xref: /openbmc/linux/fs/f2fs/super.c (revision cd4d09ec)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37 
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41 
42 /* f2fs-wide shrinker description */
43 static struct shrinker f2fs_shrinker_info = {
44 	.scan_objects = f2fs_shrink_scan,
45 	.count_objects = f2fs_shrink_count,
46 	.seeks = DEFAULT_SEEKS,
47 };
48 
49 enum {
50 	Opt_gc_background,
51 	Opt_disable_roll_forward,
52 	Opt_norecovery,
53 	Opt_discard,
54 	Opt_noheap,
55 	Opt_user_xattr,
56 	Opt_nouser_xattr,
57 	Opt_acl,
58 	Opt_noacl,
59 	Opt_active_logs,
60 	Opt_disable_ext_identify,
61 	Opt_inline_xattr,
62 	Opt_inline_data,
63 	Opt_inline_dentry,
64 	Opt_flush_merge,
65 	Opt_nobarrier,
66 	Opt_fastboot,
67 	Opt_extent_cache,
68 	Opt_noextent_cache,
69 	Opt_noinline_data,
70 	Opt_data_flush,
71 	Opt_err,
72 };
73 
74 static match_table_t f2fs_tokens = {
75 	{Opt_gc_background, "background_gc=%s"},
76 	{Opt_disable_roll_forward, "disable_roll_forward"},
77 	{Opt_norecovery, "norecovery"},
78 	{Opt_discard, "discard"},
79 	{Opt_noheap, "no_heap"},
80 	{Opt_user_xattr, "user_xattr"},
81 	{Opt_nouser_xattr, "nouser_xattr"},
82 	{Opt_acl, "acl"},
83 	{Opt_noacl, "noacl"},
84 	{Opt_active_logs, "active_logs=%u"},
85 	{Opt_disable_ext_identify, "disable_ext_identify"},
86 	{Opt_inline_xattr, "inline_xattr"},
87 	{Opt_inline_data, "inline_data"},
88 	{Opt_inline_dentry, "inline_dentry"},
89 	{Opt_flush_merge, "flush_merge"},
90 	{Opt_nobarrier, "nobarrier"},
91 	{Opt_fastboot, "fastboot"},
92 	{Opt_extent_cache, "extent_cache"},
93 	{Opt_noextent_cache, "noextent_cache"},
94 	{Opt_noinline_data, "noinline_data"},
95 	{Opt_data_flush, "data_flush"},
96 	{Opt_err, NULL},
97 };
98 
99 /* Sysfs support for f2fs */
100 enum {
101 	GC_THREAD,	/* struct f2fs_gc_thread */
102 	SM_INFO,	/* struct f2fs_sm_info */
103 	NM_INFO,	/* struct f2fs_nm_info */
104 	F2FS_SBI,	/* struct f2fs_sb_info */
105 };
106 
107 struct f2fs_attr {
108 	struct attribute attr;
109 	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
110 	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
111 			 const char *, size_t);
112 	int struct_type;
113 	int offset;
114 };
115 
116 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
117 {
118 	if (struct_type == GC_THREAD)
119 		return (unsigned char *)sbi->gc_thread;
120 	else if (struct_type == SM_INFO)
121 		return (unsigned char *)SM_I(sbi);
122 	else if (struct_type == NM_INFO)
123 		return (unsigned char *)NM_I(sbi);
124 	else if (struct_type == F2FS_SBI)
125 		return (unsigned char *)sbi;
126 	return NULL;
127 }
128 
129 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
130 			struct f2fs_sb_info *sbi, char *buf)
131 {
132 	unsigned char *ptr = NULL;
133 	unsigned int *ui;
134 
135 	ptr = __struct_ptr(sbi, a->struct_type);
136 	if (!ptr)
137 		return -EINVAL;
138 
139 	ui = (unsigned int *)(ptr + a->offset);
140 
141 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
142 }
143 
144 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
145 			struct f2fs_sb_info *sbi,
146 			const char *buf, size_t count)
147 {
148 	unsigned char *ptr;
149 	unsigned long t;
150 	unsigned int *ui;
151 	ssize_t ret;
152 
153 	ptr = __struct_ptr(sbi, a->struct_type);
154 	if (!ptr)
155 		return -EINVAL;
156 
157 	ui = (unsigned int *)(ptr + a->offset);
158 
159 	ret = kstrtoul(skip_spaces(buf), 0, &t);
160 	if (ret < 0)
161 		return ret;
162 	*ui = t;
163 	return count;
164 }
165 
166 static ssize_t f2fs_attr_show(struct kobject *kobj,
167 				struct attribute *attr, char *buf)
168 {
169 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
170 								s_kobj);
171 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
172 
173 	return a->show ? a->show(a, sbi, buf) : 0;
174 }
175 
176 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
177 						const char *buf, size_t len)
178 {
179 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
180 									s_kobj);
181 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
182 
183 	return a->store ? a->store(a, sbi, buf, len) : 0;
184 }
185 
186 static void f2fs_sb_release(struct kobject *kobj)
187 {
188 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
189 								s_kobj);
190 	complete(&sbi->s_kobj_unregister);
191 }
192 
193 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
194 static struct f2fs_attr f2fs_attr_##_name = {			\
195 	.attr = {.name = __stringify(_name), .mode = _mode },	\
196 	.show	= _show,					\
197 	.store	= _store,					\
198 	.struct_type = _struct_type,				\
199 	.offset = _offset					\
200 }
201 
202 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
203 	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
204 		f2fs_sbi_show, f2fs_sbi_store,			\
205 		offsetof(struct struct_name, elname))
206 
207 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
208 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
209 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
210 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
211 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
212 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
213 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
214 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
215 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
216 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
217 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
218 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
219 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
220 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
221 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
222 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
223 
224 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
225 static struct attribute *f2fs_attrs[] = {
226 	ATTR_LIST(gc_min_sleep_time),
227 	ATTR_LIST(gc_max_sleep_time),
228 	ATTR_LIST(gc_no_gc_sleep_time),
229 	ATTR_LIST(gc_idle),
230 	ATTR_LIST(reclaim_segments),
231 	ATTR_LIST(max_small_discards),
232 	ATTR_LIST(batched_trim_sections),
233 	ATTR_LIST(ipu_policy),
234 	ATTR_LIST(min_ipu_util),
235 	ATTR_LIST(min_fsync_blocks),
236 	ATTR_LIST(max_victim_search),
237 	ATTR_LIST(dir_level),
238 	ATTR_LIST(ram_thresh),
239 	ATTR_LIST(ra_nid_pages),
240 	ATTR_LIST(cp_interval),
241 	ATTR_LIST(idle_interval),
242 	NULL,
243 };
244 
245 static const struct sysfs_ops f2fs_attr_ops = {
246 	.show	= f2fs_attr_show,
247 	.store	= f2fs_attr_store,
248 };
249 
250 static struct kobj_type f2fs_ktype = {
251 	.default_attrs	= f2fs_attrs,
252 	.sysfs_ops	= &f2fs_attr_ops,
253 	.release	= f2fs_sb_release,
254 };
255 
256 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
257 {
258 	struct va_format vaf;
259 	va_list args;
260 
261 	va_start(args, fmt);
262 	vaf.fmt = fmt;
263 	vaf.va = &args;
264 	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
265 	va_end(args);
266 }
267 
268 static void init_once(void *foo)
269 {
270 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
271 
272 	inode_init_once(&fi->vfs_inode);
273 }
274 
275 static int parse_options(struct super_block *sb, char *options)
276 {
277 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
278 	struct request_queue *q;
279 	substring_t args[MAX_OPT_ARGS];
280 	char *p, *name;
281 	int arg = 0;
282 
283 	if (!options)
284 		return 0;
285 
286 	while ((p = strsep(&options, ",")) != NULL) {
287 		int token;
288 		if (!*p)
289 			continue;
290 		/*
291 		 * Initialize args struct so we know whether arg was
292 		 * found; some options take optional arguments.
