 1108 return -EINVAL; 1109 if (arg < MIN_COMPRESS_LOG_SIZE || 1110 arg > MAX_COMPRESS_LOG_SIZE) { 1111 f2fs_err(sbi, 1112 "Compress cluster log size is out of range"); 1113 return -EINVAL; 1114 } 1115 F2FS_OPTION(sbi).compress_log_size = arg; 1116 break; 1117 case Opt_compress_extension: 1118 if (!f2fs_sb_has_compression(sbi)) { 1119 f2fs_info(sbi, "Image doesn't support compression"); 1120 break; 1121 } 1122 name = match_strdup(&args[0]); 1123 if (!name) 1124 return -ENOMEM; 1125 1126 ext = F2FS_OPTION(sbi).extensions; 1127 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1128 1129 if (strlen(name) >= F2FS_EXTENSION_LEN || 1130 ext_cnt >= COMPRESS_EXT_NUM) { 1131 f2fs_err(sbi, 1132 "invalid extension length/number"); 1133 kfree(name); 1134 return -EINVAL; 1135 } 1136 1137 strcpy(ext[ext_cnt], name); 1138 F2FS_OPTION(sbi).compress_ext_cnt++; 1139 kfree(name); 1140 break; 1141 case Opt_nocompress_extension: 1142 if (!f2fs_sb_has_compression(sbi)) { 1143 f2fs_info(sbi, "Image doesn't support compression"); 1144 break; 1145 } 1146 name = match_strdup(&args[0]); 1147 if (!name) 1148 return -ENOMEM; 1149 1150 noext = F2FS_OPTION(sbi).noextensions; 1151 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1152 1153 if (strlen(name) >= F2FS_EXTENSION_LEN || 1154 noext_cnt >= COMPRESS_EXT_NUM) { 1155 f2fs_err(sbi, 1156 "invalid extension length/number"); 1157 kfree(name); 1158 return -EINVAL; 1159 } 1160 1161 strcpy(noext[noext_cnt], name); 1162 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1163 kfree(name); 1164 break; 1165 case Opt_compress_chksum: 1166 F2FS_OPTION(sbi).compress_chksum = true; 1167 break; 1168 case Opt_compress_mode: 1169 name = match_strdup(&args[0]); 1170 if (!name) 1171 return -ENOMEM; 1172 if (!strcmp(name, "fs")) { 1173 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1174 } else if (!strcmp(name, "user")) { 1175 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1176 } else { 1177 kfree(name); 1178 return -EINVAL; 1179 } 1180 kfree(name); 1181 break; 1182 case Opt_compress_cache: 1183 set_opt(sbi, COMPRESS_CACHE); 1184 break; 1185 #else 1186 case Opt_compress_algorithm: 1187 case Opt_compress_log_size: 1188 case Opt_compress_extension: 1189 case Opt_nocompress_extension: 1190 case Opt_compress_chksum: 1191 case Opt_compress_mode: 1192 case Opt_compress_cache: 1193 f2fs_info(sbi, "compression options not supported"); 1194 break; 1195 #endif 1196 case Opt_atgc: 1197 set_opt(sbi, ATGC); 1198 break; 1199 case Opt_gc_merge: 1200 set_opt(sbi, GC_MERGE); 1201 break; 1202 case Opt_nogc_merge: 1203 clear_opt(sbi, GC_MERGE); 1204 break; 1205 case Opt_discard_unit: 1206 name = match_strdup(&args[0]); 1207 if (!name) 1208 return -ENOMEM; 1209 if (!strcmp(name, "block")) { 1210 F2FS_OPTION(sbi).discard_unit = 1211 DISCARD_UNIT_BLOCK; 1212 } else if (!strcmp(name, "segment")) { 1213 F2FS_OPTION(sbi).discard_unit = 1214 DISCARD_UNIT_SEGMENT; 1215 } else if (!strcmp(name, "section")) { 1216 F2FS_OPTION(sbi).discard_unit = 1217 DISCARD_UNIT_SECTION; 1218 } else { 1219 kfree(name); 1220 return -EINVAL; 1221 } 1222 kfree(name); 1223 break; 1224 default: 1225 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1226 p); 1227 return -EINVAL; 1228 } 1229 } 1230 default_check: 1231 #ifdef CONFIG_QUOTA 1232 if (f2fs_check_quota_options(sbi)) 1233 return -EINVAL; 1234 #else 1235 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1236 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1237 return -EINVAL; 1238 } 1239 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1240 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1241 return -EINVAL; 1242 } 1243 #endif 1244 #if !IS_ENABLED(CONFIG_UNICODE) 1245 if (f2fs_sb_has_casefold(sbi)) { 1246 f2fs_err(sbi, 1247 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1248 return -EINVAL; 1249 } 1250 #endif 1251 /* 1252 * The BLKZONED feature indicates that the drive was formatted with 1253 * zone alignment optimization. This is optional for host-aware 1254 * devices, but mandatory for host-managed zoned block devices. 1255 */ 1256 #ifndef CONFIG_BLK_DEV_ZONED 1257 if (f2fs_sb_has_blkzoned(sbi)) { 1258 f2fs_err(sbi, "Zoned block device support is not enabled"); 1259 return -EINVAL; 1260 } 1261 #endif 1262 if (f2fs_sb_has_blkzoned(sbi)) { 1263 if (F2FS_OPTION(sbi).discard_unit != 1264 DISCARD_UNIT_SECTION) { 1265 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1266 F2FS_OPTION(sbi).discard_unit = 1267 DISCARD_UNIT_SECTION; 1268 } 1269 } 1270 1271 #ifdef CONFIG_F2FS_FS_COMPRESSION 1272 if (f2fs_test_compress_extension(sbi)) { 1273 f2fs_err(sbi, "invalid compress or nocompress extension"); 1274 return -EINVAL; 1275 } 1276 #endif 1277 1278 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) { 1279 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO", 1280 F2FS_IO_SIZE_KB(sbi)); 1281 return -EINVAL; 1282 } 1283 1284 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1285 int min_size, max_size; 1286 1287 if (!f2fs_sb_has_extra_attr(sbi) || 1288 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1289 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1290 return -EINVAL; 1291 } 1292 if (!test_opt(sbi, INLINE_XATTR)) { 1293 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1294 return -EINVAL; 1295 } 1296 1297 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 1298 max_size = MAX_INLINE_XATTR_SIZE; 1299 1300 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1301 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1302 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1303 min_size, max_size); 1304 return -EINVAL; 1305 } 1306 } 1307 1308 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) { 1309 f2fs_err(sbi, "LFS not compatible with checkpoint=disable"); 1310 return -EINVAL; 1311 } 1312 1313 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1314 f2fs_err(sbi, "Allow to mount readonly mode only"); 1315 return -EROFS; 1316 } 1317 return 0; 1318 } 1319 1320 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1321 { 1322 struct f2fs_inode_info *fi; 1323 1324 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) { 1325 f2fs_show_injection_info(F2FS_SB(sb), FAULT_SLAB_ALLOC); 1326 return NULL; 1327 } 1328 1329 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1330 if (!fi) 1331 return NULL; 1332 1333 init_once((void *) fi); 1334 1335 /* Initialize f2fs-specific inode info */ 1336 atomic_set(&fi->dirty_pages, 0); 1337 atomic_set(&fi->i_compr_blocks, 0); 1338 init_f2fs_rwsem(&fi->i_sem); 1339 spin_lock_init(&fi->i_size_lock); 1340 INIT_LIST_HEAD(&fi->dirty_list); 1341 INIT_LIST_HEAD(&fi->gdirty_list); 1342 INIT_LIST_HEAD(&fi->inmem_ilist); 1343 INIT_LIST_HEAD(&fi->inmem_pages); 1344 mutex_init(&fi->inmem_lock); 1345 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1346 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1347 init_f2fs_rwsem(&fi->i_xattr_sem); 1348 1349 /* Will be used by directory only */ 1350 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1351 1352 return &fi->vfs_inode; 1353 } 1354 1355 static int f2fs_drop_inode(struct inode *inode) 1356 { 1357 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1358 int ret; 1359 1360 /* 1361 * during filesystem shutdown, if checkpoint is disabled, 1362 * drop useless meta/node dirty pages. 1363 */ 1364 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1365 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1366 inode->i_ino == F2FS_META_INO(sbi)) { 1367 trace_f2fs_drop_inode(inode, 1); 1368 return 1; 1369 } 1370 } 1371 1372 /* 1373 * This is to avoid a deadlock condition like below. 1374 * writeback_single_inode(inode) 1375 * - f2fs_write_data_page 1376 * - f2fs_gc -> iput -> evict 1377 * - inode_wait_for_writeback(inode) 1378 */ 1379 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1380 if (!inode->i_nlink && !is_bad_inode(inode)) { 1381 /* to avoid evict_inode call simultaneously */ 1382 atomic_inc(&inode->i_count); 1383 spin_unlock(&inode->i_lock); 1384 1385 /* some remained atomic pages should discarded */ 1386 if (f2fs_is_atomic_file(inode)) 1387 f2fs_drop_inmem_pages(inode); 1388 1389 /* should remain fi->extent_tree for writepage */ 1390 f2fs_destroy_extent_node(inode); 1391 1392 sb_start_intwrite(inode->i_sb); 1393 f2fs_i_size_write(inode, 0); 1394 1395 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1396 inode, NULL, 0, DATA); 1397 truncate_inode_pages_final(inode->i_mapping); 1398 1399 if (F2FS_HAS_BLOCKS(inode)) 1400 f2fs_truncate(inode); 1401 1402 sb_end_intwrite(inode->i_sb); 1403 1404 spin_lock(&inode->i_lock); 1405 atomic_dec(&inode->i_count); 1406 } 1407 trace_f2fs_drop_inode(inode, 0); 1408 return 0; 1409 } 1410 ret = generic_drop_inode(inode); 1411 if (!ret) 1412 ret = fscrypt_drop_inode(inode); 1413 trace_f2fs_drop_inode(inode, ret); 1414 return ret; 1415 } 1416 1417 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1418 { 1419 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1420 int ret = 0; 1421 1422 spin_lock(&sbi->inode_lock[DIRTY_META]); 1423 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1424 ret = 1; 1425 } else { 1426 set_inode_flag(inode, FI_DIRTY_INODE); 1427 stat_inc_dirty_inode(sbi, DIRTY_META); 1428 } 1429 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1430 list_add_tail(&F2FS_I(inode)->gdirty_list, 1431 &sbi->inode_list[DIRTY_META]); 1432 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1433 } 1434 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1435 return ret; 1436 } 1437 1438 void f2fs_inode_synced(struct inode *inode) 1439 { 1440 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1441 1442 spin_lock(&sbi->inode_lock[DIRTY_META]); 1443 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1444 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1445 return; 1446 } 1447 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1448 list_del_init(&F2FS_I(inode)->gdirty_list); 1449 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1450 } 1451 clear_inode_flag(inode, FI_DIRTY_INODE); 1452 clear_inode_flag(inode, FI_AUTO_RECOVER); 1453 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1454 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1455 } 1456 1457 /* 1458 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1459 * 1460 * We should call set_dirty_inode to write the dirty inode through write_inode. 1461 */ 1462 static void f2fs_dirty_inode(struct inode *inode, int flags) 1463 { 1464 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1465 1466 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1467 inode->i_ino == F2FS_META_INO(sbi)) 1468 return; 1469 1470 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1471 clear_inode_flag(inode, FI_AUTO_RECOVER); 1472 1473 f2fs_inode_dirtied(inode, false); 1474 } 1475 1476 static void f2fs_free_inode(struct inode *inode) 1477 { 1478 fscrypt_free_inode(inode); 1479 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1480 } 1481 1482 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1483 { 1484 percpu_counter_destroy(&sbi->total_valid_inode_count); 1485 percpu_counter_destroy(&sbi->rf_node_block_count); 1486 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1487 } 1488 1489 static void destroy_device_list(struct f2fs_sb_info *sbi) 1490 { 1491 int i; 1492 1493 for (i = 0; i < sbi->s_ndevs; i++) { 1494 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1495 #ifdef CONFIG_BLK_DEV_ZONED 1496 kvfree(FDEV(i).blkz_seq); 1497 kfree(FDEV(i).zone_capacity_blocks); 1498 #endif 1499 } 1500 kvfree(sbi->devs); 1501 } 1502 1503 static void f2fs_put_super(struct super_block *sb) 1504 { 1505 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1506 int i; 1507 bool dropped; 1508 1509 /* unregister procfs/sysfs entries in advance to avoid race case */ 1510 f2fs_unregister_sysfs(sbi); 1511 1512 f2fs_quota_off_umount(sb); 1513 1514 /* prevent remaining shrinker jobs */ 1515 mutex_lock(&sbi->umount_mutex); 1516 1517 /* 1518 * flush all issued checkpoints and stop checkpoint issue thread. 1519 * after then, all checkpoints should be done by each process context. 1520 */ 1521 f2fs_stop_ckpt_thread(sbi); 1522 1523 /* 1524 * We don't need to do checkpoint when superblock is clean. 1525 * But, the previous checkpoint was not done by umount, it needs to do 1526 * clean checkpoint again. 1527 */ 1528 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1529 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1530 struct cp_control cpc = { 1531 .reason = CP_UMOUNT, 1532 }; 1533 f2fs_write_checkpoint(sbi, &cpc); 1534 } 1535 1536 /* be sure to wait for any on-going discard commands */ 1537 dropped = f2fs_issue_discard_timeout(sbi); 1538 1539 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1540 !sbi->discard_blks && !dropped) { 1541 struct cp_control cpc = { 1542 .reason = CP_UMOUNT | CP_TRIMMED, 1543 }; 1544 f2fs_write_checkpoint(sbi, &cpc); 1545 } 1546 1547 /* 1548 * normally superblock is clean, so we need to release this. 1549 * In addition, EIO will skip do checkpoint, we need this as well. 1550 */ 1551 f2fs_release_ino_entry(sbi, true); 1552 1553 f2fs_leave_shrinker(sbi); 1554 mutex_unlock(&sbi->umount_mutex); 1555 1556 /* our cp_error case, we can wait for any writeback page */ 1557 f2fs_flush_merged_writes(sbi); 1558 1559 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1560 1561 f2fs_bug_on(sbi, sbi->fsync_node_num); 1562 1563 f2fs_destroy_compress_inode(sbi); 1564 1565 iput(sbi->node_inode); 1566 sbi->node_inode = NULL; 1567 1568 iput(sbi->meta_inode); 1569 sbi->meta_inode = NULL; 1570 1571 /* 1572 * iput() can update stat information, if f2fs_write_checkpoint() 1573 * above failed with error. 