1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/fs_context.h> 12 #include <linux/sched/mm.h> 13 #include <linux/statfs.h> 14 #include <linux/buffer_head.h> 15 #include <linux/kthread.h> 16 #include <linux/parser.h> 17 #include <linux/mount.h> 18 #include <linux/seq_file.h> 19 #include <linux/proc_fs.h> 20 #include <linux/random.h> 21 #include <linux/exportfs.h> 22 #include <linux/blkdev.h> 23 #include <linux/quotaops.h> 24 #include <linux/f2fs_fs.h> 25 #include <linux/sysfs.h> 26 #include <linux/quota.h> 27 #include <linux/unicode.h> 28 #include <linux/part_stat.h> 29 #include <linux/zstd.h> 30 #include <linux/lz4.h> 31 32 #include "f2fs.h" 33 #include "node.h" 34 #include "segment.h" 35 #include "xattr.h" 36 #include "gc.h" 37 #include "iostat.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/f2fs.h> 41 42 static struct kmem_cache *f2fs_inode_cachep; 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 46 const char *f2fs_fault_name[FAULT_MAX] = { 47 [FAULT_KMALLOC] = "kmalloc", 48 [FAULT_KVMALLOC] = "kvmalloc", 49 [FAULT_PAGE_ALLOC] = "page alloc", 50 [FAULT_PAGE_GET] = "page get", 51 [FAULT_ALLOC_NID] = "alloc nid", 52 [FAULT_ORPHAN] = "orphan", 53 [FAULT_BLOCK] = "no more block", 54 [FAULT_DIR_DEPTH] = "too big dir depth", 55 [FAULT_EVICT_INODE] = "evict_inode fail", 56 [FAULT_TRUNCATE] = "truncate fail", 57 [FAULT_READ_IO] = "read IO error", 58 [FAULT_CHECKPOINT] = "checkpoint error", 59 [FAULT_DISCARD] = "discard error", 60 [FAULT_WRITE_IO] = "write IO error", 61 [FAULT_SLAB_ALLOC] = "slab alloc", 62 [FAULT_DQUOT_INIT] = "dquot initialize", 63 [FAULT_LOCK_OP] = "lock_op", 64 [FAULT_BLKADDR] = "invalid blkaddr", 65 }; 66 67 int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, 68 unsigned long type) 69 { 70 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 71 72 if (rate) { 73 if (rate > INT_MAX) 74 return -EINVAL; 75 atomic_set(&ffi->inject_ops, 0); 76 ffi->inject_rate = (int)rate; 77 } 78 79 if (type) { 80 if (type >= BIT(FAULT_MAX)) 81 return -EINVAL; 82 ffi->inject_type = (unsigned int)type; 83 } 84 85 if (!rate && !type) 86 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 87 else 88 f2fs_info(sbi, 89 "build fault injection attr: rate: %lu, type: 0x%lx", 90 rate, type); 91 return 0; 92 } 93 #endif 94 95 /* f2fs-wide shrinker description */ 96 static struct shrinker f2fs_shrinker_info = { 97 .scan_objects = f2fs_shrink_scan, 98 .count_objects = f2fs_shrink_count, 99 .seeks = DEFAULT_SEEKS, 100 }; 101 102 enum { 103 Opt_gc_background, 104 Opt_disable_roll_forward, 105 Opt_norecovery, 106 Opt_discard, 107 Opt_nodiscard, 108 Opt_noheap, 109 Opt_heap, 110 Opt_user_xattr, 111 Opt_nouser_xattr, 112 Opt_acl, 113 Opt_noacl, 114 Opt_active_logs, 115 Opt_disable_ext_identify, 116 Opt_inline_xattr, 117 Opt_noinline_xattr, 118 Opt_inline_xattr_size, 119 Opt_inline_data, 120 Opt_inline_dentry, 121 Opt_noinline_dentry, 122 Opt_flush_merge, 123 Opt_noflush_merge, 124 Opt_barrier, 125 Opt_nobarrier, 126 Opt_fastboot, 127 Opt_extent_cache, 128 Opt_noextent_cache, 129 Opt_noinline_data, 130 Opt_data_flush, 131 Opt_reserve_root, 132 Opt_resgid, 133 Opt_resuid, 134 Opt_mode, 135 Opt_fault_injection, 136 Opt_fault_type, 137 Opt_lazytime, 138 Opt_nolazytime, 139 Opt_quota, 140 Opt_noquota, 141 Opt_usrquota, 142 Opt_grpquota, 143 Opt_prjquota, 144 Opt_usrjquota, 145 Opt_grpjquota, 146 Opt_prjjquota, 147 Opt_offusrjquota, 148 Opt_offgrpjquota, 149 Opt_offprjjquota, 150 Opt_jqfmt_vfsold, 151 Opt_jqfmt_vfsv0, 152 Opt_jqfmt_vfsv1, 153 Opt_alloc, 154 Opt_fsync, 155 Opt_test_dummy_encryption, 156 Opt_inlinecrypt, 157 Opt_checkpoint_disable, 158 Opt_checkpoint_disable_cap, 159 Opt_checkpoint_disable_cap_perc, 160 Opt_checkpoint_enable, 161 Opt_checkpoint_merge, 162 Opt_nocheckpoint_merge, 163 Opt_compress_algorithm, 164 Opt_compress_log_size, 165 Opt_compress_extension, 166 Opt_nocompress_extension, 167 Opt_compress_chksum, 168 Opt_compress_mode, 169 Opt_compress_cache, 170 Opt_atgc, 171 Opt_gc_merge, 172 Opt_nogc_merge, 173 Opt_discard_unit, 174 Opt_memory_mode, 175 Opt_age_extent_cache, 176 Opt_errors, 177 Opt_err, 178 }; 179 180 static match_table_t f2fs_tokens = { 181 {Opt_gc_background, "background_gc=%s"}, 182 {Opt_disable_roll_forward, "disable_roll_forward"}, 183 {Opt_norecovery, "norecovery"}, 184 {Opt_discard, "discard"}, 185 {Opt_nodiscard, "nodiscard"}, 186 {Opt_noheap, "no_heap"}, 187 {Opt_heap, "heap"}, 188 {Opt_user_xattr, "user_xattr"}, 189 {Opt_nouser_xattr, "nouser_xattr"}, 190 {Opt_acl, "acl"}, 191 {Opt_noacl, "noacl"}, 192 {Opt_active_logs, "active_logs=%u"}, 193 {Opt_disable_ext_identify, "disable_ext_identify"}, 194 {Opt_inline_xattr, "inline_xattr"}, 195 {Opt_noinline_xattr, "noinline_xattr"}, 196 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 197 {Opt_inline_data, "inline_data"}, 198 {Opt_inline_dentry, "inline_dentry"}, 199 {Opt_noinline_dentry, "noinline_dentry"}, 200 {Opt_flush_merge, "flush_merge"}, 201 {Opt_noflush_merge, "noflush_merge"}, 202 {Opt_barrier, "barrier"}, 203 {Opt_nobarrier, "nobarrier"}, 204 {Opt_fastboot, "fastboot"}, 205 {Opt_extent_cache, "extent_cache"}, 206 {Opt_noextent_cache, "noextent_cache"}, 207 {Opt_noinline_data, "noinline_data"}, 208 {Opt_data_flush, "data_flush"}, 209 {Opt_reserve_root, "reserve_root=%u"}, 210 {Opt_resgid, "resgid=%u"}, 211 {Opt_resuid, "resuid=%u"}, 212 {Opt_mode, "mode=%s"}, 213 {Opt_fault_injection, "fault_injection=%u"}, 214 {Opt_fault_type, "fault_type=%u"}, 215 {Opt_lazytime, "lazytime"}, 216 {Opt_nolazytime, "nolazytime"}, 217 {Opt_quota, "quota"}, 218 {Opt_noquota, "noquota"}, 219 {Opt_usrquota, "usrquota"}, 220 {Opt_grpquota, "grpquota"}, 221 {Opt_prjquota, "prjquota"}, 222 {Opt_usrjquota, "usrjquota=%s"}, 223 {Opt_grpjquota, "grpjquota=%s"}, 224 {Opt_prjjquota, "prjjquota=%s"}, 225 {Opt_offusrjquota, "usrjquota="}, 226 {Opt_offgrpjquota, "grpjquota="}, 227 {Opt_offprjjquota, "prjjquota="}, 228 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 229 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 230 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 231 {Opt_alloc, "alloc_mode=%s"}, 232 {Opt_fsync, "fsync_mode=%s"}, 233 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 234 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 235 {Opt_inlinecrypt, "inlinecrypt"}, 236 {Opt_checkpoint_disable, "checkpoint=disable"}, 237 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 238 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 239 {Opt_checkpoint_enable, "checkpoint=enable"}, 240 {Opt_checkpoint_merge, "checkpoint_merge"}, 241 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 242 {Opt_compress_algorithm, "compress_algorithm=%s"}, 243 {Opt_compress_log_size, "compress_log_size=%u"}, 244 {Opt_compress_extension, "compress_extension=%s"}, 245 {Opt_nocompress_extension, "nocompress_extension=%s"}, 246 {Opt_compress_chksum, "compress_chksum"}, 247 {Opt_compress_mode, "compress_mode=%s"}, 248 {Opt_compress_cache, "compress_cache"}, 249 {Opt_atgc, "atgc"}, 250 {Opt_gc_merge, "gc_merge"}, 251 {Opt_nogc_merge, "nogc_merge"}, 252 {Opt_discard_unit, "discard_unit=%s"}, 253 {Opt_memory_mode, "memory=%s"}, 254 {Opt_age_extent_cache, "age_extent_cache"}, 255 {Opt_errors, "errors=%s"}, 256 {Opt_err, NULL}, 257 }; 258 259 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, 260 const char *fmt, ...) 261 { 262 struct va_format vaf; 263 va_list args; 264 int level; 265 266 va_start(args, fmt); 267 268 level = printk_get_level(fmt); 269 vaf.fmt = printk_skip_level(fmt); 270 vaf.va = &args; 271 if (limit_rate) 272 printk_ratelimited("%c%cF2FS-fs (%s): %pV\n", 273 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 274 else 275 printk("%c%cF2FS-fs (%s): %pV\n", 276 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 277 278 va_end(args); 279 } 280 281 #if IS_ENABLED(CONFIG_UNICODE) 282 static const struct f2fs_sb_encodings { 283 __u16 magic; 284 char *name; 285 unsigned int version; 286 } f2fs_sb_encoding_map[] = { 287 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 288 }; 289 290 static const struct f2fs_sb_encodings * 291 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 292 { 293 __u16 magic = le16_to_cpu(sb->s_encoding); 294 int i; 295 296 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 297 if (magic == f2fs_sb_encoding_map[i].magic) 298 return &f2fs_sb_encoding_map[i]; 299 300 return NULL; 301 } 302 303 struct kmem_cache *f2fs_cf_name_slab; 304 static int __init f2fs_create_casefold_cache(void) 305 { 306 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 307 F2FS_NAME_LEN); 308 return f2fs_cf_name_slab ? 0 : -ENOMEM; 309 } 310 311 static void f2fs_destroy_casefold_cache(void) 312 { 313 kmem_cache_destroy(f2fs_cf_name_slab); 314 } 315 #else 316 static int __init f2fs_create_casefold_cache(void) { return 0; } 317 static void f2fs_destroy_casefold_cache(void) { } 318 #endif 319 320 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 321 { 322 block_t limit = min((sbi->user_block_count >> 3), 323 sbi->user_block_count - sbi->reserved_blocks); 324 325 /* limit is 12.5% */ 326 if (test_opt(sbi, RESERVE_ROOT) && 327 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 328 F2FS_OPTION(sbi).root_reserved_blocks = limit; 329 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 330 F2FS_OPTION(sbi).root_reserved_blocks); 331 } 332 if (!test_opt(sbi, RESERVE_ROOT) && 333 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 334 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 335 !gid_eq(F2FS_OPTION(sbi).s_resgid, 336 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 337 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 338 from_kuid_munged(&init_user_ns, 339 F2FS_OPTION(sbi).s_resuid), 340 from_kgid_munged(&init_user_ns, 341 F2FS_OPTION(sbi).s_resgid)); 342 } 343 344 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 345 { 346 if (!F2FS_OPTION(sbi).unusable_cap_perc) 347 return; 348 349 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 350 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 351 else 352 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 353 F2FS_OPTION(sbi).unusable_cap_perc; 354 355 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 356 F2FS_OPTION(sbi).unusable_cap, 357 F2FS_OPTION(sbi).unusable_cap_perc); 358 } 359 360 static void init_once(void *foo) 361 { 362 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 363 364 inode_init_once(&fi->vfs_inode); 365 } 366 367 #ifdef CONFIG_QUOTA 368 static const char * const quotatypes[] = INITQFNAMES; 369 #define QTYPE2NAME(t) (quotatypes[t]) 370 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 371 substring_t *args) 372 { 373 struct f2fs_sb_info *sbi = F2FS_SB(sb); 374 char *qname; 375 int ret = -EINVAL; 376 377 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 378 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 379 return -EINVAL; 380 } 381 if (f2fs_sb_has_quota_ino(sbi)) { 382 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 383 return 0; 384 } 385 386 qname = match_strdup(args); 387 if (!qname) { 388 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 389 return -ENOMEM; 390 } 391 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 392 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 393 ret = 0; 394 else 395 f2fs_err(sbi, "%s quota file already specified", 396 QTYPE2NAME(qtype)); 397 goto errout; 398 } 399 if (strchr(qname, '/')) { 400 f2fs_err(sbi, "quotafile must be on filesystem root"); 401 goto errout; 402 } 403 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 404 set_opt(sbi, QUOTA); 405 return 0; 406 errout: 407 kfree(qname); 408 return ret; 409 } 410 411 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 412 { 413 struct f2fs_sb_info *sbi = F2FS_SB(sb); 414 415 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 416 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 417 return -EINVAL; 418 } 419 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 420 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 421 return 0; 422 } 423 424 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 425 { 426 /* 427 * We do the test below only for project quotas. 'usrquota' and 428 * 'grpquota' mount options are allowed even without quota feature 429 * to support legacy quotas in quota files. 430 */ 431 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 432 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 433 return -1; 434 } 435 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 436 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 437 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 438 if (test_opt(sbi, USRQUOTA) && 439 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 440 clear_opt(sbi, USRQUOTA); 441 442 if (test_opt(sbi, GRPQUOTA) && 443 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 444 clear_opt(sbi, GRPQUOTA); 445 446 if (test_opt(sbi, PRJQUOTA) && 447 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 448 clear_opt(sbi, PRJQUOTA); 449 450 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 451 test_opt(sbi, PRJQUOTA)) { 452 f2fs_err(sbi, "old and new quota format mixing"); 453 return -1; 454 } 455 456 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 457 f2fs_err(sbi, "journaled quota format not specified"); 458 return -1; 459 } 460 } 461 462 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 463 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 464 F2FS_OPTION(sbi).s_jquota_fmt = 0; 465 } 466 return 0; 467 } 468 #endif 469 470 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 471 const char *opt, 472 const substring_t *arg, 473 bool is_remount) 474 { 475 struct f2fs_sb_info *sbi = F2FS_SB(sb); 476 struct fs_parameter param = { 477 .type = fs_value_is_string, 478 .string = arg->from ? arg->from : "", 479 }; 480 struct fscrypt_dummy_policy *policy = 481 &F2FS_OPTION(sbi).dummy_enc_policy; 482 int err; 483 484 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 485 f2fs_warn(sbi, "test_dummy_encryption option not supported"); 486 return -EINVAL; 487 } 488 489 if (!f2fs_sb_has_encrypt(sbi)) { 490 f2fs_err(sbi, "Encrypt feature is off"); 491 return -EINVAL; 492 } 493 494 /* 495 * This mount option is just for testing, and it's not worthwhile to 496 * implement the extra complexity (e.g. RCU protection) that would be 497 * needed to allow it to be set or changed during remount. We do allow 498 * it to be specified during remount, but only if there is no change. 499 */ 500 if (is_remount && !fscrypt_is_dummy_policy_set(policy)) { 501 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 502 return -EINVAL; 503 } 504 505 err = fscrypt_parse_test_dummy_encryption(¶m, policy); 506 if (err) { 507 if (err == -EEXIST) 508 f2fs_warn(sbi, 509 "Can't change test_dummy_encryption on remount"); 510 else if (err == -EINVAL) 511 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 512 opt); 513 else 514 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 515 opt, err); 516 return -EINVAL; 517 } 518 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 519 return 0; 520 } 521 522 #ifdef CONFIG_F2FS_FS_COMPRESSION 523 static bool is_compress_extension_exist(struct f2fs_sb_info *sbi, 524 const char *new_ext, bool is_ext) 525 { 526 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 527 int ext_cnt; 528 int i; 529 530 if (is_ext) { 531 ext = F2FS_OPTION(sbi).extensions; 532 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 533 } else { 534 ext = F2FS_OPTION(sbi).noextensions; 535 ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 536 } 537 538 for (i = 0; i < ext_cnt; i++) { 539 if (!strcasecmp(new_ext, ext[i])) 540 return true; 541 } 542 543 return false; 544 } 545 546 /* 547 * 1. The same extension name cannot not appear in both compress and non-compress extension 548 * at the same time. 549 * 2. If the compress extension specifies all files, the types specified by the non-compress 550 * extension will be treated as special cases and will not be compressed. 551 * 3. Don't allow the non-compress extension specifies all files. 552 */ 553 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 554 { 555 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 556 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 557 int ext_cnt, noext_cnt, index = 0, no_index = 0; 558 559 ext = F2FS_OPTION(sbi).extensions; 560 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 561 noext = F2FS_OPTION(sbi).noextensions; 562 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 563 564 if (!noext_cnt) 565 return 0; 566 567 for (no_index = 0; no_index < noext_cnt; no_index++) { 568 if (!strcasecmp("*", noext[no_index])) { 569 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 570 return -EINVAL; 571 } 572 for (index = 0; index < ext_cnt; index++) { 573 if (!strcasecmp(ext[index], noext[no_index])) { 574 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 575 ext[index]); 576 return -EINVAL; 577 } 578 } 579 } 580 return 0; 581 } 582 583 #ifdef CONFIG_F2FS_FS_LZ4 584 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 585 { 586 #ifdef CONFIG_F2FS_FS_LZ4HC 587 unsigned int level; 588 589 if (strlen(str) == 3) { 590 F2FS_OPTION(sbi).compress_level = 0; 591 return 0; 592 } 593 594 str += 3; 595 596 if (str[0] != ':') { 597 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 598 return -EINVAL; 599 } 600 if (kstrtouint(str + 1, 10, &level)) 601 return -EINVAL; 602 603 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) { 604 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 605 return -EINVAL; 606 } 607 608 F2FS_OPTION(sbi).compress_level = level; 609 return 0; 610 #else 611 if (strlen(str) == 3) { 612 F2FS_OPTION(sbi).compress_level = 0; 613 return 0; 614 } 615 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 616 return -EINVAL; 617 #endif 618 } 619 #endif 620 621 #ifdef CONFIG_F2FS_FS_ZSTD 622 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 623 { 624 int level; 625 int len = 4; 626 627 if (strlen(str) == len) { 628 F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 629 return 0; 630 } 631 632 str += len; 633 634 if (str[0] != ':') { 635 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 636 return -EINVAL; 637 } 638 if (kstrtoint(str + 1, 10, &level)) 639 return -EINVAL; 640 641 /* f2fs does not support negative compress level now */ 642 if (level < 0) { 643 f2fs_info(sbi, "do not support negative compress level: %d", level); 644 return -ERANGE; 645 } 646 647 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) { 648 f2fs_info(sbi, "invalid zstd compress level: %d", level); 649 return -EINVAL; 650 } 651 652 F2FS_OPTION(sbi).compress_level = level; 653 return 0; 654 } 655 #endif 656 #endif 657 658 static int parse_options(struct super_block *sb, char *options, bool is_remount) 659 { 660 struct f2fs_sb_info *sbi = F2FS_SB(sb); 661 substring_t args[MAX_OPT_ARGS]; 662 #ifdef CONFIG_F2FS_FS_COMPRESSION 663 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 664 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 665 int ext_cnt, noext_cnt; 666 #endif 667 char *p, *name; 668 int arg = 0; 669 kuid_t uid; 670 kgid_t gid; 671 int ret; 672 673 if (!options) 674 goto default_check; 675 676 while ((p = strsep(&options, ",")) != NULL) { 677 int token; 678 679 if (!