293 		 */
294 		args[0].to = args[0].from = NULL;
295 		token = match_token(p, f2fs_tokens, args);
296 
297 		switch (token) {
298 		case Opt_gc_background:
299 			name = match_strdup(&args[0]);
300 
301 			if (!name)
302 				return -ENOMEM;
303 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
304 				set_opt(sbi, BG_GC);
305 				clear_opt(sbi, FORCE_FG_GC);
306 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
307 				clear_opt(sbi, BG_GC);
308 				clear_opt(sbi, FORCE_FG_GC);
309 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
310 				set_opt(sbi, BG_GC);
311 				set_opt(sbi, FORCE_FG_GC);
312 			} else {
313 				kfree(name);
314 				return -EINVAL;
315 			}
316 			kfree(name);
317 			break;
318 		case Opt_disable_roll_forward:
319 			set_opt(sbi, DISABLE_ROLL_FORWARD);
320 			break;
321 		case Opt_norecovery:
322 			/* this option mounts f2fs with ro */
323 			set_opt(sbi, DISABLE_ROLL_FORWARD);
324 			if (!f2fs_readonly(sb))
325 				return -EINVAL;
326 			break;
327 		case Opt_discard:
328 			q = bdev_get_queue(sb->s_bdev);
329 			if (blk_queue_discard(q)) {
330 				set_opt(sbi, DISCARD);
331 			} else {
332 				f2fs_msg(sb, KERN_WARNING,
333 					"mounting with \"discard\" option, but "
334 					"the device does not support discard");
335 			}
336 			break;
337 		case Opt_noheap:
338 			set_opt(sbi, NOHEAP);
339 			break;
340 #ifdef CONFIG_F2FS_FS_XATTR
341 		case Opt_user_xattr:
342 			set_opt(sbi, XATTR_USER);
343 			break;
344 		case Opt_nouser_xattr:
345 			clear_opt(sbi, XATTR_USER);
346 			break;
347 		case Opt_inline_xattr:
348 			set_opt(sbi, INLINE_XATTR);
349 			break;
350 #else
351 		case Opt_user_xattr:
352 			f2fs_msg(sb, KERN_INFO,
353 				"user_xattr options not supported");
354 			break;
355 		case Opt_nouser_xattr:
356 			f2fs_msg(sb, KERN_INFO,
357 				"nouser_xattr options not supported");
358 			break;
359 		case Opt_inline_xattr:
360 			f2fs_msg(sb, KERN_INFO,
361 				"inline_xattr options not supported");
362 			break;
363 #endif
364 #ifdef CONFIG_F2FS_FS_POSIX_ACL
365 		case Opt_acl:
366 			set_opt(sbi, POSIX_ACL);
367 			break;
368 		case Opt_noacl:
369 			clear_opt(sbi, POSIX_ACL);
370 			break;
371 #else
372 		case Opt_acl:
373 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
374 			break;
375 		case Opt_noacl:
376 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
377 			break;
378 #endif
379 		case Opt_active_logs:
380 			if (args->from && match_int(args, &arg))
381 				return -EINVAL;
382 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
383 				return -EINVAL;
384 			sbi->active_logs = arg;
385 			break;
386 		case Opt_disable_ext_identify:
387 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
388 			break;
389 		case Opt_inline_data:
390 			set_opt(sbi, INLINE_DATA);
391 			break;
392 		case Opt_inline_dentry:
393 			set_opt(sbi, INLINE_DENTRY);
394 			break;
395 		case Opt_flush_merge:
396 			set_opt(sbi, FLUSH_MERGE);
397 			break;
398 		case Opt_nobarrier:
399 			set_opt(sbi, NOBARRIER);
400 			break;
401 		case Opt_fastboot:
402 			set_opt(sbi, FASTBOOT);
403 			break;
404 		case Opt_extent_cache:
405 			set_opt(sbi, EXTENT_CACHE);
406 			break;
407 		case Opt_noextent_cache:
408 			clear_opt(sbi, EXTENT_CACHE);
409 			break;
410 		case Opt_noinline_data:
411 			clear_opt(sbi, INLINE_DATA);
412 			break;
413 		case Opt_data_flush:
414 			set_opt(sbi, DATA_FLUSH);
415 			break;
416 		default:
417 			f2fs_msg(sb, KERN_ERR,
418 				"Unrecognized mount option \"%s\" or missing value",
419 				p);
420 			return -EINVAL;
421 		}
422 	}
423 	return 0;
424 }
425 
426 static struct inode *f2fs_alloc_inode(struct super_block *sb)
427 {
428 	struct f2fs_inode_info *fi;
429 
430 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
431 	if (!fi)
432 		return NULL;
433 
434 	init_once((void *) fi);
435 
436 	/* Initialize f2fs-specific inode info */
437 	fi->vfs_inode.i_version = 1;
438 	atomic_set(&fi->dirty_pages, 0);
439 	fi->i_current_depth = 1;
440 	fi->i_advise = 0;
441 	init_rwsem(&fi->i_sem);
442 	INIT_LIST_HEAD(&fi->dirty_list);
443 	INIT_LIST_HEAD(&fi->inmem_pages);
444 	mutex_init(&fi->inmem_lock);
445 
446 	set_inode_flag(fi, FI_NEW_INODE);
447 
448 	if (test_opt(F2FS_SB(sb), INLINE_XATTR))
449 		set_inode_flag(fi, FI_INLINE_XATTR);
450 
451 	/* Will be used by directory only */
452 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
453 
454 #ifdef CONFIG_F2FS_FS_ENCRYPTION
455 	fi->i_crypt_info = NULL;
456 #endif
457 	return &fi->vfs_inode;
458 }
459 
460 static int f2fs_drop_inode(struct inode *inode)
461 {
462 	/*
463 	 * This is to avoid a deadlock condition like below.