1574 */ 1575 f2fs_destroy_stats(sbi); 1576 1577 /* destroy f2fs internal modules */ 1578 f2fs_destroy_node_manager(sbi); 1579 f2fs_destroy_segment_manager(sbi); 1580 1581 f2fs_destroy_post_read_wq(sbi); 1582 1583 kvfree(sbi->ckpt); 1584 1585 sb->s_fs_info = NULL; 1586 if (sbi->s_chksum_driver) 1587 crypto_free_shash(sbi->s_chksum_driver); 1588 kfree(sbi->raw_super); 1589 1590 destroy_device_list(sbi); 1591 f2fs_destroy_page_array_cache(sbi); 1592 f2fs_destroy_xattr_caches(sbi); 1593 mempool_destroy(sbi->write_io_dummy); 1594 #ifdef CONFIG_QUOTA 1595 for (i = 0; i < MAXQUOTAS; i++) 1596 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1597 #endif 1598 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1599 destroy_percpu_info(sbi); 1600 f2fs_destroy_iostat(sbi); 1601 for (i = 0; i < NR_PAGE_TYPE; i++) 1602 kvfree(sbi->write_io[i]); 1603 #if IS_ENABLED(CONFIG_UNICODE) 1604 utf8_unload(sb->s_encoding); 1605 #endif 1606 kfree(sbi); 1607 } 1608 1609 int f2fs_sync_fs(struct super_block *sb, int sync) 1610 { 1611 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1612 int err = 0; 1613 1614 if (unlikely(f2fs_cp_error(sbi))) 1615 return 0; 1616 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1617 return 0; 1618 1619 trace_f2fs_sync_fs(sb, sync); 1620 1621 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1622 return -EAGAIN; 1623 1624 if (sync) 1625 err = f2fs_issue_checkpoint(sbi); 1626 1627 return err; 1628 } 1629 1630 static int f2fs_freeze(struct super_block *sb) 1631 { 1632 if (f2fs_readonly(sb)) 1633 return 0; 1634 1635 /* IO error happened before */ 1636 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1637 return -EIO; 1638 1639 /* must be clean, since sync_filesystem() was already called */ 1640 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1641 return -EINVAL; 1642 1643 /* ensure no checkpoint required */ 1644 if (!llist_empty(&F2FS_SB(sb)->cprc_info.issue_list)) 1645 return -EINVAL; 1646 1647 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 1648 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1649 return 0; 1650 } 1651 1652 static int f2fs_unfreeze(struct super_block *sb) 1653 { 1654 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1655 return 0; 1656 } 1657 1658 #ifdef CONFIG_QUOTA 1659 static int f2fs_statfs_project(struct super_block *sb, 1660 kprojid_t projid, struct kstatfs *buf) 1661 { 1662 struct kqid qid; 1663 struct dquot *dquot; 1664 u64 limit; 1665 u64 curblock; 1666 1667 qid = make_kqid_projid(projid); 1668 dquot = dqget(sb, qid); 1669 if (IS_ERR(dquot)) 1670 return PTR_ERR(dquot); 1671 spin_lock(&dquot->dq_dqb_lock); 1672 1673 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1674 dquot->dq_dqb.dqb_bhardlimit); 1675 if (limit) 1676 limit >>= sb->s_blocksize_bits; 1677 1678 if (limit && buf->f_blocks > limit) { 1679 curblock = (dquot->dq_dqb.dqb_curspace + 1680 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1681 buf->f_blocks = limit; 1682 buf->f_bfree = buf->f_bavail = 1683 (buf->f_blocks > curblock) ? 1684 (buf->f_blocks - curblock) : 0; 1685 } 1686 1687 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1688 dquot->dq_dqb.dqb_ihardlimit); 1689 1690 if (limit && buf->f_files > limit) { 1691 buf->f_files = limit; 1692 buf->f_ffree = 1693 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1694 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1695 } 1696 1697 spin_unlock(&dquot->dq_dqb_lock); 1698 dqput(dquot); 1699 return 0; 1700 } 1701 #endif 1702 1703 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1704 { 1705 struct super_block *sb = dentry->d_sb; 1706 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1707 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1708 block_t total_count, user_block_count, start_count; 1709 u64 avail_node_count; 1710 1711 total_count = le64_to_cpu(sbi->raw_super->block_count); 1712 user_block_count = sbi->user_block_count; 1713 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1714 buf->f_type = F2FS_SUPER_MAGIC; 1715 buf->f_bsize = sbi->blocksize; 1716 1717 buf->f_blocks = total_count - start_count; 1718 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1719 sbi->current_reserved_blocks; 1720 1721 spin_lock(&sbi->stat_lock); 1722 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1723 buf->f_bfree = 0; 1724 else 1725 buf->f_bfree -= sbi->unusable_block_count; 1726 spin_unlock(&sbi->stat_lock); 1727 1728 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1729 buf->f_bavail = buf->f_bfree - 1730 F2FS_OPTION(sbi).root_reserved_blocks; 1731 else 1732 buf->f_bavail = 0; 1733 1734 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1735 1736 if (avail_node_count > user_block_count) { 1737 buf->f_files = user_block_count; 1738 buf->f_ffree = buf->f_bavail; 1739 } else { 1740 buf->f_files = avail_node_count; 1741 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1742 buf->f_bavail); 1743 } 1744 1745 buf->f_namelen = F2FS_NAME_LEN; 1746 buf->f_fsid = u64_to_fsid(id); 1747 1748 #ifdef CONFIG_QUOTA 1749 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1750 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1751 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1752 } 1753 #endif 1754 return 0; 1755 } 1756 1757 static inline void f2fs_show_quota_options(struct seq_file *seq, 1758 struct super_block *sb) 1759 { 1760 #ifdef CONFIG_QUOTA 1761 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1762 1763 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1764 char *fmtname = ""; 1765 1766 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1767 case QFMT_VFS_OLD: 1768 fmtname = "vfsold"; 1769 break; 1770 case QFMT_VFS_V0: 1771 fmtname = "vfsv0"; 1772 break; 1773 case QFMT_VFS_V1: 1774 fmtname = "vfsv1"; 1775 break; 1776 } 1777 seq_printf(seq, ",jqfmt=%s", fmtname); 1778 } 1779 1780 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1781 seq_show_option(seq, "usrjquota", 1782 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1783 1784 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1785 seq_show_option(seq, "grpjquota", 1786 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1787 1788 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1789 seq_show_option(seq, "prjjquota", 1790 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1791 #endif 1792 } 1793 1794 #ifdef CONFIG_F2FS_FS_COMPRESSION 1795 static inline void f2fs_show_compress_options(struct seq_file *seq, 1796 struct super_block *sb) 1797 { 1798 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1799 char *algtype = ""; 1800 int i; 1801 1802 if (!f2fs_sb_has_compression(sbi)) 1803 return; 1804 1805 switch (F2FS_OPTION(sbi).compress_algorithm) { 1806 case COMPRESS_LZO: 1807 algtype = "lzo"; 1808 break; 1809 case COMPRESS_LZ4: 1810 algtype = "lz4"; 1811 break; 1812 case COMPRESS_ZSTD: 1813 algtype = "zstd"; 1814 break; 1815 case COMPRESS_LZORLE: 1816 algtype = "lzo-rle"; 1817 break; 1818 } 1819 seq_printf(seq, ",compress_algorithm=%s", algtype); 1820 1821 if (F2FS_OPTION(sbi).compress_level) 1822 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1823 1824 seq_printf(seq, ",compress_log_size=%u", 1825 F2FS_OPTION(sbi).compress_log_size); 1826 1827 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1828 seq_printf(seq, ",compress_extension=%s", 1829 F2FS_OPTION(sbi).extensions[i]); 1830 } 1831 1832 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1833 seq_printf(seq, ",nocompress_extension=%s", 1834 F2FS_OPTION(sbi).noextensions[i]); 1835 } 1836 1837 if (F2FS_OPTION(sbi).compress_chksum) 1838 seq_puts(seq, ",compress_chksum"); 1839 1840 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1841 seq_printf(seq, ",compress_mode=%s", "fs"); 1842 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1843 seq_printf(seq, ",compress_mode=%s", "user"); 1844 1845 if (test_opt(sbi, COMPRESS_CACHE)) 1846 seq_puts(seq, ",compress_cache"); 1847 } 1848 #endif 1849 1850 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1851 { 1852 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1853 1854 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1855 seq_printf(seq, ",background_gc=%s", "sync"); 1856 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1857 seq_printf(seq, ",background_gc=%s", "on"); 1858 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1859 seq_printf(seq, ",background_gc=%s", "off"); 1860 1861 if (test_opt(sbi, GC_MERGE)) 1862 seq_puts(seq, ",gc_merge"); 1863 1864 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1865 seq_puts(seq, ",disable_roll_forward"); 1866 if (test_opt(sbi, NORECOVERY)) 1867 seq_puts(seq, ",norecovery"); 1868 if (test_opt(sbi, DISCARD)) 1869 seq_puts(seq, ",discard"); 1870 else 1871 seq_puts(seq, ",nodiscard"); 1872 if (test_opt(sbi, NOHEAP)) 1873 seq_puts(seq, ",no_heap"); 1874 else 1875 seq_puts(seq, ",heap"); 1876 #ifdef CONFIG_F2FS_FS_XATTR 1877 if (test_opt(sbi, XATTR_USER)) 1878 seq_puts(seq, ",user_xattr"); 1879 else 1880 seq_puts(seq, ",nouser_xattr"); 1881 if (test_opt(sbi, INLINE_XATTR)) 1882 seq_puts(seq, ",inline_xattr"); 1883 else 1884 seq_puts(seq, ",noinline_xattr"); 1885 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1886 seq_printf(seq, ",inline_xattr_size=%u", 1887 F2FS_OPTION(sbi).inline_xattr_size); 1888 #endif 1889 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1890 if (test_opt(sbi, POSIX_ACL)) 1891 seq_puts(seq, ",acl"); 1892 else 1893 seq_puts(seq, ",noacl"); 1894 #endif 1895 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1896 seq_puts(seq, ",disable_ext_identify"); 1897 if (test_opt(sbi, INLINE_DATA)) 1898 seq_puts(seq, ",inline_data"); 1899 else 1900 seq_puts(seq, ",noinline_data"); 1901 if (test_opt(sbi, INLINE_DENTRY)) 1902 seq_puts(seq, ",inline_dentry"); 1903 else 1904 seq_puts(seq, ",noinline_dentry"); 1905 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1906 seq_puts(seq, ",flush_merge"); 1907 if (test_opt(sbi, NOBARRIER)) 1908 seq_puts(seq, ",nobarrier"); 1909 if (test_opt(sbi, FASTBOOT)) 1910 seq_puts(seq, ",fastboot"); 1911 if (test_opt(sbi, EXTENT_CACHE)) 1912 seq_puts(seq, ",extent_cache"); 1913 else 1914 seq_puts(seq, ",noextent_cache"); 1915 if (test_opt(sbi, DATA_FLUSH)) 1916 seq_puts(seq, ",data_flush"); 1917 1918 seq_puts(seq, ",mode="); 1919 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 1920 seq_puts(seq, "adaptive"); 1921 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 1922 seq_puts(seq, "lfs"); 1923 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 1924 seq_puts(seq, "fragment:segment"); 1925 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 1926 seq_puts(seq, "fragment:block"); 1927 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1928 if (test_opt(sbi, RESERVE_ROOT)) 1929 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1930 F2FS_OPTION(sbi).root_reserved_blocks, 1931 from_kuid_munged(&init_user_ns, 1932 F2FS_OPTION(sbi).s_resuid), 1933 from_kgid_munged(&init_user_ns, 1934 F2FS_OPTION(sbi).s_resgid)); 1935 if (F2FS_IO_SIZE_BITS(sbi)) 1936 seq_printf(seq, ",io_bits=%u", 1937 F2FS_OPTION(sbi).write_io_size_bits); 1938 #ifdef CONFIG_F2FS_FAULT_INJECTION 1939 if (test_opt(sbi, FAULT_INJECTION)) { 1940 seq_printf(seq, ",fault_injection=%u", 1941 F2FS_OPTION(sbi).fault_info.inject_rate); 1942 seq_printf(seq, ",fault_type=%u", 1943 F2FS_OPTION(sbi).fault_info.inject_type); 1944 } 1945 #endif 1946 #ifdef CONFIG_QUOTA 1947 if (test_opt(sbi, QUOTA)) 1948 seq_puts(seq, ",quota"); 1949 if (test_opt(sbi, USRQUOTA)) 1950 seq_puts(seq, ",usrquota"); 1951 if (test_opt(sbi, GRPQUOTA)) 1952 seq_puts(seq, ",grpquota"); 1953 if (test_opt(sbi, PRJQUOTA)) 1954 seq_puts(seq, ",prjquota"); 1955 #endif 1956 f2fs_show_quota_options(seq, sbi->sb); 1957 1958 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 1959 1960 if (sbi->sb->s_flags & SB_INLINECRYPT) 1961 seq_puts(seq, ",inlinecrypt"); 1962 1963 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1964 seq_printf(seq, ",alloc_mode=%s", "default"); 1965 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1966 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1967 1968 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1969 seq_printf(seq, ",checkpoint=disable:%u", 1970 F2FS_OPTION(sbi).unusable_cap); 1971 if (test_opt(sbi, MERGE_CHECKPOINT)) 1972 seq_puts(seq, ",checkpoint_merge"); 1973 else 1974 seq_puts(seq, ",nocheckpoint_merge"); 1975 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1976 seq_printf(seq, ",fsync_mode=%s", "posix"); 1977 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1978 seq_printf(seq, ",fsync_mode=%s", "strict"); 1979 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1980 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1981 1982 #ifdef CONFIG_F2FS_FS_COMPRESSION 1983 f2fs_show_compress_options(seq, sbi->sb); 1984 #endif 1985 1986 if (test_opt(sbi, ATGC)) 1987 seq_puts(seq, ",atgc"); 1988 1989 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 1990 seq_printf(seq, ",discard_unit=%s", "block"); 1991 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 1992 seq_printf(seq, ",discard_unit=%s", "segment"); 