*p) 680 continue; 681 /* 682 * Initialize args struct so we know whether arg was 683 * found; some options take optional arguments. 684 */ 685 args[0].to = args[0].from = NULL; 686 token = match_token(p, f2fs_tokens, args); 687 688 switch (token) { 689 case Opt_gc_background: 690 name = match_strdup(&args[0]); 691 692 if (!name) 693 return -ENOMEM; 694 if (!strcmp(name, "on")) { 695 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 696 } else if (!strcmp(name, "off")) { 697 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 698 } else if (!strcmp(name, "sync")) { 699 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 700 } else { 701 kfree(name); 702 return -EINVAL; 703 } 704 kfree(name); 705 break; 706 case Opt_disable_roll_forward: 707 set_opt(sbi, DISABLE_ROLL_FORWARD); 708 break; 709 case Opt_norecovery: 710 /* this option mounts f2fs with ro */ 711 set_opt(sbi, NORECOVERY); 712 if (!f2fs_readonly(sb)) 713 return -EINVAL; 714 break; 715 case Opt_discard: 716 if (!f2fs_hw_support_discard(sbi)) { 717 f2fs_warn(sbi, "device does not support discard"); 718 break; 719 } 720 set_opt(sbi, DISCARD); 721 break; 722 case Opt_nodiscard: 723 if (f2fs_hw_should_discard(sbi)) { 724 f2fs_warn(sbi, "discard is required for zoned block devices"); 725 return -EINVAL; 726 } 727 clear_opt(sbi, DISCARD); 728 break; 729 case Opt_noheap: 730 case Opt_heap: 731 f2fs_warn(sbi, "heap/no_heap options were deprecated"); 732 break; 733 #ifdef CONFIG_F2FS_FS_XATTR 734 case Opt_user_xattr: 735 set_opt(sbi, XATTR_USER); 736 break; 737 case Opt_nouser_xattr: 738 clear_opt(sbi, XATTR_USER); 739 break; 740 case Opt_inline_xattr: 741 set_opt(sbi, INLINE_XATTR); 742 break; 743 case Opt_noinline_xattr: 744 clear_opt(sbi, INLINE_XATTR); 745 break; 746 case Opt_inline_xattr_size: 747 if (args->from && match_int(args, &arg)) 748 return -EINVAL; 749 set_opt(sbi, INLINE_XATTR_SIZE); 750 F2FS_OPTION(sbi).inline_xattr_size = arg; 751 break; 752 #else 753 case Opt_user_xattr: 754 f2fs_info(sbi, "user_xattr options not supported"); 755 break; 756 case Opt_nouser_xattr: 757 f2fs_info(sbi, "nouser_xattr options not supported"); 758 break; 759 case Opt_inline_xattr: 760 f2fs_info(sbi, "inline_xattr options not supported"); 761 break; 762 case Opt_noinline_xattr: 763 f2fs_info(sbi, "noinline_xattr options not supported"); 764 break; 765 #endif 766 #ifdef CONFIG_F2FS_FS_POSIX_ACL 767 case Opt_acl: 768 set_opt(sbi, POSIX_ACL); 769 break; 770 case Opt_noacl: 771 clear_opt(sbi, POSIX_ACL); 772 break; 773 #else 774 case Opt_acl: 775 f2fs_info(sbi, "acl options not supported"); 776 break; 777 case Opt_noacl: 778 f2fs_info(sbi, "noacl options not supported"); 779 break; 780 #endif 781 case Opt_active_logs: 782 if (args->from && match_int(args, &arg)) 783 return -EINVAL; 784 if (arg != 2 && arg != 4 && 785 arg != NR_CURSEG_PERSIST_TYPE) 786 return -EINVAL; 787 F2FS_OPTION(sbi).active_logs = arg; 788 break; 789 case Opt_disable_ext_identify: 790 set_opt(sbi, DISABLE_EXT_IDENTIFY); 791 break; 792 case Opt_inline_data: 793 set_opt(sbi, INLINE_DATA); 794 break; 795 case Opt_inline_dentry: 796 set_opt(sbi, INLINE_DENTRY); 797 break; 798 case Opt_noinline_dentry: 799 clear_opt(sbi, INLINE_DENTRY); 800 break; 801 case Opt_flush_merge: 802 set_opt(sbi, FLUSH_MERGE); 803 break; 804 case Opt_noflush_merge: 805 clear_opt(sbi, FLUSH_MERGE); 806 break; 807 case Opt_nobarrier: 808 set_opt(sbi, NOBARRIER); 809 break; 810 case Opt_barrier: 811 clear_opt(sbi, NOBARRIER); 812 break; 813 case Opt_fastboot: 814 set_opt(sbi, FASTBOOT); 815 break; 816 case Opt_extent_cache: 817 set_opt(sbi, READ_EXTENT_CACHE); 818 break; 819 case Opt_noextent_cache: 820 clear_opt(sbi, READ_EXTENT_CACHE); 821 break; 822 case Opt_noinline_data: 823 clear_opt(sbi, INLINE_DATA); 824 break; 825 case Opt_data_flush: 826 set_opt(sbi, DATA_FLUSH); 827 break; 828 case Opt_reserve_root: 829 if (args->from && match_int(args, &arg)) 830 return -EINVAL; 831 if (test_opt(sbi, RESERVE_ROOT)) { 832 f2fs_info(sbi, "Preserve previous reserve_root=%u", 833 F2FS_OPTION(sbi).root_reserved_blocks); 834 } else { 835 F2FS_OPTION(sbi).root_reserved_blocks = arg; 836 set_opt(sbi, RESERVE_ROOT); 837 } 838 break; 839 case Opt_resuid: 840 if (args->from && match_int(args, &arg)) 841 return -EINVAL; 842 uid = make_kuid(current_user_ns(), arg); 843 if (!uid_valid(uid)) { 844 f2fs_err(sbi, "Invalid uid value %d", arg); 845 return -EINVAL; 846 } 847 F2FS_OPTION(sbi).s_resuid = uid; 848 break; 849 case Opt_resgid: 850 if (args->from && match_int(args, &arg)) 851 return -EINVAL; 852 gid = make_kgid(current_user_ns(), arg); 853 if (!gid_valid(gid)) { 854 f2fs_err(sbi, "Invalid gid value %d", arg); 855 return -EINVAL; 856 } 857 F2FS_OPTION(sbi).s_resgid = gid; 858 break; 859 case Opt_mode: 860 name = match_strdup(&args[0]); 861 862 if (!name) 863 return -ENOMEM; 864 if (!strcmp(name, "adaptive")) { 865 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 866 } else if (!strcmp(name, "lfs")) { 867 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 868 } else if (!strcmp(name, "fragment:segment")) { 869 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 870 } else if (!strcmp(name, "fragment:block")) { 871 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 872 } else { 873 kfree(name); 874 return -EINVAL; 875 } 876 kfree(name); 877 break; 878 #ifdef CONFIG_F2FS_FAULT_INJECTION 879 case Opt_fault_injection: 880 if (args->from && match_int(args, &arg)) 881 return -EINVAL; 882 if (f2fs_build_fault_attr(sbi, arg, 883 F2FS_ALL_FAULT_TYPE)) 884 return -EINVAL; 885 set_opt(sbi, FAULT_INJECTION); 886 break; 887 888 case Opt_fault_type: 889 if (args->from && match_int(args, &arg)) 890 return -EINVAL; 891 if (f2fs_build_fault_attr(sbi, 0, arg)) 892 return -EINVAL; 893 set_opt(sbi, FAULT_INJECTION); 894 break; 895 #else 896 case Opt_fault_injection: 897 f2fs_info(sbi, "fault_injection options not supported"); 898 break; 899 900 case Opt_fault_type: 901 f2fs_info(sbi, "fault_type options not supported"); 902 break; 903 #endif 904 case Opt_lazytime: 905 sb->s_flags |= SB_LAZYTIME; 906 break; 907 case Opt_nolazytime: 908 sb->s_flags &= ~SB_LAZYTIME; 909 break; 910 #ifdef CONFIG_QUOTA 911 case Opt_quota: 912 case Opt_usrquota: 913 set_opt(sbi, USRQUOTA); 914 break; 915 case Opt_grpquota: 916 set_opt(sbi, GRPQUOTA); 917 break; 918 case Opt_prjquota: 919 set_opt(sbi, PRJQUOTA); 920 break; 921 case Opt_usrjquota: 922 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 923 if (ret) 924 return ret; 925 break; 926 case Opt_grpjquota: 927 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 928 if (ret) 929 return ret; 930 break; 931 case Opt_prjjquota: 932 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 933 if (ret) 934 return ret; 935 break; 936 case Opt_offusrjquota: 937 ret = f2fs_clear_qf_name(sb, USRQUOTA); 938 if (ret) 939 return ret; 940 break; 941 case Opt_offgrpjquota: 942 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 943 if (ret) 944 return ret; 945 break; 946 case Opt_offprjjquota: 947 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 948 if (ret) 949 return ret; 950 break; 951 case Opt_jqfmt_vfsold: 952 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 953 break; 954 case Opt_jqfmt_vfsv0: 955 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 956 break; 957 case Opt_jqfmt_vfsv1: 958 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 959 break; 960 case Opt_noquota: 961 clear_opt(sbi, QUOTA); 962 clear_opt(sbi, USRQUOTA); 963 clear_opt(sbi, GRPQUOTA); 964 clear_opt(sbi, PRJQUOTA); 965 break; 966 #else 967 case Opt_quota: 968 case Opt_usrquota: 969 case Opt_grpquota: 970 case Opt_prjquota: 971 case Opt_usrjquota: 972 case Opt_grpjquota: 973 case Opt_prjjquota: 974 case Opt_offusrjquota: 975 case Opt_offgrpjquota: 976 case Opt_offprjjquota: 977 case Opt_jqfmt_vfsold: 978 case Opt_jqfmt_vfsv0: 979 case Opt_jqfmt_vfsv1: 980 case Opt_noquota: 981 f2fs_info(sbi, "quota operations not supported"); 982 break; 983 #endif 984 case Opt_alloc: 985 name = match_strdup(&args[0]); 986 if (!name) 987 return -ENOMEM; 988 989 if (!strcmp(name, "default")) { 990 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 991 } else if (!strcmp(name, "reuse")) { 992 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 993 } else { 994 kfree(name); 995 return -EINVAL; 996 } 997 kfree(name); 998 break; 999 case Opt_fsync: 1000 name = match_strdup(&args[0]); 1001 if (!name) 1002 return -ENOMEM; 1003 if (!strcmp(name, "posix")) { 1004 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1005 } else if (!strcmp(name, "strict")) { 1006 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 1007 } else if (!strcmp(name, "nobarrier")) { 1008 F2FS_OPTION(sbi).fsync_mode = 1009 FSYNC_MODE_NOBARRIER; 1010 } else { 1011 kfree(name); 1012 return -EINVAL; 1013 } 1014 kfree(name); 1015 break; 1016 case Opt_test_dummy_encryption: 1017 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 1018 is_remount); 1019 if (ret) 1020 return ret; 1021 break; 1022 case Opt_inlinecrypt: 1023 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1024 sb->s_flags |= SB_INLINECRYPT; 1025 #else 1026 f2fs_info(sbi, "inline encryption not supported"); 1027 #endif 1028 break; 1029 case Opt_checkpoint_disable_cap_perc: 1030 if (args->from && match_int(args, &arg)) 1031 return -EINVAL; 1032 if (arg < 0 || arg > 100) 1033 return -EINVAL; 1034 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1035 set_opt(sbi, DISABLE_CHECKPOINT); 1036 break; 1037 case Opt_checkpoint_disable_cap: 1038 if (args->from && match_int(args, &arg)) 1039 return -EINVAL; 1040 F2FS_OPTION(sbi).unusable_cap = arg; 1041 set_opt(sbi, DISABLE_CHECKPOINT); 1042 break; 1043 case Opt_checkpoint_disable: 1044 set_opt(sbi, DISABLE_CHECKPOINT); 1045 break; 1046 case Opt_checkpoint_enable: 1047 clear_opt(sbi, DISABLE_CHECKPOINT); 1048 break; 1049 case Opt_checkpoint_merge: 1050 set_opt(sbi, MERGE_CHECKPOINT); 1051 break; 1052 case Opt_nocheckpoint_merge: 1053 clear_opt(sbi, MERGE_CHECKPOINT); 1054 break; 1055 #ifdef CONFIG_F2FS_FS_COMPRESSION 1056 case Opt_compress_algorithm: 1057 if (!f2fs_sb_has_compression(sbi)) { 1058 f2fs_info(sbi, "Image doesn't support compression"); 1059 break; 1060 } 1061 name = match_strdup(&args[0]); 1062 if (!name) 1063 return -ENOMEM; 1064 if (!strcmp(name, "lzo")) { 1065 #ifdef CONFIG_F2FS_FS_LZO 1066 F2FS_OPTION(sbi).compress_level = 0; 1067 F2FS_OPTION(sbi).compress_algorithm = 1068 COMPRESS_LZO; 1069 #else 1070 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1071 #endif 1072 } else if (!strncmp(name, "lz4", 3)) { 1073 #ifdef CONFIG_F2FS_FS_LZ4 1074 ret = f2fs_set_lz4hc_level(sbi, name); 1075 if (ret) { 1076 kfree(name); 1077 return -EINVAL; 1078 } 1079 F2FS_OPTION(sbi).compress_algorithm = 1080 COMPRESS_LZ4; 1081 #else 1082 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1083 #endif 1084 } else if (!strncmp(name, "zstd", 4)) { 1085 #ifdef CONFIG_F2FS_FS_ZSTD 1086 ret = f2fs_set_zstd_level(sbi, name); 1087 if (ret) { 1088 kfree(name); 1089 return -EINVAL; 1090 } 1091 F2FS_OPTION(sbi).compress_algorithm = 1092 COMPRESS_ZSTD; 1093 #else 1094 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1095 #endif 1096 } else if (!strcmp(name, "lzo-rle")) { 1097 #ifdef CONFIG_F2FS_FS_LZORLE 1098 F2FS_OPTION(sbi).compress_level = 0; 1099 F2FS_OPTION(sbi).compress_algorithm = 1100 COMPRESS_LZORLE; 1101 #else 1102 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1103 #endif 1104 } else { 1105 kfree(name); 1106 return -EINVAL; 1107 } 1108 kfree(name); 1109 break; 1110 case Opt_compress_log_size: 1111 if (!f2fs_sb_has_compression(sbi)) { 1112 f2fs_info(sbi, "Image doesn't support compression"); 1113 break; 1114 } 1115 if (args->from && match_int(args, &arg)) 1116 return -EINVAL; 1117 if (arg < MIN_COMPRESS_LOG_SIZE || 1118 arg > MAX_COMPRESS_LOG_SIZE) { 1119 f2fs_err(sbi, 1120 "Compress cluster log size is out of range"); 1121 return -EINVAL; 1122 } 1123 F2FS_OPTION(sbi).compress_log_size = arg; 1124 break; 1125 case Opt_compress_extension: 1126 if (!f2fs_sb_has_compression(sbi)) { 1127 f2fs_info(sbi, "Image doesn't support compression"); 1128 break; 1129 } 1130 name = match_strdup(&args[0]); 1131 if (!name) 1132 return -ENOMEM; 1133 1134 ext = F2FS_OPTION(sbi).extensions; 1135 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1136 1137 if (strlen(name) >= F2FS_EXTENSION_LEN || 1138 ext_cnt >= COMPRESS_EXT_NUM) { 1139 f2fs_err(sbi, 1140 "invalid extension length/number"); 1141 kfree(name); 1142 return -EINVAL; 1143 } 1144 1145 if (is_compress_extension_exist(sbi, name, true)) { 1146 kfree(name); 1147 break; 1148 } 1149 1150 strcpy(ext[ext_cnt], name); 1151 F2FS_OPTION(sbi).compress_ext_cnt++; 1152 kfree(name); 1153 break; 1154 case Opt_nocompress_extension: 1155 if (!f2fs_sb_has_compression(sbi)) { 1156 f2fs_info(sbi, "Image doesn't support compression"); 1157 break; 1158 } 1159 name = match_strdup(&args[0]); 1160 if (!name) 1161 return -ENOMEM; 1162 1163 noext = F2FS_OPTION(sbi).noextensions; 1164 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1165 1166 if (strlen(name) >= F2FS_EXTENSION_LEN || 1167 noext_cnt >= COMPRESS_EXT_NUM) { 1168 f2fs_err(sbi, 1169 "invalid extension length/number"); 1170 kfree(name); 1171 return -EINVAL; 1172 } 1173 1174 if (is_compress_extension_exist(sbi, name, false)) { 1175 kfree(name); 1176 break; 1177 } 1178 1179 strcpy(noext[noext_cnt], name); 1180 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1181 kfree(name); 1182 break; 1183 case Opt_compress_chksum: 1184 if (!f2fs_sb_has_compression(sbi)) { 1185 f2fs_info(sbi, "Image doesn't support compression"); 1186 break; 1187 } 1188 F2FS_OPTION(sbi).compress_chksum = true; 1189 break; 1190 case Opt_compress_mode: 1191 if (!f2fs_sb_has_compression(sbi)) { 1192 f2fs_info(sbi, "Image doesn't support compression"); 1193 break; 1194 } 1195 name = match_strdup(&args[0]); 1196 if (!name) 1197 return -ENOMEM; 1198 if (!strcmp(name, "fs")) { 1199 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1200 } else if (!strcmp(name, "user")) { 1201 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1202 } else { 1203 kfree(name); 1204 return -EINVAL; 1205 } 1206 kfree(name); 1207 break; 1208 case Opt_compress_cache: 1209 if (!f2fs_sb_has_compression(sbi)) { 1210 f2fs_info(sbi, "Image doesn't support compression"); 1211 break; 1212 } 1213 set_opt(sbi, COMPRESS_CACHE); 1214 break; 1215 #else 1216 case Opt_compress_algorithm: 1217 case Opt_compress_log_size: 1218 case Opt_compress_extension: 1219 case Opt_nocompress_extension: 1220 case Opt_compress_chksum: 1221 case Opt_compress_mode: 1222 case Opt_compress_cache: 1223 f2fs_info(sbi, "compression options not supported"); 1224 break; 1225 #endif 1226 case Opt_atgc: 1227 set_opt(sbi, ATGC); 1228 break; 1229 case Opt_gc_merge: 1230 set_opt(sbi, GC_MERGE); 1231 break; 1232 case Opt_nogc_merge: 1233 clear_opt(sbi, GC_MERGE); 1234 break; 1235 case Opt_discard_unit: 1236 name = match_strdup(&args[0]); 1237 if (!name) 1238 return -ENOMEM; 1239 if (!strcmp(name, "block")) { 1240 F2FS_OPTION(sbi).discard_unit = 1241 DISCARD_UNIT_BLOCK; 1242 } else if (!strcmp(name, "segment")) { 1243 F2FS_OPTION(sbi).discard_unit = 1244 DISCARD_UNIT_SEGMENT; 1245 } else if (!strcmp(name, "section")) { 1246 F2FS_OPTION(sbi).discard_unit = 1247 DISCARD_UNIT_SECTION; 1248 } else { 1249 kfree(name); 1250 return -EINVAL; 1251 } 1252 kfree(name); 1253 break; 1254 case Opt_memory_mode: 1255 name = match_strdup(&args[0]); 1256 if (!name) 1257 return -ENOMEM; 1258 if (!strcmp(name, "normal")) { 1259 F2FS_OPTION(sbi).memory_mode = 1260 MEMORY_MODE_NORMAL; 1261 } else if (!strcmp(name, "low")) { 1262 F2FS_OPTION(sbi).memory_mode = 1263 MEMORY_MODE_LOW; 1264 } else { 1265 kfree(name); 1266 return -EINVAL; 1267 } 1268 kfree(name); 1269 break; 1270 case Opt_age_extent_cache: 1271 set_opt(sbi, AGE_EXTENT_CACHE); 1272 break; 1273 case Opt_errors: 1274 name = match_strdup(&args[0]); 1275 if (!name) 1276 return -ENOMEM; 1277 if (!strcmp(name, "remount-ro")) { 1278 F2FS_OPTION(sbi).errors = 1279 MOUNT_ERRORS_READONLY; 1280 } else if (!strcmp(name, "continue")) { 1281 F2FS_OPTION(sbi).errors = 1282 MOUNT_ERRORS_CONTINUE; 1283 } else if (!strcmp(name, "panic")) { 1284 F2FS_OPTION(sbi).errors = 1285 MOUNT_ERRORS_PANIC; 1286 } else { 1287 kfree(name); 1288 return -EINVAL; 1289 } 1290 kfree(name); 1291 break; 1292 default: 1293 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1294 p); 1295 return -EINVAL; 1296 } 1297 } 1298 default_check: 1299 #ifdef CONFIG_QUOTA 1300 if (f2fs_check_quota_options(sbi)) 1301 return -EINVAL; 1302 #else 1303 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1304 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1305 return -EINVAL; 1306 } 1307 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1308 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1309 return -EINVAL; 1310 } 1311 #endif 1312 #if !IS_ENABLED(CONFIG_UNICODE) 1313 if (f2fs_sb_has_casefold(sbi)) { 1314 f2fs_err(sbi, 1315 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1316 return -EINVAL; 1317 } 1318 #endif 1319 /* 1320 * The BLKZONED feature indicates that the drive was formatted with 1321 * zone alignment optimization. This is optional for host-aware 1322 * devices, but mandatory for host-managed zoned block devices. 