464 	 * writeback_single_inode(inode)
465 	 *  - f2fs_write_data_page
466 	 *    - f2fs_gc -> iput -> evict
467 	 *       - inode_wait_for_writeback(inode)
468 	 */
469 	if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
470 		if (!inode->i_nlink && !is_bad_inode(inode)) {
471 			/* to avoid evict_inode call simultaneously */
472 			atomic_inc(&inode->i_count);
473 			spin_unlock(&inode->i_lock);
474 
475 			/* some remained atomic pages should discarded */
476 			if (f2fs_is_atomic_file(inode))
477 				commit_inmem_pages(inode, true);
478 
479 			/* should remain fi->extent_tree for writepage */
480 			f2fs_destroy_extent_node(inode);
481 
482 			sb_start_intwrite(inode->i_sb);
483 			i_size_write(inode, 0);
484 
485 			if (F2FS_HAS_BLOCKS(inode))
486 				f2fs_truncate(inode, true);
487 
488 			sb_end_intwrite(inode->i_sb);
489 
490 #ifdef CONFIG_F2FS_FS_ENCRYPTION
491 			if (F2FS_I(inode)->i_crypt_info)
492 				f2fs_free_encryption_info(inode,
493 					F2FS_I(inode)->i_crypt_info);
494 #endif
495 			spin_lock(&inode->i_lock);
496 			atomic_dec(&inode->i_count);
497 		}
498 		return 0;
499 	}
500 	return generic_drop_inode(inode);
501 }
502 
503 /*
504  * f2fs_dirty_inode() is called from __mark_inode_dirty()
505  *
506  * We should call set_dirty_inode to write the dirty inode through write_inode.
507  */
508 static void f2fs_dirty_inode(struct inode *inode, int flags)
509 {
510 	set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
511 }
512 
513 static void f2fs_i_callback(struct rcu_head *head)
514 {
515 	struct inode *inode = container_of(head, struct inode, i_rcu);
516 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
517 }
518 
519 static void f2fs_destroy_inode(struct inode *inode)
520 {
521 	call_rcu(&inode->i_rcu, f2fs_i_callback);
522 }
523 
524 static void f2fs_put_super(struct super_block *sb)
525 {
526 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
527 
528 	if (sbi->s_proc) {
529 		remove_proc_entry("segment_info", sbi->s_proc);
530 		remove_proc_entry(sb->s_id, f2fs_proc_root);
531 	}
532 	kobject_del(&sbi->s_kobj);
533 
534 	stop_gc_thread(sbi);
535 
536 	/* prevent remaining shrinker jobs */
537 	mutex_lock(&sbi->umount_mutex);
538 
539 	/*
540 	 * We don't need to do checkpoint when superblock is clean.
541 	 * But, the previous checkpoint was not done by umount, it needs to do
542 	 * clean checkpoint again.
543 	 */
544 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
545 			!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
546 		struct cp_control cpc = {
547 			.reason = CP_UMOUNT,
548 		};
549 		write_checkpoint(sbi, &cpc);
550 	}
551 
552 	/* write_checkpoint can update stat informaion */
553 	f2fs_destroy_stats(sbi);
554 
555 	/*
556 	 * normally superblock is clean, so we need to release this.
557 	 * In addition, EIO will skip do checkpoint, we need this as well.
558 	 */
559 	release_ino_entry(sbi);
560 	release_discard_addrs(sbi);
561 
562 	f2fs_leave_shrinker(sbi);
563 	mutex_unlock(&sbi->umount_mutex);
564 
565 	iput(sbi->node_inode);
566 	iput(sbi->meta_inode);
567 
568 	/* destroy f2fs internal modules */
569 	destroy_node_manager(sbi);
570 	destroy_segment_manager(sbi);
571 
572 	kfree(sbi->ckpt);
573 	kobject_put(&sbi->s_kobj);
574 	wait_for_completion(&sbi->s_kobj_unregister);
575 
576 	sb->s_fs_info = NULL;
577 	kfree(sbi->raw_super);
578 	kfree(sbi);
579 }
580 
581 int f2fs_sync_fs(struct super_block *sb, int sync)
582 {
583 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
584 	int err = 0;
585 
586 	trace_f2fs_sync_fs(sb, sync);
587 
588 	if (sync) {
589 		struct cp_control cpc;
590 
591 		cpc.reason = __get_cp_reason(sbi);
592 
593 		mutex_lock(&sbi->gc_mutex);
594 		err = write_checkpoint(sbi, &cpc);
595 		mutex_unlock(&sbi->gc_mutex);
596 	}
597 	f2fs_trace_ios(NULL, 1);
598 
599 	return err;
600 }
601 
602 static int f2fs_freeze(struct super_block *sb)
603 {
604 	int err;
605 
606 	if (f2fs_readonly(sb))
607 		return 0;
608 
609 	err = f2fs_sync_fs(sb, 1);
610 	return err;
611 }
612 
613 static int f2fs_unfreeze(struct super_block *sb)
614 {
615 	return 0;
616 }
617 
618 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
619 {
620 	struct super_block *sb = dentry->d_sb;
621 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
622 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
623 	block_t total_count, user_block_count, start_count, ovp_count;
624 
625 	total_count = le64_to_cpu(sbi->raw_super->block_count);
626 	user_block_count = sbi->user_block_count;
627 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
628 	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
629 	buf->f_type = F2FS_SUPER_MAGIC;
630 	buf->f_bsize = sbi->blocksize;
631 
632 	buf->f_blocks = total_count - start_count;
633 	buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
634 	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
635 
636 	buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
637 	buf->f_ffree = buf->f_files - valid_inode_count(sbi);
638 
639 	buf->f_namelen = F2FS_NAME_LEN;
640 	buf->f_fsid.val[0] = (u32)id;
641 	buf->f_fsid.val[1] = (u32)(id >> 32);
642 
643 	return 0;
644 }
645 
646 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
