1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/fs_context.h> 12 #include <linux/sched/mm.h> 13 #include <linux/statfs.h> 14 #include <linux/buffer_head.h> 15 #include <linux/kthread.h> 16 #include <linux/parser.h> 17 #include <linux/mount.h> 18 #include <linux/seq_file.h> 19 #include <linux/proc_fs.h> 20 #include <linux/random.h> 21 #include <linux/exportfs.h> 22 #include <linux/blkdev.h> 23 #include <linux/quotaops.h> 24 #include <linux/f2fs_fs.h> 25 #include <linux/sysfs.h> 26 #include <linux/quota.h> 27 #include <linux/unicode.h> 28 #include <linux/part_stat.h> 29 #include <linux/zstd.h> 30 #include <linux/lz4.h> 31 32 #include "f2fs.h" 33 #include "node.h" 34 #include "segment.h" 35 #include "xattr.h" 36 #include "gc.h" 37 #include "iostat.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/f2fs.h> 41 42 static struct kmem_cache *f2fs_inode_cachep; 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 46 const char *f2fs_fault_name[FAULT_MAX] = { 47 [FAULT_KMALLOC] = "kmalloc", 48 [FAULT_KVMALLOC] = "kvmalloc", 49 [FAULT_PAGE_ALLOC] = "page alloc", 50 [FAULT_PAGE_GET] = "page get", 51 [FAULT_ALLOC_NID] = "alloc nid", 52 [FAULT_ORPHAN] = "orphan", 53 [FAULT_BLOCK] = "no more block", 54 [FAULT_DIR_DEPTH] = "too big dir depth", 55 [FAULT_EVICT_INODE] = "evict_inode fail", 56 [FAULT_TRUNCATE] = "truncate fail", 57 [FAULT_READ_IO] = "read IO error", 58 [FAULT_CHECKPOINT] = "checkpoint error", 59 [FAULT_DISCARD] = "discard error", 60 [FAULT_WRITE_IO] = "write IO error", 61 [FAULT_SLAB_ALLOC] = "slab alloc", 62 [FAULT_DQUOT_INIT] = "dquot initialize", 63 [FAULT_LOCK_OP] = "lock_op", 64 [FAULT_BLKADDR] = "invalid blkaddr", 65 }; 66 67 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 68 unsigned int type) 69 { 70 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 71 72 if (rate) { 73 atomic_set(&ffi->inject_ops, 0); 74 ffi->inject_rate = rate; 75 } 76 77 if (type) 78 ffi->inject_type = type; 79 80 if (!rate && !type) 81 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 82 } 83 #endif 84 85 /* f2fs-wide shrinker description */ 86 static struct shrinker f2fs_shrinker_info = { 87 .scan_objects = f2fs_shrink_scan, 88 .count_objects = f2fs_shrink_count, 89 .seeks = DEFAULT_SEEKS, 90 }; 91 92 enum { 93 Opt_gc_background, 94 Opt_disable_roll_forward, 95 Opt_norecovery, 96 Opt_discard, 97 Opt_nodiscard, 98 Opt_noheap, 99 Opt_heap, 100 Opt_user_xattr, 101 Opt_nouser_xattr, 102 Opt_acl, 103 Opt_noacl, 104 Opt_active_logs, 105 Opt_disable_ext_identify, 106 Opt_inline_xattr, 107 Opt_noinline_xattr, 108 Opt_inline_xattr_size, 109 Opt_inline_data, 110 Opt_inline_dentry, 111 Opt_noinline_dentry, 112 Opt_flush_merge, 113 Opt_noflush_merge, 114 Opt_barrier, 115 Opt_nobarrier, 116 Opt_fastboot, 117 Opt_extent_cache, 118 Opt_noextent_cache, 119 Opt_noinline_data, 120 Opt_data_flush, 121 Opt_reserve_root, 122 Opt_resgid, 123 Opt_resuid, 124 Opt_mode, 125 Opt_io_size_bits, 126 Opt_fault_injection, 127 Opt_fault_type, 128 Opt_lazytime, 129 Opt_nolazytime, 130 Opt_quota, 131 Opt_noquota, 132 Opt_usrquota, 133 Opt_grpquota, 134 Opt_prjquota, 135 Opt_usrjquota, 136 Opt_grpjquota, 137 Opt_prjjquota, 138 Opt_offusrjquota, 139 Opt_offgrpjquota, 140 Opt_offprjjquota, 141 Opt_jqfmt_vfsold, 142 Opt_jqfmt_vfsv0, 143 Opt_jqfmt_vfsv1, 144 Opt_alloc, 145 Opt_fsync, 146 Opt_test_dummy_encryption, 147 Opt_inlinecrypt, 148 Opt_checkpoint_disable, 149 Opt_checkpoint_disable_cap, 150 Opt_checkpoint_disable_cap_perc, 151 Opt_checkpoint_enable, 152 Opt_checkpoint_merge, 153 Opt_nocheckpoint_merge, 154 Opt_compress_algorithm, 155 Opt_compress_log_size, 156 Opt_compress_extension, 157 Opt_nocompress_extension, 158 Opt_compress_chksum, 159 Opt_compress_mode, 160 Opt_compress_cache, 161 Opt_atgc, 162 Opt_gc_merge, 163 Opt_nogc_merge, 164 Opt_discard_unit, 165 Opt_memory_mode, 166 Opt_age_extent_cache, 167 Opt_errors, 168 Opt_err, 169 }; 170 171 static match_table_t f2fs_tokens = { 172 {Opt_gc_background, "background_gc=%s"}, 173 {Opt_disable_roll_forward, "disable_roll_forward"}, 174 {Opt_norecovery, "norecovery"}, 175 {Opt_discard, "discard"}, 176 {Opt_nodiscard, "nodiscard"}, 177 {Opt_noheap, "no_heap"}, 178 {Opt_heap, "heap"}, 179 {Opt_user_xattr, "user_xattr"}, 180 {Opt_nouser_xattr, "nouser_xattr"}, 181 {Opt_acl, "acl"}, 182 {Opt_noacl, "noacl"}, 183 {Opt_active_logs, "active_logs=%u"}, 184 {Opt_disable_ext_identify, "disable_ext_identify"}, 185 {Opt_inline_xattr, "inline_xattr"}, 186 {Opt_noinline_xattr, "noinline_xattr"}, 187 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 188 {Opt_inline_data, "inline_data"}, 189 {Opt_inline_dentry, "inline_dentry"}, 190 {Opt_noinline_dentry, "noinline_dentry"}, 191 {Opt_flush_merge, "flush_merge"}, 192 {Opt_noflush_merge, "noflush_merge"}, 193 {Opt_barrier, "barrier"}, 194 {Opt_nobarrier, "nobarrier"}, 195 {Opt_fastboot, "fastboot"}, 196 {Opt_extent_cache, "extent_cache"}, 197 {Opt_noextent_cache, "noextent_cache"}, 198 {Opt_noinline_data, "noinline_data"}, 199 {Opt_data_flush, "data_flush"}, 200 {Opt_reserve_root, "reserve_root=%u"}, 201 {Opt_resgid, "resgid=%u"}, 202 {Opt_resuid, "resuid=%u"}, 203 {Opt_mode, "mode=%s"}, 204 {Opt_io_size_bits, "io_bits=%u"}, 205 {Opt_fault_injection, "fault_injection=%u"}, 206 {Opt_fault_type, "fault_type=%u"}, 207 {Opt_lazytime, "lazytime"}, 208 {Opt_nolazytime, "nolazytime"}, 209 {Opt_quota, "quota"}, 210 {Opt_noquota, "noquota"}, 211 {Opt_usrquota, "usrquota"}, 212 {Opt_grpquota, "grpquota"}, 213 {Opt_prjquota, "prjquota"}, 214 {Opt_usrjquota, "usrjquota=%s"}, 215 {Opt_grpjquota, "grpjquota=%s"}, 216 {Opt_prjjquota, "prjjquota=%s"}, 217 {Opt_offusrjquota, "usrjquota="}, 218 {Opt_offgrpjquota, "grpjquota="}, 219 {Opt_offprjjquota, "prjjquota="}, 220 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 221 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 222 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 223 {Opt_alloc, "alloc_mode=%s"}, 224 {Opt_fsync, "fsync_mode=%s"}, 225 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 226 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 227 {Opt_inlinecrypt, "inlinecrypt"}, 228 {Opt_checkpoint_disable, "checkpoint=disable"}, 229 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 230 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 231 {Opt_checkpoint_enable, "checkpoint=enable"}, 232 {Opt_checkpoint_merge, "checkpoint_merge"}, 233 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 234 {Opt_compress_algorithm, "compress_algorithm=%s"}, 235 {Opt_compress_log_size, "compress_log_size=%u"}, 236 {Opt_compress_extension, "compress_extension=%s"}, 237 {Opt_nocompress_extension, "nocompress_extension=%s"}, 238 {Opt_compress_chksum, "compress_chksum"}, 239 {Opt_compress_mode, "compress_mode=%s"}, 240 {Opt_compress_cache, "compress_cache"}, 241 {Opt_atgc, "atgc"}, 242 {Opt_gc_merge, "gc_merge"}, 243 {Opt_nogc_merge, "nogc_merge"}, 244 {Opt_discard_unit, "discard_unit=%s"}, 245 {Opt_memory_mode, "memory=%s"}, 246 {Opt_age_extent_cache, "age_extent_cache"}, 247 {Opt_errors, "errors=%s"}, 248 {Opt_err, NULL}, 249 }; 250 251 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 252 { 253 struct va_format vaf; 254 va_list args; 255 int level; 256 257 va_start(args, fmt); 258 259 level = printk_get_level(fmt); 260 vaf.fmt = printk_skip_level(fmt); 261 vaf.va = &args; 262 printk("%c%cF2FS-fs (%s): %pV\n", 263 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 264 265 va_end(args); 266 } 267 268 #if IS_ENABLED(CONFIG_UNICODE) 269 static const struct f2fs_sb_encodings { 270 __u16 magic; 271 char *name; 272 unsigned int version; 273 } f2fs_sb_encoding_map[] = { 274 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 275 }; 276 277 static const struct f2fs_sb_encodings * 278 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 279 { 280 __u16 magic = le16_to_cpu(sb->s_encoding); 281 int i; 282 283 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 284 if (magic == f2fs_sb_encoding_map[i].magic) 285 return &f2fs_sb_encoding_map[i]; 286 287 return NULL; 288 } 289 290 struct kmem_cache *f2fs_cf_name_slab; 291 static int __init f2fs_create_casefold_cache(void) 292 { 293 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 294 F2FS_NAME_LEN); 295 return f2fs_cf_name_slab ? 