1993 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 1994 seq_printf(seq, ",discard_unit=%s", "section"); 1995 1996 return 0; 1997 } 1998 1999 static void default_options(struct f2fs_sb_info *sbi) 2000 { 2001 /* init some FS parameters */ 2002 if (f2fs_sb_has_readonly(sbi)) 2003 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2004 else 2005 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2006 2007 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2008 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2009 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2010 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2011 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2012 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2013 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2014 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2015 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2016 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2017 2018 sbi->sb->s_flags &= ~SB_INLINECRYPT; 2019 2020 set_opt(sbi, INLINE_XATTR); 2021 set_opt(sbi, INLINE_DATA); 2022 set_opt(sbi, INLINE_DENTRY); 2023 set_opt(sbi, EXTENT_CACHE); 2024 set_opt(sbi, NOHEAP); 2025 clear_opt(sbi, DISABLE_CHECKPOINT); 2026 set_opt(sbi, MERGE_CHECKPOINT); 2027 F2FS_OPTION(sbi).unusable_cap = 0; 2028 sbi->sb->s_flags |= SB_LAZYTIME; 2029 set_opt(sbi, FLUSH_MERGE); 2030 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2031 set_opt(sbi, DISCARD); 2032 if (f2fs_sb_has_blkzoned(sbi)) { 2033 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2034 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2035 } else { 2036 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2037 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2038 } 2039 2040 #ifdef CONFIG_F2FS_FS_XATTR 2041 set_opt(sbi, XATTR_USER); 2042 #endif 2043 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2044 set_opt(sbi, POSIX_ACL); 2045 #endif 2046 2047 f2fs_build_fault_attr(sbi, 0, 0); 2048 } 2049 2050 #ifdef CONFIG_QUOTA 2051 static int f2fs_enable_quotas(struct super_block *sb); 2052 #endif 2053 2054 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2055 { 2056 unsigned int s_flags = sbi->sb->s_flags; 2057 struct cp_control cpc; 2058 unsigned int gc_mode; 2059 int err = 0; 2060 int ret; 2061 block_t unusable; 2062 2063 if (s_flags & SB_RDONLY) { 2064 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2065 return -EINVAL; 2066 } 2067 sbi->sb->s_flags |= SB_ACTIVE; 2068 2069 f2fs_update_time(sbi, DISABLE_TIME); 2070 2071 gc_mode = sbi->gc_mode; 2072 sbi->gc_mode = GC_URGENT_HIGH; 2073 2074 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2075 f2fs_down_write(&sbi->gc_lock); 2076 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO); 2077 if (err == -ENODATA) { 2078 err = 0; 2079 break; 2080 } 2081 if (err && err != -EAGAIN) 2082 break; 2083 } 2084 2085 ret = sync_filesystem(sbi->sb); 2086 if (ret || err) { 2087 err = ret ? ret : err; 2088 goto restore_flag; 2089 } 2090 2091 unusable = f2fs_get_unusable_blocks(sbi); 2092 if (f2fs_disable_cp_again(sbi, unusable)) { 2093 err = -EAGAIN; 2094 goto restore_flag; 2095 } 2096 2097 f2fs_down_write(&sbi->gc_lock); 2098 cpc.reason = CP_PAUSE; 2099 set_sbi_flag(sbi, SBI_CP_DISABLED); 2100 err = f2fs_write_checkpoint(sbi, &cpc); 2101 if (err) 2102 goto out_unlock; 2103 2104 spin_lock(&sbi->stat_lock); 2105 sbi->unusable_block_count = unusable; 2106 spin_unlock(&sbi->stat_lock); 2107 2108 out_unlock: 2109 f2fs_up_write(&sbi->gc_lock); 2110 restore_flag: 2111 sbi->gc_mode = gc_mode; 2112 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2113 return err; 2114 } 2115 2116 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2117 { 2118 int retry = DEFAULT_RETRY_IO_COUNT; 2119 2120 /* we should flush all the data to keep data consistency */ 2121 do { 2122 sync_inodes_sb(sbi->sb); 2123 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2124 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2125 2126 if (unlikely(retry < 0)) 2127 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2128 2129 f2fs_down_write(&sbi->gc_lock); 2130 f2fs_dirty_to_prefree(sbi); 2131 2132 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2133 set_sbi_flag(sbi, SBI_IS_DIRTY); 2134 f2fs_up_write(&sbi->gc_lock); 2135 2136 f2fs_sync_fs(sbi->sb, 1); 2137 } 2138 2139 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2140 { 2141 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2142 struct f2fs_mount_info org_mount_opt; 2143 unsigned long old_sb_flags; 2144 int err; 2145 bool need_restart_gc = false, need_stop_gc = false; 2146 bool need_restart_ckpt = false, need_stop_ckpt = false; 2147 bool need_restart_flush = false, need_stop_flush = false; 2148 bool need_restart_discard = false, need_stop_discard = false; 2149 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 2150 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2151 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 2152 bool no_atgc = !test_opt(sbi, ATGC); 2153 bool no_discard = !test_opt(sbi, DISCARD); 2154 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2155 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2156 struct discard_cmd_control *dcc; 2157 #ifdef CONFIG_QUOTA 2158 int i, j; 2159 #endif 2160 2161 /* 2162 * Save the old mount options in case we 2163 * need to restore them. 2164 */ 2165 org_mount_opt = sbi->mount_opt; 2166 old_sb_flags = sb->s_flags; 2167 2168 #ifdef CONFIG_QUOTA 2169 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2170 for (i = 0; i < MAXQUOTAS; i++) { 2171 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2172 org_mount_opt.s_qf_names[i] = 2173 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2174 GFP_KERNEL); 2175 if (!org_mount_opt.s_qf_names[i]) { 2176 for (j = 0; j < i; j++) 2177 kfree(org_mount_opt.s_qf_names[j]); 2178 return -ENOMEM; 2179 } 2180 } else { 2181 org_mount_opt.s_qf_names[i] = NULL; 2182 } 2183 } 2184 #endif 2185 2186 /* recover superblocks we couldn't write due to previous RO mount */ 2187 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2188 err = f2fs_commit_super(sbi, false); 2189 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2190 err); 2191 if (!err) 2192 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2193 } 2194 2195 default_options(sbi); 2196 2197 /* parse mount options */ 2198 err = parse_options(sb, data, true); 2199 if (err) 2200 goto restore_opts; 2201 2202 /* 2203 * Previous and new state of filesystem is RO, 2204 * so skip checking GC and FLUSH_MERGE conditions. 2205 */ 2206 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2207 goto skip; 2208 2209 if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) { 2210 err = -EROFS; 2211 goto restore_opts; 2212 } 2213 2214 #ifdef CONFIG_QUOTA 2215 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2216 err = dquot_suspend(sb, -1); 2217 if (err < 0) 2218 goto restore_opts; 2219 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2220 /* dquot_resume needs RW */ 2221 sb->s_flags &= ~SB_RDONLY; 2222 if (sb_any_quota_suspended(sb)) { 2223 dquot_resume(sb, -1); 2224 } else if (f2fs_sb_has_quota_ino(sbi)) { 2225 err = f2fs_enable_quotas(sb); 2226 if (err) 2227 goto restore_opts; 2228 } 2229 } 2230 #endif 2231 /* disallow enable atgc dynamically */ 2232 if (no_atgc == !!test_opt(sbi, ATGC)) { 2233 err = -EINVAL; 2234 f2fs_warn(sbi, "switch atgc option is not allowed"); 2235 goto restore_opts; 2236 } 2237 2238 /* disallow enable/disable extent_cache dynamically */ 2239 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 2240 err = -EINVAL; 2241 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2242 goto restore_opts; 2243 } 2244 2245 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 2246 err = -EINVAL; 2247 f2fs_warn(sbi, "switch io_bits option is not allowed"); 2248 goto restore_opts; 2249 } 2250 2251 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2252 err = -EINVAL; 2253 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2254 goto restore_opts; 2255 } 2256 2257 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2258 err = -EINVAL; 2259 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2260 goto restore_opts; 2261 } 2262 2263 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2264 err = -EINVAL; 2265 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2266 goto restore_opts; 2267 } 2268 2269 /* 2270 * We stop the GC thread if FS is mounted as RO 2271 * or if background_gc = off is passed in mount 2272 * option. Also sync the filesystem. 2273 */ 2274 if ((*flags & SB_RDONLY) || 2275 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2276 !test_opt(sbi, GC_MERGE))) { 2277 if (sbi->gc_thread) { 2278 f2fs_stop_gc_thread(sbi); 2279 need_restart_gc = true; 2280 } 2281 } else if (!sbi->gc_thread) { 2282 err = f2fs_start_gc_thread(sbi); 2283 if (err) 2284 goto restore_opts; 2285 need_stop_gc = true; 2286 } 2287 2288 if (*flags & SB_RDONLY) { 2289 sync_inodes_sb(sb); 2290 2291 set_sbi_flag(sbi, SBI_IS_DIRTY); 2292 set_sbi_flag(sbi, SBI_IS_CLOSE); 2293 f2fs_sync_fs(sb, 1); 2294 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2295 } 2296 2297 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2298 !test_opt(sbi, MERGE_CHECKPOINT)) { 2299 f2fs_stop_ckpt_thread(sbi); 2300 need_restart_ckpt = true; 2301 } else { 2302 err = f2fs_start_ckpt_thread(sbi); 2303 if (err) { 2304 f2fs_err(sbi, 2305 "Failed to start F2FS issue_checkpoint_thread (%d)", 2306 err); 2307 goto restore_gc; 2308 } 2309 need_stop_ckpt = true; 2310 } 2311 2312 /* 2313 * We stop issue flush thread if FS is mounted as RO 2314 * or if flush_merge is not passed in mount option. 2315 */ 2316 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2317 clear_opt(sbi, FLUSH_MERGE); 2318 f2fs_destroy_flush_cmd_control(sbi, false); 2319 need_restart_flush = true; 2320 } else { 2321 err = f2fs_create_flush_cmd_control(sbi); 2322 if (err) 2323 goto restore_ckpt; 2324 need_stop_flush = true; 2325 } 2326 2327 if (no_discard == !!test_opt(sbi, DISCARD)) { 2328 if (test_opt(sbi, DISCARD)) { 2329 err = f2fs_start_discard_thread(sbi); 2330 if (err) 2331 goto restore_flush; 2332 need_stop_discard = true; 2333 } else { 2334 dcc = SM_I(sbi)->dcc_info; 2335 f2fs_stop_discard_thread(sbi); 2336 if (atomic_read(&dcc->discard_cmd_cnt)) 2337 f2fs_issue_discard_timeout(sbi); 2338 need_restart_discard = true; 2339 } 2340 } 2341 2342 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2343 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2344 err = f2fs_disable_checkpoint(sbi); 2345 if (err) 2346 goto restore_discard; 2347 } else { 2348 f2fs_enable_checkpoint(sbi); 2349 } 2350 } 2351 2352 skip: 2353 #ifdef CONFIG_QUOTA 2354 /* Release old quota file names */ 2355 for (i = 0; i < MAXQUOTAS; i++) 2356 kfree(org_mount_opt.s_qf_names[i]); 2357 #endif 2358 /* Update the POSIXACL Flag */ 2359 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2360 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2361 2362 limit_reserve_root(sbi); 2363 adjust_unusable_cap_perc(sbi); 2364 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2365 return 0; 2366 restore_discard: 2367 if (need_restart_discard) { 2368 if (f2fs_start_discard_thread(sbi)) 2369 f2fs_warn(sbi, "discard has been stopped"); 2370 } else if (need_stop_discard) { 2371 f2fs_stop_discard_thread(sbi); 2372 } 2373 restore_flush: 2374 if (need_restart_flush) { 2375 if (f2fs_create_flush_cmd_control(sbi)) 2376 f2fs_warn(sbi, "background flush thread has stopped"); 2377 } else if (need_stop_flush) { 2378 clear_opt(sbi, FLUSH_MERGE); 2379 f2fs_destroy_flush_cmd_control(sbi, false); 2380 } 2381 restore_ckpt: 2382 if (need_restart_ckpt) { 2383 if (f2fs_start_ckpt_thread(sbi)) 2384 f2fs_warn(sbi, "background ckpt thread has stopped"); 2385 } else if (need_stop_ckpt) { 2386 f2fs_stop_ckpt_thread(sbi); 2387 } 2388 restore_gc: 2389 if (need_restart_gc) { 2390 if (f2fs_start_gc_thread(sbi)) 2391 f2fs_warn(sbi, "background gc thread has stopped"); 2392 } else if (need_stop_gc) { 2393 f2fs_stop_gc_thread(sbi); 2394 } 2395 restore_opts: 2396 #ifdef CONFIG_QUOTA 2397 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2398 for (i = 0; i < MAXQUOTAS; i++) { 2399 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2400 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2401 } 2402 #endif 2403 sbi->mount_opt = org_mount_opt; 2404 sb->s_flags = old_sb_flags; 2405 return err; 2406 } 2407 2408 #ifdef CONFIG_QUOTA 2409 /* Read data from quotafile */ 2410 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2411 size_t len, loff_t off) 2412 { 2413 struct inode *inode = sb_dqopt(sb)->files[type]; 2414 struct address_space *mapping = inode->i_mapping; 2415 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2416 int offset = off & (sb->s_blocksize - 1); 2417 int tocopy; 2418 size_t toread; 2419 loff_t i_size = i_size_read(inode); 2420 struct page *page; 2421 char *kaddr; 2422 2423 if (off > i_size) 2424 return 0; 2425 2426 if (off + len > i_size) 2427 len = i_size - off; 2428 toread = len; 2429 while (toread > 0) { 2430 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2431 repeat: 2432 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2433 if (IS_ERR(page)) { 2434 if (PTR_ERR(page) == -ENOMEM) { 2435 memalloc_retry_wait(GFP_NOFS); 2436 goto repeat; 2437 } 2438 