647 {
648 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
649 
650 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
651 		if (test_opt(sbi, FORCE_FG_GC))
652 			seq_printf(seq, ",background_gc=%s", "sync");
653 		else
654 			seq_printf(seq, ",background_gc=%s", "on");
655 	} else {
656 		seq_printf(seq, ",background_gc=%s", "off");
657 	}
658 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
659 		seq_puts(seq, ",disable_roll_forward");
660 	if (test_opt(sbi, DISCARD))
661 		seq_puts(seq, ",discard");
662 	if (test_opt(sbi, NOHEAP))
663 		seq_puts(seq, ",no_heap_alloc");
664 #ifdef CONFIG_F2FS_FS_XATTR
665 	if (test_opt(sbi, XATTR_USER))
666 		seq_puts(seq, ",user_xattr");
667 	else
668 		seq_puts(seq, ",nouser_xattr");
669 	if (test_opt(sbi, INLINE_XATTR))
670 		seq_puts(seq, ",inline_xattr");
671 #endif
672 #ifdef CONFIG_F2FS_FS_POSIX_ACL
673 	if (test_opt(sbi, POSIX_ACL))
674 		seq_puts(seq, ",acl");
675 	else
676 		seq_puts(seq, ",noacl");
677 #endif
678 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
679 		seq_puts(seq, ",disable_ext_identify");
680 	if (test_opt(sbi, INLINE_DATA))
681 		seq_puts(seq, ",inline_data");
682 	else
683 		seq_puts(seq, ",noinline_data");
684 	if (test_opt(sbi, INLINE_DENTRY))
685 		seq_puts(seq, ",inline_dentry");
686 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
687 		seq_puts(seq, ",flush_merge");
688 	if (test_opt(sbi, NOBARRIER))
689 		seq_puts(seq, ",nobarrier");
690 	if (test_opt(sbi, FASTBOOT))
691 		seq_puts(seq, ",fastboot");
692 	if (test_opt(sbi, EXTENT_CACHE))
693 		seq_puts(seq, ",extent_cache");
694 	else
695 		seq_puts(seq, ",noextent_cache");
696 	if (test_opt(sbi, DATA_FLUSH))
697 		seq_puts(seq, ",data_flush");
698 	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
699 
700 	return 0;
701 }
702 
703 static int segment_info_seq_show(struct seq_file *seq, void *offset)
704 {
705 	struct super_block *sb = seq->private;
706 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
707 	unsigned int total_segs =
708 			le32_to_cpu(sbi->raw_super->segment_count_main);
709 	int i;
710 
711 	seq_puts(seq, "format: segment_type|valid_blocks\n"
712 		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
713 
714 	for (i = 0; i < total_segs; i++) {
715 		struct seg_entry *se = get_seg_entry(sbi, i);
716 
717 		if ((i % 10) == 0)
718 			seq_printf(seq, "%-10d", i);
719 		seq_printf(seq, "%d|%-3u", se->type,
720 					get_valid_blocks(sbi, i, 1));
721 		if ((i % 10) == 9 || i == (total_segs - 1))
722 			seq_putc(seq, '\n');
723 		else
724 			seq_putc(seq, ' ');
725 	}
726 
727 	return 0;
728 }
729 
730 static int segment_info_open_fs(struct inode *inode, struct file *file)
731 {
732 	return single_open(file, segment_info_seq_show, PDE_DATA(inode));
733 }
734 
735 static const struct file_operations f2fs_seq_segment_info_fops = {
736 	.owner = THIS_MODULE,
737 	.open = segment_info_open_fs,
738 	.read = seq_read,
739 	.llseek = seq_lseek,
740 	.release = single_release,
741 };
742 
743 static void default_options(struct f2fs_sb_info *sbi)
744 {
745 	/* init some FS parameters */
746 	sbi->active_logs = NR_CURSEG_TYPE;
747 
748 	set_opt(sbi, BG_GC);
749 	set_opt(sbi, INLINE_DATA);
750 	set_opt(sbi, EXTENT_CACHE);
751 
752 #ifdef CONFIG_F2FS_FS_XATTR
753 	set_opt(sbi, XATTR_USER);
754 #endif
755 #ifdef CONFIG_F2FS_FS_POSIX_ACL
756 	set_opt(sbi, POSIX_ACL);
757 #endif
758 }
759 
760 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
761 {
762 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
763 	struct f2fs_mount_info org_mount_opt;
764 	int err, active_logs;
765 	bool need_restart_gc = false;
766 	bool need_stop_gc = false;
767 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
768 
769 	sync_filesystem(sb);
770 
771 	/*
772 	 * Save the old mount options in case we
773 	 * need to restore them.
774 	 */
775 	org_mount_opt = sbi->mount_opt;
776 	active_logs = sbi->active_logs;
777 
778 	sbi->mount_opt.opt = 0;
779 	default_options(sbi);
780 
781 	/* parse mount options */
782 	err = parse_options(sb, data);
783 	if (err)
784 		goto restore_opts;
785 
786 	/*
787 	 * Previous and new state of filesystem is RO,
788 	 * so skip checking GC and FLUSH_MERGE conditions.
789 	 */
790 	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
791 		goto skip;
792 
793 	/* disallow enable/disable extent_cache dynamically */
794 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
795 		err = -EINVAL;
796 		f2fs_msg(sbi->sb, KERN_WARNING,
797 				"switch extent_cache option is not allowed");
798 		goto restore_opts;
799 	}
800 
801 	/*
802 	 * We stop the GC thread if FS is mounted as RO
803 	 * or if background_gc = off is passed in mount
804 	 * option. Also sync the filesystem.
805 	 */
806 	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
807 		if (sbi->gc_thread) {
808 			stop_gc_thread(sbi);
809 			f2fs_sync_fs(sb, 1);
810 			need_restart_gc = true;
811 		}
812 	} else if (!sbi->gc_thread) {
813 		err = start_gc_thread(sbi);
814 		if (err)
815 			goto restore_opts;
816 		need_stop_gc = true;
817 	}
818 
819 	/*
820 	 * We stop issue flush thread if FS is mounted as RO
821 	 * or if flush_merge is not passed in mount option.
