1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/f2fs.h> 36 37 static struct proc_dir_entry *f2fs_proc_root; 38 static struct kmem_cache *f2fs_inode_cachep; 39 static struct kset *f2fs_kset; 40 41 enum { 42 Opt_gc_background, 43 Opt_disable_roll_forward, 44 Opt_discard, 45 Opt_noheap, 46 Opt_user_xattr, 47 Opt_nouser_xattr, 48 Opt_acl, 49 Opt_noacl, 50 Opt_active_logs, 51 Opt_disable_ext_identify, 52 Opt_inline_xattr, 53 Opt_inline_data, 54 Opt_flush_merge, 55 Opt_err, 56 }; 57 58 static match_table_t f2fs_tokens = { 59 {Opt_gc_background, "background_gc=%s"}, 60 {Opt_disable_roll_forward, "disable_roll_forward"}, 61 {Opt_discard, "discard"}, 62 {Opt_noheap, "no_heap"}, 63 {Opt_user_xattr, "user_xattr"}, 64 {Opt_nouser_xattr, "nouser_xattr"}, 65 {Opt_acl, "acl"}, 66 {Opt_noacl, "noacl"}, 67 {Opt_active_logs, "active_logs=%u"}, 68 {Opt_disable_ext_identify, "disable_ext_identify"}, 69 {Opt_inline_xattr, "inline_xattr"}, 70 {Opt_inline_data, "inline_data"}, 71 {Opt_flush_merge, "flush_merge"}, 72 {Opt_err, NULL}, 73 }; 74 75 /* Sysfs support for f2fs */ 76 enum { 77 GC_THREAD, /* struct f2fs_gc_thread */ 78 SM_INFO, /* struct f2fs_sm_info */ 79 NM_INFO, /* struct f2fs_nm_info */ 80 F2FS_SBI, /* struct f2fs_sb_info */ 81 }; 82 83 struct f2fs_attr { 84 struct attribute attr; 85 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 86 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 87 const char *, size_t); 88 int struct_type; 89 int offset; 90 }; 91 92 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 93 { 94 if (struct_type == GC_THREAD) 95 return (unsigned char *)sbi->gc_thread; 96 else if (struct_type == SM_INFO) 97 return (unsigned char *)SM_I(sbi); 98 else if (struct_type == NM_INFO) 99 return (unsigned char *)NM_I(sbi); 100 else if (struct_type == F2FS_SBI) 101 return (unsigned char *)sbi; 102 return NULL; 103 } 104 105 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 106 struct f2fs_sb_info *sbi, char *buf) 107 { 108 unsigned char *ptr = NULL; 109 unsigned int *ui; 110 111 ptr = __struct_ptr(sbi, a->struct_type); 112 if (!ptr) 113 return -EINVAL; 114 115 ui = (unsigned int *)(ptr + a->offset); 116 117 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 118 } 119 120 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 121 struct f2fs_sb_info *sbi, 122 const char *buf, size_t count) 123 { 124 unsigned char *ptr; 125 unsigned long t; 126 unsigned int *ui; 127 ssize_t ret; 128 129 ptr = __struct_ptr(sbi, a->struct_type); 130 if (!ptr) 131 return -EINVAL; 132 133 ui = (unsigned int *)(ptr + a->offset); 134 135 ret = kstrtoul(skip_spaces(buf), 0, &t); 136 if (ret < 0) 137 return ret; 138 *ui = t; 139 return count; 140 } 141 142 static ssize_t f2fs_attr_show(struct kobject *kobj, 143 struct attribute *attr, char *buf) 144 { 145 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 146 s_kobj); 147 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 148 149 return a->show ? a->show(a, sbi, buf) : 0; 150 } 151 152 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 153 const char *buf, size_t len) 154 { 155 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 156 s_kobj); 157 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 158 159 return a->store ? a->store(a, sbi, buf, len) : 0; 160 } 161 162 static void f2fs_sb_release(struct kobject *kobj) 163 { 164 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 165 s_kobj); 166 complete(&sbi->s_kobj_unregister); 167 } 168 169 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 170 static struct f2fs_attr f2fs_attr_##_name = { \ 171 .attr = {.name = __stringify(_name), .mode = _mode }, \ 172 .show = _show, \ 173 .store = _store, \ 174 .struct_type = _struct_type, \ 175 .offset = _offset \ 176 } 177 178 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 179 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 180 f2fs_sbi_show, f2fs_sbi_store, \ 181 offsetof(struct struct_name, elname)) 182 183 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 184 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 185 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 186 