0 : -ENOMEM; 296 } 297 298 static void f2fs_destroy_casefold_cache(void) 299 { 300 kmem_cache_destroy(f2fs_cf_name_slab); 301 } 302 #else 303 static int __init f2fs_create_casefold_cache(void) { return 0; } 304 static void f2fs_destroy_casefold_cache(void) { } 305 #endif 306 307 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 308 { 309 block_t limit = min((sbi->user_block_count >> 3), 310 sbi->user_block_count - sbi->reserved_blocks); 311 312 /* limit is 12.5% */ 313 if (test_opt(sbi, RESERVE_ROOT) && 314 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 315 F2FS_OPTION(sbi).root_reserved_blocks = limit; 316 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 317 F2FS_OPTION(sbi).root_reserved_blocks); 318 } 319 if (!test_opt(sbi, RESERVE_ROOT) && 320 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 321 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 322 !gid_eq(F2FS_OPTION(sbi).s_resgid, 323 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 324 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 325 from_kuid_munged(&init_user_ns, 326 F2FS_OPTION(sbi).s_resuid), 327 from_kgid_munged(&init_user_ns, 328 F2FS_OPTION(sbi).s_resgid)); 329 } 330 331 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi) 332 { 333 unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec; 334 unsigned int avg_vblocks; 335 unsigned int wanted_reserved_segments; 336 block_t avail_user_block_count; 337 338 if (!F2FS_IO_ALIGNED(sbi)) 339 return 0; 340 341 /* average valid block count in section in worst case */ 342 avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi); 343 344 /* 345 * we need enough free space when migrating one section in worst case 346 */ 347 wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) * 348 reserved_segments(sbi); 349 wanted_reserved_segments -= reserved_segments(sbi); 350 351 avail_user_block_count = sbi->user_block_count - 352 sbi->current_reserved_blocks - 353 F2FS_OPTION(sbi).root_reserved_blocks; 354 355 if (wanted_reserved_segments * sbi->blocks_per_seg > 356 avail_user_block_count) { 357 f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u", 358 wanted_reserved_segments, 359 avail_user_block_count >> sbi->log_blocks_per_seg); 360 return -ENOSPC; 361 } 362 363 SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments; 364 365 f2fs_info(sbi, "IO align feature needs additional reserved segment: %u", 366 wanted_reserved_segments); 367 368 return 0; 369 } 370 371 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 372 { 373 if (!F2FS_OPTION(sbi).unusable_cap_perc) 374 return; 375 376 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 377 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 378 else 379 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 380 F2FS_OPTION(sbi).unusable_cap_perc; 381 382 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 383 F2FS_OPTION(sbi).unusable_cap, 384 F2FS_OPTION(sbi).unusable_cap_perc); 385 } 386 387 static void init_once(void *foo) 388 { 389 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 390 391 inode_init_once(&fi->vfs_inode); 392 } 393 394 #ifdef CONFIG_QUOTA 395 static const char * const quotatypes[] = INITQFNAMES; 396 #define QTYPE2NAME(t) (quotatypes[t]) 397 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 398 substring_t *args) 399 { 400 struct f2fs_sb_info *sbi = F2FS_SB(sb); 401 char *qname; 402 int ret = -EINVAL; 403 404 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 405 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 406 return -EINVAL; 407 } 408 if (f2fs_sb_has_quota_ino(sbi)) { 409 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 410 return 0; 411 } 412 413 qname = match_strdup(args); 414 if (!qname) { 415 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 416 return -ENOMEM; 417 } 418 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 419 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 420 ret = 0; 421 else 422 f2fs_err(sbi, "%s quota file already specified", 423 QTYPE2NAME(qtype)); 424 goto errout; 425 } 426 if (strchr(qname, '/')) { 427 f2fs_err(sbi, "quotafile must be on filesystem root"); 428 goto errout; 429 } 430 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 431 set_opt(sbi, QUOTA); 432 return 0; 433 errout: 434 kfree(qname); 435 return ret; 436 } 437 438 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 439 { 440 struct f2fs_sb_info *sbi = F2FS_SB(sb); 441 442 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 443 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 444 return -EINVAL; 445 } 446 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 447 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 448 return 0; 449 } 450 451 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 452 { 453 /* 454 * We do the test below only for project quotas. 'usrquota' and 455 * 'grpquota' mount options are allowed even without quota feature 456 * to support legacy quotas in quota files. 457 */ 458 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 459 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 460 return -1; 461 } 462 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 463 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 464 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 465 if (test_opt(sbi, USRQUOTA) && 466 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 467 clear_opt(sbi, USRQUOTA); 468 469 if (test_opt(sbi, GRPQUOTA) && 470 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 471 clear_opt(sbi, GRPQUOTA); 472 473 if (test_opt(sbi, PRJQUOTA) && 474 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 475 clear_opt(sbi, PRJQUOTA); 476 477 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 478 test_opt(sbi, PRJQUOTA)) { 479 f2fs_err(sbi, "old and new quota format mixing"); 480 return -1; 481 } 482 483 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 484 f2fs_err(sbi, "journaled quota format not specified"); 485 return -1; 486 } 487 } 488 489 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 490 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 491 F2FS_OPTION(sbi).s_jquota_fmt = 0; 492 } 493 return 0; 494 } 495 #endif 496 497 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 498 const char *opt, 499 const substring_t *arg, 500 bool is_remount) 501 { 502 struct f2fs_sb_info *sbi = F2FS_SB(sb); 503 struct fs_parameter param = { 504 .type = fs_value_is_string, 505 .string = arg->from ? arg->from : "", 506 }; 507 struct fscrypt_dummy_policy *policy = 508 &F2FS_OPTION(sbi).dummy_enc_policy; 509 int err; 510 511 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 512 f2fs_warn(sbi, "test_dummy_encryption option not supported"); 513 return -EINVAL; 514 } 515 516 if (!f2fs_sb_has_encrypt(sbi)) { 517 f2fs_err(sbi, "Encrypt feature is off"); 518 return -EINVAL; 519 } 520 521 /* 522 * This mount option is just for testing, and it's not worthwhile to 523 * implement the extra complexity (e.g. RCU protection) that would be 524 * needed to allow it to be set or changed during remount. We do allow 525 * it to be specified during remount, but only if there is no change. 