1323 */ 1324 if (f2fs_sb_has_blkzoned(sbi)) { 1325 #ifdef CONFIG_BLK_DEV_ZONED 1326 if (F2FS_OPTION(sbi).discard_unit != 1327 DISCARD_UNIT_SECTION) { 1328 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1329 F2FS_OPTION(sbi).discard_unit = 1330 DISCARD_UNIT_SECTION; 1331 } 1332 1333 if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) { 1334 f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature"); 1335 return -EINVAL; 1336 } 1337 #else 1338 f2fs_err(sbi, "Zoned block device support is not enabled"); 1339 return -EINVAL; 1340 #endif 1341 } 1342 1343 #ifdef CONFIG_F2FS_FS_COMPRESSION 1344 if (f2fs_test_compress_extension(sbi)) { 1345 f2fs_err(sbi, "invalid compress or nocompress extension"); 1346 return -EINVAL; 1347 } 1348 #endif 1349 1350 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1351 int min_size, max_size; 1352 1353 if (!f2fs_sb_has_extra_attr(sbi) || 1354 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1355 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1356 return -EINVAL; 1357 } 1358 if (!test_opt(sbi, INLINE_XATTR)) { 1359 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1360 return -EINVAL; 1361 } 1362 1363 min_size = MIN_INLINE_XATTR_SIZE; 1364 max_size = MAX_INLINE_XATTR_SIZE; 1365 1366 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1367 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1368 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1369 min_size, max_size); 1370 return -EINVAL; 1371 } 1372 } 1373 1374 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) { 1375 f2fs_err(sbi, "LFS is not compatible with checkpoint=disable"); 1376 return -EINVAL; 1377 } 1378 1379 if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) { 1380 f2fs_err(sbi, "LFS is not compatible with ATGC"); 1381 return -EINVAL; 1382 } 1383 1384 if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) { 1385 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode"); 1386 return -EINVAL; 1387 } 1388 1389 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1390 f2fs_err(sbi, "Allow to mount readonly mode only"); 1391 return -EROFS; 1392 } 1393 return 0; 1394 } 1395 1396 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1397 { 1398 struct f2fs_inode_info *fi; 1399 1400 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) 1401 return NULL; 1402 1403 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1404 if (!fi) 1405 return NULL; 1406 1407 init_once((void *) fi); 1408 1409 /* Initialize f2fs-specific inode info */ 1410 atomic_set(&fi->dirty_pages, 0); 1411 atomic_set(&fi->i_compr_blocks, 0); 1412 init_f2fs_rwsem(&fi->i_sem); 1413 spin_lock_init(&fi->i_size_lock); 1414 INIT_LIST_HEAD(&fi->dirty_list); 1415 INIT_LIST_HEAD(&fi->gdirty_list); 1416 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1417 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1418 init_f2fs_rwsem(&fi->i_xattr_sem); 1419 1420 /* Will be used by directory only */ 1421 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1422 1423 return &fi->vfs_inode; 1424 } 1425 1426 static int f2fs_drop_inode(struct inode *inode) 1427 { 1428 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1429 int ret; 1430 1431 /* 1432 * during filesystem shutdown, if checkpoint is disabled, 1433 * drop useless meta/node dirty pages. 1434 */ 1435 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1436 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1437 inode->i_ino == F2FS_META_INO(sbi)) { 1438 trace_f2fs_drop_inode(inode, 1); 1439 return 1; 1440 } 1441 } 1442 1443 /* 1444 * This is to avoid a deadlock condition like below. 1445 * writeback_single_inode(inode) 1446 * - f2fs_write_data_page 1447 * - f2fs_gc -> iput -> evict 1448 * - inode_wait_for_writeback(inode) 1449 */ 1450 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1451 if (!inode->i_nlink && !is_bad_inode(inode)) { 1452 /* to avoid evict_inode call simultaneously */ 1453 atomic_inc(&inode->i_count); 1454 spin_unlock(&inode->i_lock); 1455 1456 /* should remain fi->extent_tree for writepage */ 1457 f2fs_destroy_extent_node(inode); 1458 1459 sb_start_intwrite(inode->i_sb); 1460 f2fs_i_size_write(inode, 0); 1461 1462 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1463 inode, NULL, 0, DATA); 1464 truncate_inode_pages_final(inode->i_mapping); 1465 1466 if (F2FS_HAS_BLOCKS(inode)) 1467 f2fs_truncate(inode); 1468 1469 sb_end_intwrite(inode->i_sb); 1470 1471 spin_lock(&inode->i_lock); 1472 atomic_dec(&inode->i_count); 1473 } 1474 trace_f2fs_drop_inode(inode, 0); 1475 return 0; 1476 } 1477 ret = generic_drop_inode(inode); 1478 if (!ret) 1479 ret = fscrypt_drop_inode(inode); 1480 trace_f2fs_drop_inode(inode, ret); 1481 return ret; 1482 } 1483 1484 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1485 { 1486 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1487 int ret = 0; 1488 1489 spin_lock(&sbi->inode_lock[DIRTY_META]); 1490 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1491 ret = 1; 1492 } else { 1493 set_inode_flag(inode, FI_DIRTY_INODE); 1494 stat_inc_dirty_inode(sbi, DIRTY_META); 1495 } 1496 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1497 list_add_tail(&F2FS_I(inode)->gdirty_list, 1498 &sbi->inode_list[DIRTY_META]); 1499 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1500 } 1501 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1502 return ret; 1503 } 1504 1505 void f2fs_inode_synced(struct inode *inode) 1506 { 1507 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1508 1509 spin_lock(&sbi->inode_lock[DIRTY_META]); 1510 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1511 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1512 return; 1513 } 1514 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1515 list_del_init(&F2FS_I(inode)->gdirty_list); 1516 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1517 } 1518 clear_inode_flag(inode, FI_DIRTY_INODE); 1519 clear_inode_flag(inode, FI_AUTO_RECOVER); 1520 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1521 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1522 } 1523 1524 /* 1525 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1526 * 1527 * We should call set_dirty_inode to write the dirty inode through write_inode. 1528 */ 1529 static void f2fs_dirty_inode(struct inode *inode, int flags) 1530 { 1531 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1532 1533 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1534 inode->i_ino == F2FS_META_INO(sbi)) 1535 return; 1536 1537 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1538 clear_inode_flag(inode, FI_AUTO_RECOVER); 1539 1540 f2fs_inode_dirtied(inode, false); 1541 } 1542 1543 static void f2fs_free_inode(struct inode *inode) 1544 { 1545 fscrypt_free_inode(inode); 1546 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1547 } 1548 1549 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1550 { 1551 percpu_counter_destroy(&sbi->total_valid_inode_count); 1552 percpu_counter_destroy(&sbi->rf_node_block_count); 1553 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1554 } 1555 1556 static void destroy_device_list(struct f2fs_sb_info *sbi) 1557 { 1558 int i; 1559 1560 for (i = 0; i < sbi->s_ndevs; i++) { 1561 if (i > 0) 1562 blkdev_put(FDEV(i).bdev, sbi->sb); 1563 #ifdef CONFIG_BLK_DEV_ZONED 1564 kvfree(FDEV(i).blkz_seq); 1565 #endif 1566 } 1567 kvfree(sbi->devs); 1568 } 1569 1570 static void f2fs_put_super(struct super_block *sb) 1571 { 1572 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1573 int i; 1574 int err = 0; 1575 bool done; 1576 1577 /* unregister procfs/sysfs entries in advance to avoid race case */ 1578 f2fs_unregister_sysfs(sbi); 1579 1580 f2fs_quota_off_umount(sb); 1581 1582 /* prevent remaining shrinker jobs */ 1583 mutex_lock(&sbi->umount_mutex); 1584 1585 /* 1586 * flush all issued checkpoints and stop checkpoint issue thread. 1587 * after then, all checkpoints should be done by each process context. 1588 */ 1589 f2fs_stop_ckpt_thread(sbi); 1590 1591 /* 1592 * We don't need to do checkpoint when superblock is clean. 1593 * But, the previous checkpoint was not done by umount, it needs to do 1594 * clean checkpoint again. 1595 */ 1596 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1597 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1598 struct cp_control cpc = { 1599 .reason = CP_UMOUNT, 1600 }; 1601 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1602 err = f2fs_write_checkpoint(sbi, &cpc); 1603 } 1604 1605 /* be sure to wait for any on-going discard commands */ 1606 done = f2fs_issue_discard_timeout(sbi); 1607 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) { 1608 struct cp_control cpc = { 1609 .reason = CP_UMOUNT | CP_TRIMMED, 1610 }; 1611 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1612 err = f2fs_write_checkpoint(sbi, &cpc); 1613 } 1614 1615 /* 1616 * normally superblock is clean, so we need to release this. 1617 * In addition, EIO will skip do checkpoint, we need this as well. 1618 */ 1619 f2fs_release_ino_entry(sbi, true); 1620 1621 f2fs_leave_shrinker(sbi); 1622 mutex_unlock(&sbi->umount_mutex); 1623 1624 /* our cp_error case, we can wait for any writeback page */ 1625 f2fs_flush_merged_writes(sbi); 1626 1627 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1628 1629 if (err || f2fs_cp_error(sbi)) { 1630 truncate_inode_pages_final(NODE_MAPPING(sbi)); 1631 truncate_inode_pages_final(META_MAPPING(sbi)); 1632 } 1633 1634 for (i = 0; i < NR_COUNT_TYPE; i++) { 1635 if (!get_pages(sbi, i)) 1636 continue; 1637 f2fs_err(sbi, "detect filesystem reference count leak during " 1638 "umount, type: %d, count: %lld", i, get_pages(sbi, i)); 1639 f2fs_bug_on(sbi, 1); 1640 } 1641 1642 f2fs_bug_on(sbi, sbi->fsync_node_num); 1643 1644 f2fs_destroy_compress_inode(sbi); 1645 1646 iput(sbi->node_inode); 1647 sbi->node_inode = NULL; 1648 1649 iput(sbi->meta_inode); 1650 sbi->meta_inode = NULL; 1651 1652 /* 1653 * iput() can update stat information, if f2fs_write_checkpoint() 1654 * above failed with error. 1655 */ 1656 f2fs_destroy_stats(sbi); 1657 1658 /* destroy f2fs internal modules */ 1659 f2fs_destroy_node_manager(sbi); 1660 f2fs_destroy_segment_manager(sbi); 1661 1662 /* flush s_error_work before sbi destroy */ 1663 flush_work(&sbi->s_error_work); 1664 1665 f2fs_destroy_post_read_wq(sbi); 1666 1667 kvfree(sbi->ckpt); 1668 1669 sb->s_fs_info = NULL; 1670 if (sbi->s_chksum_driver) 1671 crypto_free_shash(sbi->s_chksum_driver); 1672 kfree(sbi->raw_super); 1673 1674 destroy_device_list(sbi); 1675 f2fs_destroy_page_array_cache(sbi); 1676 f2fs_destroy_xattr_caches(sbi); 1677 #ifdef CONFIG_QUOTA 1678 for (i = 0; i < MAXQUOTAS; i++) 1679 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1680 #endif 1681 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1682 destroy_percpu_info(sbi); 1683 f2fs_destroy_iostat(sbi); 1684 for (i = 0; i < NR_PAGE_TYPE; i++) 1685 kvfree(sbi->write_io[i]); 1686 #if IS_ENABLED(CONFIG_UNICODE) 1687 utf8_unload(sb->s_encoding); 1688 #endif 1689 kfree(sbi); 1690 } 1691 1692 int f2fs_sync_fs(struct super_block *sb, int sync) 1693 { 1694 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1695 int err = 0; 1696 1697 if (unlikely(f2fs_cp_error(sbi))) 1698 return 0; 1699 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1700 return 0; 1701 1702 trace_f2fs_sync_fs(sb, sync); 1703 1704 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1705 return -EAGAIN; 1706 1707 if (sync) { 1708 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1709 err = f2fs_issue_checkpoint(sbi); 1710 } 1711 1712 return err; 1713 } 1714 1715 static int f2fs_freeze(struct super_block *sb) 1716 { 1717 if (f2fs_readonly(sb)) 1718 return 0; 1719 1720 /* IO error happened before */ 1721 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1722 return -EIO; 1723 1724 /* must be clean, since sync_filesystem() was already called */ 1725 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1726 return -EINVAL; 1727 1728 /* Let's flush checkpoints and stop the thread. */ 1729 f2fs_flush_ckpt_thread(F2FS_SB(sb)); 1730 1731 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 1732 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1733 return 0; 1734 } 1735 1736 static int f2fs_unfreeze(struct super_block *sb) 1737 { 1738 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1739 return 0; 1740 } 1741 1742 #ifdef CONFIG_QUOTA 1743 static int f2fs_statfs_project(struct super_block *sb, 1744 kprojid_t projid, struct kstatfs *buf) 1745 { 1746 struct kqid qid; 1747 struct dquot *dquot; 1748 u64 limit; 1749 u64 curblock; 1750 1751 qid = make_kqid_projid(projid); 1752 dquot = dqget(sb, qid); 1753 if (IS_ERR(dquot)) 1754 return PTR_ERR(dquot); 1755 spin_lock(&dquot->dq_dqb_lock); 1756 1757 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1758 dquot->dq_dqb.dqb_bhardlimit); 1759 if (limit) 1760 limit >>= sb->s_blocksize_bits; 1761 1762 if (limit && buf->f_blocks > limit) { 1763 curblock = (dquot->dq_dqb.dqb_curspace + 1764 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1765 buf->f_blocks = limit; 1766 buf->f_bfree = buf->f_bavail = 1767 (buf->f_blocks > curblock) ? 1768 (buf->f_blocks - curblock) : 0; 1769 } 1770 1771 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1772 dquot->dq_dqb.dqb_ihardlimit); 1773 1774 if (limit && buf->f_files > limit) { 1775 buf->f_files = limit; 1776 buf->f_ffree = 1777 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1778 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1779 } 1780 1781 spin_unlock(&dquot->dq_dqb_lock); 1782 dqput(dquot); 1783 return 0; 1784 } 1785 #endif 1786 1787 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1788 { 1789 struct super_block *sb = dentry->d_sb; 1790 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1791 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1792 block_t total_count, user_block_count, start_count; 1793 u64 avail_node_count; 1794 unsigned int total_valid_node_count; 1795 1796 total_count = le64_to_cpu(sbi->raw_super->block_count); 1797 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1798 buf->f_type = F2FS_SUPER_MAGIC; 1799 buf->f_bsize = sbi->blocksize; 1800 1801 buf->f_blocks = total_count - start_count; 1802 1803 spin_lock(&sbi->stat_lock); 1804 1805 user_block_count = sbi->user_block_count; 1806 total_valid_node_count = valid_node_count(sbi); 1807 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1808 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1809 sbi->current_reserved_blocks; 1810 1811 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1812 buf->f_bfree = 0; 1813 else 1814 buf->f_bfree -= sbi->unusable_block_count; 1815 spin_unlock(&sbi->stat_lock); 1816 1817 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1818 buf->f_bavail = buf->f_bfree - 1819 F2FS_OPTION(sbi).root_reserved_blocks; 1820 else 1821 buf->f_bavail = 0; 1822 1823 if (avail_node_count > user_block_count) { 1824 buf->f_files = user_block_count; 1825 buf->f_ffree = buf->f_bavail; 1826 } else { 1827 buf->f_files = avail_node_count; 1828 buf->f_ffree = min(avail_node_count - total_valid_node_count, 1829 buf->f_bavail); 1830 } 1831 1832 buf->f_namelen = F2FS_NAME_LEN; 1833 buf->f_fsid = u64_to_fsid(id); 1834 1835 #ifdef CONFIG_QUOTA 1836 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1837 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1838 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1839 } 1840 #endif 1841 return 0; 1842 } 1843 1844 static inline void f2fs_show_quota_options(struct seq_file *seq, 1845 struct super_block *sb) 1846 { 1847 #ifdef CONFIG_QUOTA 1848 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1849 1850 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1851 char *fmtname = ""; 1852 1853 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1854 case QFMT_VFS_OLD: 1855 fmtname = "vfsold"; 1856 break; 1857 case QFMT_VFS_V0: 1858 fmtname = "vfsv0"; 1859 break; 1860 case QFMT_VFS_V1: 1861 fmtname = "vfsv1"; 1862 break; 1863 } 1864 seq_printf(seq, ",jqfmt=%s", fmtname); 1865 } 1866 1867 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1868 seq_show_option(seq, "usrjquota", 1869 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1870 1871 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1872 seq_show_option(seq, "grpjquota", 1873 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1874 1875 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1876 seq_show_option(seq, "prjjquota", 1877 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1878 #endif 1879 } 1880 1881 #ifdef CONFIG_F2FS_FS_COMPRESSION 1882 static inline void f2fs_show_compress_options(struct seq_file *seq, 1883 struct super_block *sb) 1884 { 1885 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1886 char *algtype = ""; 1887 int i; 1888 1889 if (!f2fs_sb_has_compression(sbi)) 1890 return; 1891 1892 switch (F2FS_OPTION(sbi).compress_algorithm) { 1893 case COMPRESS_LZO: 1894 algtype = "lzo"; 1895 break; 1896 case COMPRESS_LZ4: 1897 algtype = "lz4"; 1898 break; 1899 case COMPRESS_ZSTD: 1900 algtype = "zstd"; 1901 break; 1902 case COMPRESS_LZORLE: 1903 algtype = "lzo-rle"; 1904 break; 1905 } 1906 seq_printf(seq, ",compress_algorithm=%s", algtype); 1907 1908 if (F2FS_OPTION(sbi).compress_level) 1909 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1910 1911 seq_printf(seq, ",compress_log_size=%u", 1912 F2FS_OPTION(sbi).compress_log_size); 1913 1914 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1915 seq_printf(seq, ",compress_extension=%s", 1916 F2FS_OPTION(sbi).extensions[i]); 1917 } 1918 1919 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1920 seq_printf(seq, ",nocompress_extension=%s", 1921 F2FS_OPTION(sbi).noextensions[i]); 1922 } 1923 1924 if (F2FS_OPTION(sbi).compress_chksum) 1925 seq_puts(seq, ",compress_chksum"); 1926 1927 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1928 seq_printf(seq, ",compress_mode=%s", "fs"); 1929 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1930 seq_printf(seq, ",compress_mode=%s", "user"); 1931 1932 if (test_opt(sbi, COMPRESS_CACHE)) 1933 seq_puts(seq, ",compress_cache"); 1934 } 1935 #endif 1936 1937 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1938 { 1939 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1940 1941 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1942 seq_printf(seq, ",background_gc=%s", "sync"); 1943 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1944 seq_printf(seq, ",background_gc=%s", "on"); 1945 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1946 seq_printf(seq, ",background_gc=%s", "off"); 1947 1948 if (test_opt(sbi, GC_MERGE)) 1949 seq_puts(seq, ",gc_merge"); 1950 else 1951 seq_puts(seq, ",nogc_merge"); 1952 1953 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1954 seq_puts(seq, ",disable_roll_forward"); 1955 if (test_opt(sbi, NORECOVERY)) 1956 seq_puts(seq, ",norecovery"); 1957 