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 187 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 188 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); 189 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 190 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 191 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 192 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 193 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 194 195 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 196 static struct attribute *f2fs_attrs[] = { 197 ATTR_LIST(gc_min_sleep_time), 198 ATTR_LIST(gc_max_sleep_time), 199 ATTR_LIST(gc_no_gc_sleep_time), 200 ATTR_LIST(gc_idle), 201 ATTR_LIST(reclaim_segments), 202 ATTR_LIST(max_small_discards), 203 ATTR_LIST(ipu_policy), 204 ATTR_LIST(min_ipu_util), 205 ATTR_LIST(max_victim_search), 206 ATTR_LIST(dir_level), 207 ATTR_LIST(ram_thresh), 208 NULL, 209 }; 210 211 static const struct sysfs_ops f2fs_attr_ops = { 212 .show = f2fs_attr_show, 213 .store = f2fs_attr_store, 214 }; 215 216 static struct kobj_type f2fs_ktype = { 217 .default_attrs = f2fs_attrs, 218 .sysfs_ops = &f2fs_attr_ops, 219 .release = f2fs_sb_release, 220 }; 221 222 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 223 { 224 struct va_format vaf; 225 va_list args; 226 227 va_start(args, fmt); 228 vaf.fmt = fmt; 229 vaf.va = &args; 230 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 231 va_end(args); 232 } 233 234 static void init_once(void *foo) 235 { 236 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 237 238 inode_init_once(&fi->vfs_inode); 239 } 240 241 static int parse_options(struct super_block *sb, char *options) 242 { 243 struct f2fs_sb_info *sbi = F2FS_SB(sb); 244 substring_t args[MAX_OPT_ARGS]; 245 char *p, *name; 246 int arg = 0; 247 248 if (!options) 249 return 0; 250 251 while ((p = strsep(&options, ",")) != NULL) { 252 int token; 253 if (!*p) 254 continue; 255 /* 256 * Initialize args struct so we know whether arg was 257 * found; some options take optional arguments. 258 */ 259 args[0].to = args[0].from = NULL; 260 token = match_token(p, f2fs_tokens, args); 261 262 switch (token) { 263 case Opt_gc_background: 264 name = match_strdup(&args[0]); 265 266 if (!name) 267 return -ENOMEM; 268 if (strlen(name) == 2 && !strncmp(name, "on", 2)) 269 set_opt(sbi, BG_GC); 270 else if (strlen(name) == 3 && !strncmp(name, "off", 3)) 271 clear_opt(sbi, BG_GC); 272 else { 273 kfree(name); 274 return -EINVAL; 275 } 276 kfree(name); 277 break; 278 case Opt_disable_roll_forward: 279 set_opt(sbi, DISABLE_ROLL_FORWARD); 280 break; 281 case Opt_discard: 282 set_opt(sbi, DISCARD); 283 break; 284 case Opt_noheap: 285 set_opt(sbi, NOHEAP); 286 break; 287 #ifdef CONFIG_F2FS_FS_XATTR 288 case Opt_user_xattr: 289 set_opt(sbi, XATTR_USER); 290 break; 291 case Opt_nouser_xattr: 292 clear_opt(sbi, XATTR_USER); 293 break; 294 case Opt_inline_xattr: 295 set_opt(sbi, INLINE_XATTR); 296 break; 297 #else 298 case Opt_user_xattr: 299 f2fs_msg(sb, KERN_INFO, 300 "user_xattr options not supported"); 301 break; 302 case Opt_nouser_xattr: 303 f2fs_msg(sb, KERN_INFO, 304 "nouser_xattr options not supported"); 305 break; 306 case Opt_inline_xattr: 307 f2fs_msg(sb, KERN_INFO, 308 "inline_xattr options not supported"); 309 break; 310 #endif 311 #ifdef CONFIG_F2FS_FS_POSIX_ACL 312 case Opt_acl: 313 set_opt(sbi, POSIX_ACL); 314 break; 315 case Opt_noacl: 316 clear_opt(sbi, POSIX_ACL); 317 break; 318 #else 319 case Opt_acl: 320 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 321 break; 322 case Opt_noacl: 323 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 324 break; 325 #endif 326 case Opt_active_logs: 327 if (args->from && match_int(args, &arg)) 328 return -EINVAL; 329 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 330 return -EINVAL; 331 sbi->active_logs = arg; 332 break; 333 case Opt_disable_ext_identify: 334 set_opt(sbi, DISABLE_EXT_IDENTIFY); 335 break; 336 case Opt_inline_data: 337 set_opt(sbi, INLINE_DATA); 338 break; 339 case Opt_flush_merge: 340 set_opt(sbi, FLUSH_MERGE); 341 break; 342 default: 343 