526 */ 527 if (is_remount && !fscrypt_is_dummy_policy_set(policy)) { 528 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 529 return -EINVAL; 530 } 531 532 err = fscrypt_parse_test_dummy_encryption(¶m, policy); 533 if (err) { 534 if (err == -EEXIST) 535 f2fs_warn(sbi, 536 "Can't change test_dummy_encryption on remount"); 537 else if (err == -EINVAL) 538 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 539 opt); 540 else 541 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 542 opt, err); 543 return -EINVAL; 544 } 545 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 546 return 0; 547 } 548 549 #ifdef CONFIG_F2FS_FS_COMPRESSION 550 static bool is_compress_extension_exist(struct f2fs_sb_info *sbi, 551 const char *new_ext, bool is_ext) 552 { 553 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 554 int ext_cnt; 555 int i; 556 557 if (is_ext) { 558 ext = F2FS_OPTION(sbi).extensions; 559 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 560 } else { 561 ext = F2FS_OPTION(sbi).noextensions; 562 ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 563 } 564 565 for (i = 0; i < ext_cnt; i++) { 566 if (!strcasecmp(new_ext, ext[i])) 567 return true; 568 } 569 570 return false; 571 } 572 573 /* 574 * 1. The same extension name cannot not appear in both compress and non-compress extension 575 * at the same time. 576 * 2. If the compress extension specifies all files, the types specified by the non-compress 577 * extension will be treated as special cases and will not be compressed. 578 * 3. Don't allow the non-compress extension specifies all files. 579 */ 580 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 581 { 582 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 583 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 584 int ext_cnt, noext_cnt, index = 0, no_index = 0; 585 586 ext = F2FS_OPTION(sbi).extensions; 587 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 588 noext = F2FS_OPTION(sbi).noextensions; 589 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 590 591 if (!noext_cnt) 592 return 0; 593 594 for (no_index = 0; no_index < noext_cnt; no_index++) { 595 if (!strcasecmp("*", noext[no_index])) { 596 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 597 return -EINVAL; 598 } 599 for (index = 0; index < ext_cnt; index++) { 600 if (!strcasecmp(ext[index], noext[no_index])) { 601 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 602 ext[index]); 603 return -EINVAL; 604 } 605 } 606 } 607 return 0; 608 } 609 610 #ifdef CONFIG_F2FS_FS_LZ4 611 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 612 { 613 #ifdef CONFIG_F2FS_FS_LZ4HC 614 unsigned int level; 615 616 if (strlen(str) == 3) { 617 F2FS_OPTION(sbi).compress_level = 0; 618 return 0; 619 } 620 621 str += 3; 622 623 if (str[0] != ':') { 624 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 625 return -EINVAL; 626 } 627 if (kstrtouint(str + 1, 10, &level)) 628 return -EINVAL; 629 630 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) { 631 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 632 return -EINVAL; 633 } 634 635 F2FS_OPTION(sbi).compress_level = level; 636 return 0; 637 #else 638 if (strlen(str) == 3) { 639 F2FS_OPTION(sbi).compress_level = 0; 640 return 0; 641 } 642 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 643 return -EINVAL; 644 #endif 645 } 646 #endif 647 648 #ifdef CONFIG_F2FS_FS_ZSTD 649 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 650 { 651 int level; 652 int len = 4; 653 654 if (strlen(str) == len) { 655 F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 656 return 0; 657 } 658 659 str += len; 660 661 if (str[0] != ':') { 662 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 663 return -EINVAL; 664 } 665 if (kstrtoint(str + 1, 10, &level)) 666 return -EINVAL; 667 668 /* f2fs does not support negative compress level now */ 669 if (level < 0) { 670 f2fs_info(sbi, "do not support negative compress level: %d", level); 671 return -ERANGE; 672 } 673 674 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) { 675 f2fs_info(sbi, "invalid zstd compress level: %d", level); 676 return -EINVAL; 677 } 678 679 F2FS_OPTION(sbi).compress_level = level; 680 return 0; 681 } 682 #endif 683 #endif 684 685 static int parse_options(struct super_block *sb, char *options, bool is_remount) 686 { 687 struct f2fs_sb_info *sbi = F2FS_SB(sb); 688 substring_t args[MAX_OPT_ARGS]; 689 #ifdef CONFIG_F2FS_FS_COMPRESSION 690 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 691 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 692 int ext_cnt, noext_cnt; 693 #endif 694 char *p, *name; 695 int arg = 0; 696 kuid_t uid; 697 kgid_t gid; 698 int ret; 699 700 if (!options) 701 goto default_check; 702 703 while ((p = strsep(&options, ",")) != NULL) { 704 int token; 705 706 if (!*p) 707 continue; 708 /* 709 * Initialize args struct so we know whether arg was 710 * found; some options take optional arguments. 711 */ 712 args[0].to = args[0].from = NULL; 713 token = match_token(p, f2fs_tokens, args); 714 715 switch (token) { 716 case Opt_gc_background: 717 name = match_strdup(&args[0]); 718 719 if (!name) 720 return -ENOMEM; 721 if (!strcmp(name, "on")) { 722 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 723 } else if (!strcmp(name, "off")) { 724 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 725 } else if (!strcmp(name, "sync")) { 726 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 727 } else { 728 kfree(name); 729 return -EINVAL; 730 } 731 kfree(name); 732 break; 733 case Opt_disable_roll_forward: 734 set_opt(sbi, DISABLE_ROLL_FORWARD); 735 break; 736 case Opt_norecovery: 737 /* this option mounts f2fs with ro */ 738 set_opt(sbi, NORECOVERY); 739 if (!f2fs_readonly(sb)) 740 return -EINVAL; 741 break; 742 case Opt_discard: 743 if (!f2fs_hw_support_discard(sbi)) { 744 f2fs_warn(sbi, "device does not support discard"); 745 break; 746 } 747 set_opt(sbi, DISCARD); 748 break; 749 case Opt_nodiscard: 750 if (f2fs_hw_should_discard(sbi)) { 751 f2fs_warn(sbi, "discard is required for zoned block devices"); 752 return -EINVAL; 753 } 754 clear_opt(sbi, DISCARD); 755 break; 756 case Opt_noheap: 757 set_opt(sbi, NOHEAP); 758 break; 759 case Opt_heap: 760 clear_opt(sbi, NOHEAP); 761 break; 762 #ifdef CONFIG_F2FS_FS_XATTR 763 case Opt_user_xattr: 764 set_opt(sbi, XATTR_USER); 765 break; 766 case Opt_nouser_xattr: 767 clear_opt(sbi, XATTR_USER); 768 break; 769 case Opt_inline_xattr: 770 set_opt(sbi, INLINE_XATTR); 771 break; 772 case Opt_noinline_xattr: 773 clear_opt(sbi, INLINE_XATTR); 774 break; 775 case Opt_inline_xattr_size: 776 if (args->from && match_int(args, &arg)) 777 return -EINVAL; 778 set_opt(sbi, INLINE_XATTR_SIZE); 779 F2FS_OPTION(sbi).inline_xattr_size = arg; 780 break; 781 #else 782 case Opt_user_xattr: 783 f2fs_info(sbi, "user_xattr options not supported"); 784 break; 785 case Opt_nouser_xattr: 786 f2fs_info(sbi, "nouser_xattr options not supported"); 787 break; 788 case Opt_inline_xattr: 789 f2fs_info(sbi, "inline_xattr options not supported"); 790 break; 791 case Opt_noinline_xattr: 792 f2fs_info(sbi, "noinline_xattr options not supported"); 793 break; 794 #endif 795 #ifdef CONFIG_F2FS_FS_POSIX_ACL 796 case Opt_acl: 797 set_opt(sbi, POSIX_ACL); 798 break; 799 case Opt_noacl: 800 clear_opt(sbi, POSIX_ACL); 801 break; 802 #else 803 case Opt_acl: 804 f2fs_info(sbi, "acl options not supported"); 805 break; 806 case Opt_noacl: 807 f2fs_info(sbi, "noacl options not supported"); 808 break; 809 #endif 810 case Opt_active_logs: 811 if (args->from && match_int(args, &arg)) 812 return -EINVAL; 813 if (arg != 2 && arg != 4 && 814 arg != NR_CURSEG_PERSIST_TYPE) 815 return -EINVAL; 816 F2FS_OPTION(sbi).active_logs = arg; 817 break; 818 case Opt_disable_ext_identify: 819 set_opt(sbi, DISABLE_EXT_IDENTIFY); 820 break; 821 case Opt_inline_data: 822 set_opt(sbi, INLINE_DATA); 823 break; 824 case Opt_inline_dentry: 825 set_opt(sbi, INLINE_DENTRY); 826 break; 827 case Opt_noinline_dentry: 828 clear_opt(sbi, INLINE_DENTRY); 829 break; 830 case Opt_flush_merge: 831 set_opt(sbi, FLUSH_MERGE); 832 break; 833 case Opt_noflush_merge: 834 clear_opt(sbi, FLUSH_MERGE); 835 break; 836 case Opt_nobarrier: 837 set_opt(sbi, NOBARRIER); 838 break; 839 case Opt_barrier: 840 clear_opt(sbi, NOBARRIER); 841 break; 842 case Opt_fastboot: 843 set_opt(sbi, FASTBOOT); 844 break; 845 case Opt_extent_cache: 846 set_opt(sbi, READ_EXTENT_CACHE); 847 break; 848 case Opt_noextent_cache: 849 clear_opt(sbi, READ_EXTENT_CACHE); 850 break; 851 case Opt_noinline_data: 852 clear_opt(sbi, INLINE_DATA); 853 break; 854 case Opt_data_flush: 855 set_opt(sbi, DATA_FLUSH); 856 break; 857 case Opt_reserve_root: 858 if (args->from && match_int(args, &arg)) 859 return -EINVAL; 860 if (test_opt(sbi, RESERVE_ROOT)) { 861 f2fs_info(sbi, "Preserve previous reserve_root=%u", 862 F2FS_OPTION(sbi).root_reserved_blocks); 863 } else { 864 F2FS_OPTION(sbi).root_reserved_blocks = arg; 865 set_opt(sbi, RESERVE_ROOT); 866 } 867 break; 868 case Opt_resuid: 869 if (args->from && match_int(args, &arg)) 870 return -EINVAL; 871 uid = make_kuid(current_user_ns(), arg); 872 if (!uid_valid(uid)) { 873 f2fs_err(sbi, "Invalid uid value %d", arg); 874 return -EINVAL; 875 } 876 F2FS_OPTION(sbi).s_resuid = uid; 877 break; 878 case Opt_resgid: 879 if (args->from && match_int(args, &arg)) 880 return -EINVAL; 881 gid = make_kgid(current_user_ns(), arg); 882 if (!gid_valid(gid)) { 883 f2fs_err(sbi, "Invalid gid value %d", arg); 884 return -EINVAL; 885 } 886 F2FS_OPTION(sbi).s_resgid = gid; 887 break; 888 case Opt_mode: 889 name = match_strdup(&args[0]); 890 891 if (!name) 892 return -ENOMEM; 893 if (!strcmp(name, "adaptive")) { 894 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 895 } else if (!strcmp(name, "lfs")) { 896 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 897 } else if (!strcmp(name, "fragment:segment")) { 898 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 899 } else if (!strcmp(name, "fragment:block")) { 900 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 901 } else { 902 kfree(name); 903 return -EINVAL; 904 } 905 kfree(name); 906 break; 907 case Opt_io_size_bits: 908 if (args->from && match_int(args, &arg)) 909 return -EINVAL; 910 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) { 911 f2fs_warn(sbi, "Not support %ld, larger than %d", 912 BIT(arg), BIO_MAX_VECS); 913 return -EINVAL; 914 } 915 F2FS_OPTION(sbi).write_io_size_bits = arg; 916 break; 917 #ifdef CONFIG_F2FS_FAULT_INJECTION 918 case Opt_fault_injection: 919 if (args->from && match_int(args, &arg)) 920 return -EINVAL; 921 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 922 set_opt(sbi, FAULT_INJECTION); 923 break; 924 925 case Opt_fault_type: 926 if (args->from && match_int(args, &arg)) 927 return -EINVAL; 928 f2fs_build_fault_attr(sbi, 0, arg); 929 set_opt(sbi, FAULT_INJECTION); 930 break; 931 #else 932 case Opt_fault_injection: 933 f2fs_info(sbi, "fault_injection options not supported"); 934 break; 935 936 case Opt_fault_type: 937 f2fs_info(sbi, "fault_type options not supported"); 938 break; 939 #endif 940 case Opt_lazytime: 941 sb->s_flags |= SB_LAZYTIME; 942 break; 943 case Opt_nolazytime: 944 sb->s_flags &= ~SB_LAZYTIME; 945 break; 946 #ifdef CONFIG_QUOTA 947 case Opt_quota: 948 case Opt_usrquota: 949 set_opt(sbi, USRQUOTA); 950 break; 951 case Opt_grpquota: 952 set_opt(sbi, GRPQUOTA); 953 break; 954 case Opt_prjquota: 955 set_opt(sbi, PRJQUOTA); 956 break; 957 case Opt_usrjquota: 958 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 959 if (ret) 960 return ret; 961 break; 962 case Opt_grpjquota: 963 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 964 if (ret) 965 return ret; 966 break; 967 case Opt_prjjquota: 968 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 969 if (ret) 970 return ret; 971 break; 972 case Opt_offusrjquota: 973 ret = f2fs_clear_qf_name(sb, USRQUOTA); 974 if (ret) 975 return ret; 976 break; 977 case Opt_offgrpjquota: 978 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 979 if (ret) 980 return ret; 981 break; 982 case Opt_offprjjquota: 983 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 984 if (ret) 985 return ret; 986 break; 987 case Opt_jqfmt_vfsold: 988 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 989 break; 990 case Opt_jqfmt_vfsv0: 991 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 992 break; 993 case Opt_jqfmt_vfsv1: 994 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 995 break; 996 case Opt_noquota: 997 clear_opt(sbi, QUOTA); 998 clear_opt(sbi, USRQUOTA); 999 clear_opt(sbi, GRPQUOTA); 1000 clear_opt(sbi, PRJQUOTA); 1001 break; 1002 #else 1003 case Opt_quota: 1004 case Opt_usrquota: 1005 case Opt_grpquota: 1006 case Opt_prjquota: 1007 case Opt_usrjquota: 1008 case Opt_grpjquota: 1009 case Opt_prjjquota: 1010 case Opt_offusrjquota: 1011 case Opt_offgrpjquota: 1012 case Opt_offprjjquota: 1013 case Opt_jqfmt_vfsold: 1014 case Opt_jqfmt_vfsv0: 1015 case Opt_jqfmt_vfsv1: 1016 case Opt_noquota: 1017 f2fs_info(sbi, "quota operations not supported"); 1018 break; 1019 #endif 1020 case Opt_alloc: 1021 name = match_strdup(&args[0]); 1022 if (!name) 1023 return -ENOMEM; 1024 1025 if (!strcmp(name, "default")) { 1026 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1027 } else if (!strcmp(name, "reuse")) { 1028 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 1029 } else { 1030 kfree(name); 1031 return -EINVAL; 1032 } 1033 kfree(name); 1034 