if (test_opt(sbi, DISCARD)) { 1958 seq_puts(seq, ",discard"); 1959 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 1960 seq_printf(seq, ",discard_unit=%s", "block"); 1961 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 1962 seq_printf(seq, ",discard_unit=%s", "segment"); 1963 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 1964 seq_printf(seq, ",discard_unit=%s", "section"); 1965 } else { 1966 seq_puts(seq, ",nodiscard"); 1967 } 1968 #ifdef CONFIG_F2FS_FS_XATTR 1969 if (test_opt(sbi, XATTR_USER)) 1970 seq_puts(seq, ",user_xattr"); 1971 else 1972 seq_puts(seq, ",nouser_xattr"); 1973 if (test_opt(sbi, INLINE_XATTR)) 1974 seq_puts(seq, ",inline_xattr"); 1975 else 1976 seq_puts(seq, ",noinline_xattr"); 1977 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1978 seq_printf(seq, ",inline_xattr_size=%u", 1979 F2FS_OPTION(sbi).inline_xattr_size); 1980 #endif 1981 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1982 if (test_opt(sbi, POSIX_ACL)) 1983 seq_puts(seq, ",acl"); 1984 else 1985 seq_puts(seq, ",noacl"); 1986 #endif 1987 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1988 seq_puts(seq, ",disable_ext_identify"); 1989 if (test_opt(sbi, INLINE_DATA)) 1990 seq_puts(seq, ",inline_data"); 1991 else 1992 seq_puts(seq, ",noinline_data"); 1993 if (test_opt(sbi, INLINE_DENTRY)) 1994 seq_puts(seq, ",inline_dentry"); 1995 else 1996 seq_puts(seq, ",noinline_dentry"); 1997 if (test_opt(sbi, FLUSH_MERGE)) 1998 seq_puts(seq, ",flush_merge"); 1999 else 2000 seq_puts(seq, ",noflush_merge"); 2001 if (test_opt(sbi, NOBARRIER)) 2002 seq_puts(seq, ",nobarrier"); 2003 else 2004 seq_puts(seq, ",barrier"); 2005 if (test_opt(sbi, FASTBOOT)) 2006 seq_puts(seq, ",fastboot"); 2007 if (test_opt(sbi, READ_EXTENT_CACHE)) 2008 seq_puts(seq, ",extent_cache"); 2009 else 2010 seq_puts(seq, ",noextent_cache"); 2011 if (test_opt(sbi, AGE_EXTENT_CACHE)) 2012 seq_puts(seq, ",age_extent_cache"); 2013 if (test_opt(sbi, DATA_FLUSH)) 2014 seq_puts(seq, ",data_flush"); 2015 2016 seq_puts(seq, ",mode="); 2017 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 2018 seq_puts(seq, "adaptive"); 2019 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 2020 seq_puts(seq, "lfs"); 2021 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 2022 seq_puts(seq, "fragment:segment"); 2023 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2024 seq_puts(seq, "fragment:block"); 2025 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 2026 if (test_opt(sbi, RESERVE_ROOT)) 2027 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 2028 F2FS_OPTION(sbi).root_reserved_blocks, 2029 from_kuid_munged(&init_user_ns, 2030 F2FS_OPTION(sbi).s_resuid), 2031 from_kgid_munged(&init_user_ns, 2032 F2FS_OPTION(sbi).s_resgid)); 2033 #ifdef CONFIG_F2FS_FAULT_INJECTION 2034 if (test_opt(sbi, FAULT_INJECTION)) { 2035 seq_printf(seq, ",fault_injection=%u", 2036 F2FS_OPTION(sbi).fault_info.inject_rate); 2037 seq_printf(seq, ",fault_type=%u", 2038 F2FS_OPTION(sbi).fault_info.inject_type); 2039 } 2040 #endif 2041 #ifdef CONFIG_QUOTA 2042 if (test_opt(sbi, QUOTA)) 2043 seq_puts(seq, ",quota"); 2044 if (test_opt(sbi, USRQUOTA)) 2045 seq_puts(seq, ",usrquota"); 2046 if (test_opt(sbi, GRPQUOTA)) 2047 seq_puts(seq, ",grpquota"); 2048 if (test_opt(sbi, PRJQUOTA)) 2049 seq_puts(seq, ",prjquota"); 2050 #endif 2051 f2fs_show_quota_options(seq, sbi->sb); 2052 2053 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 2054 2055 if (sbi->sb->s_flags & SB_INLINECRYPT) 2056 seq_puts(seq, ",inlinecrypt"); 2057 2058 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 2059 seq_printf(seq, ",alloc_mode=%s", "default"); 2060 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2061 seq_printf(seq, ",alloc_mode=%s", "reuse"); 2062 2063 if (test_opt(sbi, DISABLE_CHECKPOINT)) 2064 seq_printf(seq, ",checkpoint=disable:%u", 2065 F2FS_OPTION(sbi).unusable_cap); 2066 if (test_opt(sbi, MERGE_CHECKPOINT)) 2067 seq_puts(seq, ",checkpoint_merge"); 2068 else 2069 seq_puts(seq, ",nocheckpoint_merge"); 2070 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 2071 seq_printf(seq, ",fsync_mode=%s", "posix"); 2072 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 2073 seq_printf(seq, ",fsync_mode=%s", "strict"); 2074 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 2075 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 2076 2077 #ifdef CONFIG_F2FS_FS_COMPRESSION 2078 f2fs_show_compress_options(seq, sbi->sb); 2079 #endif 2080 2081 if (test_opt(sbi, ATGC)) 2082 seq_puts(seq, ",atgc"); 2083 2084 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL) 2085 seq_printf(seq, ",memory=%s", "normal"); 2086 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW) 2087 seq_printf(seq, ",memory=%s", "low"); 2088 2089 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2090 seq_printf(seq, ",errors=%s", "remount-ro"); 2091 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE) 2092 seq_printf(seq, ",errors=%s", "continue"); 2093 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC) 2094 seq_printf(seq, ",errors=%s", "panic"); 2095 2096 return 0; 2097 } 2098 2099 static void default_options(struct f2fs_sb_info *sbi, bool remount) 2100 { 2101 /* init some FS parameters */ 2102 if (!remount) { 2103 set_opt(sbi, READ_EXTENT_CACHE); 2104 clear_opt(sbi, DISABLE_CHECKPOINT); 2105 2106 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2107 set_opt(sbi, DISCARD); 2108 2109 if (f2fs_sb_has_blkzoned(sbi)) 2110 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2111 else 2112 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2113 } 2114 2115 if (f2fs_sb_has_readonly(sbi)) 2116 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2117 else 2118 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2119 2120 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2121 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <= 2122 SMALL_VOLUME_SEGMENTS) 2123 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 2124 else 2125 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2126 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2127 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2128 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2129 if (f2fs_sb_has_compression(sbi)) { 2130 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2131 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2132 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2133 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2134 } 2135 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2136 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL; 2137 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE; 2138 2139 set_opt(sbi, INLINE_XATTR); 2140 set_opt(sbi, INLINE_DATA); 2141 set_opt(sbi, INLINE_DENTRY); 2142 set_opt(sbi, MERGE_CHECKPOINT); 2143 F2FS_OPTION(sbi).unusable_cap = 0; 2144 sbi->sb->s_flags |= SB_LAZYTIME; 2145 if (!f2fs_is_readonly(sbi)) 2146 set_opt(sbi, FLUSH_MERGE); 2147 if (f2fs_sb_has_blkzoned(sbi)) 2148 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2149 else 2150 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2151 2152 #ifdef CONFIG_F2FS_FS_XATTR 2153 set_opt(sbi, XATTR_USER); 2154 #endif 2155 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2156 set_opt(sbi, POSIX_ACL); 2157 #endif 2158 2159 f2fs_build_fault_attr(sbi, 0, 0); 2160 } 2161 2162 #ifdef CONFIG_QUOTA 2163 static int f2fs_enable_quotas(struct super_block *sb); 2164 #endif 2165 2166 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2167 { 2168 unsigned int s_flags = sbi->sb->s_flags; 2169 struct cp_control cpc; 2170 unsigned int gc_mode = sbi->gc_mode; 2171 int err = 0; 2172 int ret; 2173 block_t unusable; 2174 2175 if (s_flags & SB_RDONLY) { 2176 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2177 return -EINVAL; 2178 } 2179 sbi->sb->s_flags |= SB_ACTIVE; 2180 2181 /* check if we need more GC first */ 2182 unusable = f2fs_get_unusable_blocks(sbi); 2183 if (!f2fs_disable_cp_again(sbi, unusable)) 2184 goto skip_gc; 2185 2186 f2fs_update_time(sbi, DISABLE_TIME); 2187 2188 sbi->gc_mode = GC_URGENT_HIGH; 2189 2190 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2191 struct f2fs_gc_control gc_control = { 2192 .victim_segno = NULL_SEGNO, 2193 .init_gc_type = FG_GC, 2194 .should_migrate_blocks = false, 2195 .err_gc_skipped = true, 2196 .nr_free_secs = 1 }; 2197 2198 f2fs_down_write(&sbi->gc_lock); 2199 stat_inc_gc_call_count(sbi, FOREGROUND); 2200 err = f2fs_gc(sbi, &gc_control); 2201 if (err == -ENODATA) { 2202 err = 0; 2203 break; 2204 } 2205 if (err && err != -EAGAIN) 2206 break; 2207 } 2208 2209 ret = sync_filesystem(sbi->sb); 2210 if (ret || err) { 2211 err = ret ? ret : err; 2212 goto restore_flag; 2213 } 2214 2215 unusable = f2fs_get_unusable_blocks(sbi); 2216 if (f2fs_disable_cp_again(sbi, unusable)) { 2217 err = -EAGAIN; 2218 goto restore_flag; 2219 } 2220 2221 skip_gc: 2222 f2fs_down_write(&sbi->gc_lock); 2223 cpc.reason = CP_PAUSE; 2224 set_sbi_flag(sbi, SBI_CP_DISABLED); 2225 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2226 err = f2fs_write_checkpoint(sbi, &cpc); 2227 if (err) 2228 goto out_unlock; 2229 2230 spin_lock(&sbi->stat_lock); 2231 sbi->unusable_block_count = unusable; 2232 spin_unlock(&sbi->stat_lock); 2233 2234 out_unlock: 2235 f2fs_up_write(&sbi->gc_lock); 2236 restore_flag: 2237 sbi->gc_mode = gc_mode; 2238 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2239 return err; 2240 } 2241 2242 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2243 { 2244 int retry = DEFAULT_RETRY_IO_COUNT; 2245 2246 /* we should flush all the data to keep data consistency */ 2247 do { 2248 sync_inodes_sb(sbi->sb); 2249 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2250 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2251 2252 if (unlikely(retry < 0)) 2253 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2254 2255 f2fs_down_write(&sbi->gc_lock); 2256 f2fs_dirty_to_prefree(sbi); 2257 2258 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2259 set_sbi_flag(sbi, SBI_IS_DIRTY); 2260 f2fs_up_write(&sbi->gc_lock); 2261 2262 f2fs_sync_fs(sbi->sb, 1); 2263 2264 /* Let's ensure there's no pending checkpoint anymore */ 2265 f2fs_flush_ckpt_thread(sbi); 2266 } 2267 2268 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2269 { 2270 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2271 struct f2fs_mount_info org_mount_opt; 2272 unsigned long old_sb_flags; 2273 int err; 2274 bool need_restart_gc = false, need_stop_gc = false; 2275 bool need_restart_ckpt = false, need_stop_ckpt = false; 2276 bool need_restart_flush = false, need_stop_flush = false; 2277 bool need_restart_discard = false, need_stop_discard = false; 2278 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE); 2279 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE); 2280 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2281 bool no_atgc = !test_opt(sbi, ATGC); 2282 bool no_discard = !test_opt(sbi, DISCARD); 2283 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2284 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2285 #ifdef CONFIG_QUOTA 2286 int i, j; 2287 #endif 2288 2289 /* 2290 * Save the old mount options in case we 2291 * need to restore them. 2292 */ 2293 org_mount_opt = sbi->mount_opt; 2294 old_sb_flags = sb->s_flags; 2295 2296 #ifdef CONFIG_QUOTA 2297 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2298 for (i = 0; i < MAXQUOTAS; i++) { 2299 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2300 org_mount_opt.s_qf_names[i] = 2301 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2302 GFP_KERNEL); 2303 if (!org_mount_opt.s_qf_names[i]) { 2304 for (j = 0; j < i; j++) 2305 kfree(org_mount_opt.s_qf_names[j]); 2306 return -ENOMEM; 2307 } 2308 } else { 2309 org_mount_opt.s_qf_names[i] = NULL; 2310 } 2311 } 2312 #endif 2313 2314 /* recover superblocks we couldn't write due to previous RO mount */ 2315 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2316 err = f2fs_commit_super(sbi, false); 2317 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2318 err); 2319 if (!err) 2320 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2321 } 2322 2323 default_options(sbi, true); 2324 2325 /* parse mount options */ 2326 err = parse_options(sb, data, true); 2327 if (err) 2328 goto restore_opts; 2329 2330 /* flush outstanding errors before changing fs state */ 2331 flush_work(&sbi->s_error_work); 2332 2333 /* 2334 * Previous and new state of filesystem is RO, 2335 * so skip checking GC and FLUSH_MERGE conditions. 2336 */ 2337 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2338 goto skip; 2339 2340 if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) { 2341 err = -EROFS; 2342 goto restore_opts; 2343 } 2344 2345 #ifdef CONFIG_QUOTA 2346 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2347 err = dquot_suspend(sb, -1); 2348 if (err < 0) 2349 goto restore_opts; 2350 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2351 /* dquot_resume needs RW */ 2352 sb->s_flags &= ~SB_RDONLY; 2353 if (sb_any_quota_suspended(sb)) { 2354 dquot_resume(sb, -1); 2355 } else if (f2fs_sb_has_quota_ino(sbi)) { 2356 err = f2fs_enable_quotas(sb); 2357 if (err) 2358 goto restore_opts; 2359 } 2360 } 2361 #endif 2362 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) { 2363 err = -EINVAL; 2364 f2fs_warn(sbi, "LFS is not compatible with IPU"); 2365 goto restore_opts; 2366 } 2367 2368 /* disallow enable atgc dynamically */ 2369 if (no_atgc == !!test_opt(sbi, ATGC)) { 2370 err = -EINVAL; 2371 f2fs_warn(sbi, "switch atgc option is not allowed"); 2372 goto restore_opts; 2373 } 2374 2375 /* disallow enable/disable extent_cache dynamically */ 2376 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) { 2377 err = -EINVAL; 2378 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2379 goto restore_opts; 2380 } 2381 /* disallow enable/disable age extent_cache dynamically */ 2382 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) { 2383 err = -EINVAL; 2384 f2fs_warn(sbi, "switch age_extent_cache option is not allowed"); 2385 goto restore_opts; 2386 } 2387 2388 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2389 err = -EINVAL; 2390 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2391 goto restore_opts; 2392 } 2393 2394 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2395 err = -EINVAL; 2396 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2397 goto restore_opts; 2398 } 2399 2400 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2401 err = -EINVAL; 2402 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2403 goto restore_opts; 2404 } 2405 2406 /* 2407 * We stop the GC thread if FS is mounted as RO 2408 * or if background_gc = off is passed in mount 2409 * option. Also sync the filesystem. 2410 */ 2411 if ((*flags & SB_RDONLY) || 2412 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2413 !test_opt(sbi, GC_MERGE))) { 2414 if (sbi->gc_thread) { 2415 f2fs_stop_gc_thread(sbi); 2416 need_restart_gc = true; 2417 } 2418 } else if (!sbi->gc_thread) { 2419 err = f2fs_start_gc_thread(sbi); 2420 if (err) 2421 goto restore_opts; 2422 need_stop_gc = true; 2423 } 2424 2425 if (*flags & SB_RDONLY) { 2426 sync_inodes_sb(sb); 2427 2428 set_sbi_flag(sbi, SBI_IS_DIRTY); 2429 set_sbi_flag(sbi, SBI_IS_CLOSE); 2430 f2fs_sync_fs(sb, 1); 2431 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2432 } 2433 2434 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2435 !test_opt(sbi, MERGE_CHECKPOINT)) { 2436 f2fs_stop_ckpt_thread(sbi); 2437 need_restart_ckpt = true; 2438 } else { 2439 /* Flush if the prevous checkpoint, if exists. */ 2440 f2fs_flush_ckpt_thread(sbi); 2441 2442 err = f2fs_start_ckpt_thread(sbi); 2443 if (err) { 2444 f2fs_err(sbi, 2445 "Failed to start F2FS issue_checkpoint_thread (%d)", 2446 err); 2447 goto restore_gc; 2448 } 2449 need_stop_ckpt = true; 2450 } 2451 2452 /* 2453 * We stop issue flush thread if FS is mounted as RO 2454 * or if flush_merge is not passed in mount option. 2455 */ 2456 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2457 clear_opt(sbi, FLUSH_MERGE); 2458 f2fs_destroy_flush_cmd_control(sbi, false); 2459 need_restart_flush = true; 2460 } else { 2461 err = f2fs_create_flush_cmd_control(sbi); 2462 if (err) 2463 goto restore_ckpt; 2464 need_stop_flush = true; 2465 } 2466 2467 if (no_discard == !!test_opt(sbi, DISCARD)) { 2468 if (test_opt(sbi, DISCARD)) { 2469 err = f2fs_start_discard_thread(sbi); 2470 if (err) 2471 goto restore_flush; 2472 need_stop_discard = true; 2473 } else { 2474 f2fs_stop_discard_thread(sbi); 2475 f2fs_issue_discard_timeout(sbi); 2476 need_restart_discard = true; 2477 } 2478 } 2479 2480 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2481 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2482 err = f2fs_disable_checkpoint(sbi); 2483 if (err) 2484 goto restore_discard; 2485 } else { 2486 f2fs_enable_checkpoint(sbi); 2487 } 2488 } 2489 2490 skip: 2491 #ifdef CONFIG_QUOTA 2492 /* Release old quota file names */ 2493 for (i = 0; i < MAXQUOTAS; i++) 2494 kfree(org_mount_opt.s_qf_names[i]); 2495 #endif 2496 /* Update the POSIXACL Flag */ 2497 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2498 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2499 2500 limit_reserve_root(sbi); 2501 adjust_unusable_cap_perc(sbi); 2502 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2503 return 0; 2504 restore_discard: 2505 if (need_restart_discard) { 2506 if (f2fs_start_discard_thread(sbi)) 2507 f2fs_warn(sbi, "discard has been stopped"); 2508 } else if (need_stop_discard) { 2509 f2fs_stop_discard_thread(sbi); 2510 } 2511 restore_flush: 2512 if (need_restart_flush) { 2513 if (f2fs_create_flush_cmd_control(sbi)) 2514 f2fs_warn(sbi, "background flush thread has stopped"); 2515 } else if (need_stop_flush) { 2516 clear_opt(sbi, FLUSH_MERGE); 2517 f2fs_destroy_flush_cmd_control(sbi, false); 2518 } 2519 restore_ckpt: 2520 if (need_restart_ckpt) { 2521 if (f2fs_start_ckpt_thread(sbi)) 2522 f2fs_warn(sbi, "background ckpt thread has stopped"); 2523 } else if (need_stop_ckpt) { 2524 f2fs_stop_ckpt_thread(sbi); 2525 } 2526 restore_gc: 2527 if (need_restart_gc) { 2528 if (f2fs_start_gc_thread(sbi)) 2529 f2fs_warn(sbi, "background gc thread has stopped"); 2530 } else if (need_stop_gc) { 2531 f2fs_stop_gc_thread(sbi); 2532 } 2533 restore_opts: 2534 #ifdef CONFIG_QUOTA 2535 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2536 for (i = 0; i < MAXQUOTAS; i++) { 2537 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2538 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2539 } 2540 #endif 2541 sbi->mount_opt = org_mount_opt; 2542 sb->s_flags = old_sb_flags; 2543 return err; 2544 } 2545 2546 static void f2fs_shutdown(struct super_block *sb) 2547 { 2548 f2fs_do_shutdown(F2FS_SB(sb), F2FS_GOING_DOWN_NOSYNC, false, false); 2549 } 2550 2551 #ifdef CONFIG_QUOTA 2552 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi) 2553 { 2554 /* need to recovery orphan */ 2555 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 2556 return true; 2557 /* need to recovery data */ 2558 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 2559 return false; 2560 if (test_opt(sbi, NORECOVERY)) 2561 return false; 2562 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG); 2563 } 2564 2565 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi) 2566 { 2567 bool readonly = f2fs_readonly(sbi->sb); 2568 2569 if (!f2fs_need_recovery(sbi)) 2570 return false; 2571 2572 /* it doesn't need to check f2fs_sb_has_readonly() */ 2573 if (f2fs_hw_is_readonly(sbi)) 2574 return false; 2575 2576 if (readonly) { 2577 sbi->sb->s_flags &= ~SB_RDONLY; 2578 set_sbi_flag(sbi, SBI_IS_WRITABLE); 2579 } 2580 2581 /* 2582 * Turn on quotas which were not enabled for read-only mounts if 2583 * filesystem has quota feature, so that they are updated correctly. 