f2fs_msg(sb, KERN_ERR, 344 "Unrecognized mount option \"%s\" or missing value", 345 p); 346 return -EINVAL; 347 } 348 } 349 return 0; 350 } 351 352 static struct inode *f2fs_alloc_inode(struct super_block *sb) 353 { 354 struct f2fs_inode_info *fi; 355 356 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 357 if (!fi) 358 return NULL; 359 360 init_once((void *) fi); 361 362 /* Initialize f2fs-specific inode info */ 363 fi->vfs_inode.i_version = 1; 364 atomic_set(&fi->dirty_dents, 0); 365 fi->i_current_depth = 1; 366 fi->i_advise = 0; 367 rwlock_init(&fi->ext.ext_lock); 368 init_rwsem(&fi->i_sem); 369 370 set_inode_flag(fi, FI_NEW_INODE); 371 372 if (test_opt(F2FS_SB(sb), INLINE_XATTR)) 373 set_inode_flag(fi, FI_INLINE_XATTR); 374 375 /* Will be used by directory only */ 376 fi->i_dir_level = F2FS_SB(sb)->dir_level; 377 378 return &fi->vfs_inode; 379 } 380 381 static int f2fs_drop_inode(struct inode *inode) 382 { 383 /* 384 * This is to avoid a deadlock condition like below. 385 * writeback_single_inode(inode) 386 * - f2fs_write_data_page 387 * - f2fs_gc -> iput -> evict 388 * - inode_wait_for_writeback(inode) 389 */ 390 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) 391 return 0; 392 return generic_drop_inode(inode); 393 } 394 395 /* 396 * f2fs_dirty_inode() is called from __mark_inode_dirty() 397 * 398 * We should call set_dirty_inode to write the dirty inode through write_inode. 399 */ 400 static void f2fs_dirty_inode(struct inode *inode, int flags) 401 { 402 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); 403 } 404 405 static void f2fs_i_callback(struct rcu_head *head) 406 { 407 struct inode *inode = container_of(head, struct inode, i_rcu); 408 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 409 } 410 411 static void f2fs_destroy_inode(struct inode *inode) 412 { 413 call_rcu(&inode->i_rcu, f2fs_i_callback); 414 } 415 416 static void f2fs_put_super(struct super_block *sb) 417 { 418 struct f2fs_sb_info *sbi = F2FS_SB(sb); 419 420 if (sbi->s_proc) { 421 remove_proc_entry("segment_info", sbi->s_proc); 422 remove_proc_entry(sb->s_id, f2fs_proc_root); 423 } 424 kobject_del(&sbi->s_kobj); 425 426 f2fs_destroy_stats(sbi); 427 stop_gc_thread(sbi); 428 429 /* We don't need to do checkpoint when it's clean */ 430 if (sbi->s_dirty && get_pages(sbi, F2FS_DIRTY_NODES)) 431 write_checkpoint(sbi, true); 432 433 iput(sbi->node_inode); 434 iput(sbi->meta_inode); 435 436 /* destroy f2fs internal modules */ 437 destroy_node_manager(sbi); 438 destroy_segment_manager(sbi); 439 440 kfree(sbi->ckpt); 441 kobject_put(&sbi->s_kobj); 442 wait_for_completion(&sbi->s_kobj_unregister); 443 444 sb->s_fs_info = NULL; 445 brelse(sbi->raw_super_buf); 446 kfree(sbi); 447 } 448 449 int f2fs_sync_fs(struct super_block *sb, int sync) 450 { 451 struct f2fs_sb_info *sbi = F2FS_SB(sb); 452 453 trace_f2fs_sync_fs(sb, sync); 454 455 if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES)) 456 return 0; 457 458 if (sync) { 459 mutex_lock(&sbi->gc_mutex); 460 write_checkpoint(sbi, false); 461 mutex_unlock(&sbi->gc_mutex); 462 } else { 463 f2fs_balance_fs(sbi); 464 } 465 466 return 0; 467 } 468 469 static int f2fs_freeze(struct super_block *sb) 470 { 471 int err; 472 473 if (f2fs_readonly(sb)) 474 return 0; 475 476 err = f2fs_sync_fs(sb, 1); 477 return err; 478 } 479 480 static int f2fs_unfreeze(struct super_block *sb) 481 { 482 return 0; 483 } 484 485 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 486 { 487 struct super_block *sb = dentry->d_sb; 488 struct f2fs_sb_info *sbi = F2FS_SB(sb); 489 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 490 block_t total_count, user_block_count, start_count, ovp_count; 491 492 total_count = le64_to_cpu(sbi->raw_super->block_count); 493 user_block_count = sbi->user_block_count; 494 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 495 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 496 buf->f_type = F2FS_SUPER_MAGIC; 497 buf->f_bsize = sbi->blocksize; 498 499 buf->f_blocks = total_count - start_count; 500 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count; 501 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 