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2439 return PTR_ERR(page); 2440 } 2441 2442 lock_page(page); 2443 2444 if (unlikely(page->mapping != mapping)) { 2445 f2fs_put_page(page, 1); 2446 goto repeat; 2447 } 2448 if (unlikely(!PageUptodate(page))) { 2449 f2fs_put_page(page, 1); 2450 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2451 return -EIO; 2452 } 2453 2454 kaddr = kmap_atomic(page); 2455 memcpy(data, kaddr + offset, tocopy); 2456 kunmap_atomic(kaddr); 2457 f2fs_put_page(page, 1); 2458 2459 offset = 0; 2460 toread -= tocopy; 2461 data += tocopy; 2462 blkidx++; 2463 } 2464 return len; 2465 } 2466 2467 /* Write to quotafile */ 2468 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2469 const char *data, size_t len, loff_t off) 2470 { 2471 struct inode *inode = sb_dqopt(sb)->files[type]; 2472 struct address_space *mapping = inode->i_mapping; 2473 const struct address_space_operations *a_ops = mapping->a_ops; 2474 int offset = off & (sb->s_blocksize - 1); 2475 size_t towrite = len; 2476 struct page *page; 2477 void *fsdata = NULL; 2478 char *kaddr; 2479 int err = 0; 2480 int tocopy; 2481 2482 while (towrite > 0) { 2483 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2484 towrite); 2485 retry: 2486 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 2487 &page, &fsdata); 2488 if (unlikely(err)) { 2489 if (err == -ENOMEM) { 2490 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2491 goto retry; 2492 } 2493 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2494 break; 2495 } 2496 2497 kaddr = kmap_atomic(page); 2498 memcpy(kaddr + offset, data, tocopy); 2499 kunmap_atomic(kaddr); 2500 flush_dcache_page(page); 2501 2502 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2503 page, fsdata); 2504 offset = 0; 2505 towrite -= tocopy; 2506 off += tocopy; 2507 data += tocopy; 2508 cond_resched(); 2509 } 2510 2511 if (len == towrite) 2512 return err; 2513 inode->i_mtime = inode->i_ctime = current_time(inode); 2514 f2fs_mark_inode_dirty_sync(inode, false); 2515 return len - towrite; 2516 } 2517 2518 int f2fs_dquot_initialize(struct inode *inode) 2519 { 2520 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) { 2521 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_DQUOT_INIT); 2522 return -ESRCH; 2523 } 2524 2525 return dquot_initialize(inode); 2526 } 2527 2528 static struct dquot **f2fs_get_dquots(struct inode *inode) 2529 { 2530 return F2FS_I(inode)->i_dquot; 2531 } 2532 2533 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2534 { 2535 return &F2FS_I(inode)->i_reserved_quota; 2536 } 2537 2538 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2539 { 2540 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2541 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2542 return 0; 2543 } 2544 2545 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2546 F2FS_OPTION(sbi).s_jquota_fmt, type); 2547 } 2548 2549 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2550 { 2551 int enabled = 0; 2552 int i, err; 2553 2554 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2555 err = f2fs_enable_quotas(sbi->sb); 2556 if (err) { 2557 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2558 return 0; 2559 } 2560 return 1; 2561 } 2562 2563 for (i = 0; i < MAXQUOTAS; i++) { 2564 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2565 err = f2fs_quota_on_mount(sbi, i); 2566 if (!err) { 2567 enabled = 1; 2568 continue; 2569 } 2570 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2571 err, i); 2572 } 2573 } 2574 return enabled; 2575 } 2576 2577 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2578 unsigned int flags) 2579 { 2580 struct inode *qf_inode; 2581 unsigned long qf_inum; 2582 int err; 2583 2584 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2585 2586 qf_inum = f2fs_qf_ino(sb, type); 2587 if (!qf_inum) 2588 return -EPERM; 2589 2590 qf_inode = f2fs_iget(sb, qf_inum); 2591 if (IS_ERR(qf_inode)) { 2592 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2593 return PTR_ERR(qf_inode); 2594 } 2595 2596 /* Don't account quota for quota files to avoid recursion */ 2597 qf_inode->i_flags |= S_NOQUOTA; 2598 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2599 iput(qf_inode); 2600 return err; 2601 } 2602 2603 static int f2fs_enable_quotas(struct super_block *sb) 2604 { 2605 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2606 int type, err = 0; 2607 unsigned long qf_inum; 2608 bool quota_mopt[MAXQUOTAS] = { 2609 test_opt(sbi, USRQUOTA), 2610 test_opt(sbi, GRPQUOTA), 2611 test_opt(sbi, PRJQUOTA), 2612 }; 2613 2614 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2615 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2616 return 0; 2617 } 2618 2619 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2620 2621 for (type = 0; type < MAXQUOTAS; type++) { 2622 qf_inum = f2fs_qf_ino(sb, type); 2623 if (qf_inum) { 2624 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2625 DQUOT_USAGE_ENABLED | 2626 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2627 if (err) { 2628 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2629 type, err); 2630 for (type--; type >= 0; type--) 2631 dquot_quota_off(sb, type); 2632 set_sbi_flag(F2FS_SB(sb), 2633 SBI_QUOTA_NEED_REPAIR); 2634 return err; 2635 } 2636 } 2637 } 2638 return 0; 2639 } 2640 2641 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2642 { 2643 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2644 struct address_space *mapping = dqopt->files[type]->i_mapping; 2645 int ret = 0; 2646 2647 ret = dquot_writeback_dquots(sbi->sb, type); 2648 if (ret) 2649 goto out; 2650 2651 ret = filemap_fdatawrite(mapping); 2652 if (ret) 2653 goto out; 2654 2655 /* if we are using journalled quota */ 2656 if (is_journalled_quota(sbi)) 2657 goto out; 2658 2659 ret = filemap_fdatawait(mapping); 2660 2661 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2662 out: 2663 if (ret) 2664 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2665 return ret; 2666 } 2667 2668 int f2fs_quota_sync(struct super_block *sb, int type) 2669 { 2670 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2671 struct quota_info *dqopt = sb_dqopt(sb); 2672 int cnt; 2673 int ret = 0; 2674 2675 /* 2676 * Now when everything is written we can discard the pagecache so 2677 * that userspace sees the changes. 2678 */ 2679 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2680 2681 if (type != -1 && cnt != type) 2682 continue; 2683 2684 if (!sb_has_quota_active(sb, cnt)) 2685 continue; 2686 2687 inode_lock(dqopt->files[cnt]); 2688 2689 /* 2690 * do_quotactl 2691 * f2fs_quota_sync 2692 * f2fs_down_read(quota_sem) 2693 * dquot_writeback_dquots() 2694 * f2fs_dquot_commit 2695 * block_operation 2696 * f2fs_down_read(quota_sem) 2697 */ 2698 f2fs_lock_op(sbi); 2699 f2fs_down_read(&sbi->quota_sem); 2700 2701 ret = f2fs_quota_sync_file(sbi, cnt); 2702 2703 f2fs_up_read(&sbi->quota_sem); 2704 f2fs_unlock_op(sbi); 2705 2706 inode_unlock(dqopt->files[cnt]); 2707 2708 if (ret) 2709 break; 2710 } 2711 return ret; 2712 } 2713 2714 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2715 const struct path *path) 2716 { 2717 struct inode *inode; 2718 int err; 2719 2720 /* if quota sysfile exists, deny enabling quota with specific file */ 2721 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2722 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2723 return -EBUSY; 2724 } 2725 2726 err = f2fs_quota_sync(sb, type); 2727 if (err) 2728 return err; 2729 2730 err = dquot_quota_on(sb, type, format_id, path); 2731 if (err) 2732 return err; 2733 2734 inode = d_inode(path->dentry); 2735 2736 inode_lock(inode); 2737 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2738 f2fs_set_inode_flags(inode); 2739 inode_unlock(inode); 2740 f2fs_mark_inode_dirty_sync(inode, false); 2741 2742 return 0; 2743 } 2744 2745 static int __f2fs_quota_off(struct super_block *sb, int type) 2746 { 2747 struct inode *inode = sb_dqopt(sb)->files[type]; 2748 int err; 2749 2750 if (!inode || !igrab(inode)) 2751 return dquot_quota_off(sb, type); 2752 2753 err = f2fs_quota_sync(sb, type); 2754 if (err) 2755 goto out_put; 2756 2757 err = dquot_quota_off(sb, type); 2758 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2759 goto out_put; 2760 2761 inode_lock(inode); 2762 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2763 f2fs_set_inode_flags(inode); 2764 inode_unlock(inode); 2765 f2fs_mark_inode_dirty_sync(inode, false); 2766 out_put: 2767 iput(inode); 2768 return err; 2769 } 2770 2771 static int f2fs_quota_off(struct super_block *sb, int type) 2772 { 2773 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2774 int err; 2775 2776 err = __f2fs_quota_off(sb, type); 2777 2778 /* 2779 * quotactl can shutdown journalled quota, result in inconsistence 2780 * between quota record and fs data by following updates, tag the 2781 * flag to let fsck be aware of it. 2782 */ 2783 if (is_journalled_quota(sbi)) 2784 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2785 return err; 2786 } 2787 2788 void f2fs_quota_off_umount(struct super_block *sb) 2789 { 2790 int type; 2791 int err; 2792 2793 for (type = 0; type < MAXQUOTAS; type++) { 2794 err = __f2fs_quota_off(sb, type); 2795 if (err) { 2796 int ret = dquot_quota_off(sb, type); 2797 2798 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 2799 type, err, ret); 2800 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2801 } 2802 } 2803 /* 2804 * In case of checkpoint=disable, we must flush quota blocks. 2805 * This can cause NULL exception for node_inode in end_io, since 2806 * put_super already dropped it. 2807 */ 2808 sync_filesystem(sb); 2809 } 2810 2811 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2812 { 2813 struct quota_info *dqopt = sb_dqopt(sb); 2814 int type; 2815 2816 for (type = 0; type < MAXQUOTAS; type++) { 2817 if (!dqopt->files[type]) 2818 continue; 2819 f2fs_inode_synced(dqopt->files[type]); 2820 } 2821 } 2822 2823 static int f2fs_dquot_commit(struct dquot *dquot) 2824 { 2825 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2826 int ret; 2827 2828 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 2829 ret = dquot_commit(dquot); 2830 if (ret < 0) 2831 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2832 f2fs_up_read(&sbi->quota_sem); 2833 return ret; 2834 } 2835 2836 static int f2fs_dquot_acquire(struct dquot *dquot) 2837 { 2838 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2839 int ret; 2840 2841 f2fs_down_read(&sbi->quota_sem); 2842 ret = dquot_acquire(dquot); 2843 if (ret < 0) 2844 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2845 f2fs_up_read(&sbi->quota_sem); 2846 return ret; 2847 } 2848 2849 static int f2fs_dquot_release(struct dquot *dquot) 2850 { 2851 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2852 int ret = dquot_release(dquot); 2853 2854 if (ret < 0) 2855 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2856 return ret; 2857 } 2858 2859 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2860 { 2861 struct super_block *sb = dquot->dq_sb; 2862 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2863 int ret = dquot_mark_dquot_dirty(dquot); 2864 2865 /* if we are using journalled quota */ 2866 if (is_journalled_quota(sbi)) 2867 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2868 2869 return ret; 2870 } 2871 2872 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2873 { 2874 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2875 int ret = dquot_commit_info(sb, type); 2876 2877 if (ret < 0) 2878 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2879 return ret; 2880 } 2881 2882 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2883 { 2884 *projid = F2FS_I(inode)->i_projid; 2885 return 0; 2886 } 2887 2888 static const struct dquot_operations f2fs_quota_operations = { 2889 .get_reserved_space = f2fs_get_reserved_space, 2890 .write_dquot = f2fs_dquot_commit, 2891 .acquire_dquot = f2fs_dquot_acquire, 2892 .release_dquot = f2fs_dquot_release, 2893 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2894 .write_info = f2fs_dquot_commit_info, 2895 .alloc_dquot = dquot_alloc, 2896 .destroy_dquot = dquot_destroy, 2897 .get_projid = f2fs_get_projid, 2898 .get_next_id = dquot_get_next_id, 2899 }; 2900 2901 static const struct quotactl_ops f2fs_quotactl_ops = { 2902 .quota_on = f2fs_quota_on, 2903 .quota_off = f2fs_quota_off, 2904 .quota_sync = f2fs_quota_sync, 2905 .get_state = dquot_get_state, 2906 .set_info = dquot_set_dqinfo, 2907 .get_dqblk = dquot_get_dqblk, 2908 .set_dqblk = dquot_set_dqblk, 2909 .get_nextdqblk = dquot_get_next_dqblk, 2910 }; 2911 #else 2912 int f2fs_dquot_initialize(struct inode *inode) 2913 { 2914 return 0; 2915 } 2916 2917 int f2fs_quota_sync(struct super_block *sb, int type) 2918 { 2919 return 0; 2920 } 2921 2922 void f2fs_quota_off_umount(struct super_block *sb) 2923 { 2924 } 2925 #endif 2926 2927 static const struct super_operations f2fs_sops = { 2928 .alloc_inode = f2fs_alloc_inode, 2929 .free_inode = f2fs_free_inode, 2930 .drop_inode = f2fs_drop_inode, 2931 .write_inode = f2fs_write_inode, 2932 .dirty_inode = f2fs_dirty_inode, 2933 .show_options = f2fs_show_options, 2934 #ifdef CONFIG_QUOTA 2935 .quota_read = f2fs_quota_read, 2936 .quota_write = f2fs_quota_write, 2937 .get_dquots = f2fs_get_dquots, 2938 #endif 2939 .evict_inode = f2fs_evict_inode, 2940 .put_super = f2fs_put_super, 2941 .sync_fs = f2fs_sync_fs, 2942 .freeze_fs = f2fs_freeze, 2943 .unfreeze_fs = f2fs_unfreeze, 2944 .statfs = f2fs_statfs, 2945 .remount_fs = f2fs_remount, 2946 }; 2947 2948 #ifdef CONFIG_FS_ENCRYPTION 2949 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2950 { 2951 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2952 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2953 ctx, len, NULL); 2954 } 2955 2956 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2957 void *fs_data) 2958 { 2959 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2960 2961 /* 2962 * Encrypting the root directory is not allowed because fsck 2963 * expects lost+found directory to exist and remain unencrypted 2964 * if LOST_FOUND feature is enabled. 