2584 */ 2585 return f2fs_enable_quota_files(sbi, readonly); 2586 } 2587 2588 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi, 2589 bool quota_enabled) 2590 { 2591 if (quota_enabled) 2592 f2fs_quota_off_umount(sbi->sb); 2593 2594 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) { 2595 clear_sbi_flag(sbi, SBI_IS_WRITABLE); 2596 sbi->sb->s_flags |= SB_RDONLY; 2597 } 2598 } 2599 2600 /* Read data from quotafile */ 2601 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2602 size_t len, loff_t off) 2603 { 2604 struct inode *inode = sb_dqopt(sb)->files[type]; 2605 struct address_space *mapping = inode->i_mapping; 2606 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2607 int offset = off & (sb->s_blocksize - 1); 2608 int tocopy; 2609 size_t toread; 2610 loff_t i_size = i_size_read(inode); 2611 struct page *page; 2612 2613 if (off > i_size) 2614 return 0; 2615 2616 if (off + len > i_size) 2617 len = i_size - off; 2618 toread = len; 2619 while (toread > 0) { 2620 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2621 repeat: 2622 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2623 if (IS_ERR(page)) { 2624 if (PTR_ERR(page) == -ENOMEM) { 2625 memalloc_retry_wait(GFP_NOFS); 2626 goto repeat; 2627 } 2628 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2629 return PTR_ERR(page); 2630 } 2631 2632 lock_page(page); 2633 2634 if (unlikely(page->mapping != mapping)) { 2635 f2fs_put_page(page, 1); 2636 goto repeat; 2637 } 2638 if (unlikely(!PageUptodate(page))) { 2639 f2fs_put_page(page, 1); 2640 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2641 return -EIO; 2642 } 2643 2644 memcpy_from_page(data, page, offset, tocopy); 2645 f2fs_put_page(page, 1); 2646 2647 offset = 0; 2648 toread -= tocopy; 2649 data += tocopy; 2650 blkidx++; 2651 } 2652 return len; 2653 } 2654 2655 /* Write to quotafile */ 2656 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2657 const char *data, size_t len, loff_t off) 2658 { 2659 struct inode *inode = sb_dqopt(sb)->files[type]; 2660 struct address_space *mapping = inode->i_mapping; 2661 const struct address_space_operations *a_ops = mapping->a_ops; 2662 int offset = off & (sb->s_blocksize - 1); 2663 size_t towrite = len; 2664 struct page *page; 2665 void *fsdata = NULL; 2666 int err = 0; 2667 int tocopy; 2668 2669 while (towrite > 0) { 2670 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2671 towrite); 2672 retry: 2673 err = a_ops->write_begin(NULL, mapping, off, tocopy, 2674 &page, &fsdata); 2675 if (unlikely(err)) { 2676 if (err == -ENOMEM) { 2677 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2678 goto retry; 2679 } 2680 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2681 break; 2682 } 2683 2684 memcpy_to_page(page, offset, data, tocopy); 2685 2686 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2687 page, fsdata); 2688 offset = 0; 2689 towrite -= tocopy; 2690 off += tocopy; 2691 data += tocopy; 2692 cond_resched(); 2693 } 2694 2695 if (len == towrite) 2696 return err; 2697 inode->i_mtime = inode_set_ctime_current(inode); 2698 f2fs_mark_inode_dirty_sync(inode, false); 2699 return len - towrite; 2700 } 2701 2702 int f2fs_dquot_initialize(struct inode *inode) 2703 { 2704 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) 2705 return -ESRCH; 2706 2707 return dquot_initialize(inode); 2708 } 2709 2710 static struct dquot __rcu **f2fs_get_dquots(struct inode *inode) 2711 { 2712 return F2FS_I(inode)->i_dquot; 2713 } 2714 2715 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2716 { 2717 return &F2FS_I(inode)->i_reserved_quota; 2718 } 2719 2720 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2721 { 2722 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2723 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2724 return 0; 2725 } 2726 2727 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2728 F2FS_OPTION(sbi).s_jquota_fmt, type); 2729 } 2730 2731 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2732 { 2733 int enabled = 0; 2734 int i, err; 2735 2736 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2737 err = f2fs_enable_quotas(sbi->sb); 2738 if (err) { 2739 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2740 return 0; 2741 } 2742 return 1; 2743 } 2744 2745 for (i = 0; i < MAXQUOTAS; i++) { 2746 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2747 err = f2fs_quota_on_mount(sbi, i); 2748 if (!err) { 2749 enabled = 1; 2750 continue; 2751 } 2752 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2753 err, i); 2754 } 2755 } 2756 return enabled; 2757 } 2758 2759 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2760 unsigned int flags) 2761 { 2762 struct inode *qf_inode; 2763 unsigned long qf_inum; 2764 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL; 2765 int err; 2766 2767 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2768 2769 qf_inum = f2fs_qf_ino(sb, type); 2770 if (!qf_inum) 2771 return -EPERM; 2772 2773 qf_inode = f2fs_iget(sb, qf_inum); 2774 if (IS_ERR(qf_inode)) { 2775 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2776 return PTR_ERR(qf_inode); 2777 } 2778 2779 /* Don't account quota for quota files to avoid recursion */ 2780 inode_lock(qf_inode); 2781 qf_inode->i_flags |= S_NOQUOTA; 2782 2783 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) { 2784 F2FS_I(qf_inode)->i_flags |= qf_flag; 2785 f2fs_set_inode_flags(qf_inode); 2786 } 2787 inode_unlock(qf_inode); 2788 2789 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2790 iput(qf_inode); 2791 return err; 2792 } 2793 2794 static int f2fs_enable_quotas(struct super_block *sb) 2795 { 2796 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2797 int type, err = 0; 2798 unsigned long qf_inum; 2799 bool quota_mopt[MAXQUOTAS] = { 2800 test_opt(sbi, USRQUOTA), 2801 test_opt(sbi, GRPQUOTA), 2802 test_opt(sbi, PRJQUOTA), 2803 }; 2804 2805 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2806 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2807 return 0; 2808 } 2809 2810 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2811 2812 for (type = 0; type < MAXQUOTAS; type++) { 2813 qf_inum = f2fs_qf_ino(sb, type); 2814 if (qf_inum) { 2815 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2816 DQUOT_USAGE_ENABLED | 2817 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2818 if (err) { 2819 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2820 type, err); 2821 for (type--; type >= 0; type--) 2822 dquot_quota_off(sb, type); 2823 set_sbi_flag(F2FS_SB(sb), 2824 SBI_QUOTA_NEED_REPAIR); 2825 return err; 2826 } 2827 } 2828 } 2829 return 0; 2830 } 2831 2832 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2833 { 2834 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2835 struct address_space *mapping = dqopt->files[type]->i_mapping; 2836 int ret = 0; 2837 2838 ret = dquot_writeback_dquots(sbi->sb, type); 2839 if (ret) 2840 goto out; 2841 2842 ret = filemap_fdatawrite(mapping); 2843 if (ret) 2844 goto out; 2845 2846 /* if we are using journalled quota */ 2847 if (is_journalled_quota(sbi)) 2848 goto out; 2849 2850 ret = filemap_fdatawait(mapping); 2851 2852 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2853 out: 2854 if (ret) 2855 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2856 return ret; 2857 } 2858 2859 int f2fs_quota_sync(struct super_block *sb, int type) 2860 { 2861 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2862 struct quota_info *dqopt = sb_dqopt(sb); 2863 int cnt; 2864 int ret = 0; 2865 2866 /* 2867 * Now when everything is written we can discard the pagecache so 2868 * that userspace sees the changes. 2869 */ 2870 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2871 2872 if (type != -1 && cnt != type) 2873 continue; 2874 2875 if (!sb_has_quota_active(sb, cnt)) 2876 continue; 2877 2878 if (!f2fs_sb_has_quota_ino(sbi)) 2879 inode_lock(dqopt->files[cnt]); 2880 2881 /* 2882 * do_quotactl 2883 * f2fs_quota_sync 2884 * f2fs_down_read(quota_sem) 2885 * dquot_writeback_dquots() 2886 * f2fs_dquot_commit 2887 * block_operation 2888 * f2fs_down_read(quota_sem) 2889 */ 2890 f2fs_lock_op(sbi); 2891 f2fs_down_read(&sbi->quota_sem); 2892 2893 ret = f2fs_quota_sync_file(sbi, cnt); 2894 2895 f2fs_up_read(&sbi->quota_sem); 2896 f2fs_unlock_op(sbi); 2897 2898 if (!f2fs_sb_has_quota_ino(sbi)) 2899 inode_unlock(dqopt->files[cnt]); 2900 2901 if (ret) 2902 break; 2903 } 2904 return ret; 2905 } 2906 2907 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2908 const struct path *path) 2909 { 2910 struct inode *inode; 2911 int err; 2912 2913 /* if quota sysfile exists, deny enabling quota with specific file */ 2914 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2915 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2916 return -EBUSY; 2917 } 2918 2919 if (path->dentry->d_sb != sb) 2920 return -EXDEV; 2921 2922 err = f2fs_quota_sync(sb, type); 2923 if (err) 2924 return err; 2925 2926 inode = d_inode(path->dentry); 2927 2928 err = filemap_fdatawrite(inode->i_mapping); 2929 if (err) 2930 return err; 2931 2932 err = filemap_fdatawait(inode->i_mapping); 2933 if (err) 2934 return err; 2935 2936 err = dquot_quota_on(sb, type, format_id, path); 2937 if (err) 2938 return err; 2939 2940 inode_lock(inode); 2941 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL; 2942 f2fs_set_inode_flags(inode); 2943 inode_unlock(inode); 2944 f2fs_mark_inode_dirty_sync(inode, false); 2945 2946 return 0; 2947 } 2948 2949 static int __f2fs_quota_off(struct super_block *sb, int type) 2950 { 2951 struct inode *inode = sb_dqopt(sb)->files[type]; 2952 int err; 2953 2954 if (!inode || !igrab(inode)) 2955 return dquot_quota_off(sb, type); 2956 2957 err = f2fs_quota_sync(sb, type); 2958 if (err) 2959 goto out_put; 2960 2961 err = dquot_quota_off(sb, type); 2962 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2963 goto out_put; 2964 2965 inode_lock(inode); 2966 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL; 2967 f2fs_set_inode_flags(inode); 2968 inode_unlock(inode); 2969 f2fs_mark_inode_dirty_sync(inode, false); 2970 out_put: 2971 iput(inode); 2972 return err; 2973 } 2974 2975 static int f2fs_quota_off(struct super_block *sb, int type) 2976 { 2977 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2978 int err; 2979 2980 err = __f2fs_quota_off(sb, type); 2981 2982 /* 2983 * quotactl can shutdown journalled quota, result in inconsistence 2984 * between quota record and fs data by following updates, tag the 2985 * flag to let fsck be aware of it. 2986 */ 2987 if (is_journalled_quota(sbi)) 2988 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2989 return err; 2990 } 2991 2992 void f2fs_quota_off_umount(struct super_block *sb) 2993 { 2994 int type; 2995 int err; 2996 2997 for (type = 0; type < MAXQUOTAS; type++) { 2998 err = __f2fs_quota_off(sb, type); 2999 if (err) { 3000 int ret = dquot_quota_off(sb, type); 3001 3002 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 3003 type, err, ret); 3004 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 3005 } 3006 } 3007 /* 3008 * In case of checkpoint=disable, we must flush quota blocks. 3009 * This can cause NULL exception for node_inode in end_io, since 3010 * put_super already dropped it. 3011 */ 3012 sync_filesystem(sb); 3013 } 3014 3015 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 3016 { 3017 struct quota_info *dqopt = sb_dqopt(sb); 3018 int type; 3019 3020 for (type = 0; type < MAXQUOTAS; type++) { 3021 if (!dqopt->files[type]) 3022 continue; 3023 f2fs_inode_synced(dqopt->files[type]); 3024 } 3025 } 3026 3027 static int f2fs_dquot_commit(struct dquot *dquot) 3028 { 3029 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3030 int ret; 3031 3032 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 3033 ret = dquot_commit(dquot); 3034 if (ret < 0) 3035 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3036 f2fs_up_read(&sbi->quota_sem); 3037 return ret; 3038 } 3039 3040 static int f2fs_dquot_acquire(struct dquot *dquot) 3041 { 3042 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3043 int ret; 3044 3045 f2fs_down_read(&sbi->quota_sem); 3046 ret = dquot_acquire(dquot); 3047 if (ret < 0) 3048 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3049 f2fs_up_read(&sbi->quota_sem); 3050 return ret; 3051 } 3052 3053 static int f2fs_dquot_release(struct dquot *dquot) 3054 { 3055 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3056 int ret = dquot_release(dquot); 3057 3058 if (ret < 0) 3059 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3060 return ret; 3061 } 3062 3063 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 3064 { 3065 struct super_block *sb = dquot->dq_sb; 3066 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3067 int ret = dquot_mark_dquot_dirty(dquot); 3068 3069 /* if we are using journalled quota */ 3070 if (is_journalled_quota(sbi)) 3071 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 3072 3073 return ret; 3074 } 3075 3076 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 3077 { 3078 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3079 int ret = dquot_commit_info(sb, type); 3080 3081 if (ret < 0) 3082 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3083 return ret; 3084 } 3085 3086 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 3087 { 3088 *projid = F2FS_I(inode)->i_projid; 3089 return 0; 3090 } 3091 3092 static const struct dquot_operations f2fs_quota_operations = { 3093 .get_reserved_space = f2fs_get_reserved_space, 3094 .write_dquot = f2fs_dquot_commit, 3095 .acquire_dquot = f2fs_dquot_acquire, 3096 .release_dquot = f2fs_dquot_release, 3097 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 3098 .write_info = f2fs_dquot_commit_info, 3099 .alloc_dquot = dquot_alloc, 3100 .destroy_dquot = dquot_destroy, 3101 .get_projid = f2fs_get_projid, 3102 .get_next_id = dquot_get_next_id, 3103 }; 3104 3105 static const struct quotactl_ops f2fs_quotactl_ops = { 3106 .quota_on = f2fs_quota_on, 3107 .quota_off = f2fs_quota_off, 3108 .quota_sync = f2fs_quota_sync, 3109 .get_state = dquot_get_state, 3110 .set_info = dquot_set_dqinfo, 3111 .get_dqblk = dquot_get_dqblk, 3112 .set_dqblk = dquot_set_dqblk, 3113 .get_nextdqblk = dquot_get_next_dqblk, 3114 }; 3115 #else 3116 int f2fs_dquot_initialize(struct inode *inode) 3117 { 3118 return 0; 3119 } 3120 3121 int f2fs_quota_sync(struct super_block *sb, int type) 3122 { 3123 return 0; 3124 } 3125 3126 void f2fs_quota_off_umount(struct super_block *sb) 3127 { 3128 } 3129 #endif 3130 3131 static const struct super_operations f2fs_sops = { 3132 .alloc_inode = f2fs_alloc_inode, 3133 .free_inode = f2fs_free_inode, 3134 .drop_inode = f2fs_drop_inode, 3135 .write_inode = f2fs_write_inode, 3136 .dirty_inode = f2fs_dirty_inode, 3137 .show_options = f2fs_show_options, 3138 #ifdef CONFIG_QUOTA 3139 .quota_read = f2fs_quota_read, 3140 .quota_write = f2fs_quota_write, 3141 .get_dquots = f2fs_get_dquots, 3142 #endif 3143 .evict_inode = f2fs_evict_inode, 3144 .put_super = f2fs_put_super, 3145 .sync_fs = f2fs_sync_fs, 3146 .freeze_fs = f2fs_freeze, 3147 .unfreeze_fs = f2fs_unfreeze, 3148 .statfs = f2fs_statfs, 3149 .remount_fs = f2fs_remount, 3150 .shutdown = f2fs_shutdown, 3151 }; 3152 3153 #ifdef CONFIG_FS_ENCRYPTION 3154 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 3155 { 3156 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3157 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3158 ctx, len, NULL); 3159 } 3160 3161 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 3162 void *fs_data) 3163 { 3164 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3165 3166 /* 3167 * Encrypting the root directory is not allowed because fsck 3168 * expects lost+found directory to exist and remain unencrypted 3169 * if LOST_FOUND feature is enabled. 3170 * 3171 */ 3172 if (f2fs_sb_has_lost_found(sbi) && 3173 inode->i_ino == F2FS_ROOT_INO(sbi)) 3174 return -EPERM; 3175 3176 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3177 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3178 ctx, len, fs_data, XATTR_CREATE); 3179 } 3180 3181 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 3182 { 3183 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 3184 } 3185 3186 static bool f2fs_has_stable_inodes(struct super_block *sb) 3187 { 3188 return true; 3189 } 3190 3191 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 3192 int *ino_bits_ret, int *lblk_bits_ret) 3193 { 3194 *ino_bits_ret = 8 * sizeof(nid_t); 3195 *lblk_bits_ret = 8 * sizeof(block_t); 3196 } 3197 3198 static struct block_device **f2fs_get_devices(struct super_block *sb, 3199 unsigned int *num_devs) 3200 { 3201 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3202 struct block_device **devs; 3203 int i; 3204 3205 if (!f2fs_is_multi_device(sbi)) 3206 return NULL; 3207 3208 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL); 3209 if (!devs) 3210 return ERR_PTR(-ENOMEM); 3211 3212 for (i = 0; i < sbi->s_ndevs; i++) 3213 devs[i] = FDEV(i).bdev; 3214 *num_devs = sbi->s_ndevs; 3215 return devs; 3216 } 3217 3218 static const struct fscrypt_operations f2fs_cryptops = { 3219 .key_prefix = "f2fs:", 3220 .get_context = f2fs_get_context, 3221 .set_context = f2fs_set_context, 3222 .get_dummy_policy = f2fs_get_dummy_policy, 3223 .empty_dir = f2fs_empty_dir, 3224 .has_stable_inodes = f2fs_has_stable_inodes, 3225 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 3226 .get_devices = f2fs_get_devices, 3227 }; 3228 #endif 3229 3230 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3231 u64 ino, u32 generation) 3232 { 3233 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3234 struct inode *inode; 3235 3236 if (f2fs_check_nid_range(sbi, ino)) 3237 return ERR_PTR(-ESTALE); 3238 3239 /* 3240 * f2fs_iget isn't quite right if the inode is currently unallocated! 