502 503 buf->f_files = sbi->total_node_count; 504 buf->f_ffree = sbi->total_node_count - valid_inode_count(sbi); 505 506 buf->f_namelen = F2FS_NAME_LEN; 507 buf->f_fsid.val[0] = (u32)id; 508 buf->f_fsid.val[1] = (u32)(id >> 32); 509 510 return 0; 511 } 512 513 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 514 { 515 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 516 517 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) 518 seq_printf(seq, ",background_gc=%s", "on"); 519 else 520 seq_printf(seq, ",background_gc=%s", "off"); 521 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 522 seq_puts(seq, ",disable_roll_forward"); 523 if (test_opt(sbi, DISCARD)) 524 seq_puts(seq, ",discard"); 525 if (test_opt(sbi, NOHEAP)) 526 seq_puts(seq, ",no_heap_alloc"); 527 #ifdef CONFIG_F2FS_FS_XATTR 528 if (test_opt(sbi, XATTR_USER)) 529 seq_puts(seq, ",user_xattr"); 530 else 531 seq_puts(seq, ",nouser_xattr"); 532 if (test_opt(sbi, INLINE_XATTR)) 533 seq_puts(seq, ",inline_xattr"); 534 #endif 535 #ifdef CONFIG_F2FS_FS_POSIX_ACL 536 if (test_opt(sbi, POSIX_ACL)) 537 seq_puts(seq, ",acl"); 538 else 539 seq_puts(seq, ",noacl"); 540 #endif 541 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 542 seq_puts(seq, ",disable_ext_identify"); 543 if (test_opt(sbi, INLINE_DATA)) 544 seq_puts(seq, ",inline_data"); 545 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 546 seq_puts(seq, ",flush_merge"); 547 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 548 549 return 0; 550 } 551 552 static int segment_info_seq_show(struct seq_file *seq, void *offset) 553 { 554 struct super_block *sb = seq->private; 555 struct f2fs_sb_info *sbi = F2FS_SB(sb); 556 unsigned int total_segs = 557 le32_to_cpu(sbi->raw_super->segment_count_main); 558 int i; 559 560 seq_puts(seq, "format: segment_type|valid_blocks\n" 561 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 562 563 for (i = 0; i < total_segs; i++) { 564 struct seg_entry *se = get_seg_entry(sbi, i); 565 566 if ((i % 10) == 0) 567 seq_printf(seq, "%-5d", i); 568 seq_printf(seq, "%d|%-3u", se->type, 569 get_valid_blocks(sbi, i, 1)); 570 if ((i % 10) == 9 || i == (total_segs - 1)) 571 seq_putc(seq, '\n'); 572 else 573 seq_putc(seq, ' '); 574 } 575 576 return 0; 577 } 578 579 static int segment_info_open_fs(struct inode *inode, struct file *file) 580 { 581 return single_open(file, segment_info_seq_show, PDE_DATA(inode)); 582 } 583 584 static const struct file_operations f2fs_seq_segment_info_fops = { 585 .owner = THIS_MODULE, 586 .open = segment_info_open_fs, 587 .read = seq_read, 588 .llseek = seq_lseek, 589 .release = single_release, 590 }; 591 592 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 593 { 594 struct f2fs_sb_info *sbi = F2FS_SB(sb); 595 struct f2fs_mount_info org_mount_opt; 596 int err, active_logs; 597 bool need_restart_gc = false; 598 bool need_stop_gc = false; 599 600 sync_filesystem(sb); 601 602 /* 603 * Save the old mount options in case we 604 * need to restore them. 605 */ 606 org_mount_opt = sbi->mount_opt; 607 active_logs = sbi->active_logs; 608 609 /* parse mount options */ 610 err = parse_options(sb, data); 611 if (err) 612 goto restore_opts; 613 614 /* 615 * Previous and new state of filesystem is RO, 616 * so skip checking GC and FLUSH_MERGE conditions. 617 */ 618 if ((sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY)) 619 goto skip; 620 621 /* 622 * We stop the GC thread if FS is mounted as RO 623 * or if background_gc = off is passed in mount 624 * option. Also sync the filesystem. 625 */ 626 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 627 if (sbi->gc_thread) { 628 stop_gc_thread(sbi); 629 f2fs_sync_fs(sb, 1); 630 need_restart_gc = true; 631 } 632 } else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) { 633 err = start_gc_thread(sbi); 634 if (err) 635 goto restore_opts; 636 need_stop_gc = true; 637 } 638 639 /* 640 * We stop issue flush thread if FS is mounted as RO 641 * or if flush_merge is not passed in mount option. 