2965 * 2966 */ 2967 if (f2fs_sb_has_lost_found(sbi) && 2968 inode->i_ino == F2FS_ROOT_INO(sbi)) 2969 return -EPERM; 2970 2971 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2972 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2973 ctx, len, fs_data, XATTR_CREATE); 2974 } 2975 2976 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 2977 { 2978 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 2979 } 2980 2981 static bool f2fs_has_stable_inodes(struct super_block *sb) 2982 { 2983 return true; 2984 } 2985 2986 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 2987 int *ino_bits_ret, int *lblk_bits_ret) 2988 { 2989 *ino_bits_ret = 8 * sizeof(nid_t); 2990 *lblk_bits_ret = 8 * sizeof(block_t); 2991 } 2992 2993 static int f2fs_get_num_devices(struct super_block *sb) 2994 { 2995 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2996 2997 if (f2fs_is_multi_device(sbi)) 2998 return sbi->s_ndevs; 2999 return 1; 3000 } 3001 3002 static void f2fs_get_devices(struct super_block *sb, 3003 struct request_queue **devs) 3004 { 3005 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3006 int i; 3007 3008 for (i = 0; i < sbi->s_ndevs; i++) 3009 devs[i] = bdev_get_queue(FDEV(i).bdev); 3010 } 3011 3012 static const struct fscrypt_operations f2fs_cryptops = { 3013 .key_prefix = "f2fs:", 3014 .get_context = f2fs_get_context, 3015 .set_context = f2fs_set_context, 3016 .get_dummy_policy = f2fs_get_dummy_policy, 3017 .empty_dir = f2fs_empty_dir, 3018 .has_stable_inodes = f2fs_has_stable_inodes, 3019 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 3020 .get_num_devices = f2fs_get_num_devices, 3021 .get_devices = f2fs_get_devices, 3022 }; 3023 #endif 3024 3025 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3026 u64 ino, u32 generation) 3027 { 3028 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3029 struct inode *inode; 3030 3031 if (f2fs_check_nid_range(sbi, ino)) 3032 return ERR_PTR(-ESTALE); 3033 3034 /* 3035 * f2fs_iget isn't quite right if the inode is currently unallocated! 3036 * However f2fs_iget currently does appropriate checks to handle stale 3037 * inodes so everything is OK. 3038 */ 3039 inode = f2fs_iget(sb, ino); 3040 if (IS_ERR(inode)) 3041 return ERR_CAST(inode); 3042 if (unlikely(generation && inode->i_generation != generation)) { 3043 /* we didn't find the right inode.. */ 3044 iput(inode); 3045 return ERR_PTR(-ESTALE); 3046 } 3047 return inode; 3048 } 3049 3050 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3051 int fh_len, int fh_type) 3052 { 3053 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3054 f2fs_nfs_get_inode); 3055 } 3056 3057 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3058 int fh_len, int fh_type) 3059 { 3060 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3061 f2fs_nfs_get_inode); 3062 } 3063 3064 static const struct export_operations f2fs_export_ops = { 3065 .fh_to_dentry = f2fs_fh_to_dentry, 3066 .fh_to_parent = f2fs_fh_to_parent, 3067 .get_parent = f2fs_get_parent, 3068 }; 3069 3070 loff_t max_file_blocks(struct inode *inode) 3071 { 3072 loff_t result = 0; 3073 loff_t leaf_count; 3074 3075 /* 3076 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3077 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3078 * space in inode.i_addr, it will be more safe to reassign 3079 * result as zero. 3080 */ 3081 3082 if (inode && f2fs_compressed_file(inode)) 3083 leaf_count = ADDRS_PER_BLOCK(inode); 3084 else 3085 leaf_count = DEF_ADDRS_PER_BLOCK; 3086 3087 /* two direct node blocks */ 3088 result += (leaf_count * 2); 3089 3090 /* two indirect node blocks */ 3091 leaf_count *= NIDS_PER_BLOCK; 3092 result += (leaf_count * 2); 3093 3094 /* one double indirect node block */ 3095 leaf_count *= NIDS_PER_BLOCK; 3096 result += leaf_count; 3097 3098 return result; 3099 } 3100 3101 static int __f2fs_commit_super(struct buffer_head *bh, 3102 struct f2fs_super_block *super) 3103 { 3104 lock_buffer(bh); 3105 if (super) 3106 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 3107 set_buffer_dirty(bh); 3108 unlock_buffer(bh); 3109 3110 /* it's rare case, we can do fua all the time */ 3111 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 3112 } 3113 3114 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3115 struct buffer_head *bh) 3116 { 3117 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3118 (bh->b_data + F2FS_SUPER_OFFSET); 3119 struct super_block *sb = sbi->sb; 3120 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3121 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3122 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3123 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3124 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3125 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3126 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3127 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3128 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3129 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3130 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3131 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3132 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3133 u64 main_end_blkaddr = main_blkaddr + 3134 (segment_count_main << log_blocks_per_seg); 3135 u64 seg_end_blkaddr = segment0_blkaddr + 3136 (segment_count << log_blocks_per_seg); 3137 3138 if (segment0_blkaddr != cp_blkaddr) { 3139 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3140 segment0_blkaddr, cp_blkaddr); 3141 return true; 3142 } 3143 3144 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3145 sit_blkaddr) { 3146 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3147 cp_blkaddr, sit_blkaddr, 3148 segment_count_ckpt << log_blocks_per_seg); 3149 return true; 3150 } 3151 3152 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3153 nat_blkaddr) { 3154 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3155 sit_blkaddr, nat_blkaddr, 3156 segment_count_sit << log_blocks_per_seg); 3157 return true; 3158 } 3159 3160 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3161 ssa_blkaddr) { 3162 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3163 nat_blkaddr, ssa_blkaddr, 3164 segment_count_nat << log_blocks_per_seg); 3165 return true; 3166 } 3167 3168 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3169 main_blkaddr) { 3170 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3171 ssa_blkaddr, main_blkaddr, 3172 segment_count_ssa << log_blocks_per_seg); 3173 return true; 3174 } 3175 3176 if (main_end_blkaddr > seg_end_blkaddr) { 3177 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3178 main_blkaddr, seg_end_blkaddr, 3179 segment_count_main << log_blocks_per_seg); 3180 return true; 3181 } else if (main_end_blkaddr < seg_end_blkaddr) { 3182 int err = 0; 3183 char *res; 3184 3185 /* fix in-memory information all the time */ 3186 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3187 segment0_blkaddr) >> log_blocks_per_seg); 3188 3189 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 3190 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3191 res = "internally"; 3192 } else { 3193 err = __f2fs_commit_super(bh, NULL); 3194 res = err ? "failed" : "done"; 3195 } 3196 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3197 res, main_blkaddr, seg_end_blkaddr, 3198 segment_count_main << log_blocks_per_seg); 3199 if (err) 3200 return true; 3201 } 3202 return false; 3203 } 3204 3205 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3206 struct buffer_head *bh) 3207 { 3208 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3209 block_t total_sections, blocks_per_seg; 3210 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3211 (bh->b_data + F2FS_SUPER_OFFSET); 3212 size_t crc_offset = 0; 3213 __u32 crc = 0; 3214 3215 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3216 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3217 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3218 return -EINVAL; 3219 } 3220 3221 /* Check checksum_offset and crc in superblock */ 3222 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3223 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3224 if (crc_offset != 3225 offsetof(struct f2fs_super_block, crc)) { 3226 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3227 crc_offset); 3228 return -EFSCORRUPTED; 3229 } 3230 crc = le32_to_cpu(raw_super->crc); 3231 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3232 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3233 return -EFSCORRUPTED; 3234 } 3235 } 3236 3237 /* Currently, support only 4KB block size */ 3238 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3239 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3240 le32_to_cpu(raw_super->log_blocksize), 3241 F2FS_BLKSIZE_BITS); 3242 return -EFSCORRUPTED; 3243 } 3244 3245 /* check log blocks per segment */ 3246 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3247 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3248 le32_to_cpu(raw_super->log_blocks_per_seg)); 3249 return -EFSCORRUPTED; 3250 } 3251 3252 /* Currently, support 512/1024/2048/4096 bytes sector size */ 3253 if (le32_to_cpu(raw_super->log_sectorsize) > 3254 F2FS_MAX_LOG_SECTOR_SIZE || 3255 le32_to_cpu(raw_super->log_sectorsize) < 3256 F2FS_MIN_LOG_SECTOR_SIZE) { 3257 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3258 le32_to_cpu(raw_super->log_sectorsize)); 3259 return -EFSCORRUPTED; 3260 } 3261 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3262 le32_to_cpu(raw_super->log_sectorsize) != 3263 F2FS_MAX_LOG_SECTOR_SIZE) { 3264 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3265 le32_to_cpu(raw_super->log_sectors_per_block), 3266 le32_to_cpu(raw_super->log_sectorsize)); 3267 return -EFSCORRUPTED; 3268 } 3269 3270 segment_count = le32_to_cpu(raw_super->segment_count); 3271 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3272 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3273 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3274 total_sections = le32_to_cpu(raw_super->section_count); 3275 3276 /* blocks_per_seg should be 512, given the above check */ 3277 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 3278 3279 if (segment_count > F2FS_MAX_SEGMENT || 3280 segment_count < F2FS_MIN_SEGMENTS) { 3281 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3282 return -EFSCORRUPTED; 3283 } 3284 3285 if (total_sections > segment_count_main || total_sections < 1 || 3286 segs_per_sec > segment_count || !segs_per_sec) { 3287 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3288 segment_count, total_sections, segs_per_sec); 3289 return -EFSCORRUPTED; 3290 } 3291 3292 if (segment_count_main != total_sections * segs_per_sec) { 3293 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3294 segment_count_main, total_sections, segs_per_sec); 3295 return -EFSCORRUPTED; 3296 } 3297 3298 if ((segment_count / segs_per_sec) < total_sections) { 3299 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3300 segment_count, segs_per_sec, total_sections); 3301 return -EFSCORRUPTED; 3302 } 3303 3304 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3305 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3306 segment_count, le64_to_cpu(raw_super->block_count)); 3307 return -EFSCORRUPTED; 3308 } 3309 3310 if (RDEV(0).path[0]) { 3311 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3312 int i = 1; 3313 3314 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3315 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3316 i++; 3317 } 3318 if (segment_count != dev_seg_count) { 3319 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3320 segment_count, dev_seg_count); 3321 return -EFSCORRUPTED; 3322 } 3323 } else { 3324 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3325 !bdev_is_zoned(sbi->sb->s_bdev)) { 3326 f2fs_info(sbi, "Zoned block device path is missing"); 3327 return -EFSCORRUPTED; 3328 } 3329 } 3330 3331 if (secs_per_zone > total_sections || !secs_per_zone) { 3332 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3333 secs_per_zone, total_sections); 3334 return -EFSCORRUPTED; 3335 } 3336 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3337 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3338 (le32_to_cpu(raw_super->extension_count) + 3339 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3340 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3341 le32_to_cpu(raw_super->extension_count), 3342 raw_super->hot_ext_count, 3343 F2FS_MAX_EXTENSION); 3344 return -EFSCORRUPTED; 3345 } 3346 3347 if (le32_to_cpu(raw_super->cp_payload) >= 3348 (blocks_per_seg - F2FS_CP_PACKS - 3349 NR_CURSEG_PERSIST_TYPE)) { 3350 