3241 * However f2fs_iget currently does appropriate checks to handle stale 3242 * inodes so everything is OK. 3243 */ 3244 inode = f2fs_iget(sb, ino); 3245 if (IS_ERR(inode)) 3246 return ERR_CAST(inode); 3247 if (unlikely(generation && inode->i_generation != generation)) { 3248 /* we didn't find the right inode.. */ 3249 iput(inode); 3250 return ERR_PTR(-ESTALE); 3251 } 3252 return inode; 3253 } 3254 3255 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3256 int fh_len, int fh_type) 3257 { 3258 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3259 f2fs_nfs_get_inode); 3260 } 3261 3262 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3263 int fh_len, int fh_type) 3264 { 3265 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3266 f2fs_nfs_get_inode); 3267 } 3268 3269 static const struct export_operations f2fs_export_ops = { 3270 .fh_to_dentry = f2fs_fh_to_dentry, 3271 .fh_to_parent = f2fs_fh_to_parent, 3272 .get_parent = f2fs_get_parent, 3273 }; 3274 3275 loff_t max_file_blocks(struct inode *inode) 3276 { 3277 loff_t result = 0; 3278 loff_t leaf_count; 3279 3280 /* 3281 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3282 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3283 * space in inode.i_addr, it will be more safe to reassign 3284 * result as zero. 3285 */ 3286 3287 if (inode && f2fs_compressed_file(inode)) 3288 leaf_count = ADDRS_PER_BLOCK(inode); 3289 else 3290 leaf_count = DEF_ADDRS_PER_BLOCK; 3291 3292 /* two direct node blocks */ 3293 result += (leaf_count * 2); 3294 3295 /* two indirect node blocks */ 3296 leaf_count *= NIDS_PER_BLOCK; 3297 result += (leaf_count * 2); 3298 3299 /* one double indirect node block */ 3300 leaf_count *= NIDS_PER_BLOCK; 3301 result += leaf_count; 3302 3303 return result; 3304 } 3305 3306 static int __f2fs_commit_super(struct buffer_head *bh, 3307 struct f2fs_super_block *super) 3308 { 3309 lock_buffer(bh); 3310 if (super) 3311 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 3312 set_buffer_dirty(bh); 3313 unlock_buffer(bh); 3314 3315 /* it's rare case, we can do fua all the time */ 3316 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 3317 } 3318 3319 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3320 struct buffer_head *bh) 3321 { 3322 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3323 (bh->b_data + F2FS_SUPER_OFFSET); 3324 struct super_block *sb = sbi->sb; 3325 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3326 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3327 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3328 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3329 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3330 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3331 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3332 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3333 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3334 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3335 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3336 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3337 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3338 u64 main_end_blkaddr = main_blkaddr + 3339 ((u64)segment_count_main << log_blocks_per_seg); 3340 u64 seg_end_blkaddr = segment0_blkaddr + 3341 ((u64)segment_count << log_blocks_per_seg); 3342 3343 if (segment0_blkaddr != cp_blkaddr) { 3344 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3345 segment0_blkaddr, cp_blkaddr); 3346 return true; 3347 } 3348 3349 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3350 sit_blkaddr) { 3351 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3352 cp_blkaddr, sit_blkaddr, 3353 segment_count_ckpt << log_blocks_per_seg); 3354 return true; 3355 } 3356 3357 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3358 nat_blkaddr) { 3359 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3360 sit_blkaddr, nat_blkaddr, 3361 segment_count_sit << log_blocks_per_seg); 3362 return true; 3363 } 3364 3365 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3366 ssa_blkaddr) { 3367 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3368 nat_blkaddr, ssa_blkaddr, 3369 segment_count_nat << log_blocks_per_seg); 3370 return true; 3371 } 3372 3373 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3374 main_blkaddr) { 3375 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3376 ssa_blkaddr, main_blkaddr, 3377 segment_count_ssa << log_blocks_per_seg); 3378 return true; 3379 } 3380 3381 if (main_end_blkaddr > seg_end_blkaddr) { 3382 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3383 main_blkaddr, seg_end_blkaddr, 3384 segment_count_main << log_blocks_per_seg); 3385 return true; 3386 } else if (main_end_blkaddr < seg_end_blkaddr) { 3387 int err = 0; 3388 char *res; 3389 3390 /* fix in-memory information all the time */ 3391 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3392 segment0_blkaddr) >> log_blocks_per_seg); 3393 3394 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) { 3395 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3396 res = "internally"; 3397 } else { 3398 err = __f2fs_commit_super(bh, NULL); 3399 res = err ? "failed" : "done"; 3400 } 3401 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3402 res, main_blkaddr, seg_end_blkaddr, 3403 segment_count_main << log_blocks_per_seg); 3404 if (err) 3405 return true; 3406 } 3407 return false; 3408 } 3409 3410 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3411 struct buffer_head *bh) 3412 { 3413 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3414 block_t total_sections, blocks_per_seg; 3415 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3416 (bh->b_data + F2FS_SUPER_OFFSET); 3417 size_t crc_offset = 0; 3418 __u32 crc = 0; 3419 3420 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3421 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3422 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3423 return -EINVAL; 3424 } 3425 3426 /* Check checksum_offset and crc in superblock */ 3427 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3428 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3429 if (crc_offset != 3430 offsetof(struct f2fs_super_block, crc)) { 3431 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3432 crc_offset); 3433 return -EFSCORRUPTED; 3434 } 3435 crc = le32_to_cpu(raw_super->crc); 3436 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3437 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3438 return -EFSCORRUPTED; 3439 } 3440 } 3441 3442 /* Currently, support only 4KB block size */ 3443 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3444 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3445 le32_to_cpu(raw_super->log_blocksize), 3446 F2FS_BLKSIZE_BITS); 3447 return -EFSCORRUPTED; 3448 } 3449 3450 /* check log blocks per segment */ 3451 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3452 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3453 le32_to_cpu(raw_super->log_blocks_per_seg)); 3454 return -EFSCORRUPTED; 3455 } 3456 3457 /* Currently, support 512/1024/2048/4096 bytes sector size */ 3458 if (le32_to_cpu(raw_super->log_sectorsize) > 3459 F2FS_MAX_LOG_SECTOR_SIZE || 3460 le32_to_cpu(raw_super->log_sectorsize) < 3461 F2FS_MIN_LOG_SECTOR_SIZE) { 3462 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3463 le32_to_cpu(raw_super->log_sectorsize)); 3464 return -EFSCORRUPTED; 3465 } 3466 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3467 le32_to_cpu(raw_super->log_sectorsize) != 3468 F2FS_MAX_LOG_SECTOR_SIZE) { 3469 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3470 le32_to_cpu(raw_super->log_sectors_per_block), 3471 le32_to_cpu(raw_super->log_sectorsize)); 3472 return -EFSCORRUPTED; 3473 } 3474 3475 segment_count = le32_to_cpu(raw_super->segment_count); 3476 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3477 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3478 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3479 total_sections = le32_to_cpu(raw_super->section_count); 3480 3481 /* blocks_per_seg should be 512, given the above check */ 3482 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg)); 3483 3484 if (segment_count > F2FS_MAX_SEGMENT || 3485 segment_count < F2FS_MIN_SEGMENTS) { 3486 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3487 return -EFSCORRUPTED; 3488 } 3489 3490 if (total_sections > segment_count_main || total_sections < 1 || 3491 segs_per_sec > segment_count || !segs_per_sec) { 3492 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3493 segment_count, total_sections, segs_per_sec); 3494 return -EFSCORRUPTED; 3495 } 3496 3497 if (segment_count_main != total_sections * segs_per_sec) { 3498 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3499 segment_count_main, total_sections, segs_per_sec); 3500 return -EFSCORRUPTED; 3501 } 3502 3503 if ((segment_count / segs_per_sec) < total_sections) { 3504 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3505 segment_count, segs_per_sec, total_sections); 3506 return -EFSCORRUPTED; 3507 } 3508 3509 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3510 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3511 segment_count, le64_to_cpu(raw_super->block_count)); 3512 return -EFSCORRUPTED; 3513 } 3514 3515 if (RDEV(0).path[0]) { 3516 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3517 int i = 1; 3518 3519 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3520 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3521 i++; 3522 } 3523 if (segment_count != dev_seg_count) { 3524 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3525 segment_count, dev_seg_count); 3526 return -EFSCORRUPTED; 3527 } 3528 } else { 3529 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3530 !bdev_is_zoned(sbi->sb->s_bdev)) { 3531 f2fs_info(sbi, "Zoned block device path is missing"); 3532 return -EFSCORRUPTED; 3533 } 3534 } 3535 3536 if (secs_per_zone > total_sections || !secs_per_zone) { 3537 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3538 secs_per_zone, total_sections); 3539 return -EFSCORRUPTED; 3540 } 3541 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3542 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3543 (le32_to_cpu(raw_super->extension_count) + 3544 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3545 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3546 le32_to_cpu(raw_super->extension_count), 3547 raw_super->hot_ext_count, 3548 F2FS_MAX_EXTENSION); 3549 return -EFSCORRUPTED; 3550 } 3551 3552 if (le32_to_cpu(raw_super->cp_payload) >= 3553 (blocks_per_seg - F2FS_CP_PACKS - 3554 NR_CURSEG_PERSIST_TYPE)) { 3555 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3556 le32_to_cpu(raw_super->cp_payload), 3557 blocks_per_seg - F2FS_CP_PACKS - 3558 NR_CURSEG_PERSIST_TYPE); 3559 return -EFSCORRUPTED; 3560 } 3561 3562 /* check reserved ino info */ 3563 if (le32_to_cpu(raw_super->node_ino) != 1 || 3564 le32_to_cpu(raw_super->meta_ino) != 2 || 3565 le32_to_cpu(raw_super->root_ino) != 3) { 3566 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3567 le32_to_cpu(raw_super->node_ino), 3568 le32_to_cpu(raw_super->meta_ino), 3569 le32_to_cpu(raw_super->root_ino)); 3570 return -EFSCORRUPTED; 3571 } 3572 3573 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3574 if (sanity_check_area_boundary(sbi, bh)) 3575 return -EFSCORRUPTED; 3576 3577 return 0; 3578 } 3579 3580 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3581 { 3582 unsigned int total, fsmeta; 3583 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3584 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3585 unsigned int ovp_segments, reserved_segments; 3586 unsigned int main_segs, blocks_per_seg; 3587 unsigned int sit_segs, nat_segs; 3588 unsigned int sit_bitmap_size, nat_bitmap_size; 3589 unsigned int log_blocks_per_seg; 3590 unsigned int segment_count_main; 3591 unsigned int cp_pack_start_sum, cp_payload; 3592 block_t user_block_count, valid_user_blocks; 3593 block_t avail_node_count, valid_node_count; 3594 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3595 int i, j; 3596 3597 total = le32_to_cpu(raw_super->segment_count); 3598 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3599 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3600 fsmeta += sit_segs; 3601 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3602 fsmeta += nat_segs; 3603 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3604 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3605 3606 if (unlikely(fsmeta >= total)) 3607 return 1; 3608 3609 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3610 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3611 3612 if (!f2fs_sb_has_readonly(sbi) && 3613 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3614 ovp_segments == 0 || reserved_segments == 0)) { 3615 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3616 return 1; 3617 } 3618 user_block_count = le64_to_cpu(ckpt->user_block_count); 3619 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3620 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3621 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3622 if (!user_block_count || user_block_count >= 3623 segment_count_main << log_blocks_per_seg) { 3624 f2fs_err(sbi, "Wrong user_block_count: %u", 3625 user_block_count); 3626 return 1; 3627 } 3628 3629 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3630 if (valid_user_blocks > user_block_count) { 3631 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3632 valid_user_blocks, user_block_count); 3633 return 1; 3634 } 3635 3636 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3637 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3638 if (valid_node_count > avail_node_count) { 3639 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3640 valid_node_count, avail_node_count); 3641 return 1; 3642 } 3643 3644 main_segs = le32_to_cpu(raw_super->segment_count_main); 3645 blocks_per_seg = BLKS_PER_SEG(sbi); 3646 3647 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3648 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3649 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3650 return 1; 3651 3652 if (f2fs_sb_has_readonly(sbi)) 3653 goto check_data; 3654 3655 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3656 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3657 le32_to_cpu(ckpt->cur_node_segno[j])) { 3658 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3659 i, j, 3660 le32_to_cpu(ckpt->cur_node_segno[i])); 3661 return 1; 3662 } 3663 } 3664 } 3665 check_data: 3666 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3667 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3668 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3669 return 1; 3670 3671 if (f2fs_sb_has_readonly(sbi)) 3672 goto skip_cross; 3673 3674 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3675 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3676 le32_to_cpu(ckpt->cur_data_segno[j])) { 3677 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3678 i, j, 3679 le32_to_cpu(ckpt->cur_data_segno[i])); 3680 return 1; 3681 } 3682 } 3683 } 3684 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3685 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3686 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3687 le32_to_cpu(ckpt->cur_data_segno[j])) { 3688 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3689 i, j, 3690 le32_to_cpu(ckpt->cur_node_segno[i])); 3691 return 1; 3692 } 3693 } 3694 } 3695 skip_cross: 3696 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3697 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3698 3699 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3700 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3701 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3702 sit_bitmap_size, nat_bitmap_size); 3703 return 1; 3704 } 3705 3706 cp_pack_start_sum = __start_sum_addr(sbi); 3707 cp_payload = __cp_payload(sbi); 3708 if (cp_pack_start_sum < cp_payload + 1 || 3709 cp_pack_start_sum > blocks_per_seg - 1 - 3710 NR_CURSEG_PERSIST_TYPE) { 3711 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3712 cp_pack_start_sum); 3713 return 1; 3714 } 3715 3716 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3717 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3718 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3719 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3720 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3721 le32_to_cpu(ckpt->checksum_offset)); 3722 return 1; 3723 } 3724 3725 nat_blocks = nat_segs << log_blocks_per_seg; 3726 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3727 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3728 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3729 (cp_payload + F2FS_CP_PACKS + 3730 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3731 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3732 cp_payload, nat_bits_blocks); 3733 return 1; 3734 } 3735 3736 if (unlikely(f2fs_cp_error(sbi))) { 3737 f2fs_err(sbi, "A bug case: need to run fsck"); 3738 return 1; 3739 } 3740 return 0; 3741 } 3742 3743 static void init_sb_info(struct f2fs_sb_info *sbi) 3744 { 3745 struct f2fs_super_block *raw_super = sbi->raw_super; 3746 int i; 3747 3748 sbi->log_sectors_per_block = 3749 le32_to_cpu(raw_super->log_sectors_per_block); 3750 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3751 sbi->blocksize = BIT(sbi->log_blocksize); 3752 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3753 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg); 3754 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3755 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3756 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3757 sbi->total_node_count = 3758 ((le32_to_cpu(raw_super->segment_count_nat) / 2) * 3759 NAT_ENTRY_PER_BLOCK) << sbi->log_blocks_per_seg; 