break; 1035 case Opt_fsync: 1036 name = match_strdup(&args[0]); 1037 if (!name) 1038 return -ENOMEM; 1039 if (!strcmp(name, "posix")) { 1040 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1041 } else if (!strcmp(name, "strict")) { 1042 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 1043 } else if (!strcmp(name, "nobarrier")) { 1044 F2FS_OPTION(sbi).fsync_mode = 1045 FSYNC_MODE_NOBARRIER; 1046 } else { 1047 kfree(name); 1048 return -EINVAL; 1049 } 1050 kfree(name); 1051 break; 1052 case Opt_test_dummy_encryption: 1053 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 1054 is_remount); 1055 if (ret) 1056 return ret; 1057 break; 1058 case Opt_inlinecrypt: 1059 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1060 sb->s_flags |= SB_INLINECRYPT; 1061 #else 1062 f2fs_info(sbi, "inline encryption not supported"); 1063 #endif 1064 break; 1065 case Opt_checkpoint_disable_cap_perc: 1066 if (args->from && match_int(args, &arg)) 1067 return -EINVAL; 1068 if (arg < 0 || arg > 100) 1069 return -EINVAL; 1070 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1071 set_opt(sbi, DISABLE_CHECKPOINT); 1072 break; 1073 case Opt_checkpoint_disable_cap: 1074 if (args->from && match_int(args, &arg)) 1075 return -EINVAL; 1076 F2FS_OPTION(sbi).unusable_cap = arg; 1077 set_opt(sbi, DISABLE_CHECKPOINT); 1078 break; 1079 case Opt_checkpoint_disable: 1080 set_opt(sbi, DISABLE_CHECKPOINT); 1081 break; 1082 case Opt_checkpoint_enable: 1083 clear_opt(sbi, DISABLE_CHECKPOINT); 1084 break; 1085 case Opt_checkpoint_merge: 1086 set_opt(sbi, MERGE_CHECKPOINT); 1087 break; 1088 case Opt_nocheckpoint_merge: 1089 clear_opt(sbi, MERGE_CHECKPOINT); 1090 break; 1091 #ifdef CONFIG_F2FS_FS_COMPRESSION 1092 case Opt_compress_algorithm: 1093 if (!f2fs_sb_has_compression(sbi)) { 1094 f2fs_info(sbi, "Image doesn't support compression"); 1095 break; 1096 } 1097 name = match_strdup(&args[0]); 1098 if (!name) 1099 return -ENOMEM; 1100 if (!strcmp(name, "lzo")) { 1101 #ifdef CONFIG_F2FS_FS_LZO 1102 F2FS_OPTION(sbi).compress_level = 0; 1103 F2FS_OPTION(sbi).compress_algorithm = 1104 COMPRESS_LZO; 1105 #else 1106 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1107 #endif 1108 } else if (!strncmp(name, "lz4", 3)) { 1109 #ifdef CONFIG_F2FS_FS_LZ4 1110 ret = f2fs_set_lz4hc_level(sbi, name); 1111 if (ret) { 1112 kfree(name); 1113 return -EINVAL; 1114 } 1115 F2FS_OPTION(sbi).compress_algorithm = 1116 COMPRESS_LZ4; 1117 #else 1118 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1119 #endif 1120 } else if (!strncmp(name, "zstd", 4)) { 1121 #ifdef CONFIG_F2FS_FS_ZSTD 1122 ret = f2fs_set_zstd_level(sbi, name); 1123 if (ret) { 1124 kfree(name); 1125 return -EINVAL; 1126 } 1127 F2FS_OPTION(sbi).compress_algorithm = 1128 COMPRESS_ZSTD; 1129 #else 1130 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1131 #endif 1132 } else if (!strcmp(name, "lzo-rle")) { 1133 #ifdef CONFIG_F2FS_FS_LZORLE 1134 F2FS_OPTION(sbi).compress_level = 0; 1135 F2FS_OPTION(sbi).compress_algorithm = 1136 COMPRESS_LZORLE; 1137 #else 1138 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1139 #endif 1140 } else { 1141 kfree(name); 1142 return -EINVAL; 1143 } 1144 kfree(name); 1145 break; 1146 case Opt_compress_log_size: 1147 if (!f2fs_sb_has_compression(sbi)) { 1148 f2fs_info(sbi, "Image doesn't support compression"); 1149 break; 1150 } 1151 if (args->from && match_int(args, &arg)) 1152 return -EINVAL; 1153 if (arg < MIN_COMPRESS_LOG_SIZE || 1154 arg > MAX_COMPRESS_LOG_SIZE) { 1155 f2fs_err(sbi, 1156 "Compress cluster log size is out of range"); 1157 return -EINVAL; 1158 } 1159 F2FS_OPTION(sbi).compress_log_size = arg; 1160 break; 1161 case Opt_compress_extension: 1162 if (!f2fs_sb_has_compression(sbi)) { 1163 f2fs_info(sbi, "Image doesn't support compression"); 1164 break; 1165 } 1166 name = match_strdup(&args[0]); 1167 if (!name) 1168 return -ENOMEM; 1169 1170 ext = F2FS_OPTION(sbi).extensions; 1171 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1172 1173 if (strlen(name) >= F2FS_EXTENSION_LEN || 1174 ext_cnt >= COMPRESS_EXT_NUM) { 1175 f2fs_err(sbi, 1176 "invalid extension length/number"); 1177 kfree(name); 1178 return -EINVAL; 1179 } 1180 1181 if (is_compress_extension_exist(sbi, name, true)) { 1182 kfree(name); 1183 break; 1184 } 1185 1186 strcpy(ext[ext_cnt], name); 1187 F2FS_OPTION(sbi).compress_ext_cnt++; 1188 kfree(name); 1189 break; 1190 case Opt_nocompress_extension: 1191 if (!f2fs_sb_has_compression(sbi)) { 1192 f2fs_info(sbi, "Image doesn't support compression"); 1193 break; 1194 } 1195 name = match_strdup(&args[0]); 1196 if (!name) 1197 return -ENOMEM; 1198 1199 noext = F2FS_OPTION(sbi).noextensions; 1200 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1201 1202 if (strlen(name) >= F2FS_EXTENSION_LEN || 1203 noext_cnt >= COMPRESS_EXT_NUM) { 1204 f2fs_err(sbi, 1205 "invalid extension length/number"); 1206 kfree(name); 1207 return -EINVAL; 1208 } 1209 1210 if (is_compress_extension_exist(sbi, name, false)) { 1211 kfree(name); 1212 break; 1213 } 1214 1215 strcpy(noext[noext_cnt], name); 1216 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1217 kfree(name); 1218 break; 1219 case Opt_compress_chksum: 1220 if (!f2fs_sb_has_compression(sbi)) { 1221 f2fs_info(sbi, "Image doesn't support compression"); 1222 break; 1223 } 1224 F2FS_OPTION(sbi).compress_chksum = true; 1225 break; 1226 case Opt_compress_mode: 1227 if (!f2fs_sb_has_compression(sbi)) { 1228 f2fs_info(sbi, "Image doesn't support compression"); 1229 break; 1230 } 1231 name = match_strdup(&args[0]); 1232 if (!name) 1233 return -ENOMEM; 1234 if (!strcmp(name, "fs")) { 1235 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1236 } else if (!strcmp(name, "user")) { 1237 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1238 } else { 1239 kfree(name); 1240 return -EINVAL; 1241 } 1242 kfree(name); 1243 break; 1244 case Opt_compress_cache: 1245 if (!f2fs_sb_has_compression(sbi)) { 1246 f2fs_info(sbi, "Image doesn't support compression"); 1247 break; 1248 } 1249 set_opt(sbi, COMPRESS_CACHE); 1250 break; 1251 #else 1252 case Opt_compress_algorithm: 1253 case Opt_compress_log_size: 1254 case Opt_compress_extension: 1255 case Opt_nocompress_extension: 1256 case Opt_compress_chksum: 1257 case Opt_compress_mode: 1258 case Opt_compress_cache: 1259 f2fs_info(sbi, "compression options not supported"); 1260 break; 1261 #endif 1262 case Opt_atgc: 1263 set_opt(sbi, ATGC); 1264 break; 1265 case Opt_gc_merge: 1266 set_opt(sbi, GC_MERGE); 1267 break; 1268 case Opt_nogc_merge: 1269 clear_opt(sbi, GC_MERGE); 1270 break; 1271 case Opt_discard_unit: 1272 name = match_strdup(&args[0]); 1273 if (!name) 1274 return -ENOMEM; 1275 if (!strcmp(name, "block")) { 1276 F2FS_OPTION(sbi).discard_unit = 1277 DISCARD_UNIT_BLOCK; 1278 } else if (!strcmp(name, "segment")) { 1279 F2FS_OPTION(sbi).discard_unit = 1280 DISCARD_UNIT_SEGMENT; 1281 } else if (!strcmp(name, "section")) { 1282 F2FS_OPTION(sbi).discard_unit = 1283 DISCARD_UNIT_SECTION; 1284 } else { 1285 kfree(name); 1286 return -EINVAL; 1287 } 1288 kfree(name); 1289 break; 1290 case Opt_memory_mode: 1291 name = match_strdup(&args[0]); 1292 if (!name) 1293 return -ENOMEM; 1294 if (!strcmp(name, "normal")) { 1295 