642 */ 643 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 644 destroy_flush_cmd_control(sbi); 645 } else if (test_opt(sbi, FLUSH_MERGE) && 646 !sbi->sm_info->cmd_control_info) { 647 err = create_flush_cmd_control(sbi); 648 if (err) 649 goto restore_gc; 650 } 651 skip: 652 /* Update the POSIXACL Flag */ 653 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 654 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 655 return 0; 656 restore_gc: 657 if (need_restart_gc) { 658 if (start_gc_thread(sbi)) 659 f2fs_msg(sbi->sb, KERN_WARNING, 660 "background gc thread is stop"); 661 } else if (need_stop_gc) { 662 stop_gc_thread(sbi); 663 } 664 restore_opts: 665 sbi->mount_opt = org_mount_opt; 666 sbi->active_logs = active_logs; 667 return err; 668 } 669 670 static struct super_operations f2fs_sops = { 671 .alloc_inode = f2fs_alloc_inode, 672 .drop_inode = f2fs_drop_inode, 673 .destroy_inode = f2fs_destroy_inode, 674 .write_inode = f2fs_write_inode, 675 .dirty_inode = f2fs_dirty_inode, 676 .show_options = f2fs_show_options, 677 .evict_inode = f2fs_evict_inode, 678 .put_super = f2fs_put_super, 679 .sync_fs = f2fs_sync_fs, 680 .freeze_fs = f2fs_freeze, 681 .unfreeze_fs = f2fs_unfreeze, 682 .statfs = f2fs_statfs, 683 .remount_fs = f2fs_remount, 684 }; 685 686 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 687 u64 ino, u32 generation) 688 { 689 struct f2fs_sb_info *sbi = F2FS_SB(sb); 690 struct inode *inode; 691 692 if (unlikely(ino < F2FS_ROOT_INO(sbi))) 693 return ERR_PTR(-ESTALE); 694 if (unlikely(ino >= NM_I(sbi)->max_nid)) 695 return ERR_PTR(-ESTALE); 696 697 /* 698 * f2fs_iget isn't quite right if the inode is currently unallocated! 699 * However f2fs_iget currently does appropriate checks to handle stale 700 * inodes so everything is OK. 701 */ 702 inode = f2fs_iget(sb, ino); 703 if (IS_ERR(inode)) 704 return ERR_CAST(inode); 705 if (unlikely(generation && inode->i_generation != generation)) { 706 /* we didn't find the right inode.. */ 707 iput(inode); 708 return ERR_PTR(-ESTALE); 709 } 710 return inode; 711 } 712 713 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 714 int fh_len, int fh_type) 715 { 716 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 717 f2fs_nfs_get_inode); 718 } 719 720 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 721 int fh_len, int fh_type) 722 { 723 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 724 f2fs_nfs_get_inode); 725 } 726 727 static const struct export_operations f2fs_export_ops = { 728 .fh_to_dentry = f2fs_fh_to_dentry, 729 .fh_to_parent = f2fs_fh_to_parent, 730 .get_parent = f2fs_get_parent, 731 }; 732 733 static loff_t max_file_size(unsigned bits) 734 { 735 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 736 loff_t leaf_count = ADDRS_PER_BLOCK; 737 738 /* two direct node blocks */ 739 result += (leaf_count * 2); 740 741 /* two indirect node blocks */ 742 leaf_count *= NIDS_PER_BLOCK; 743 result += (leaf_count * 2); 744 745 /* one double indirect node block */ 746 leaf_count *= NIDS_PER_BLOCK; 747 result += leaf_count; 748 749 result <<= bits; 750 return result; 751 } 752 753 static int sanity_check_raw_super(struct super_block *sb, 754 struct f2fs_super_block *raw_super) 755 { 756 unsigned int blocksize; 757 758 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 759 f2fs_msg(sb, KERN_INFO, 760 "Magic Mismatch, valid(0x%x) - read(0x%x)", 761 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 762 return 1; 763 } 764 765 /* Currently, support only 4KB page cache size */ 766 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) { 767 f2fs_msg(sb, KERN_INFO, 768 "Invalid page_cache_size (%lu), supports only 4KB\n", 769 PAGE_CACHE_SIZE); 770 return 1; 771 } 772 773 /* Currently, support only 4KB block size */ 774 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 775 if (blocksize != F2FS_BLKSIZE) { 776 f2fs_msg(sb, KERN_INFO, 777 "Invalid blocksize (%u), supports only 4KB\n", 778 blocksize); 779 return 1; 780 } 781 782 if (le32_to_cpu(raw_super->log_sectorsize) != 783 F2FS_LOG_SECTOR_SIZE) { 784 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize"); 785 return 1; 786 } 787 if (le32_to_cpu(raw_super->log_sectors_per_block) != 788 F2FS_LOG_SECTORS_PER_BLOCK) { 789 