3760 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3761 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3762 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3763 sbi->cur_victim_sec = NULL_SECNO; 3764 sbi->gc_mode = GC_NORMAL; 3765 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3766 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3767 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3768 sbi->migration_granularity = SEGS_PER_SEC(sbi); 3769 sbi->seq_file_ra_mul = MIN_RA_MUL; 3770 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3771 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3772 spin_lock_init(&sbi->gc_remaining_trials_lock); 3773 atomic64_set(&sbi->current_atomic_write, 0); 3774 3775 sbi->dir_level = DEF_DIR_LEVEL; 3776 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3777 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3778 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3779 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3780 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3781 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3782 DEF_UMOUNT_DISCARD_TIMEOUT; 3783 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3784 3785 for (i = 0; i < NR_COUNT_TYPE; i++) 3786 atomic_set(&sbi->nr_pages[i], 0); 3787 3788 for (i = 0; i < META; i++) 3789 atomic_set(&sbi->wb_sync_req[i], 0); 3790 3791 INIT_LIST_HEAD(&sbi->s_list); 3792 mutex_init(&sbi->umount_mutex); 3793 init_f2fs_rwsem(&sbi->io_order_lock); 3794 spin_lock_init(&sbi->cp_lock); 3795 3796 sbi->dirty_device = 0; 3797 spin_lock_init(&sbi->dev_lock); 3798 3799 init_f2fs_rwsem(&sbi->sb_lock); 3800 init_f2fs_rwsem(&sbi->pin_sem); 3801 } 3802 3803 static int init_percpu_info(struct f2fs_sb_info *sbi) 3804 { 3805 int err; 3806 3807 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3808 if (err) 3809 return err; 3810 3811 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 3812 if (err) 3813 goto err_valid_block; 3814 3815 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3816 GFP_KERNEL); 3817 if (err) 3818 goto err_node_block; 3819 return 0; 3820 3821 err_node_block: 3822 percpu_counter_destroy(&sbi->rf_node_block_count); 3823 err_valid_block: 3824 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3825 return err; 3826 } 3827 3828 #ifdef CONFIG_BLK_DEV_ZONED 3829 3830 struct f2fs_report_zones_args { 3831 struct f2fs_sb_info *sbi; 3832 struct f2fs_dev_info *dev; 3833 }; 3834 3835 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3836 void *data) 3837 { 3838 struct f2fs_report_zones_args *rz_args = data; 3839 block_t unusable_blocks = (zone->len - zone->capacity) >> 3840 F2FS_LOG_SECTORS_PER_BLOCK; 3841 3842 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3843 return 0; 3844 3845 set_bit(idx, rz_args->dev->blkz_seq); 3846 if (!rz_args->sbi->unusable_blocks_per_sec) { 3847 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; 3848 return 0; 3849 } 3850 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { 3851 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); 3852 return -EINVAL; 3853 } 3854 return 0; 3855 } 3856 3857 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3858 { 3859 struct block_device *bdev = FDEV(devi).bdev; 3860 sector_t nr_sectors = bdev_nr_sectors(bdev); 3861 struct f2fs_report_zones_args rep_zone_arg; 3862 u64 zone_sectors; 3863 int ret; 3864 3865 if (!f2fs_sb_has_blkzoned(sbi)) 3866 return 0; 3867 3868 zone_sectors = bdev_zone_sectors(bdev); 3869 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3870 SECTOR_TO_BLOCK(zone_sectors)) 3871 return -EINVAL; 3872 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors); 3873 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors), 3874 sbi->blocks_per_blkz); 3875 if (nr_sectors & (zone_sectors - 1)) 3876 FDEV(devi).nr_blkz++; 3877 3878 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3879 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3880 * sizeof(unsigned long), 3881 GFP_KERNEL); 3882 if (!FDEV(devi).blkz_seq) 3883 return -ENOMEM; 3884 3885 rep_zone_arg.sbi = sbi; 3886 rep_zone_arg.dev = &FDEV(devi); 3887 3888 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3889 &rep_zone_arg); 3890 if (ret < 0) 3891 return ret; 3892 return 0; 3893 } 3894 #endif 3895 3896 /* 3897 * Read f2fs raw super block. 3898 * Because we have two copies of super block, so read both of them 3899 * to get the first valid one. If any one of them is broken, we pass 3900 * them recovery flag back to the caller. 3901 */ 3902 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3903 struct f2fs_super_block **raw_super, 3904 int *valid_super_block, int *recovery) 3905 { 3906 struct super_block *sb = sbi->sb; 3907 int block; 3908 struct buffer_head *bh; 3909 struct f2fs_super_block *super; 3910 int err = 0; 3911 3912 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3913 if (!super) 3914 return -ENOMEM; 3915 3916 for (block = 0; block < 2; block++) { 3917 bh = sb_bread(sb, block); 3918 if (!bh) { 3919 f2fs_err(sbi, "Unable to read %dth superblock", 3920 block + 1); 3921 err = -EIO; 3922 *recovery = 1; 3923 continue; 3924 } 3925 3926 /* sanity checking of raw super */ 3927 err = sanity_check_raw_super(sbi, bh); 3928 if (err) { 3929 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3930 block + 1); 3931 brelse(bh); 3932 *recovery = 1; 3933 continue; 3934 } 3935 3936 if (!*raw_super) { 3937 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3938 sizeof(*super)); 3939 *valid_super_block = block; 3940 *raw_super = super; 3941 } 3942 brelse(bh); 3943 } 3944 3945 /* No valid superblock */ 3946 if (!*raw_super) 3947 kfree(super); 3948 else 3949 err = 0; 3950 3951 return err; 3952 } 3953 3954 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3955 { 3956 struct buffer_head *bh; 3957 __u32 crc = 0; 3958 int err; 3959 3960 if ((recover && f2fs_readonly(sbi->sb)) || 3961 f2fs_hw_is_readonly(sbi)) { 3962 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3963 return -EROFS; 3964 } 3965 3966 /* we should update superblock crc here */ 3967 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3968 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3969 offsetof(struct f2fs_super_block, crc)); 3970 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3971 } 3972 3973 /* write back-up superblock first */ 3974 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3975 if (!bh) 3976 return -EIO; 3977 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3978 brelse(bh); 3979 3980 /* if we are in recovery path, skip writing valid superblock */ 3981 if (recover || err) 3982 return err; 3983 3984 /* write current valid superblock */ 3985 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3986 if (!bh) 3987 return -EIO; 3988 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3989 brelse(bh); 3990 return err; 3991 } 3992 3993 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason) 3994 { 3995 unsigned long flags; 3996 3997 spin_lock_irqsave(&sbi->error_lock, flags); 3998 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0)) 3999 sbi->stop_reason[reason]++; 4000 spin_unlock_irqrestore(&sbi->error_lock, flags); 4001 } 4002 4003 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi) 4004 { 4005 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4006 unsigned long flags; 4007 int err; 4008 4009 f2fs_down_write(&sbi->sb_lock); 4010 4011 spin_lock_irqsave(&sbi->error_lock, flags); 4012 if (sbi->error_dirty) { 4013 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4014 MAX_F2FS_ERRORS); 4015 sbi->error_dirty = false; 4016 } 4017 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON); 4018 spin_unlock_irqrestore(&sbi->error_lock, flags); 4019 4020 err = f2fs_commit_super(sbi, false); 4021 4022 f2fs_up_write(&sbi->sb_lock); 4023 if (err) 4024 f2fs_err(sbi, "f2fs_commit_super fails to record err:%d", err); 4025 } 4026 4027 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag) 4028 { 4029 unsigned long flags; 4030 4031 spin_lock_irqsave(&sbi->error_lock, flags); 4032 if (!test_bit(flag, (unsigned long *)sbi->errors)) { 4033 set_bit(flag, (unsigned long *)sbi->errors); 4034 sbi->error_dirty = true; 4035 } 4036 spin_unlock_irqrestore(&sbi->error_lock, flags); 4037 } 4038 4039 static bool f2fs_update_errors(struct f2fs_sb_info *sbi) 4040 { 4041 unsigned long flags; 4042 bool need_update = false; 4043 4044 spin_lock_irqsave(&sbi->error_lock, flags); 4045 if (sbi->error_dirty) { 4046 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4047 MAX_F2FS_ERRORS); 4048 sbi->error_dirty = false; 4049 need_update = true; 4050 } 4051 spin_unlock_irqrestore(&sbi->error_lock, flags); 4052 4053 return need_update; 4054 } 4055 4056 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error) 4057 { 4058 int err; 4059 4060 f2fs_down_write(&sbi->sb_lock); 4061 4062 if (!f2fs_update_errors(sbi)) 4063 goto out_unlock; 4064 4065 err = f2fs_commit_super(sbi, false); 4066 if (err) 4067 f2fs_err(sbi, "f2fs_commit_super fails to record errors:%u, err:%d", 4068 error, err); 4069 out_unlock: 4070 f2fs_up_write(&sbi->sb_lock); 4071 } 4072 4073 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error) 4074 { 4075 f2fs_save_errors(sbi, error); 4076 f2fs_record_errors(sbi, error); 4077 } 4078 4079 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error) 4080 { 4081 f2fs_save_errors(sbi, error); 4082 4083 if (!sbi->error_dirty) 4084 return; 4085 if (!test_bit(error, (unsigned long *)sbi->errors)) 4086 return; 4087 schedule_work(&sbi->s_error_work); 4088 } 4089 4090 static bool system_going_down(void) 4091 { 4092 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 4093 || system_state == SYSTEM_RESTART; 4094 } 4095 4096 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason) 4097 { 4098 struct super_block *sb = sbi->sb; 4099 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN; 4100 bool continue_fs = !shutdown && 4101 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE; 4102 4103 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4104 4105 if (!f2fs_hw_is_readonly(sbi)) { 4106 save_stop_reason(sbi, reason); 4107 4108 /* 4109 * always create an asynchronous task to record stop_reason 4110 * in order to avoid potential deadlock when running into 4111 * f2fs_record_stop_reason() synchronously. 4112 */ 4113 schedule_work(&sbi->s_error_work); 4114 } 4115 4116 /* 4117 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 4118 * could panic during 'reboot -f' as the underlying device got already 4119 * disabled. 4120 */ 4121 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC && 4122 !shutdown && !system_going_down() && 4123 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) 4124 panic("F2FS-fs (device %s): panic forced after error\n", 4125 sb->s_id); 4126 4127 if (shutdown) 4128 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 4129 4130 /* 4131 * Continue filesystem operators if errors=continue. Should not set 4132 * RO by shutdown, since RO bypasses thaw_super which can hang the 4133 * system. 4134 */ 4135 if (continue_fs || f2fs_readonly(sb) || shutdown) { 4136 f2fs_warn(sbi, "Stopped filesystem due to reason: %d", reason); 4137 return; 4138 } 4139 4140 f2fs_warn(sbi, "Remounting filesystem read-only"); 4141 4142 /* 4143 * We have already set CP_ERROR_FLAG flag to stop all updates 4144 * to filesystem, so it doesn't need to set SB_RDONLY flag here 4145 * because the flag should be set covered w/ sb->s_umount semaphore 4146 * via remount procedure, otherwise, it will confuse code like 4147 * freeze_super() which will lead to deadlocks and other problems. 4148 */ 4149 } 4150 4151 static void f2fs_record_error_work(struct work_struct *work) 4152 { 4153 struct f2fs_sb_info *sbi = container_of(work, 4154 struct f2fs_sb_info, s_error_work); 4155 4156 f2fs_record_stop_reason(sbi); 4157 } 4158 4159 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 4160 { 4161 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4162 unsigned int max_devices = MAX_DEVICES; 4163 unsigned int logical_blksize; 4164 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags); 4165 int i; 4166 4167 /* Initialize single device information */ 4168 if (!RDEV(0).path[0]) { 4169 if (!bdev_is_zoned(sbi->sb->s_bdev)) 4170 return 0; 4171 max_devices = 1; 4172 } 4173 4174 /* 4175 * Initialize multiple devices information, or single 4176 * zoned block device information. 4177 */ 4178 sbi->devs = f2fs_kzalloc(sbi, 4179 array_size(max_devices, 4180 sizeof(struct f2fs_dev_info)), 4181 GFP_KERNEL); 4182 if (!sbi->devs) 4183 return -ENOMEM; 4184 4185 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 4186 sbi->aligned_blksize = true; 4187 4188 for (i = 0; i < max_devices; i++) { 4189 if (i == 0) 4190 FDEV(0).bdev = sbi->sb->s_bdev; 4191 else if (!RDEV(i).path[0]) 4192 break; 4193 4194 if (max_devices > 1) { 4195 /* Multi-device mount */ 4196 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 4197 FDEV(i).total_segments = 4198 le32_to_cpu(RDEV(i).total_segments); 4199 if (i == 0) { 4200 FDEV(i).start_blk = 0; 4201 FDEV(i).end_blk = FDEV(i).start_blk + 4202 (FDEV(i).total_segments << 4203 sbi->log_blocks_per_seg) - 1 + 4204 le32_to_cpu(raw_super->segment0_blkaddr); 4205 } else { 4206 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 4207 FDEV(i).end_blk = FDEV(i).start_blk + 4208 (FDEV(i).total_segments << 4209 sbi->log_blocks_per_seg) - 1; 4210 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 4211 mode, sbi->sb, NULL); 4212 } 4213 } 4214 if (IS_ERR(FDEV(i).bdev)) 4215 return PTR_ERR(FDEV(i).bdev); 4216 4217 /* to release errored devices */ 4218 sbi->s_ndevs = i + 1; 4219 4220 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 4221 sbi->aligned_blksize = false; 4222 4223 #ifdef CONFIG_BLK_DEV_ZONED 4224 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 4225 !f2fs_sb_has_blkzoned(sbi)) { 4226 f2fs_err(sbi, "Zoned block device feature not enabled"); 4227 return -EINVAL; 4228 } 4229 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 4230 if (init_blkz_info(sbi, i)) { 4231 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 4232 return -EINVAL; 4233 } 4234 if (max_devices == 1) 4235 break; 4236 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 4237 i, FDEV(i).path, 4238 FDEV(i).total_segments, 4239 FDEV(i).start_blk, FDEV(i).end_blk, 4240 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 4241 "Host-aware" : "Host-managed"); 4242 continue; 4243 } 4244 #endif 4245 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 4246 i, FDEV(i).path, 4247 FDEV(i).total_segments, 4248 FDEV(i).start_blk, FDEV(i).end_blk); 4249 } 4250 return 0; 4251 } 4252 4253 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 4254 { 4255 #if IS_ENABLED(CONFIG_UNICODE) 4256 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 4257 const struct f2fs_sb_encodings *encoding_info; 4258 struct unicode_map *encoding; 4259 __u16 encoding_flags; 4260 4261 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 4262 if (!encoding_info) { 4263 f2fs_err(sbi, 4264 "Encoding requested by superblock is unknown"); 4265 return -EINVAL; 4266 } 4267 4268 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 4269 encoding = utf8_load(encoding_info->version); 4270 if (IS_ERR(encoding)) { 4271 f2fs_err(sbi, 4272 "can't mount with superblock charset: %s-%u.%u.%u " 4273 "not supported by the kernel. flags: 0x%x.", 4274 encoding_info->name, 4275 unicode_major(encoding_info->version), 4276 unicode_minor(encoding_info->version), 4277 unicode_rev(encoding_info->version), 4278 encoding_flags); 4279 return PTR_ERR(encoding); 4280 } 4281 f2fs_info(sbi, "Using encoding defined by superblock: " 4282 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4283 unicode_major(encoding_info->version), 4284 unicode_minor(encoding_info->version), 4285 unicode_rev(encoding_info->version), 4286 encoding_flags); 4287 4288 sbi->sb->s_encoding = encoding; 4289 sbi->sb->s_encoding_flags = encoding_flags; 4290 } 4291 #else 4292 if (f2fs_sb_has_casefold(sbi)) { 4293 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 4294 return -EINVAL; 4295 } 4296 #endif 4297 return 0; 4298 } 4299 4300 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 4301 { 4302 /* adjust parameters according to the volume size */ 4303 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) { 4304 if (f2fs_block_unit_discard(sbi)) 4305 SM_I(sbi)->dcc_info->discard_granularity = 4306 MIN_DISCARD_GRANULARITY; 4307 if (!f2fs_lfs_mode(sbi)) 4308 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) | 4309 BIT(F2FS_IPU_HONOR_OPU_WRITE); 4310 } 4311 4312 sbi->readdir_ra = true; 4313 } 4314 4315 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 4316 { 4317 struct f2fs_sb_info *sbi; 4318 struct f2fs_super_block *raw_super; 4319 struct inode *root; 4320 int err; 4321 bool skip_recovery = false, need_fsck = false; 4322 char *options = NULL; 4323 int recovery, i, valid_super_block; 4324 struct curseg_info *seg_i; 4325 int retry_cnt = 1; 4326 #ifdef CONFIG_QUOTA 4327 bool quota_enabled = false; 4328 #endif 4329 4330 try_onemore: 4331 err = -EINVAL; 4332 raw_super = NULL; 4333 valid_super_block = -1; 4334 recovery = 0; 4335 4336 /* allocate memory for f2fs-specific super block info */ 4337 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 4338 if (!sbi) 4339 return -ENOMEM; 4340 4341 sbi->sb = sb; 4342 4343 /* initialize locks within allocated memory */ 4344 init_f2fs_rwsem(&sbi->gc_lock); 4345 mutex_init(&sbi->writepages); 4346 init_f2fs_rwsem(&sbi->cp_global_sem); 4347 init_f2fs_rwsem(&sbi->node_write); 4348 init_f2fs_rwsem(&sbi->node_change); 4349 spin_lock_init(&sbi->stat_lock); 4350 init_f2fs_rwsem(&sbi->cp_rwsem); 4351 init_f2fs_rwsem(&sbi->quota_sem); 4352 init_waitqueue_head(&sbi->cp_wait); 4353 spin_lock_init(&sbi->error_lock); 4354 4355 for (i = 0; i < NR_INODE_TYPE; i++) { 4356 INIT_LIST_HEAD(&sbi->inode_list[i]); 4357 spin_lock_init(&sbi->inode_lock[i]); 4358 } 4359 mutex_init(&sbi->flush_lock); 4360 4361 /* Load the checksum driver */ 4362 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 4363 if (IS_ERR(sbi->s_chksum_driver)) { 4364 f2fs_err(sbi, "Cannot load crc32 driver."); 4365 err = PTR_ERR(sbi->s_chksum_driver); 4366 sbi->s_chksum_driver = NULL; 4367 goto free_sbi; 4368 } 4369 4370 /* set a block size */ 4371 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 4372 f2fs_err(sbi, "unable to set blocksize"); 4373 goto free_sbi; 4374 } 4375 4376 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4377 &recovery); 4378 if (err) 4379 goto free_sbi; 4380 4381 sb->s_fs_info = sbi; 4382 sbi->raw_super = raw_super; 4383 4384 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work); 4385 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS); 4386 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON); 4387 4388 /* precompute checksum seed for metadata */ 4389 if (f2fs_sb_has_inode_chksum(sbi)) 4390 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 4391 sizeof(raw_super->uuid)); 4392 4393 default_options(sbi, false); 4394 /* parse mount options */ 4395 options = kstrdup((const char *)data, GFP_KERNEL); 4396 if (data && !options) { 4397 err = -ENOMEM; 4398 goto free_sb_buf; 4399 } 4400 4401 err = parse_options(sb, options, false); 4402 if (err) 4403 goto free_options; 4404 4405 sb->s_maxbytes = max_file_blocks(NULL) << 4406 le32_to_cpu(raw_super->log_blocksize); 4407 sb->s_max_links = F2FS_LINK_MAX; 4408 4409 err = f2fs_setup_casefold(sbi); 4410 if (err) 4411 goto free_options; 4412 4413 #ifdef CONFIG_QUOTA 4414 sb->dq_op = &f2fs_quota_operations; 4415 sb->s_qcop = &f2fs_quotactl_ops; 4416 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4417 4418 if (f2fs_sb_has_quota_ino(sbi)) { 4419 for (i = 0; i < MAXQUOTAS; i++) { 4420 if (f2fs_qf_ino(sbi->sb, i)) 4421 sbi->nquota_files++; 4422 } 4423 } 4424 #endif 4425 4426 sb->s_op = &f2fs_sops; 4427 #ifdef CONFIG_FS_ENCRYPTION 4428 sb->s_cop = &f2fs_cryptops; 4429 #endif 4430 #ifdef CONFIG_FS_VERITY 4431 sb->s_vop = &f2fs_verityops; 4432 #endif 4433 sb->s_xattr = f2fs_xattr_handlers; 4434 sb->s_export_op = &f2fs_export_ops; 4435 sb->s_magic = F2FS_SUPER_MAGIC; 4436 sb->s_time_gran = 1; 4437 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4438 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4439 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 4440 sb->s_iflags |= SB_I_CGROUPWB; 4441 4442 /* init f2fs-specific super block info */ 4443 sbi->valid_super_block = valid_super_block; 4444 4445 /* disallow all the data/node/meta page writes */ 4446 set_sbi_flag(sbi, SBI_POR_DOING); 4447 4448 err = f2fs_init_write_merge_io(sbi); 4449 if (err) 4450 goto free_bio_info; 4451 4452 init_sb_info(sbi); 4453 4454 err = f2fs_init_iostat(sbi); 4455 if (err) 4456 goto free_bio_info; 4457 4458 err = init_percpu_info(sbi); 4459 if (err) 4460 goto free_iostat; 4461 4462 /* init per sbi slab cache */ 4463 err = f2fs_init_xattr_caches(sbi); 4464 if (err) 4465 goto free_percpu; 4466 err = f2fs_init_page_array_cache(sbi); 4467 if (err) 4468 goto free_xattr_cache; 4469 4470 /* get an inode for meta space */ 4471 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4472 if (IS_ERR(sbi->meta_inode)) { 4473 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4474 err = PTR_ERR(sbi->meta_inode); 4475 goto free_page_array_cache; 4476 } 4477 4478 err = f2fs_get_valid_checkpoint(sbi); 4479 if (err) { 4480 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4481 goto free_meta_inode; 4482 } 4483 4484 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4485 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4486 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4487 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4488 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4489 } 4490 4491 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4492 set_sbi_flag(sbi, SBI_NEED_FSCK); 4493 4494 /* Initialize device list */ 4495 err = f2fs_scan_devices(sbi); 4496 if (err) { 4497 f2fs_err(sbi, "Failed to find devices"); 4498 goto free_devices; 4499 } 4500 4501 err = f2fs_init_post_read_wq(sbi); 4502 if (err) { 4503 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4504 goto free_devices; 4505 } 4506 4507 sbi->total_valid_node_count = 4508 le32_to_cpu(sbi->ckpt->valid_node_count); 4509 percpu_counter_set(&sbi->total_valid_inode_count, 4510 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4511 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4512 sbi->total_valid_block_count = 4513 le64_to_cpu(sbi->ckpt->valid_block_count); 4514 sbi->last_valid_block_count = sbi->total_valid_block_count; 4515 sbi->reserved_blocks = 0; 4516 sbi->current_reserved_blocks = 0; 4517 limit_reserve_root(sbi); 4518 adjust_unusable_cap_perc(sbi); 4519 4520 f2fs_init_extent_cache_info(sbi); 4521 4522 f2fs_init_ino_entry_info(sbi); 4523 4524 f2fs_init_fsync_node_info(sbi); 4525 4526 /* setup checkpoint request control and start checkpoint issue thread */ 4527 f2fs_init_ckpt_req_control(sbi); 4528 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4529 test_opt(sbi, MERGE_CHECKPOINT)) { 4530 err = f2fs_start_ckpt_thread(sbi); 4531 if (err) { 4532 f2fs_err(sbi, 4533 "Failed to start F2FS issue_checkpoint_thread (%d)", 4534 err); 4535 goto stop_ckpt_thread; 4536 } 4537 } 4538 4539 /* setup f2fs internal modules */ 4540 err = f2fs_build_segment_manager(sbi); 4541 if (err) { 4542 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4543 err); 4544 goto free_sm; 4545 } 4546 err = f2fs_build_node_manager(sbi); 4547 if (err) { 4548 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4549 err); 4550 goto free_nm; 4551 } 4552 4553 /* For write statistics */ 4554 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4555 4556 /* Read accumulated write IO statistics if exists */ 4557 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4558 if (__exist_node_summaries(sbi)) 4559 sbi->kbytes_written = 4560 le64_to_cpu(seg_i->journal->info.kbytes_written); 4561 4562 f2fs_build_gc_manager(sbi); 4563 4564 err = f2fs_build_stats(sbi); 4565 if (err) 4566 goto free_nm; 4567 4568 /* get an inode for node space */ 4569 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4570 if (IS_ERR(sbi->node_inode)) { 4571 f2fs_err(sbi, "Failed to read node inode"); 4572 err = PTR_ERR(sbi->node_inode); 4573 goto free_stats; 4574 } 4575 4576 /* read root inode and dentry */ 4577 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4578 if (IS_ERR(root)) { 4579 f2fs_err(sbi, "Failed to read root inode"); 4580 err = PTR_ERR(root); 4581 goto free_node_inode; 4582 } 4583 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4584 !root->i_size || !root->i_nlink) { 4585 iput(root); 4586 err = -EINVAL; 4587 goto free_node_inode; 4588 } 4589 4590 sb->s_root = d_make_root(root); /* allocate root dentry */ 4591 if (!sb->s_root) { 4592 err = -ENOMEM; 4593 goto free_node_inode; 4594 } 4595 4596 err = f2fs_init_compress_inode(sbi); 4597 if (err) 4598 goto free_root_inode; 4599 4600 err = f2fs_register_sysfs(sbi); 4601 if (err) 4602 goto free_compress_inode; 4603 4604 #ifdef CONFIG_QUOTA 4605 /* Enable quota usage during mount */ 4606 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4607 err = f2fs_enable_quotas(sb); 4608 if (err) 4609 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4610 } 4611 4612 quota_enabled = f2fs_recover_quota_begin(sbi); 4613 #endif 4614 /* if there are any orphan inodes, free them */ 4615 err = f2fs_recover_orphan_inodes(sbi); 4616 if (err) 4617 goto free_meta; 4618 4619 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4620 goto reset_checkpoint; 4621 4622 /* recover fsynced data */ 4623 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4624 !test_opt(sbi, NORECOVERY)) { 4625 /* 4626 * mount should be failed, when device has readonly mode, and 4627 * previous checkpoint was not done by clean system shutdown. 4628 */ 4629 if (f2fs_hw_is_readonly(sbi)) { 4630 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4631 err = f2fs_recover_fsync_data(sbi, true); 4632 if (err > 0) { 4633 err = -EROFS; 4634 f2fs_err(sbi, "Need to recover fsync data, but " 4635 "write access unavailable, please try " 4636 "mount w/ disable_roll_forward or norecovery"); 4637 } 4638 if (err < 0) 4639 goto free_meta; 4640 } 4641 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4642 goto reset_checkpoint; 4643 } 4644 4645 if (need_fsck) 4646 set_sbi_flag(sbi, SBI_NEED_FSCK); 4647 4648 if (skip_recovery) 4649 goto reset_checkpoint; 4650 4651 err = f2fs_recover_fsync_data(sbi, false); 4652 if (err < 0) { 4653 if (err != -ENOMEM) 4654 skip_recovery = true; 4655 need_fsck = true; 4656 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4657 err); 4658 goto free_meta; 4659 } 4660 } else { 4661 err = f2fs_recover_fsync_data(sbi, true); 4662 4663 if (!f2fs_readonly(sb) && err > 0) { 4664 err = -EINVAL; 4665 f2fs_err(sbi, "Need to recover fsync data"); 4666 goto free_meta; 4667 } 4668 } 4669 4670 #ifdef CONFIG_QUOTA 4671 f2fs_recover_quota_end(sbi, quota_enabled); 4672 #endif 4673 4674 /* 4675 * If the f2fs is not readonly and fsync data recovery succeeds, 4676 * check zoned block devices' write pointer consistency. 4677 */ 4678 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 4679 err = f2fs_check_write_pointer(sbi); 4680 if (err) 4681 goto free_meta; 4682 } 4683 4684 reset_checkpoint: 4685 f2fs_init_inmem_curseg(sbi); 4686 4687 /* f2fs_recover_fsync_data() cleared this already */ 4688 clear_sbi_flag(sbi, SBI_POR_DOING); 4689 4690 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4691 err = f2fs_disable_checkpoint(sbi); 4692 if (err) 4693 goto sync_free_meta; 4694 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4695 f2fs_enable_checkpoint(sbi); 4696 } 4697 4698 /* 4699 * If filesystem is not mounted as read-only then 4700 * do start the gc_thread. 4701 */ 4702 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4703 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4704 /* After POR, we can run background GC thread.*/ 4705 err = f2fs_start_gc_thread(sbi); 4706 if (err) 4707 goto sync_free_meta; 4708 } 4709 kvfree(options); 4710 4711 /* recover broken superblock */ 4712 if (recovery) { 4713 err = f2fs_commit_super(sbi, true); 4714 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4715 sbi->valid_super_block ? 1 : 2, err); 4716 } 4717 4718 f2fs_join_shrinker(sbi); 4719 4720 f2fs_tuning_parameters(sbi); 4721 4722 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4723 cur_cp_version(F2FS_CKPT(sbi))); 4724 f2fs_update_time(sbi, CP_TIME); 4725 f2fs_update_time(sbi, REQ_TIME); 4726 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4727 return 0; 4728 4729 sync_free_meta: 4730 /* safe to flush all the data */ 4731 sync_filesystem(sbi->sb); 4732 retry_cnt = 0; 4733 4734 free_meta: 4735 #ifdef CONFIG_QUOTA 4736 f2fs_truncate_quota_inode_pages(sb); 4737 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4738 f2fs_quota_off_umount(sbi->sb); 4739 #endif 4740 /* 4741 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4742 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4743 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4744 * falls into an infinite loop in f2fs_sync_meta_pages(). 4745 */ 4746 truncate_inode_pages_final(META_MAPPING(sbi)); 4747 /* evict some inodes being cached by GC */ 4748 evict_inodes(sb); 4749 f2fs_unregister_sysfs(sbi); 4750 free_compress_inode: 4751 f2fs_destroy_compress_inode(sbi); 4752 free_root_inode: 4753 dput(sb->s_root); 4754 sb->s_root = NULL; 4755 free_node_inode: 4756 f2fs_release_ino_entry(sbi, true); 4757 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4758 iput(sbi->node_inode); 4759 sbi->node_inode = NULL; 4760 free_stats: 4761 f2fs_destroy_stats(sbi); 4762 free_nm: 4763 /* stop discard thread before destroying node manager */ 4764 f2fs_stop_discard_thread(sbi); 4765 f2fs_destroy_node_manager(sbi); 4766 free_sm: 4767 f2fs_destroy_segment_manager(sbi); 4768 stop_ckpt_thread: 4769 f2fs_stop_ckpt_thread(sbi); 4770 /* flush s_error_work before sbi destroy */ 4771 flush_work(&sbi->s_error_work); 4772 f2fs_destroy_post_read_wq(sbi); 4773 free_devices: 4774 destroy_device_list(sbi); 4775 kvfree(sbi->ckpt); 4776 free_meta_inode: 4777 make_bad_inode(sbi->meta_inode); 4778 iput(sbi->meta_inode); 4779 sbi->meta_inode = NULL; 4780 free_page_array_cache: 4781 f2fs_destroy_page_array_cache(sbi); 4782 free_xattr_cache: 4783 f2fs_destroy_xattr_caches(sbi); 4784 free_percpu: 4785 destroy_percpu_info(sbi); 4786 free_iostat: 4787 f2fs_destroy_iostat(sbi); 4788 free_bio_info: 4789 for (i = 0; i < NR_PAGE_TYPE; i++) 4790 kvfree(sbi->write_io[i]); 4791 4792 #if IS_ENABLED(CONFIG_UNICODE) 4793 utf8_unload(sb->s_encoding); 4794 sb->s_encoding = NULL; 4795 #endif 4796 free_options: 4797 #ifdef CONFIG_QUOTA 4798 for (i = 0; i < MAXQUOTAS; i++) 4799 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4800 #endif 4801 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4802 kvfree(options); 4803 free_sb_buf: 4804 kfree(raw_super); 4805 free_sbi: 4806 if (sbi->s_chksum_driver) 4807 crypto_free_shash(sbi->s_chksum_driver); 4808 kfree(sbi); 4809 4810 /* give only one another chance */ 4811 if (retry_cnt > 0 && skip_recovery) { 4812 retry_cnt--; 4813 shrink_dcache_sb(sb); 4814 goto try_onemore; 4815 } 4816 return err; 4817 } 4818 4819 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4820 const char *dev_name, void *data) 4821 { 4822 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4823 } 4824 4825 static void kill_f2fs_super(struct super_block *sb) 4826 { 4827 if (sb->s_root) { 4828 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4829 4830 set_sbi_flag(sbi, SBI_IS_CLOSE); 4831 f2fs_stop_gc_thread(sbi); 4832 f2fs_stop_discard_thread(sbi); 4833 4834 #ifdef CONFIG_F2FS_FS_COMPRESSION 4835 /* 4836 * latter evict_inode() can bypass checking and invalidating 4837 * compress inode cache. 4838 */ 4839 if (test_opt(sbi, COMPRESS_CACHE)) 4840 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4841 #endif 4842 4843 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4844 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4845 struct cp_control cpc = { 4846 .reason = CP_UMOUNT, 4847 }; 4848 stat_inc_cp_call_count(sbi, TOTAL_CALL); 4849 f2fs_write_checkpoint(sbi, &cpc); 4850 } 4851 4852 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4853 sb->s_flags &= ~SB_RDONLY; 4854 } 4855 kill_block_super(sb); 4856 } 4857 4858 static struct file_system_type f2fs_fs_type = { 4859 .owner = THIS_MODULE, 4860 .name = "f2fs", 4861 .mount = f2fs_mount, 4862 .kill_sb = kill_f2fs_super, 4863 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 4864 }; 4865 MODULE_ALIAS_FS("f2fs"); 4866 4867 static int __init init_inodecache(void) 4868 { 4869 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4870 sizeof(struct f2fs_inode_info), 0, 4871 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4872 return f2fs_inode_cachep ? 0 : -ENOMEM; 4873 } 4874 4875 static void destroy_inodecache(void) 4876 { 4877 /* 4878 * Make sure all delayed rcu free inodes are flushed before we 4879 * destroy cache. 4880 */ 4881 rcu_barrier(); 4882 kmem_cache_destroy(f2fs_inode_cachep); 4883 } 4884 4885 static int __init init_f2fs_fs(void) 4886 { 4887 int err; 4888 4889 if (PAGE_SIZE != F2FS_BLKSIZE) { 4890 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 4891 PAGE_SIZE, F2FS_BLKSIZE); 4892 return -EINVAL; 4893 } 4894 4895 err = init_inodecache(); 4896 if (err) 4897 goto fail; 4898 err = f2fs_create_node_manager_caches(); 4899 if (err) 4900 goto free_inodecache; 4901 err = f2fs_create_segment_manager_caches(); 4902 if (err) 4903 goto free_node_manager_caches; 4904 err = f2fs_create_checkpoint_caches(); 4905 if (err) 4906 goto free_segment_manager_caches; 4907 err = f2fs_create_recovery_cache(); 4908 if (err) 4909 goto free_checkpoint_caches; 4910 err = f2fs_create_extent_cache(); 4911 if (err) 4912 goto free_recovery_cache; 4913 err = f2fs_create_garbage_collection_cache(); 4914 if (err) 4915 goto free_extent_cache; 4916 err = f2fs_init_sysfs(); 4917 if (err) 4918 goto free_garbage_collection_cache; 4919 err = register_shrinker(&f2fs_shrinker_info, "f2fs-shrinker"); 4920 if (err) 4921 goto free_sysfs; 4922 err = register_filesystem(&f2fs_fs_type); 4923 if (err) 4924 goto free_shrinker; 4925 f2fs_create_root_stats(); 4926 err = f2fs_init_post_read_processing(); 4927 if (err) 4928 goto free_root_stats; 4929 err = f2fs_init_iostat_processing(); 4930 if (err) 4931 goto free_post_read; 4932 err = f2fs_init_bio_entry_cache(); 4933 if (err) 4934 goto free_iostat; 4935 err = f2fs_init_bioset(); 4936 if (err) 4937 goto free_bio_entry_cache; 4938 err = f2fs_init_compress_mempool(); 4939 if (err) 4940 goto free_bioset; 4941 err = f2fs_init_compress_cache(); 4942 if (err) 4943 goto free_compress_mempool; 4944 err = f2fs_create_casefold_cache(); 4945 if (err) 4946 goto free_compress_cache; 4947 return 0; 4948 free_compress_cache: 4949 f2fs_destroy_compress_cache(); 4950 free_compress_mempool: 4951 f2fs_destroy_compress_mempool(); 4952 free_bioset: 4953 f2fs_destroy_bioset(); 4954 free_bio_entry_cache: 4955 f2fs_destroy_bio_entry_cache(); 4956 free_iostat: 4957 f2fs_destroy_iostat_processing(); 4958 free_post_read: 4959 f2fs_destroy_post_read_processing(); 4960 free_root_stats: 4961 f2fs_destroy_root_stats(); 4962 unregister_filesystem(&f2fs_fs_type); 4963 free_shrinker: 4964 unregister_shrinker(&f2fs_shrinker_info); 4965 free_sysfs: 4966 f2fs_exit_sysfs(); 4967 free_garbage_collection_cache: 4968 f2fs_destroy_garbage_collection_cache(); 4969 free_extent_cache: 4970 f2fs_destroy_extent_cache(); 4971 free_recovery_cache: 4972 f2fs_destroy_recovery_cache(); 4973 free_checkpoint_caches: 4974 f2fs_destroy_checkpoint_caches(); 4975 free_segment_manager_caches: 4976 f2fs_destroy_segment_manager_caches(); 4977 free_node_manager_caches: 4978 f2fs_destroy_node_manager_caches(); 4979 free_inodecache: 4980 destroy_inodecache(); 4981 fail: 4982 return err; 4983 } 4984 4985 static void __exit exit_f2fs_fs(void) 4986 { 4987 f2fs_destroy_casefold_cache(); 4988 f2fs_destroy_compress_cache(); 4989 f2fs_destroy_compress_mempool(); 4990 f2fs_destroy_bioset(); 4991 f2fs_destroy_bio_entry_cache(); 4992 f2fs_destroy_iostat_processing(); 4993 f2fs_destroy_post_read_processing(); 4994 f2fs_destroy_root_stats(); 4995 unregister_filesystem(&f2fs_fs_type); 4996 unregister_shrinker(&f2fs_shrinker_info); 4997 f2fs_exit_sysfs(); 4998 f2fs_destroy_garbage_collection_cache(); 4999 f2fs_destroy_extent_cache(); 5000 f2fs_destroy_recovery_cache(); 5001 f2fs_destroy_checkpoint_caches(); 5002 f2fs_destroy_segment_manager_caches(); 5003 f2fs_destroy_node_manager_caches(); 5004 destroy_inodecache(); 5005 } 5006 5007 module_init(init_f2fs_fs) 5008 module_exit(exit_f2fs_fs) 5009 5010 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 5011 MODULE_DESCRIPTION("Flash Friendly File System"); 5012 MODULE_LICENSE("GPL"); 5013 MODULE_SOFTDEP("pre: crc32"); 5014 5015