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3351 le32_to_cpu(raw_super->cp_payload), 3352 blocks_per_seg - F2FS_CP_PACKS - 3353 NR_CURSEG_PERSIST_TYPE); 3354 return -EFSCORRUPTED; 3355 } 3356 3357 /* check reserved ino info */ 3358 if (le32_to_cpu(raw_super->node_ino) != 1 || 3359 le32_to_cpu(raw_super->meta_ino) != 2 || 3360 le32_to_cpu(raw_super->root_ino) != 3) { 3361 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3362 le32_to_cpu(raw_super->node_ino), 3363 le32_to_cpu(raw_super->meta_ino), 3364 le32_to_cpu(raw_super->root_ino)); 3365 return -EFSCORRUPTED; 3366 } 3367 3368 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3369 if (sanity_check_area_boundary(sbi, bh)) 3370 return -EFSCORRUPTED; 3371 3372 return 0; 3373 } 3374 3375 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3376 { 3377 unsigned int total, fsmeta; 3378 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3379 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3380 unsigned int ovp_segments, reserved_segments; 3381 unsigned int main_segs, blocks_per_seg; 3382 unsigned int sit_segs, nat_segs; 3383 unsigned int sit_bitmap_size, nat_bitmap_size; 3384 unsigned int log_blocks_per_seg; 3385 unsigned int segment_count_main; 3386 unsigned int cp_pack_start_sum, cp_payload; 3387 block_t user_block_count, valid_user_blocks; 3388 block_t avail_node_count, valid_node_count; 3389 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3390 int i, j; 3391 3392 total = le32_to_cpu(raw_super->segment_count); 3393 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3394 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3395 fsmeta += sit_segs; 3396 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3397 fsmeta += nat_segs; 3398 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3399 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3400 3401 if (unlikely(fsmeta >= total)) 3402 return 1; 3403 3404 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3405 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3406 3407 if (!f2fs_sb_has_readonly(sbi) && 3408 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3409 ovp_segments == 0 || reserved_segments == 0)) { 3410 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3411 return 1; 3412 } 3413 user_block_count = le64_to_cpu(ckpt->user_block_count); 3414 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3415 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3416 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3417 if (!user_block_count || user_block_count >= 3418 segment_count_main << log_blocks_per_seg) { 3419 f2fs_err(sbi, "Wrong user_block_count: %u", 3420 user_block_count); 3421 return 1; 3422 } 3423 3424 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3425 if (valid_user_blocks > user_block_count) { 3426 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3427 valid_user_blocks, user_block_count); 3428 return 1; 3429 } 3430 3431 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3432 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3433 if (valid_node_count > avail_node_count) { 3434 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3435 valid_node_count, avail_node_count); 3436 return 1; 3437 } 3438 3439 main_segs = le32_to_cpu(raw_super->segment_count_main); 3440 blocks_per_seg = sbi->blocks_per_seg; 3441 3442 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3443 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3444 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3445 return 1; 3446 3447 if (f2fs_sb_has_readonly(sbi)) 3448 goto check_data; 3449 3450 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3451 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3452 le32_to_cpu(ckpt->cur_node_segno[j])) { 3453 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3454 i, j, 3455 le32_to_cpu(ckpt->cur_node_segno[i])); 3456 return 1; 3457 } 3458 } 3459 } 3460 check_data: 3461 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3462 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3463 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3464 return 1; 3465 3466 if (f2fs_sb_has_readonly(sbi)) 3467 goto skip_cross; 3468 3469 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3470 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3471 le32_to_cpu(ckpt->cur_data_segno[j])) { 3472 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3473 i, j, 3474 le32_to_cpu(ckpt->cur_data_segno[i])); 3475 return 1; 3476 } 3477 } 3478 } 3479 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3480 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3481 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3482 le32_to_cpu(ckpt->cur_data_segno[j])) { 3483 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3484 i, j, 3485 le32_to_cpu(ckpt->cur_node_segno[i])); 3486 return 1; 3487 } 3488 } 3489 } 3490 skip_cross: 3491 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3492 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3493 3494 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3495 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3496 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3497 sit_bitmap_size, nat_bitmap_size); 3498 return 1; 3499 } 3500 3501 cp_pack_start_sum = __start_sum_addr(sbi); 3502 cp_payload = __cp_payload(sbi); 3503 if (cp_pack_start_sum < cp_payload + 1 || 3504 cp_pack_start_sum > blocks_per_seg - 1 - 3505 NR_CURSEG_PERSIST_TYPE) { 3506 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3507 cp_pack_start_sum); 3508 return 1; 3509 } 3510 3511 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3512 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3513 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3514 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3515 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3516 le32_to_cpu(ckpt->checksum_offset)); 3517 return 1; 3518 } 3519 3520 nat_blocks = nat_segs << log_blocks_per_seg; 3521 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3522 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3523 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3524 (cp_payload + F2FS_CP_PACKS + 3525 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3526 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3527 cp_payload, nat_bits_blocks); 3528 return 1; 3529 } 3530 3531 if (unlikely(f2fs_cp_error(sbi))) { 3532 f2fs_err(sbi, "A bug case: need to run fsck"); 3533 return 1; 3534 } 3535 return 0; 3536 } 3537 3538 static void init_sb_info(struct f2fs_sb_info *sbi) 3539 { 3540 struct f2fs_super_block *raw_super = sbi->raw_super; 3541 int i; 3542 3543 sbi->log_sectors_per_block = 3544 le32_to_cpu(raw_super->log_sectors_per_block); 3545 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3546 sbi->blocksize = 1 << sbi->log_blocksize; 3547 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3548 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 3549 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3550 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3551 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3552 sbi->total_node_count = 3553 (le32_to_cpu(raw_super->segment_count_nat) / 2) 3554 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 3555 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3556 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3557 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3558 sbi->cur_victim_sec = NULL_SECNO; 3559 sbi->gc_mode = GC_NORMAL; 3560 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3561 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3562 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3563 sbi->migration_granularity = sbi->segs_per_sec; 3564 sbi->seq_file_ra_mul = MIN_RA_MUL; 3565 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3566 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3567 spin_lock_init(&sbi->gc_urgent_high_lock); 3568 3569 sbi->dir_level = DEF_DIR_LEVEL; 3570 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3571 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3572 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3573 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3574 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3575 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3576 DEF_UMOUNT_DISCARD_TIMEOUT; 3577 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3578 3579 for (i = 0; i < NR_COUNT_TYPE; i++) 3580 atomic_set(&sbi->nr_pages[i], 0); 3581 3582 for (i = 0; i < META; i++) 3583 atomic_set(&sbi->wb_sync_req[i], 0); 3584 3585 INIT_LIST_HEAD(&sbi->s_list); 3586 mutex_init(&sbi->umount_mutex); 3587 init_f2fs_rwsem(&sbi->io_order_lock); 3588 spin_lock_init(&sbi->cp_lock); 3589 3590 sbi->dirty_device = 0; 3591 spin_lock_init(&sbi->dev_lock); 3592 3593 init_f2fs_rwsem(&sbi->sb_lock); 3594 init_f2fs_rwsem(&sbi->pin_sem); 3595 } 3596 3597 static int init_percpu_info(struct f2fs_sb_info *sbi) 3598 { 3599 int err; 3600 3601 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3602 if (err) 3603 return err; 3604 3605 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 3606 if (err) 3607 goto err_valid_block; 3608 3609 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3610 GFP_KERNEL); 3611 if (err) 3612 goto err_node_block; 3613 return 0; 3614 3615 err_node_block: 3616 percpu_counter_destroy(&sbi->rf_node_block_count); 3617 err_valid_block: 3618 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3619 return err; 3620 } 3621 3622 #ifdef CONFIG_BLK_DEV_ZONED 3623 3624 struct f2fs_report_zones_args { 3625 struct f2fs_dev_info *dev; 3626 bool zone_cap_mismatch; 3627 }; 3628 3629 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3630 void *data) 3631 { 3632 struct f2fs_report_zones_args *rz_args = data; 3633 3634 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3635 return 0; 3636 3637 set_bit(idx, rz_args->dev->blkz_seq); 3638 rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >> 3639 F2FS_LOG_SECTORS_PER_BLOCK; 3640 if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch) 3641 rz_args->zone_cap_mismatch = true; 3642 3643 return 0; 3644 } 3645 3646 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3647 { 3648 struct block_device *bdev = FDEV(devi).bdev; 3649 sector_t nr_sectors = bdev_nr_sectors(bdev); 3650 struct f2fs_report_zones_args rep_zone_arg; 3651 int ret; 3652 3653 if (!f2fs_sb_has_blkzoned(sbi)) 3654 return 0; 3655 3656 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3657 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 3658 return -EINVAL; 3659 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 3660 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 3661 __ilog2_u32(sbi->blocks_per_blkz)) 3662 return -EINVAL; 3663 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 3664 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 3665 sbi->log_blocks_per_blkz; 3666 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 3667 FDEV(devi).nr_blkz++; 3668 3669 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3670 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3671 * sizeof(unsigned long), 3672 GFP_KERNEL); 3673 if (!FDEV(devi).blkz_seq) 3674 return -ENOMEM; 3675 3676 /* Get block zones type and zone-capacity */ 3677 FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi, 3678 FDEV(devi).nr_blkz * sizeof(block_t), 3679 GFP_KERNEL); 3680 if (!FDEV(devi).zone_capacity_blocks) 3681 return -ENOMEM; 3682 3683 rep_zone_arg.dev = &FDEV(devi); 3684 rep_zone_arg.zone_cap_mismatch = false; 3685 3686 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3687 &rep_zone_arg); 3688 if (ret < 0) 3689 return ret; 3690 3691 if (!rep_zone_arg.zone_cap_mismatch) { 3692 kfree(FDEV(devi).zone_capacity_blocks); 3693 FDEV(devi).zone_capacity_blocks = NULL; 3694 } 3695 3696 return 0; 3697 } 3698 #endif 3699 3700 /* 3701 * Read f2fs raw super block. 3702 * Because we have two copies of super block, so read both of them 3703 * to get the first valid one. If any one of them is broken, we pass 3704 * them recovery flag back to the caller. 3705 */ 3706 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3707 struct f2fs_super_block **raw_super, 3708 int *valid_super_block, int *recovery) 3709 { 3710 struct super_block *sb = sbi->sb; 3711 int block; 3712 struct buffer_head *bh; 3713 struct f2fs_super_block *super; 3714 int err = 0; 3715 3716 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3717 if (!super) 3718 return -ENOMEM; 3719 3720 for (block = 0; block < 2; block++) { 3721 bh = sb_bread(sb, block); 3722 if (!bh) { 3723 f2fs_err(sbi, "Unable to read %dth superblock", 3724 block + 1); 3725 err = -EIO; 3726 *recovery = 1; 3727 continue; 3728 } 3729 3730 /* sanity checking of raw super */ 3731 err = sanity_check_raw_super(sbi, bh); 3732 if (err) { 3733 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3734 block + 1); 3735 brelse(bh); 3736 *recovery = 1; 3737 continue; 3738 } 3739 3740 if (!*raw_super) { 3741 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3742 sizeof(*super)); 3743 *valid_super_block = block; 3744 *raw_super = super; 3745 } 3746 brelse(bh); 3747 } 3748 3749 /* No valid superblock */ 3750 if (!