822 	 */
823 	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
824 		destroy_flush_cmd_control(sbi);
825 	} else if (!SM_I(sbi)->cmd_control_info) {
826 		err = create_flush_cmd_control(sbi);
827 		if (err)
828 			goto restore_gc;
829 	}
830 skip:
831 	/* Update the POSIXACL Flag */
832 	 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
833 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
834 	return 0;
835 restore_gc:
836 	if (need_restart_gc) {
837 		if (start_gc_thread(sbi))
838 			f2fs_msg(sbi->sb, KERN_WARNING,
839 				"background gc thread has stopped");
840 	} else if (need_stop_gc) {
841 		stop_gc_thread(sbi);
842 	}
843 restore_opts:
844 	sbi->mount_opt = org_mount_opt;
845 	sbi->active_logs = active_logs;
846 	return err;
847 }
848 
849 static struct super_operations f2fs_sops = {
850 	.alloc_inode	= f2fs_alloc_inode,
851 	.drop_inode	= f2fs_drop_inode,
852 	.destroy_inode	= f2fs_destroy_inode,
853 	.write_inode	= f2fs_write_inode,
854 	.dirty_inode	= f2fs_dirty_inode,
855 	.show_options	= f2fs_show_options,
856 	.evict_inode	= f2fs_evict_inode,
857 	.put_super	= f2fs_put_super,
858 	.sync_fs	= f2fs_sync_fs,
859 	.freeze_fs	= f2fs_freeze,
860 	.unfreeze_fs	= f2fs_unfreeze,
861 	.statfs		= f2fs_statfs,
862 	.remount_fs	= f2fs_remount,
863 };
864 
865 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
866 		u64 ino, u32 generation)
867 {
868 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
869 	struct inode *inode;
870 
871 	if (check_nid_range(sbi, ino))
872 		return ERR_PTR(-ESTALE);
873 
874 	/*
875 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
876 	 * However f2fs_iget currently does appropriate checks to handle stale
877 	 * inodes so everything is OK.
878 	 */
879 	inode = f2fs_iget(sb, ino);
880 	if (IS_ERR(inode))
881 		return ERR_CAST(inode);
882 	if (unlikely(generation && inode->i_generation != generation)) {
883 		/* we didn't find the right inode.. */
884 		iput(inode);
885 		return ERR_PTR(-ESTALE);
886 	}
887 	return inode;
888 }
889 
890 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
891 		int fh_len, int fh_type)
892 {
893 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
894 				    f2fs_nfs_get_inode);
895 }
896 
897 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
898 		int fh_len, int fh_type)
899 {
900 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
901 				    f2fs_nfs_get_inode);
902 }
903 
904 static const struct export_operations f2fs_export_ops = {
905 	.fh_to_dentry = f2fs_fh_to_dentry,
906 	.fh_to_parent = f2fs_fh_to_parent,
907 	.get_parent = f2fs_get_parent,
908 };
909 
910 static loff_t max_file_blocks(void)
911 {
912 	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
913 	loff_t leaf_count = ADDRS_PER_BLOCK;
914 
915 	/* two direct node blocks */
916 	result += (leaf_count * 2);
917 
918 	/* two indirect node blocks */
919 	leaf_count *= NIDS_PER_BLOCK;
920 	result += (leaf_count * 2);
921 
922 	/* one double indirect node block */
923 	leaf_count *= NIDS_PER_BLOCK;
924 	result += leaf_count;
925 
926 	return result;
927 }
928 
929 static inline bool sanity_check_area_boundary(struct super_block *sb,
930 					struct f2fs_super_block *raw_super)
931 {
932 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
933 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
934 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
935 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
936 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
937 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
938 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
939 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
940 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
941 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
942 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
943 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
944 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
945 
946 	if (segment0_blkaddr != cp_blkaddr) {
947 		f2fs_msg(sb, KERN_INFO,
948 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
949 			segment0_blkaddr, cp_blkaddr);
950 		return true;
951 	}
952 
953 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
954 							sit_blkaddr) {
955 		f2fs_msg(sb, KERN_INFO,
956 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
957 			cp_blkaddr, sit_blkaddr,
958 			segment_count_ckpt << log_blocks_per_seg);
959 		return true;
960 	}
961 
962 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
963 							nat_blkaddr) {
964 		f2fs_msg(sb, KERN_INFO,
965 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
966 			sit_blkaddr, nat_blkaddr,
967 			segment_count_sit << log_blocks_per_seg);
968 		return true;
969 	}
970 
971 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
972 							ssa_blkaddr) {
973 		f2fs_msg(sb, KERN_INFO,
974 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
975 			nat_blkaddr, ssa_blkaddr,
976 			segment_count_nat << log_blocks_per_seg);
977 		return true;
978 	}
979 
980 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
981 							main_blkaddr) {
982 		f2fs_msg(sb, KERN_INFO,
983 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
984 			ssa_blkaddr, main_blkaddr,
985 			segment_count_ssa << log_blocks_per_seg);
986 		return true;
987 	}
988 
989 	if (main_blkaddr + (segment_count_main << log_blocks_per_seg) !=
990 		segment0_blkaddr + (segment_count << log_blocks_per_seg)) {
991 		f2fs_msg(sb, KERN_INFO,
992 			"Wrong MAIN_AREA boundary, start(%u) end(%u) blocks(%u)",
993 			main_blkaddr,
994 			segment0_blkaddr + (segment_count << log_blocks_per_seg),
995 			segment_count_main << log_blocks_per_seg);
996 		return true;
997 	}
998 
999 	return false;
1000 }
1001 
1002 static int sanity_check_raw_super(struct super_block *sb,
1003 			struct f2fs_super_block *raw_super)
1004 {
1005 	unsigned int blocksize;
1006 
1007 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1008 		f2fs_msg(sb, KERN_INFO,
1009 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
1010 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1011 		return 1;
1012 	}
1013 
1014 	/* Currently, support only 4KB page cache size */
1015 	if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
1016 		f2fs_msg(sb, KERN_INFO,
1017 			"Invalid page_cache_size (%lu), supports only 4KB\n",
1018 			PAGE_CACHE_SIZE);
1019 		return 1;
1020 	}
1021 
1022 	/* Currently, support only 4KB block size */
1023 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1024 	if (blocksize != F2FS_BLKSIZE) {
1025 		f2fs_msg(sb, KERN_INFO,
1026 			"Invalid blocksize (%u), supports only 4KB\n",
1027 			blocksize);
1028 		return 1;