f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block"); 790 return 1; 791 } 792 return 0; 793 } 794 795 static int sanity_check_ckpt(struct f2fs_sb_info *sbi) 796 { 797 unsigned int total, fsmeta; 798 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 799 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 800 801 total = le32_to_cpu(raw_super->segment_count); 802 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 803 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 804 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 805 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 806 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 807 808 if (unlikely(fsmeta >= total)) 809 return 1; 810 811 if (unlikely(is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) { 812 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 813 return 1; 814 } 815 return 0; 816 } 817 818 static void init_sb_info(struct f2fs_sb_info *sbi) 819 { 820 struct f2fs_super_block *raw_super = sbi->raw_super; 821 int i; 822 823 sbi->log_sectors_per_block = 824 le32_to_cpu(raw_super->log_sectors_per_block); 825 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 826 sbi->blocksize = 1 << sbi->log_blocksize; 827 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 828 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 829 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 830 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 831 sbi->total_sections = le32_to_cpu(raw_super->section_count); 832 sbi->total_node_count = 833 (le32_to_cpu(raw_super->segment_count_nat) / 2) 834 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 835 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 836 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 837 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 838 sbi->cur_victim_sec = NULL_SECNO; 839 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 840 841 for (i = 0; i < NR_COUNT_TYPE; i++) 842 atomic_set(&sbi->nr_pages[i], 0); 843 844 sbi->dir_level = DEF_DIR_LEVEL; 845 } 846 847 /* 848 * Read f2fs raw super block. 849 * Because we have two copies of super block, so read the first one at first, 850 * if the first one is invalid, move to read the second one. 851 */ 852 static int read_raw_super_block(struct super_block *sb, 853 struct f2fs_super_block **raw_super, 854 struct buffer_head **raw_super_buf) 855 { 856 int block = 0; 857 858 retry: 859 *raw_super_buf = sb_bread(sb, block); 860 if (!*raw_super_buf) { 861 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 862 block + 1); 863 if (block == 0) { 864 block++; 865 goto retry; 866 } else { 867 return -EIO; 868 } 869 } 870 871 *raw_super = (struct f2fs_super_block *) 872 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET); 873 874 /* sanity checking of raw super */ 875 if (sanity_check_raw_super(sb, *raw_super)) { 876 brelse(*raw_super_buf); 877 f2fs_msg(sb, KERN_ERR, 878 "Can't find valid F2FS filesystem in %dth superblock", 879 block + 1); 880 if (block == 0) { 881 block++; 882 goto retry; 883 } else { 884 return -EINVAL; 885 } 886 } 887 888 return 0; 889 } 890 891 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 892 { 893 struct f2fs_sb_info *sbi; 894 struct f2fs_super_block *raw_super; 895 struct buffer_head *raw_super_buf; 896 struct inode *root; 897 long err = -EINVAL; 898 int i; 899 900 /* allocate memory for f2fs-specific super block info */ 901 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 902 if (!sbi) 903 return -ENOMEM; 904 905 /* set a block size */ 906 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 907 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 908 goto free_sbi; 909 } 910 911 err = read_raw_super_block(sb, &raw_super, &raw_super_buf); 912 if (err) 913 goto free_sbi; 914 915 sb->s_fs_info = sbi; 916 /* init some FS parameters */ 917 sbi->active_logs = NR_CURSEG_TYPE; 918 919 set_opt(sbi, BG_GC); 920 921 #ifdef CONFIG_F2FS_FS_XATTR 922 set_opt(sbi, XATTR_USER); 923 #endif 924 #ifdef CONFIG_F2FS_FS_POSIX_ACL 925 set_opt(sbi, POSIX_ACL); 926 #endif 927 /* parse mount options */ 928 err = parse_options(sb, (char *)data); 929 if (err) 930 goto free_sb_buf; 931 932 sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize)); 933 sb->s_max_links = F2FS_LINK_MAX; 934 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 935 936 sb->s_op = &f2fs_sops; 937 sb->s_xattr = f2fs_xattr_handlers; 938 sb->s_export_op = &f2fs_export_ops; 939 sb->s_magic = F2FS_SUPER_MAGIC; 940 sb->s_time_gran = 1; 941 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 942 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 943 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 944 945 /* init f2fs-specific super block info */ 946 sbi->sb = sb; 947 sbi->raw_super = raw_super; 948 sbi->raw_super_buf = raw_super_buf; 949 mutex_init(&sbi->gc_mutex); 950 mutex_init(&sbi->writepages); 951 mutex_init(&sbi->cp_mutex); 952 mutex_init(&sbi->node_write); 953 sbi->por_doing = false; 954 spin_lock_init(&sbi->stat_lock); 955 956 init_rwsem(&sbi->read_io.io_rwsem); 957 sbi->read_io.sbi = sbi; 958 sbi->read_io.bio = NULL; 959 for (i = 0; i < NR_PAGE_TYPE; i++) { 960 init_rwsem(&sbi->write_io[i].io_rwsem); 961 sbi->write_io[i].sbi = sbi; 962 sbi->write_io[i].bio = NULL; 963 } 964 965 init_rwsem(&sbi->cp_rwsem); 966 init_waitqueue_head(&sbi->cp_wait); 967 init_sb_info(sbi); 968 969 /* get an inode for meta space */ 970 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 971 if (IS_ERR(sbi->meta_inode)) { 972 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 973 err = PTR_ERR(sbi->meta_inode); 974 goto free_sb_buf; 975 } 976 977 err = get_valid_checkpoint(sbi); 978 if (err) { 979 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 980 goto free_meta_inode; 981 } 982 983 /* sanity checking of checkpoint */ 984 err = -EINVAL; 985 if (sanity_check_ckpt(sbi)) { 986 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint"); 987 goto free_cp; 988 } 989 990 sbi->total_valid_node_count = 991 le32_to_cpu(sbi->ckpt->valid_node_count); 992 sbi->total_valid_inode_count = 993 le32_to_cpu(sbi->ckpt->valid_inode_count); 994 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 995 sbi->total_valid_block_count = 996 le64_to_cpu(sbi->ckpt->valid_block_count); 997 sbi->last_valid_block_count = sbi->total_valid_block_count; 998 sbi->alloc_valid_block_count = 0; 999 INIT_LIST_HEAD(&sbi->dir_inode_list); 1000 spin_lock_init(&sbi->dir_inode_lock); 1001 1002 init_orphan_info(sbi); 1003 1004 /* setup f2fs internal modules */ 1005 err = build_segment_manager(sbi); 1006 if (err) { 1007 f2fs_msg(sb, KERN_ERR, 1008 "Failed to initialize F2FS segment manager"); 1009 goto free_sm; 1010 } 1011 err = build_node_manager(sbi); 1012 if (err) { 1013 f2fs_msg(sb, KERN_ERR, 1014 "Failed to initialize F2FS node manager"); 1015 goto free_nm; 1016 } 1017 1018 build_gc_manager(sbi); 1019 1020 /* get an inode for node space */ 1021 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 1022 if (IS_ERR(sbi->node_inode)) { 1023 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 1024 err = PTR_ERR(sbi->node_inode); 1025 goto free_nm; 1026 } 1027 1028 /* if there are nt orphan nodes free them */ 1029 recover_orphan_inodes(sbi); 1030 1031 /* read root inode and dentry */ 1032 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 1033 if (IS_ERR(root)) { 1034 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 1035 err = PTR_ERR(root); 1036 goto free_node_inode; 1037 } 1038 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1039 err = -EINVAL; 1040 goto free_root_inode; 1041 } 1042 1043 sb->s_root = d_make_root(root); /* allocate root dentry */ 1044 if (!sb->s_root) { 1045 err = -ENOMEM; 1046 goto free_root_inode; 1047 } 1048 1049 err = f2fs_build_stats(sbi); 1050 if (err) 1051 goto free_root_inode; 1052 1053 if (f2fs_proc_root) 1054 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 1055 1056 if (sbi->s_proc) 1057 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 1058 &f2fs_seq_segment_info_fops, sb); 1059 1060 if (test_opt(sbi, DISCARD)) { 1061 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1062 if (!blk_queue_discard(q)) 1063 f2fs_msg(sb, KERN_WARNING, 1064 "mounting with \"discard\" option, but " 1065 "the device does not support discard"); 1066 } 1067 1068 sbi->s_kobj.kset = f2fs_kset; 1069 init_completion(&sbi->s_kobj_unregister); 1070 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 1071 "%s", sb->s_id); 1072 if (err) 1073 goto free_proc; 1074 1075 /* recover fsynced data */ 1076 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 1077 err = recover_fsync_data(sbi); 1078 if (err) 1079 f2fs_msg(sb, KERN_ERR, 1080 "Cannot recover all fsync data errno=%ld", err); 1081 } 1082 1083 /* 1084 * If filesystem is not mounted as read-only then 1085 * do start the gc_thread. 