F2FS_OPTION(sbi).memory_mode = 1296 MEMORY_MODE_NORMAL; 1297 } else if (!strcmp(name, "low")) { 1298 F2FS_OPTION(sbi).memory_mode = 1299 MEMORY_MODE_LOW; 1300 } else { 1301 kfree(name); 1302 return -EINVAL; 1303 } 1304 kfree(name); 1305 break; 1306 case Opt_age_extent_cache: 1307 set_opt(sbi, AGE_EXTENT_CACHE); 1308 break; 1309 case Opt_errors: 1310 name = match_strdup(&args[0]); 1311 if (!name) 1312 return -ENOMEM; 1313 if (!strcmp(name, "remount-ro")) { 1314 F2FS_OPTION(sbi).errors = 1315 MOUNT_ERRORS_READONLY; 1316 } else if (!strcmp(name, "continue")) { 1317 F2FS_OPTION(sbi).errors = 1318 MOUNT_ERRORS_CONTINUE; 1319 } else if (!strcmp(name, "panic")) { 1320 F2FS_OPTION(sbi).errors = 1321 MOUNT_ERRORS_PANIC; 1322 } else { 1323 kfree(name); 1324 return -EINVAL; 1325 } 1326 kfree(name); 1327 break; 1328 default: 1329 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1330 p); 1331 return -EINVAL; 1332 } 1333 } 1334 default_check: 1335 #ifdef CONFIG_QUOTA 1336 if (f2fs_check_quota_options(sbi)) 1337 return -EINVAL; 1338 #else 1339 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1340 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1341 return -EINVAL; 1342 } 1343 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1344 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1345 return -EINVAL; 1346 } 1347 #endif 1348 #if !IS_ENABLED(CONFIG_UNICODE) 1349 if (f2fs_sb_has_casefold(sbi)) { 1350 f2fs_err(sbi, 1351 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1352 return -EINVAL; 1353 } 1354 #endif 1355 /* 1356 * The BLKZONED feature indicates that the drive was formatted with 1357 * zone alignment optimization. This is optional for host-aware 1358 * devices, but mandatory for host-managed zoned block devices. 1359 */ 1360 if (f2fs_sb_has_blkzoned(sbi)) { 1361 #ifdef CONFIG_BLK_DEV_ZONED 1362 if (F2FS_OPTION(sbi).discard_unit != 1363 DISCARD_UNIT_SECTION) { 1364 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1365 F2FS_OPTION(sbi).discard_unit = 1366 DISCARD_UNIT_SECTION; 1367 } 1368 1369 if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) { 1370 f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature"); 1371 return -EINVAL; 1372 } 1373 #else 1374 f2fs_err(sbi, "Zoned block device support is not enabled"); 1375 return -EINVAL; 1376 #endif 1377 } 1378 1379 #ifdef CONFIG_F2FS_FS_COMPRESSION 1380 if (f2fs_test_compress_extension(sbi)) { 1381 f2fs_err(sbi, "invalid compress or nocompress extension"); 1382 return -EINVAL; 1383 } 1384 #endif 1385 1386 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) { 1387 f2fs_err(sbi, "Should set mode=lfs with %luKB-sized IO", 1388 F2FS_IO_SIZE_KB(sbi)); 1389 return -EINVAL; 1390 } 1391 1392 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1393 int min_size, max_size; 1394 1395 if (!f2fs_sb_has_extra_attr(sbi) || 1396 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1397 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1398 return -EINVAL; 1399 } 1400 if (!test_opt(sbi, INLINE_XATTR)) { 1401 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1402 return -EINVAL; 1403 } 1404 1405 min_size = MIN_INLINE_XATTR_SIZE; 1406 max_size = MAX_INLINE_XATTR_SIZE; 1407 1408 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1409 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1410 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1411 min_size, max_size); 1412 return -EINVAL; 1413 } 1414 } 1415 1416 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) { 1417 f2fs_err(sbi, "LFS is not compatible with checkpoint=disable"); 1418 return -EINVAL; 1419 } 1420 1421 if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) { 1422 f2fs_err(sbi, "LFS is not compatible with ATGC"); 1423 return -EINVAL; 1424 } 1425 1426 if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) { 1427 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode"); 1428 return -EINVAL; 1429 } 1430 1431 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1432 f2fs_err(sbi, "Allow to mount readonly mode only"); 1433 return -EROFS; 1434 } 1435 return 0; 1436 } 1437 1438 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1439 { 1440 struct f2fs_inode_info *fi; 1441 1442 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) 1443 return NULL; 1444 1445 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1446 if (!fi) 1447 return NULL; 1448 1449 init_once((void *) fi); 1450 1451 /* Initialize f2fs-specific inode info */ 1452 atomic_set(&fi->dirty_pages, 0); 1453 atomic_set(&fi->i_compr_blocks, 0); 1454 init_f2fs_rwsem(&fi->i_sem); 1455 spin_lock_init(&fi->i_size_lock); 1456 INIT_LIST_HEAD(&fi->dirty_list); 1457 INIT_LIST_HEAD(&fi->gdirty_list); 1458 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1459 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1460 init_f2fs_rwsem(&fi->i_xattr_sem); 1461 1462 /* Will be used by directory only */ 1463 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1464 1465 return &fi->vfs_inode; 1466 } 1467 1468 static int f2fs_drop_inode(struct inode *inode) 1469 { 1470 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1471 int ret; 1472 1473 /* 1474 * during filesystem shutdown, if checkpoint is disabled, 1475 * drop useless meta/node dirty pages. 1476 */ 1477 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1478 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1479 inode->i_ino == F2FS_META_INO(sbi)) { 1480 trace_f2fs_drop_inode(inode, 1); 1481 return 1; 1482 } 1483 } 1484 1485 /* 1486 * This is to avoid a deadlock condition like below. 1487 * writeback_single_inode(inode) 1488 * - f2fs_write_data_page 1489 * - f2fs_gc -> iput -> evict 1490 * - inode_wait_for_writeback(inode) 1491 */ 1492 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1493 if (!inode->i_nlink && !is_bad_inode(inode)) { 1494 /* to avoid evict_inode call simultaneously */ 1495 atomic_inc(&inode->i_count); 1496 spin_unlock(&inode->i_lock); 1497 1498 /* should remain fi->extent_tree for writepage */ 1499 f2fs_destroy_extent_node(inode); 1500 1501 sb_start_intwrite(inode->i_sb); 1502 f2fs_i_size_write(inode, 0); 1503 1504 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1505 inode, NULL, 0, DATA); 1506 truncate_inode_pages_final(inode->i_mapping); 1507 1508 if (F2FS_HAS_BLOCKS(inode)) 1509 f2fs_truncate(inode); 1510 1511 sb_end_intwrite(inode->i_sb); 1512 1513 spin_lock(&inode->i_lock); 1514 atomic_dec(&inode->i_count); 1515 } 1516 trace_f2fs_drop_inode(inode, 0); 1517 return 0; 1518 } 1519 ret = generic_drop_inode(inode); 1520 if (!ret) 1521 ret = fscrypt_drop_inode(inode); 1522 trace_f2fs_drop_inode(inode, ret); 1523 return ret; 1524 } 1525 1526 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1527 { 1528 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1529 int ret = 0; 1530 1531 spin_lock(&sbi->inode_lock[DIRTY_META]); 1532 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1533 ret = 1; 1534 } else { 1535 set_inode_flag(inode, FI_DIRTY_INODE); 1536 stat_inc_dirty_inode(sbi, DIRTY_META); 1537 } 1538 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1539 list_add_tail(&F2FS_I(inode)->gdirty_list, 1540 &sbi->inode_list[DIRTY_META]); 1541 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1542 } 1543 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1544 return ret; 1545 } 1546 1547 void f2fs_inode_synced(struct inode *inode) 1548 { 1549 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1550 1551 spin_lock(&sbi->inode_lock[DIRTY_META]); 1552 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1553 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1554 return; 1555 } 1556 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1557 list_del_init(&F2FS_I(inode)->gdirty_list); 1558 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1559 } 1560 clear_inode_flag(inode, FI_DIRTY_INODE); 1561 clear_inode_flag(inode, FI_AUTO_RECOVER); 1562 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1563 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1564 } 1565 1566 /* 1567 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1568 * 1569 * We should call set_dirty_inode to write the dirty inode through write_inode. 