1029 	}
1030 
1031 	/* check log blocks per segment */
1032 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1033 		f2fs_msg(sb, KERN_INFO,
1034 			"Invalid log blocks per segment (%u)\n",
1035 			le32_to_cpu(raw_super->log_blocks_per_seg));
1036 		return 1;
1037 	}
1038 
1039 	/* Currently, support 512/1024/2048/4096 bytes sector size */
1040 	if (le32_to_cpu(raw_super->log_sectorsize) >
1041 				F2FS_MAX_LOG_SECTOR_SIZE ||
1042 		le32_to_cpu(raw_super->log_sectorsize) <
1043 				F2FS_MIN_LOG_SECTOR_SIZE) {
1044 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1045 			le32_to_cpu(raw_super->log_sectorsize));
1046 		return 1;
1047 	}
1048 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
1049 		le32_to_cpu(raw_super->log_sectorsize) !=
1050 			F2FS_MAX_LOG_SECTOR_SIZE) {
1051 		f2fs_msg(sb, KERN_INFO,
1052 			"Invalid log sectors per block(%u) log sectorsize(%u)",
1053 			le32_to_cpu(raw_super->log_sectors_per_block),
1054 			le32_to_cpu(raw_super->log_sectorsize));
1055 		return 1;
1056 	}
1057 
1058 	/* check reserved ino info */
1059 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
1060 		le32_to_cpu(raw_super->meta_ino) != 2 ||
1061 		le32_to_cpu(raw_super->root_ino) != 3) {
1062 		f2fs_msg(sb, KERN_INFO,
1063 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1064 			le32_to_cpu(raw_super->node_ino),
1065 			le32_to_cpu(raw_super->meta_ino),
1066 			le32_to_cpu(raw_super->root_ino));
1067 		return 1;
1068 	}
1069 
1070 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1071 	if (sanity_check_area_boundary(sb, raw_super))
1072 		return 1;
1073 
1074 	return 0;
1075 }
1076 
1077 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1078 {
1079 	unsigned int total, fsmeta;
1080 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1081 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1082 
1083 	total = le32_to_cpu(raw_super->segment_count);
1084 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1085 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1086 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1087 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1088 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1089 
1090 	if (unlikely(fsmeta >= total))
1091 		return 1;
1092 
1093 	if (unlikely(f2fs_cp_error(sbi))) {
1094 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1095 		return 1;
1096 	}
1097 	return 0;
1098 }
1099 
1100 static void init_sb_info(struct f2fs_sb_info *sbi)
1101 {
1102 	struct f2fs_super_block *raw_super = sbi->raw_super;
1103 	int i;
1104 
1105 	sbi->log_sectors_per_block =
1106 		le32_to_cpu(raw_super->log_sectors_per_block);
1107 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1108 	sbi->blocksize = 1 << sbi->log_blocksize;
1109 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1110 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1111 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1112 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1113 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
1114 	sbi->total_node_count =
1115 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
1116 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1117 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1118 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1119 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1120 	sbi->cur_victim_sec = NULL_SECNO;
1121 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1122 
1123 	for (i = 0; i < NR_COUNT_TYPE; i++)
1124 		atomic_set(&sbi->nr_pages[i], 0);
1125 
1126 	sbi->dir_level = DEF_DIR_LEVEL;
1127 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1128 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1129 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
1130 
1131 	INIT_LIST_HEAD(&sbi->s_list);
1132 	mutex_init(&sbi->umount_mutex);
1133 }
1134 
1135 /*
1136  * Read f2fs raw super block.
1137  * Because we have two copies of super block, so read the first one at first,
1138  * if the first one is invalid, move to read the second one.
1139  */
1140 static int read_raw_super_block(struct super_block *sb,
1141 			struct f2fs_super_block **raw_super,
1142 			int *valid_super_block, int *recovery)
1143 {
1144 	int block = 0;
1145 	struct buffer_head *bh;
1146 	struct f2fs_super_block *super, *buf;
1147 	int err = 0;
1148 
1149 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1150 	if (!super)
1151 		return -ENOMEM;
1152 retry:
1153 	bh = sb_bread(sb, block);
1154 	if (!bh) {
1155 		*recovery = 1;
1156 		f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1157 				block + 1);
1158 		err = -EIO;
1159 		goto next;
1160 	}
1161 
1162 	buf = (struct f2fs_super_block *)(bh->b_data + F2FS_SUPER_OFFSET);
1163 
1164 	/* sanity checking of raw super */
1165 	if (sanity_check_raw_super(sb, buf)) {
1166 		brelse(bh);
1167 		*recovery = 1;
1168 		f2fs_msg(sb, KERN_ERR,
1169 			"Can't find valid F2FS filesystem in %dth superblock",
1170 								block + 1);
1171 		err = -EINVAL;
1172 		goto next;
1173 	}
1174 
1175 	if (!*raw_super) {
1176 		memcpy(super, buf, sizeof(*super));
1177 		*valid_super_block = block;
1178 		*raw_super = super;
1179 	}
1180 	brelse(bh);
1181 
1182 next:
1183 	/* check the validity of the second superblock */
1184 	if (block == 0) {
1185 		block++;
1186 		goto retry;
1187 	}
1188 
1189 	/* No valid superblock */
1190 	if (!*raw_super) {
1191 		kfree(super);
1192 		return err;
1193 	}
1194 
1195 	return 0;
1196 }
1197 
1198 static int __f2fs_commit_super(struct f2fs_sb_info *sbi, int block)
1199 {
1200 	struct f2fs_super_block *super = F2FS_RAW_SUPER(sbi);
1201 	struct buffer_head *bh;
1202 	int err;
1203 
1204 	bh = sb_getblk(sbi->sb, block);
1205 	if (!bh)
1206 		return -EIO;
1207 
1208 	lock_buffer(bh);
1209 	memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1210 	set_buffer_uptodate(bh);
1211 	set_buffer_dirty(bh);
1212 	unlock_buffer(bh);
1213 
1214 	/* it's rare case, we can do fua all the time */
1215 	err = __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
1216 	brelse(bh);
1217 
1218 	return err;
1219 }
1220 
1221 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1222 {
1223 	int err;
1224 
1225 	/* write back-up superblock first */
1226 	err = __f2fs_commit_super(sbi, sbi->valid_super_block ? 0 : 1);
1227 
1228 	/* if we are in recovery path, skip writing valid superblock */
1229 	if (recover || err)
1230 		return err;
1231 
1232 	/* write current valid superblock */
1233 	return __f2fs_commit_super(sbi, sbi->valid_super_block);
1234 }
1235 
1236 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1237 {
1238 	struct f2fs_sb_info *sbi;