*raw_super) 3751 kfree(super); 3752 else 3753 err = 0; 3754 3755 return err; 3756 } 3757 3758 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3759 { 3760 struct buffer_head *bh; 3761 __u32 crc = 0; 3762 int err; 3763 3764 if ((recover && f2fs_readonly(sbi->sb)) || 3765 bdev_read_only(sbi->sb->s_bdev)) { 3766 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3767 return -EROFS; 3768 } 3769 3770 /* we should update superblock crc here */ 3771 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3772 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3773 offsetof(struct f2fs_super_block, crc)); 3774 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3775 } 3776 3777 /* write back-up superblock first */ 3778 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3779 if (!bh) 3780 return -EIO; 3781 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3782 brelse(bh); 3783 3784 /* if we are in recovery path, skip writing valid superblock */ 3785 if (recover || err) 3786 return err; 3787 3788 /* write current valid superblock */ 3789 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3790 if (!bh) 3791 return -EIO; 3792 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3793 brelse(bh); 3794 return err; 3795 } 3796 3797 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 3798 { 3799 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3800 unsigned int max_devices = MAX_DEVICES; 3801 unsigned int logical_blksize; 3802 int i; 3803 3804 /* Initialize single device information */ 3805 if (!RDEV(0).path[0]) { 3806 if (!bdev_is_zoned(sbi->sb->s_bdev)) 3807 return 0; 3808 max_devices = 1; 3809 } 3810 3811 /* 3812 * Initialize multiple devices information, or single 3813 * zoned block device information. 3814 */ 3815 sbi->devs = f2fs_kzalloc(sbi, 3816 array_size(max_devices, 3817 sizeof(struct f2fs_dev_info)), 3818 GFP_KERNEL); 3819 if (!sbi->devs) 3820 return -ENOMEM; 3821 3822 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 3823 sbi->aligned_blksize = true; 3824 3825 for (i = 0; i < max_devices; i++) { 3826 3827 if (i > 0 && !RDEV(i).path[0]) 3828 break; 3829 3830 if (max_devices == 1) { 3831 /* Single zoned block device mount */ 3832 FDEV(0).bdev = 3833 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 3834 sbi->sb->s_mode, sbi->sb->s_type); 3835 } else { 3836 /* Multi-device mount */ 3837 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 3838 FDEV(i).total_segments = 3839 le32_to_cpu(RDEV(i).total_segments); 3840 if (i == 0) { 3841 FDEV(i).start_blk = 0; 3842 FDEV(i).end_blk = FDEV(i).start_blk + 3843 (FDEV(i).total_segments << 3844 sbi->log_blocks_per_seg) - 1 + 3845 le32_to_cpu(raw_super->segment0_blkaddr); 3846 } else { 3847 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 3848 FDEV(i).end_blk = FDEV(i).start_blk + 3849 (FDEV(i).total_segments << 3850 sbi->log_blocks_per_seg) - 1; 3851 } 3852 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 3853 sbi->sb->s_mode, sbi->sb->s_type); 3854 } 3855 if (IS_ERR(FDEV(i).bdev)) 3856 return PTR_ERR(FDEV(i).bdev); 3857 3858 /* to release errored devices */ 3859 sbi->s_ndevs = i + 1; 3860 3861 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 3862 sbi->aligned_blksize = false; 3863 3864 #ifdef CONFIG_BLK_DEV_ZONED 3865 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3866 !f2fs_sb_has_blkzoned(sbi)) { 3867 f2fs_err(sbi, "Zoned block device feature not enabled"); 3868 return -EINVAL; 3869 } 3870 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3871 if (init_blkz_info(sbi, i)) { 3872 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 3873 return -EINVAL; 3874 } 3875 if (max_devices == 1) 3876 break; 3877 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3878 i, FDEV(i).path, 3879 FDEV(i).total_segments, 3880 FDEV(i).start_blk, FDEV(i).end_blk, 3881 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3882 "Host-aware" : "Host-managed"); 3883 continue; 3884 } 3885 #endif 3886 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3887 i, FDEV(i).path, 3888 FDEV(i).total_segments, 3889 FDEV(i).start_blk, FDEV(i).end_blk); 3890 } 3891 f2fs_info(sbi, 3892 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3893 return 0; 3894 } 3895 3896 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 3897 { 3898 #if IS_ENABLED(CONFIG_UNICODE) 3899 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 3900 const struct f2fs_sb_encodings *encoding_info; 3901 struct unicode_map *encoding; 3902 __u16 encoding_flags; 3903 3904 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 3905 if (!encoding_info) { 3906 f2fs_err(sbi, 3907 "Encoding requested by superblock is unknown"); 3908 return -EINVAL; 3909 } 3910 3911 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 3912 encoding = utf8_load(encoding_info->version); 3913 if (IS_ERR(encoding)) { 3914 f2fs_err(sbi, 3915 "can't mount with superblock charset: %s-%u.%u.%u " 3916 "not supported by the kernel. flags: 0x%x.", 3917 encoding_info->name, 3918 unicode_major(encoding_info->version), 3919 unicode_minor(encoding_info->version), 3920 unicode_rev(encoding_info->version), 3921 encoding_flags); 3922 return PTR_ERR(encoding); 3923 } 3924 f2fs_info(sbi, "Using encoding defined by superblock: " 3925 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 3926 unicode_major(encoding_info->version), 3927 unicode_minor(encoding_info->version), 3928 unicode_rev(encoding_info->version), 3929 encoding_flags); 3930 3931 sbi->sb->s_encoding = encoding; 3932 sbi->sb->s_encoding_flags = encoding_flags; 3933 } 3934 #else 3935 if (f2fs_sb_has_casefold(sbi)) { 3936 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 3937 return -EINVAL; 3938 } 3939 #endif 3940 return 0; 3941 } 3942 3943 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3944 { 3945 struct f2fs_sm_info *sm_i = SM_I(sbi); 3946 3947 /* adjust parameters according to the volume size */ 3948 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3949 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3950 if (f2fs_block_unit_discard(sbi)) 3951 sm_i->dcc_info->discard_granularity = 1; 3952 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE | 3953 1 << F2FS_IPU_HONOR_OPU_WRITE; 3954 } 3955 3956 sbi->readdir_ra = 1; 3957 } 3958 3959 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3960 { 3961 struct f2fs_sb_info *sbi; 3962 struct f2fs_super_block *raw_super; 3963 struct inode *root; 3964 int err; 3965 bool skip_recovery = false, need_fsck = false; 3966 char *options = NULL; 3967 int recovery, i, valid_super_block; 3968 struct curseg_info *seg_i; 3969 int retry_cnt = 1; 3970 3971 try_onemore: 3972 err = -EINVAL; 3973 raw_super = NULL; 3974 valid_super_block = -1; 3975 recovery = 0; 3976 3977 /* allocate memory for f2fs-specific super block info */ 3978 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3979 if (!sbi) 3980 return -ENOMEM; 3981 3982 sbi->sb = sb; 3983 3984 /* Load the checksum driver */ 3985 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3986 if (IS_ERR(sbi->s_chksum_driver)) { 3987 f2fs_err(sbi, "Cannot load crc32 driver."); 3988 err = PTR_ERR(sbi->s_chksum_driver); 3989 sbi->s_chksum_driver = NULL; 3990 goto free_sbi; 3991 } 3992 3993 /* set a block size */ 3994 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3995 f2fs_err(sbi, "unable to set blocksize"); 3996 goto free_sbi; 3997 } 3998 3999 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4000 &recovery); 4001 if (err) 4002 goto free_sbi; 4003 4004 sb->s_fs_info = sbi; 4005 sbi->raw_super = raw_super; 4006 4007 /* precompute checksum seed for metadata */ 4008 if (f2fs_sb_has_inode_chksum(sbi)) 4009 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 4010 sizeof(raw_super->uuid)); 4011 4012 default_options(sbi); 4013 /* parse mount options */ 4014 options = kstrdup((const char *)data, GFP_KERNEL); 4015 if (data && !options) { 4016 err = -ENOMEM; 4017 goto free_sb_buf; 4018 } 4019 4020 err = parse_options(sb, options, false); 4021 if (err) 4022 goto free_options; 4023 4024 sb->s_maxbytes = max_file_blocks(NULL) << 4025 le32_to_cpu(raw_super->log_blocksize); 4026 sb->s_max_links = F2FS_LINK_MAX; 4027 4028 err = f2fs_setup_casefold(sbi); 4029 if (err) 4030 goto free_options; 4031 4032 #ifdef CONFIG_QUOTA 4033 sb->dq_op = &f2fs_quota_operations; 4034 sb->s_qcop = &f2fs_quotactl_ops; 4035 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4036 4037 if (f2fs_sb_has_quota_ino(sbi)) { 4038 for (i = 0; i < MAXQUOTAS; i++) { 4039 if (f2fs_qf_ino(sbi->sb, i)) 4040 sbi->nquota_files++; 4041 } 4042 } 4043 #endif 4044 4045 sb->s_op = &f2fs_sops; 4046 #ifdef CONFIG_FS_ENCRYPTION 4047 sb->s_cop = &f2fs_cryptops; 4048 #endif 4049 #ifdef CONFIG_FS_VERITY 4050 sb->s_vop = &f2fs_verityops; 4051 #endif 4052 sb->s_xattr = f2fs_xattr_handlers; 4053 sb->s_export_op = &f2fs_export_ops; 4054 sb->s_magic = F2FS_SUPER_MAGIC; 4055 sb->s_time_gran = 1; 4056 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4057 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4058 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 4059 sb->s_iflags |= SB_I_CGROUPWB; 4060 4061 /* init f2fs-specific super block info */ 4062 sbi->valid_super_block = valid_super_block; 4063 init_f2fs_rwsem(&sbi->gc_lock); 4064 mutex_init(&sbi->writepages); 4065 init_f2fs_rwsem(&sbi->cp_global_sem); 4066 init_f2fs_rwsem(&sbi->node_write); 4067 init_f2fs_rwsem(&sbi->node_change); 4068 4069 /* disallow all the data/node/meta page writes */ 4070 set_sbi_flag(sbi, SBI_POR_DOING); 4071 spin_lock_init(&sbi->stat_lock); 4072 4073 for (i = 0; i < NR_PAGE_TYPE; i++) { 4074 int n = (i == META) ? 1 : NR_TEMP_TYPE; 4075 int j; 4076 4077 sbi->write_io[i] = 4078 f2fs_kmalloc(sbi, 4079 array_size(n, 4080 sizeof(struct f2fs_bio_info)), 4081 GFP_KERNEL); 4082 if (!sbi->write_io[i]) { 4083 err = -ENOMEM; 4084 goto free_bio_info; 4085 } 4086 4087 for (j = HOT; j < n; j++) { 4088 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem); 4089 sbi->write_io[i][j].sbi = sbi; 4090 sbi->write_io[i][j].bio = NULL; 4091 spin_lock_init(&sbi->write_io[i][j].io_lock); 4092 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 4093 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 4094 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock); 4095 } 4096 } 4097 4098 init_f2fs_rwsem(&sbi->cp_rwsem); 4099 init_f2fs_rwsem(&sbi->quota_sem); 4100 init_waitqueue_head(&sbi->cp_wait); 4101 init_sb_info(sbi); 4102 4103 err = f2fs_init_iostat(sbi); 4104 if (err) 4105 goto free_bio_info; 4106 4107 err = init_percpu_info(sbi); 4108 if (err) 4109 goto free_iostat; 4110 4111 if (F2FS_IO_ALIGNED(sbi)) { 4112 sbi->write_io_dummy = 4113 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 4114 if (!sbi->write_io_dummy) { 4115 err = -ENOMEM; 4116 goto free_percpu; 4117 } 4118 } 4119 4120 /* init per sbi slab cache */ 4121 err = f2fs_init_xattr_caches(sbi); 4122 if (err) 4123 goto free_io_dummy; 4124 err = f2fs_init_page_array_cache(sbi); 4125 if (err) 4126 goto free_xattr_cache; 4127 4128 /* get an inode for meta space */ 4129 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4130 if (IS_ERR(sbi->meta_inode)) { 4131 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4132 err = PTR_ERR(sbi->meta_inode); 4133 goto free_page_array_cache; 4134 } 4135 4136 err = f2fs_get_valid_checkpoint(sbi); 4137 if (err) { 4138 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4139 goto free_meta_inode; 4140 } 4141 4142 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4143 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4144 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4145 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4146 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4147 } 4148 4149 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4150 set_sbi_flag(sbi, SBI_NEED_FSCK); 4151 4152 /* Initialize device list */ 4153 err = f2fs_scan_devices(sbi); 4154 if (err) { 4155 f2fs_err(sbi, "Failed to find devices"); 4156 goto free_devices; 4157 } 4158 4159 err = f2fs_init_post_read_wq(sbi); 4160 if (err) { 4161 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4162 goto free_devices; 4163 } 4164 4165 sbi->total_valid_node_count = 4166 le32_to_cpu(sbi->ckpt->valid_node_count); 4167 percpu_counter_set(&sbi->total_valid_inode_count, 4168 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4169 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4170 sbi->total_valid_block_count = 4171 le64_to_cpu(sbi->ckpt->valid_block_count); 4172 sbi->last_valid_block_count = sbi->total_valid_block_count; 4173 sbi->reserved_blocks = 0; 4174 sbi->current_reserved_blocks = 0; 4175 limit_reserve_root(sbi); 4176 adjust_unusable_cap_perc(sbi); 4177 4178 for (i = 0; i < NR_INODE_TYPE; i++) { 4179 INIT_LIST_HEAD(&sbi->inode_list[i]); 4180 spin_lock_init(&sbi->inode_lock[i]); 4181 } 4182 mutex_init(&sbi->flush_lock); 4183 4184 f2fs_init_extent_cache_info(sbi); 4185 4186 f2fs_init_ino_entry_info(sbi); 4187 4188 f2fs_init_fsync_node_info(sbi); 4189 4190 /* setup checkpoint request control and start checkpoint issue thread */ 4191 f2fs_init_ckpt_req_control(sbi); 4192 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4193 test_opt(sbi, MERGE_CHECKPOINT)) { 4194 err = f2fs_start_ckpt_thread(sbi); 4195 if (err) { 4196 f2fs_err(sbi, 4197 "Failed to start F2FS issue_checkpoint_thread (%d)", 4198 err); 4199 goto stop_ckpt_thread; 4200 } 4201 } 4202 4203 /* setup f2fs internal modules */ 4204 err = f2fs_build_segment_manager(sbi); 4205 if (err) { 4206 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4207 err); 4208 goto free_sm; 