1570 */ 1571 static void f2fs_dirty_inode(struct inode *inode, int flags) 1572 { 1573 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1574 1575 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1576 inode->i_ino == F2FS_META_INO(sbi)) 1577 return; 1578 1579 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1580 clear_inode_flag(inode, FI_AUTO_RECOVER); 1581 1582 f2fs_inode_dirtied(inode, false); 1583 } 1584 1585 static void f2fs_free_inode(struct inode *inode) 1586 { 1587 fscrypt_free_inode(inode); 1588 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1589 } 1590 1591 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1592 { 1593 percpu_counter_destroy(&sbi->total_valid_inode_count); 1594 percpu_counter_destroy(&sbi->rf_node_block_count); 1595 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1596 } 1597 1598 static void destroy_device_list(struct f2fs_sb_info *sbi) 1599 { 1600 int i; 1601 1602 for (i = 0; i < sbi->s_ndevs; i++) { 1603 if (i > 0) 1604 blkdev_put(FDEV(i).bdev, sbi->sb); 1605 #ifdef CONFIG_BLK_DEV_ZONED 1606 kvfree(FDEV(i).blkz_seq); 1607 #endif 1608 } 1609 kvfree(sbi->devs); 1610 } 1611 1612 static void f2fs_put_super(struct super_block *sb) 1613 { 1614 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1615 int i; 1616 int err = 0; 1617 bool done; 1618 1619 /* unregister procfs/sysfs entries in advance to avoid race case */ 1620 f2fs_unregister_sysfs(sbi); 1621 1622 f2fs_quota_off_umount(sb); 1623 1624 /* prevent remaining shrinker jobs */ 1625 mutex_lock(&sbi->umount_mutex); 1626 1627 /* 1628 * flush all issued checkpoints and stop checkpoint issue thread. 1629 * after then, all checkpoints should be done by each process context. 1630 */ 1631 f2fs_stop_ckpt_thread(sbi); 1632 1633 /* 1634 * We don't need to do checkpoint when superblock is clean. 1635 * But, the previous checkpoint was not done by umount, it needs to do 1636 * clean checkpoint again. 1637 */ 1638 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1639 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1640 struct cp_control cpc = { 1641 .reason = CP_UMOUNT, 1642 }; 1643 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1644 err = f2fs_write_checkpoint(sbi, &cpc); 1645 } 1646 1647 /* be sure to wait for any on-going discard commands */ 1648 done = f2fs_issue_discard_timeout(sbi); 1649 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) { 1650 struct cp_control cpc = { 1651 .reason = CP_UMOUNT | CP_TRIMMED, 1652 }; 1653 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1654 err = f2fs_write_checkpoint(sbi, &cpc); 1655 } 1656 1657 /* 1658 * normally superblock is clean, so we need to release this. 1659 * In addition, EIO will skip do checkpoint, we need this as well. 1660 */ 1661 f2fs_release_ino_entry(sbi, true); 1662 1663 f2fs_leave_shrinker(sbi); 1664 mutex_unlock(&sbi->umount_mutex); 1665 1666 /* our cp_error case, we can wait for any writeback page */ 1667 f2fs_flush_merged_writes(sbi); 1668 1669 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1670 1671 if (err || f2fs_cp_error(sbi)) { 1672 truncate_inode_pages_final(NODE_MAPPING(sbi)); 1673 truncate_inode_pages_final(META_MAPPING(sbi)); 1674 } 1675 1676 for (i = 0; i < NR_COUNT_TYPE; i++) { 1677 if (!get_pages(sbi, i)) 1678 continue; 1679 f2fs_err(sbi, "detect filesystem reference count leak during " 1680 "umount, type: %d, count: %lld", i, get_pages(sbi, i)); 1681 f2fs_bug_on(sbi, 1); 1682 } 1683 1684 f2fs_bug_on(sbi, sbi->fsync_node_num); 1685 1686 f2fs_destroy_compress_inode(sbi); 1687 1688 iput(sbi->node_inode); 1689 sbi->node_inode = NULL; 1690 1691 iput(sbi->meta_inode); 1692 sbi->meta_inode = NULL; 1693 1694 /* 1695 * iput() can update stat information, if f2fs_write_checkpoint() 1696 * above failed with error. 1697 */ 1698 f2fs_destroy_stats(sbi); 1699 1700 /* destroy f2fs internal modules */ 1701 f2fs_destroy_node_manager(sbi); 1702 f2fs_destroy_segment_manager(sbi); 1703 1704 /* flush s_error_work before sbi destroy */ 1705 flush_work(&sbi->s_error_work); 1706 1707 f2fs_destroy_post_read_wq(sbi); 1708 1709 kvfree(sbi->ckpt); 1710 1711 sb->s_fs_info = NULL; 1712 if (sbi->s_chksum_driver) 1713 crypto_free_shash(sbi->s_chksum_driver); 1714 kfree(sbi->raw_super); 1715 1716 destroy_device_list(sbi); 1717 f2fs_destroy_page_array_cache(sbi); 1718 f2fs_destroy_xattr_caches(sbi); 1719 mempool_destroy(sbi->write_io_dummy); 1720 #ifdef CONFIG_QUOTA 1721 for (i = 0; i < MAXQUOTAS; i++) 1722 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1723 #endif 1724 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1725 destroy_percpu_info(sbi); 1726 f2fs_destroy_iostat(sbi); 1727 for (i = 0; i < NR_PAGE_TYPE; i++) 1728 kvfree(sbi->write_io[i]); 1729 #if IS_ENABLED(CONFIG_UNICODE) 1730 utf8_unload(sb->s_encoding); 1731 #endif 1732 kfree(sbi); 1733 } 1734 1735 int f2fs_sync_fs(struct super_block *sb, int sync) 1736 { 1737 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1738 int err = 0; 1739 1740 if (unlikely(f2fs_cp_error(sbi))) 1741 return 0; 1742 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1743 return 0; 1744 1745 trace_f2fs_sync_fs(sb, sync); 1746 1747 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1748 return -EAGAIN; 1749 1750 if (sync) { 1751 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1752 err = f2fs_issue_checkpoint(sbi); 1753 } 1754 1755 return err; 1756 } 1757 1758 static int f2fs_freeze(struct super_block *sb) 1759 { 1760 if (f2fs_readonly(sb)) 1761 return 0; 1762 1763 /* IO error happened before */ 1764 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1765 return -EIO; 1766 1767 /* must be clean, since sync_filesystem() was already called */ 1768 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1769 return -EINVAL; 1770 1771 /* Let's flush checkpoints and stop the thread. */ 1772 f2fs_flush_ckpt_thread(F2FS_SB(sb)); 1773 1774 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 1775 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1776 return 0; 1777 } 1778 1779 static int f2fs_unfreeze(struct super_block *sb) 1780 { 1781 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1782 return 0; 1783 } 1784 1785 #ifdef CONFIG_QUOTA 1786 static int f2fs_statfs_project(struct super_block *sb, 1787 kprojid_t projid, struct kstatfs *buf) 1788 { 1789 struct kqid qid; 1790 struct dquot *dquot; 1791 u64 limit; 1792 u64 curblock; 1793 1794 qid = make_kqid_projid(projid); 1795 dquot = dqget(sb, qid); 1796 if (IS_ERR(dquot)) 1797 return PTR_ERR(dquot); 1798 spin_lock(&dquot->dq_dqb_lock); 1799 1800 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1801 dquot->dq_dqb.dqb_bhardlimit); 1802 if (limit) 1803 limit >>= sb->s_blocksize_bits; 1804 1805 if (limit && buf->f_blocks > limit) { 1806 curblock = (dquot->dq_dqb.dqb_curspace + 1807 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1808 buf->f_blocks = limit; 1809 buf->f_bfree = buf->f_bavail = 1810 (buf->f_blocks > curblock) ? 