1239 	struct f2fs_super_block *raw_super;
1240 	struct inode *root;
1241 	long err;
1242 	bool retry = true, need_fsck = false;
1243 	char *options = NULL;
1244 	int recovery, i, valid_super_block;
1245 
1246 try_onemore:
1247 	err = -EINVAL;
1248 	raw_super = NULL;
1249 	valid_super_block = -1;
1250 	recovery = 0;
1251 
1252 	/* allocate memory for f2fs-specific super block info */
1253 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1254 	if (!sbi)
1255 		return -ENOMEM;
1256 
1257 	/* set a block size */
1258 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1259 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1260 		goto free_sbi;
1261 	}
1262 
1263 	err = read_raw_super_block(sb, &raw_super, &valid_super_block,
1264 								&recovery);
1265 	if (err)
1266 		goto free_sbi;
1267 
1268 	sb->s_fs_info = sbi;
1269 	default_options(sbi);
1270 	/* parse mount options */
1271 	options = kstrdup((const char *)data, GFP_KERNEL);
1272 	if (data && !options) {
1273 		err = -ENOMEM;
1274 		goto free_sb_buf;
1275 	}
1276 
1277 	err = parse_options(sb, options);
1278 	if (err)
1279 		goto free_options;
1280 
1281 	sbi->max_file_blocks = max_file_blocks();
1282 	sb->s_maxbytes = sbi->max_file_blocks <<
1283 				le32_to_cpu(raw_super->log_blocksize);
1284 	sb->s_max_links = F2FS_LINK_MAX;
1285 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1286 
1287 	sb->s_op = &f2fs_sops;
1288 	sb->s_xattr = f2fs_xattr_handlers;
1289 	sb->s_export_op = &f2fs_export_ops;
1290 	sb->s_magic = F2FS_SUPER_MAGIC;
1291 	sb->s_time_gran = 1;
1292 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1293 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1294 	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1295 
1296 	/* init f2fs-specific super block info */
1297 	sbi->sb = sb;
1298 	sbi->raw_super = raw_super;
1299 	sbi->valid_super_block = valid_super_block;
1300 	mutex_init(&sbi->gc_mutex);
1301 	mutex_init(&sbi->writepages);
1302 	mutex_init(&sbi->cp_mutex);
1303 	init_rwsem(&sbi->node_write);
1304 
1305 	/* disallow all the data/node/meta page writes */
1306 	set_sbi_flag(sbi, SBI_POR_DOING);
1307 	spin_lock_init(&sbi->stat_lock);
1308 
1309 	init_rwsem(&sbi->read_io.io_rwsem);
1310 	sbi->read_io.sbi = sbi;
1311 	sbi->read_io.bio = NULL;
1312 	for (i = 0; i < NR_PAGE_TYPE; i++) {
1313 		init_rwsem(&sbi->write_io[i].io_rwsem);
1314 		sbi->write_io[i].sbi = sbi;
1315 		sbi->write_io[i].bio = NULL;
1316 	}
1317 
1318 	init_rwsem(&sbi->cp_rwsem);
1319 	init_waitqueue_head(&sbi->cp_wait);
1320 	init_sb_info(sbi);
1321 
1322 	/* get an inode for meta space */
1323 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1324 	if (IS_ERR(sbi->meta_inode)) {
1325 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1326 		err = PTR_ERR(sbi->meta_inode);
1327 		goto free_options;
1328 	}
1329 
1330 	err = get_valid_checkpoint(sbi);
1331 	if (err) {
1332 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1333 		goto free_meta_inode;
1334 	}
1335 
1336 	/* sanity checking of checkpoint */
1337 	err = -EINVAL;
1338 	if (sanity_check_ckpt(sbi)) {
1339 		f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1340 		goto free_cp;
1341 	}
1342 
1343 	sbi->total_valid_node_count =
1344 				le32_to_cpu(sbi->ckpt->valid_node_count);
1345 	sbi->total_valid_inode_count =
1346 				le32_to_cpu(sbi->ckpt->valid_inode_count);
1347 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1348 	sbi->total_valid_block_count =
1349 				le64_to_cpu(sbi->ckpt->valid_block_count);
1350 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1351 	sbi->alloc_valid_block_count = 0;
1352 	for (i = 0; i < NR_INODE_TYPE; i++) {
1353 		INIT_LIST_HEAD(&sbi->inode_list[i]);
1354 		spin_lock_init(&sbi->inode_lock[i]);
1355 	}
1356 
1357 	init_extent_cache_info(sbi);
1358 
1359 	init_ino_entry_info(sbi);
1360 
1361 	/* setup f2fs internal modules */
1362 	err = build_segment_manager(sbi);
1363 	if (err) {
1364 		f2fs_msg(sb, KERN_ERR,
1365 			"Failed to initialize F2FS segment manager");
1366 		goto free_sm;
1367 	}
1368 	err = build_node_manager(sbi);
1369 	if (err) {
1370 		f2fs_msg(sb, KERN_ERR,
1371 			"Failed to initialize F2FS node manager");
1372 		goto free_nm;
1373 	}
1374 
1375 	build_gc_manager(sbi);
1376 
1377 	/* get an inode for node space */
1378 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1379 	if (IS_ERR(sbi->node_inode)) {
1380 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1381 		err = PTR_ERR(sbi->node_inode);
1382 		goto free_nm;
1383 	}
1384 
1385 	f2fs_join_shrinker(sbi);
1386 
1387 	/* if there are nt orphan nodes free them */
1388 	err = recover_orphan_inodes(sbi);
1389 	if (err)
1390 		goto free_node_inode;
1391 
1392 	/* read root inode and dentry */
1393 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1394 	if (IS_ERR(root)) {
1395 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1396 		err = PTR_ERR(root);
1397 		goto free_node_inode;
1398 	}
1399 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1400 		iput(root);
1401 		err = -EINVAL;
1402 		goto free_node_inode;
1403 	}
1404 
1405 	sb->s_root = d_make_root(root); /* allocate root dentry */
1406 	if (!sb->s_root) {
1407 		err = -ENOMEM;
1408 		goto free_root_inode;
1409 	}
1410 
1411 	err = f2fs_build_stats(sbi);
1412 	if (err)
1413 		goto free_root_inode;
1414 
1415 	if (f2fs_proc_root)
1416 		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1417 
1418 	if (sbi->s_proc)
1419 		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1420 				 &f2fs_seq_segment_info_fops, sb);
1421 
1422 	sbi->s_kobj.kset = f2fs_kset;
1423 	init_completion(&sbi->s_kobj_unregister);
1424 	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1425 							"%s", sb->s_id);
1426 	if (err)
1427 		goto free_proc;
1428 
1429 	/* recover fsynced data */
1430 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1431 		/*
1432 		 * mount should be failed, when device has readonly mode, and
1433 		 * previous checkpoint was not done by clean system shutdown.
1434 		 */
1435 		if (bdev_read_only(sb->s_bdev) &&
1436 				!is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1437 			err = -EROFS;
1438 			goto free_kobj;
1439 		}
1440 
1441 		if (need_fsck)
1442 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1443 
1444 		err = recover_fsync_data(sbi);
1445 		if (err) {
1446 			need_fsck = true;
1447 			f2fs_msg(sb, KERN_ERR,
1448 				"Cannot recover all fsync data errno=%ld", err);
1449 			goto free_kobj;
1450 		}
1451 	}
1452 	/* recover_fsync_data() cleared this already */
1453 	clear_sbi_flag(sbi, SBI_POR_DOING);
1454 
1455 	/*
1456 	 * If filesystem is not mounted as read-only then
1457 	 * do start the gc_thread.