1086 */ 1087 if (!(sb->s_flags & MS_RDONLY)) { 1088 /* After POR, we can run background GC thread.*/ 1089 err = start_gc_thread(sbi); 1090 if (err) 1091 goto free_kobj; 1092 } 1093 return 0; 1094 1095 free_kobj: 1096 kobject_del(&sbi->s_kobj); 1097 free_proc: 1098 if (sbi->s_proc) { 1099 remove_proc_entry("segment_info", sbi->s_proc); 1100 remove_proc_entry(sb->s_id, f2fs_proc_root); 1101 } 1102 f2fs_destroy_stats(sbi); 1103 free_root_inode: 1104 dput(sb->s_root); 1105 sb->s_root = NULL; 1106 free_node_inode: 1107 iput(sbi->node_inode); 1108 free_nm: 1109 destroy_node_manager(sbi); 1110 free_sm: 1111 destroy_segment_manager(sbi); 1112 free_cp: 1113 kfree(sbi->ckpt); 1114 free_meta_inode: 1115 make_bad_inode(sbi->meta_inode); 1116 iput(sbi->meta_inode); 1117 free_sb_buf: 1118 brelse(raw_super_buf); 1119 free_sbi: 1120 kfree(sbi); 1121 return err; 1122 } 1123 1124 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 1125 const char *dev_name, void *data) 1126 { 1127 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 1128 } 1129 1130 static struct file_system_type f2fs_fs_type = { 1131 .owner = THIS_MODULE, 1132 .name = "f2fs", 1133 .mount = f2fs_mount, 1134 .kill_sb = kill_block_super, 1135 .fs_flags = FS_REQUIRES_DEV, 1136 }; 1137 MODULE_ALIAS_FS("f2fs"); 1138 1139 static int __init init_inodecache(void) 1140 { 1141 f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache", 1142 sizeof(struct f2fs_inode_info)); 1143 if (!f2fs_inode_cachep) 1144 return -ENOMEM; 1145 return 0; 1146 } 1147 1148 static void destroy_inodecache(void) 1149 { 1150 /* 1151 * Make sure all delayed rcu free inodes are flushed before we 1152 * destroy cache. 1153 */ 1154 rcu_barrier(); 1155 kmem_cache_destroy(f2fs_inode_cachep); 1156 } 1157 1158 static int __init init_f2fs_fs(void) 1159 { 1160 int err; 1161 1162 err = init_inodecache(); 1163 if (err) 1164 goto fail; 1165 err = create_node_manager_caches(); 1166 if (err) 1167 goto free_inodecache; 1168 err = create_segment_manager_caches(); 1169 if (err) 1170 goto free_node_manager_caches; 1171 err = create_gc_caches(); 1172 if (err) 1173 goto free_segment_manager_caches; 1174 err = create_checkpoint_caches(); 1175 if (err) 1176 goto free_gc_caches; 1177 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 1178 if (!f2fs_kset) { 1179 err = -ENOMEM; 1180 goto free_checkpoint_caches; 1181 } 1182 err = register_filesystem(&f2fs_fs_type); 1183 if (err) 1184 goto free_kset; 1185 f2fs_create_root_stats(); 1186 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 1187 return 0; 1188 1189 free_kset: 1190 kset_unregister(f2fs_kset); 1191 free_checkpoint_caches: 1192 destroy_checkpoint_caches(); 1193 free_gc_caches: 1194 destroy_gc_caches(); 1195 free_segment_manager_caches: 1196 destroy_segment_manager_caches(); 1197 free_node_manager_caches: 1198 destroy_node_manager_caches(); 1199 free_inodecache: 1200 destroy_inodecache(); 1201 fail: 1202 return err; 1203 } 1204 1205 static void __exit exit_f2fs_fs(void) 1206 { 1207 remove_proc_entry("fs/f2fs", NULL); 1208 f2fs_destroy_root_stats(); 1209 unregister_filesystem(&f2fs_fs_type); 1210 destroy_checkpoint_caches(); 1211 destroy_gc_caches(); 1212 destroy_segment_manager_caches(); 1213 destroy_node_manager_caches(); 1214 destroy_inodecache(); 1215 kset_unregister(f2fs_kset); 1216 } 1217 1218 module_init(init_f2fs_fs) 1219 module_exit(exit_f2fs_fs) 1220 1221 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 1222 MODULE_DESCRIPTION("Flash Friendly File System"); 1223 MODULE_LICENSE("GPL"); 1224