4209 } 4210 err = f2fs_build_node_manager(sbi); 4211 if (err) { 4212 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4213 err); 4214 goto free_nm; 4215 } 4216 4217 err = adjust_reserved_segment(sbi); 4218 if (err) 4219 goto free_nm; 4220 4221 /* For write statistics */ 4222 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4223 4224 /* Read accumulated write IO statistics if exists */ 4225 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4226 if (__exist_node_summaries(sbi)) 4227 sbi->kbytes_written = 4228 le64_to_cpu(seg_i->journal->info.kbytes_written); 4229 4230 f2fs_build_gc_manager(sbi); 4231 4232 err = f2fs_build_stats(sbi); 4233 if (err) 4234 goto free_nm; 4235 4236 /* get an inode for node space */ 4237 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4238 if (IS_ERR(sbi->node_inode)) { 4239 f2fs_err(sbi, "Failed to read node inode"); 4240 err = PTR_ERR(sbi->node_inode); 4241 goto free_stats; 4242 } 4243 4244 /* read root inode and dentry */ 4245 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4246 if (IS_ERR(root)) { 4247 f2fs_err(sbi, "Failed to read root inode"); 4248 err = PTR_ERR(root); 4249 goto free_node_inode; 4250 } 4251 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4252 !root->i_size || !root->i_nlink) { 4253 iput(root); 4254 err = -EINVAL; 4255 goto free_node_inode; 4256 } 4257 4258 sb->s_root = d_make_root(root); /* allocate root dentry */ 4259 if (!sb->s_root) { 4260 err = -ENOMEM; 4261 goto free_node_inode; 4262 } 4263 4264 err = f2fs_init_compress_inode(sbi); 4265 if (err) 4266 goto free_root_inode; 4267 4268 err = f2fs_register_sysfs(sbi); 4269 if (err) 4270 goto free_compress_inode; 4271 4272 #ifdef CONFIG_QUOTA 4273 /* Enable quota usage during mount */ 4274 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4275 err = f2fs_enable_quotas(sb); 4276 if (err) 4277 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4278 } 4279 #endif 4280 /* if there are any orphan inodes, free them */ 4281 err = f2fs_recover_orphan_inodes(sbi); 4282 if (err) 4283 goto free_meta; 4284 4285 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4286 goto reset_checkpoint; 4287 4288 /* recover fsynced data */ 4289 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4290 !test_opt(sbi, NORECOVERY)) { 4291 /* 4292 * mount should be failed, when device has readonly mode, and 4293 * previous checkpoint was not done by clean system shutdown. 4294 */ 4295 if (f2fs_hw_is_readonly(sbi)) { 4296 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4297 err = f2fs_recover_fsync_data(sbi, true); 4298 if (err > 0) { 4299 err = -EROFS; 4300 f2fs_err(sbi, "Need to recover fsync data, but " 4301 "write access unavailable, please try " 4302 "mount w/ disable_roll_forward or norecovery"); 4303 } 4304 if (err < 0) 4305 goto free_meta; 4306 } 4307 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4308 goto reset_checkpoint; 4309 } 4310 4311 if (need_fsck) 4312 set_sbi_flag(sbi, SBI_NEED_FSCK); 4313 4314 if (skip_recovery) 4315 goto reset_checkpoint; 4316 4317 err = f2fs_recover_fsync_data(sbi, false); 4318 if (err < 0) { 4319 if (err != -ENOMEM) 4320 skip_recovery = true; 4321 need_fsck = true; 4322 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4323 err); 4324 goto free_meta; 4325 } 4326 } else { 4327 err = f2fs_recover_fsync_data(sbi, true); 4328 4329 if (!f2fs_readonly(sb) && err > 0) { 4330 err = -EINVAL; 4331 f2fs_err(sbi, "Need to recover fsync data"); 4332 goto free_meta; 4333 } 4334 } 4335 4336 /* 4337 * If the f2fs is not readonly and fsync data recovery succeeds, 4338 * check zoned block devices' write pointer consistency. 4339 */ 4340 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 4341 err = f2fs_check_write_pointer(sbi); 4342 if (err) 4343 goto free_meta; 4344 } 4345 4346 reset_checkpoint: 4347 f2fs_init_inmem_curseg(sbi); 4348 4349 /* f2fs_recover_fsync_data() cleared this already */ 4350 clear_sbi_flag(sbi, SBI_POR_DOING); 4351 4352 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4353 err = f2fs_disable_checkpoint(sbi); 4354 if (err) 4355 goto sync_free_meta; 4356 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4357 f2fs_enable_checkpoint(sbi); 4358 } 4359 4360 /* 4361 * If filesystem is not mounted as read-only then 4362 * do start the gc_thread. 4363 */ 4364 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4365 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4366 /* After POR, we can run background GC thread.*/ 4367 err = f2fs_start_gc_thread(sbi); 4368 if (err) 4369 goto sync_free_meta; 4370 } 4371 kvfree(options); 4372 4373 /* recover broken superblock */ 4374 if (recovery) { 4375 err = f2fs_commit_super(sbi, true); 4376 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4377 sbi->valid_super_block ? 1 : 2, err); 4378 } 4379 4380 f2fs_join_shrinker(sbi); 4381 4382 f2fs_tuning_parameters(sbi); 4383 4384 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4385 cur_cp_version(F2FS_CKPT(sbi))); 4386 f2fs_update_time(sbi, CP_TIME); 4387 f2fs_update_time(sbi, REQ_TIME); 4388 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4389 return 0; 4390 4391 sync_free_meta: 4392 /* safe to flush all the data */ 4393 sync_filesystem(sbi->sb); 4394 retry_cnt = 0; 4395 4396 free_meta: 4397 #ifdef CONFIG_QUOTA 4398 f2fs_truncate_quota_inode_pages(sb); 4399 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4400 f2fs_quota_off_umount(sbi->sb); 4401 #endif 4402 /* 4403 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4404 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4405 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4406 * falls into an infinite loop in f2fs_sync_meta_pages(). 4407 */ 4408 truncate_inode_pages_final(META_MAPPING(sbi)); 4409 /* evict some inodes being cached by GC */ 4410 evict_inodes(sb); 4411 f2fs_unregister_sysfs(sbi); 4412 free_compress_inode: 4413 f2fs_destroy_compress_inode(sbi); 4414 free_root_inode: 4415 dput(sb->s_root); 4416 sb->s_root = NULL; 4417 free_node_inode: 4418 f2fs_release_ino_entry(sbi, true); 4419 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4420 iput(sbi->node_inode); 4421 sbi->node_inode = NULL; 4422 free_stats: 4423 f2fs_destroy_stats(sbi); 4424 free_nm: 4425 /* stop discard thread before destroying node manager */ 4426 f2fs_stop_discard_thread(sbi); 4427 f2fs_destroy_node_manager(sbi); 4428 free_sm: 4429 f2fs_destroy_segment_manager(sbi); 4430 f2fs_destroy_post_read_wq(sbi); 4431 stop_ckpt_thread: 4432 f2fs_stop_ckpt_thread(sbi); 4433 free_devices: 4434 destroy_device_list(sbi); 4435 kvfree(sbi->ckpt); 4436 free_meta_inode: 4437 make_bad_inode(sbi->meta_inode); 4438 iput(sbi->meta_inode); 4439 sbi->meta_inode = NULL; 4440 free_page_array_cache: 4441 f2fs_destroy_page_array_cache(sbi); 4442 free_xattr_cache: 4443 f2fs_destroy_xattr_caches(sbi); 4444 free_io_dummy: 4445 mempool_destroy(sbi->write_io_dummy); 4446 free_percpu: 4447 destroy_percpu_info(sbi); 4448 free_iostat: 4449 f2fs_destroy_iostat(sbi); 4450 free_bio_info: 4451 for (i = 0; i < NR_PAGE_TYPE; i++) 4452 kvfree(sbi->write_io[i]); 4453 4454 #if IS_ENABLED(CONFIG_UNICODE) 4455 utf8_unload(sb->s_encoding); 4456 sb->s_encoding = NULL; 4457 #endif 4458 free_options: 4459 #ifdef CONFIG_QUOTA 4460 for (i = 0; i < MAXQUOTAS; i++) 4461 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4462 #endif 4463 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4464 kvfree(options); 4465 free_sb_buf: 4466 kfree(raw_super); 4467 free_sbi: 4468 if (sbi->s_chksum_driver) 4469 crypto_free_shash(sbi->s_chksum_driver); 4470 kfree(sbi); 4471 4472 /* give only one another chance */ 4473 if (retry_cnt > 0 && skip_recovery) { 4474 retry_cnt--; 4475 shrink_dcache_sb(sb); 4476 goto try_onemore; 4477 } 4478 return err; 4479 } 4480 4481 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4482 const char *dev_name, void *data) 4483 { 4484 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4485 } 4486 4487 static void kill_f2fs_super(struct super_block *sb) 4488 { 4489 if (sb->s_root) { 4490 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4491 4492 set_sbi_flag(sbi, SBI_IS_CLOSE); 4493 f2fs_stop_gc_thread(sbi); 4494 f2fs_stop_discard_thread(sbi); 4495 4496 #ifdef CONFIG_F2FS_FS_COMPRESSION 4497 /* 4498 * latter evict_inode() can bypass checking and invalidating 4499 * compress inode cache. 4500 */ 4501 if (test_opt(sbi, COMPRESS_CACHE)) 4502 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4503 #endif 4504 4505 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4506 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4507 struct cp_control cpc = { 4508 .reason = CP_UMOUNT, 4509 }; 4510 f2fs_write_checkpoint(sbi, &cpc); 4511 } 4512 4513 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4514 sb->s_flags &= ~SB_RDONLY; 4515 } 4516 kill_block_super(sb); 4517 } 4518 4519 static struct file_system_type f2fs_fs_type = { 4520 .owner = THIS_MODULE, 4521 .name = "f2fs", 4522 .mount = f2fs_mount, 4523 .kill_sb = kill_f2fs_super, 4524 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 4525 }; 4526 MODULE_ALIAS_FS("f2fs"); 4527 4528 static int __init init_inodecache(void) 4529 { 4530 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4531 sizeof(struct f2fs_inode_info), 0, 4532 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4533 if (!f2fs_inode_cachep) 4534 return -ENOMEM; 4535 return 0; 4536 } 4537 4538 static void destroy_inodecache(void) 4539 { 4540 /* 4541 * Make sure all delayed rcu free inodes are flushed before we 4542 * destroy cache. 4543 */ 4544 rcu_barrier(); 4545 kmem_cache_destroy(f2fs_inode_cachep); 4546 } 4547 4548 static int __init init_f2fs_fs(void) 4549 { 4550 int err; 4551 4552 if (PAGE_SIZE != F2FS_BLKSIZE) { 4553 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 4554 PAGE_SIZE, F2FS_BLKSIZE); 4555 return -EINVAL; 4556 } 4557 4558 err = init_inodecache(); 4559 if (err) 4560 goto fail; 4561 err = f2fs_create_node_manager_caches(); 4562 if (err) 4563 goto free_inodecache; 4564 err = f2fs_create_segment_manager_caches(); 4565 if (err) 4566 goto free_node_manager_caches; 4567 err = f2fs_create_checkpoint_caches(); 4568 if (err) 4569 goto free_segment_manager_caches; 4570 err = f2fs_create_recovery_cache(); 4571 if (err) 4572 goto free_checkpoint_caches; 4573 err = f2fs_create_extent_cache(); 4574 if (err) 4575 goto free_recovery_cache; 4576 err = f2fs_create_garbage_collection_cache(); 4577 if (err) 4578 goto free_extent_cache; 4579 err = f2fs_init_sysfs(); 4580 if (err) 4581 goto free_garbage_collection_cache; 4582 err = register_shrinker(&f2fs_shrinker_info); 4583 if (err) 4584 goto free_sysfs; 4585 err = register_filesystem(&f2fs_fs_type); 4586 if (err) 4587 goto free_shrinker; 4588 f2fs_create_root_stats(); 4589 err = f2fs_init_post_read_processing(); 4590 if (err) 4591 goto free_root_stats; 4592 err = f2fs_init_iostat_processing(); 4593 if (err) 4594 goto free_post_read; 4595 err = f2fs_init_bio_entry_cache(); 4596 if (err) 4597 goto free_iostat; 4598 err = f2fs_init_bioset(); 4599 if (err) 4600 goto free_bio_enrty_cache; 4601 err = f2fs_init_compress_mempool(); 4602 if (err) 4603 goto free_bioset; 4604 err = f2fs_init_compress_cache(); 4605 if (err) 4606 goto free_compress_mempool; 4607 err = f2fs_create_casefold_cache(); 4608 if (err) 4609 goto free_compress_cache; 4610 return 0; 4611 free_compress_cache: 4612 f2fs_destroy_compress_cache(); 4613 free_compress_mempool: 4614 f2fs_destroy_compress_mempool(); 4615 free_bioset: 4616 f2fs_destroy_bioset(); 4617 free_bio_enrty_cache: 4618 f2fs_destroy_bio_entry_cache(); 4619 free_iostat: 4620 f2fs_destroy_iostat_processing(); 4621 free_post_read: 4622 f2fs_destroy_post_read_processing(); 4623 free_root_stats: 4624 f2fs_destroy_root_stats(); 4625 unregister_filesystem(&f2fs_fs_type); 4626 free_shrinker: 4627 unregister_shrinker(&f2fs_shrinker_info); 4628 free_sysfs: 4629 f2fs_exit_sysfs(); 4630 free_garbage_collection_cache: 4631 f2fs_destroy_garbage_collection_cache(); 4632 free_extent_cache: 4633 f2fs_destroy_extent_cache(); 4634 free_recovery_cache: 4635 f2fs_destroy_recovery_cache(); 4636 free_checkpoint_caches: 4637 f2fs_destroy_checkpoint_caches(); 4638 free_segment_manager_caches: 4639 f2fs_destroy_segment_manager_caches(); 4640 free_node_manager_caches: 4641 f2fs_destroy_node_manager_caches(); 4642 free_inodecache: 4643 destroy_inodecache(); 4644 fail: 4645 return err; 4646 } 4647 4648 static void __exit exit_f2fs_fs(void) 4649 { 4650 f2fs_destroy_casefold_cache(); 4651 f2fs_destroy_compress_cache(); 4652 f2fs_destroy_compress_mempool(); 4653 f2fs_destroy_bioset(); 4654 f2fs_destroy_bio_entry_cache(); 4655 f2fs_destroy_iostat_processing(); 4656 f2fs_destroy_post_read_processing(); 4657 f2fs_destroy_root_stats(); 4658 unregister_filesystem(&f2fs_fs_type); 4659 unregister_shrinker(&f2fs_shrinker_info); 4660 f2fs_exit_sysfs(); 4661 f2fs_destroy_garbage_collection_cache(); 4662 f2fs_destroy_extent_cache(); 4663 f2fs_destroy_recovery_cache(); 4664 f2fs_destroy_checkpoint_caches(); 4665 f2fs_destroy_segment_manager_caches(); 4666 f2fs_destroy_node_manager_caches(); 4667 destroy_inodecache(); 4668 } 4669 4670 module_init(init_f2fs_fs) 4671 module_exit(exit_f2fs_fs) 4672 4673 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 4674 MODULE_DESCRIPTION("Flash Friendly File System"); 4675 MODULE_LICENSE("GPL"); 4676 MODULE_SOFTDEP("pre: crc32"); 4677 4678