1458 	 */
1459 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1460 		/* After POR, we can run background GC thread.*/
1461 		err = start_gc_thread(sbi);
1462 		if (err)
1463 			goto free_kobj;
1464 	}
1465 	kfree(options);
1466 
1467 	/* recover broken superblock */
1468 	if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) {
1469 		f2fs_msg(sb, KERN_INFO, "Recover invalid superblock");
1470 		f2fs_commit_super(sbi, true);
1471 	}
1472 
1473 	f2fs_update_time(sbi, CP_TIME);
1474 	f2fs_update_time(sbi, REQ_TIME);
1475 	return 0;
1476 
1477 free_kobj:
1478 	kobject_del(&sbi->s_kobj);
1479 	kobject_put(&sbi->s_kobj);
1480 	wait_for_completion(&sbi->s_kobj_unregister);
1481 free_proc:
1482 	if (sbi->s_proc) {
1483 		remove_proc_entry("segment_info", sbi->s_proc);
1484 		remove_proc_entry(sb->s_id, f2fs_proc_root);
1485 	}
1486 	f2fs_destroy_stats(sbi);
1487 free_root_inode:
1488 	dput(sb->s_root);
1489 	sb->s_root = NULL;
1490 free_node_inode:
1491 	mutex_lock(&sbi->umount_mutex);
1492 	f2fs_leave_shrinker(sbi);
1493 	iput(sbi->node_inode);
1494 	mutex_unlock(&sbi->umount_mutex);
1495 free_nm:
1496 	destroy_node_manager(sbi);
1497 free_sm:
1498 	destroy_segment_manager(sbi);
1499 free_cp:
1500 	kfree(sbi->ckpt);
1501 free_meta_inode:
1502 	make_bad_inode(sbi->meta_inode);
1503 	iput(sbi->meta_inode);
1504 free_options:
1505 	kfree(options);
1506 free_sb_buf:
1507 	kfree(raw_super);
1508 free_sbi:
1509 	kfree(sbi);
1510 
1511 	/* give only one another chance */
1512 	if (retry) {
1513 		retry = false;
1514 		shrink_dcache_sb(sb);
1515 		goto try_onemore;
1516 	}
1517 	return err;
1518 }
1519 
1520 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1521 			const char *dev_name, void *data)
1522 {
1523 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1524 }
1525 
1526 static void kill_f2fs_super(struct super_block *sb)
1527 {
1528 	if (sb->s_root)
1529 		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1530 	kill_block_super(sb);
1531 }
1532 
1533 static struct file_system_type f2fs_fs_type = {
1534 	.owner		= THIS_MODULE,
1535 	.name		= "f2fs",
1536 	.mount		= f2fs_mount,
1537 	.kill_sb	= kill_f2fs_super,
1538 	.fs_flags	= FS_REQUIRES_DEV,
1539 };
1540 MODULE_ALIAS_FS("f2fs");
1541 
1542 static int __init init_inodecache(void)
1543 {
1544 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1545 			sizeof(struct f2fs_inode_info), 0,
1546 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1547 	if (!f2fs_inode_cachep)
1548 		return -ENOMEM;
1549 	return 0;
1550 }
1551 
1552 static void destroy_inodecache(void)
1553 {
1554 	/*
1555 	 * Make sure all delayed rcu free inodes are flushed before we
1556 	 * destroy cache.
1557 	 */
1558 	rcu_barrier();
1559 	kmem_cache_destroy(f2fs_inode_cachep);
1560 }
1561 
1562 static int __init init_f2fs_fs(void)
1563 {
1564 	int err;
1565 
1566 	f2fs_build_trace_ios();
1567 
1568 	err = init_inodecache();
1569 	if (err)
1570 		goto fail;
1571 	err = create_node_manager_caches();
1572 	if (err)
1573 		goto free_inodecache;
1574 	err = create_segment_manager_caches();
1575 	if (err)
1576 		goto free_node_manager_caches;
1577 	err = create_checkpoint_caches();
1578 	if (err)
1579 		goto free_segment_manager_caches;
1580 	err = create_extent_cache();
1581 	if (err)
1582 		goto free_checkpoint_caches;
1583 	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1584 	if (!f2fs_kset) {
1585 		err = -ENOMEM;
1586 		goto free_extent_cache;
1587 	}
1588 	err = f2fs_init_crypto();
1589 	if (err)
1590 		goto free_kset;
1591 
1592 	err = register_shrinker(&f2fs_shrinker_info);
1593 	if (err)
1594 		goto free_crypto;
1595 
1596 	err = register_filesystem(&f2fs_fs_type);
1597 	if (err)
1598 		goto free_shrinker;
1599 	err = f2fs_create_root_stats();
1600 	if (err)
1601 		goto free_filesystem;
1602 	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1603 	return 0;
1604 
1605 free_filesystem:
1606 	unregister_filesystem(&f2fs_fs_type);
1607 free_shrinker:
1608 	unregister_shrinker(&f2fs_shrinker_info);
1609 free_crypto:
1610 	f2fs_exit_crypto();
1611 free_kset:
1612 	kset_unregister(f2fs_kset);
1613 free_extent_cache:
1614 	destroy_extent_cache();
1615 free_checkpoint_caches:
1616 	destroy_checkpoint_caches();
1617 free_segment_manager_caches:
1618 	destroy_segment_manager_caches();
1619 free_node_manager_caches:
1620 	destroy_node_manager_caches();
1621 free_inodecache:
1622 	destroy_inodecache();
1623 fail:
1624 	return err;
1625 }
1626 
1627 static void __exit exit_f2fs_fs(void)
1628 {
1629 	remove_proc_entry("fs/f2fs", NULL);
1630 	f2fs_destroy_root_stats();
1631 	unregister_shrinker(&f2fs_shrinker_info);
1632 	unregister_filesystem(&f2fs_fs_type);
1633 	f2fs_exit_crypto();
1634 	destroy_extent_cache();
1635 	destroy_checkpoint_caches();
1636 	destroy_segment_manager_caches();
1637 	destroy_node_manager_caches();
1638 	destroy_inodecache();
1639 	kset_unregister(f2fs_kset);
1640 	f2fs_destroy_trace_ios();
1641 }
1642 
1643 module_init(init_f2fs_fs)
1644 module_exit(exit_f2fs_fs)
1645 
1646 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1647 MODULE_DESCRIPTION("Flash Friendly File System");
1648 MODULE_LICENSE("GPL");
1649