1811 (buf->f_blocks - curblock) : 0; 1812 } 1813 1814 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1815 dquot->dq_dqb.dqb_ihardlimit); 1816 1817 if (limit && buf->f_files > limit) { 1818 buf->f_files = limit; 1819 buf->f_ffree = 1820 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1821 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1822 } 1823 1824 spin_unlock(&dquot->dq_dqb_lock); 1825 dqput(dquot); 1826 return 0; 1827 } 1828 #endif 1829 1830 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1831 { 1832 struct super_block *sb = dentry->d_sb; 1833 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1834 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1835 block_t total_count, user_block_count, start_count; 1836 u64 avail_node_count; 1837 unsigned int total_valid_node_count; 1838 1839 total_count = le64_to_cpu(sbi->raw_super->block_count); 1840 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1841 buf->f_type = F2FS_SUPER_MAGIC; 1842 buf->f_bsize = sbi->blocksize; 1843 1844 buf->f_blocks = total_count - start_count; 1845 1846 spin_lock(&sbi->stat_lock); 1847 1848 user_block_count = sbi->user_block_count; 1849 total_valid_node_count = valid_node_count(sbi); 1850 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1851 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1852 sbi->current_reserved_blocks; 1853 1854 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1855 buf->f_bfree = 0; 1856 else 1857 buf->f_bfree -= sbi->unusable_block_count; 1858 spin_unlock(&sbi->stat_lock); 1859 1860 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1861 buf->f_bavail = buf->f_bfree - 1862 F2FS_OPTION(sbi).root_reserved_blocks; 1863 else 1864 buf->f_bavail = 0; 1865 1866 if (avail_node_count > user_block_count) { 1867 buf->f_files = user_block_count; 1868 buf->f_ffree = buf->f_bavail; 1869 } else { 1870 buf->f_files = avail_node_count; 1871 buf->f_ffree = min(avail_node_count - total_valid_node_count, 1872 buf->f_bavail); 1873 } 1874 1875 buf->f_namelen = F2FS_NAME_LEN; 1876 buf->f_fsid = u64_to_fsid(id); 1877 1878 #ifdef CONFIG_QUOTA 1879 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1880 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1881 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1882 } 1883 #endif 1884 return 0; 1885 } 1886 1887 static inline void f2fs_show_quota_options(struct seq_file *seq, 1888 struct super_block *sb) 1889 { 1890 #ifdef CONFIG_QUOTA 1891 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1892 1893 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1894 char *fmtname = ""; 1895 1896 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1897 case QFMT_VFS_OLD: 1898 fmtname = "vfsold"; 1899 break; 1900 case QFMT_VFS_V0: 1901 fmtname = "vfsv0"; 1902 break; 1903 case QFMT_VFS_V1: 1904 fmtname = "vfsv1"; 1905 break; 1906 } 1907 seq_printf(seq, ",jqfmt=%s", fmtname); 1908 } 1909 1910 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1911 seq_show_option(seq, "usrjquota", 1912 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1913 1914 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1915 seq_show_option(seq, "grpjquota", 1916 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1917 1918 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1919 seq_show_option(seq, "prjjquota", 1920 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1921 #endif 1922 } 1923 1924 #ifdef CONFIG_F2FS_FS_COMPRESSION 1925 static inline void f2fs_show_compress_options(struct seq_file *seq, 1926 struct super_block *sb) 1927 { 1928 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1929 char *algtype = ""; 1930 int i; 1931 1932 if (!f2fs_sb_has_compression(sbi)) 1933 return; 1934 1935 switch (F2FS_OPTION(sbi).compress_algorithm) { 1936 case COMPRESS_LZO: 1937 algtype = "lzo"; 1938 break; 1939 case COMPRESS_LZ4: 1940 algtype = "lz4"; 1941 break; 1942 case COMPRESS_ZSTD: 1943 algtype = "zstd"; 1944 break; 1945 case COMPRESS_LZORLE: 1946 algtype = "lzo-rle"; 1947 break; 1948 } 1949 seq_printf(seq, ",compress_algorithm=%s", algtype); 1950 1951 if (F2FS_OPTION(sbi).compress_level) 1952 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1953 1954 seq_printf(seq, ",compress_log_size=%u", 1955 F2FS_OPTION(sbi).compress_log_size); 1956 1957 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1958 seq_printf(seq, ",compress_extension=%s", 1959 F2FS_OPTION(sbi).extensions[i]); 1960 } 1961 1962 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1963 seq_printf(seq, ",nocompress_extension=%s", 1964 F2FS_OPTION(sbi).noextensions[i]); 1965 } 1966 1967 if (F2FS_OPTION(sbi).compress_chksum) 1968 seq_puts(seq, ",compress_chksum"); 1969 1970 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1971 seq_printf(seq, ",compress_mode=%s", "fs"); 1972 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1973 seq_printf(seq, ",compress_mode=%s", "user"); 1974 1975 if (test_opt(sbi, COMPRESS_CACHE)) 1976 seq_puts(seq, ",compress_cache"); 1977 } 1978 #endif 1979 1980 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1981 { 1982 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1983 1984 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1985 seq_printf(seq, ",background_gc=%s", "sync"); 1986 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1987 seq_printf(seq, ",background_gc=%s", "on"); 1988 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1989 seq_printf(seq, ",background_gc=%s", "off"); 1990 1991 if (test_opt(sbi, GC_MERGE)) 1992 seq_puts(seq, ",gc_merge"); 1993 else 1994 seq_puts(seq, ",nogc_merge"); 1995 1996 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1997 seq_puts(seq, ",disable_roll_forward"); 1998 if (test_opt(sbi, NORECOVERY)) 1999 seq_puts(seq, ",norecovery"); 2000 if (test_opt(sbi, DISCARD)) { 2001 seq_puts(seq, ",discard"); 2002 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 2003 seq_printf(seq, ",discard_unit=%s", "block"); 2004 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2005 seq_printf(seq, ",discard_unit=%s", "segment"); 2006 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2007 seq_printf(seq, ",discard_unit=%s", "section"); 2008 } else { 2009 seq_puts(seq, ",nodiscard"); 2010 } 2011 if (test_opt(sbi, NOHEAP)) 2012 seq_puts(seq, ",no_heap"); 2013 else 2014 seq_puts(seq, ",heap"); 2015 #ifdef CONFIG_F2FS_FS_XATTR 2016 if (test_opt(sbi, XATTR_USER)) 2017 seq_puts(seq, ",user_xattr"); 2018 else 2019 seq_puts(seq, ",nouser_xattr"); 2020 if (test_opt(sbi, INLINE_XATTR)) 2021 seq_puts(seq, ",inline_xattr"); 2022 else 2023 seq_puts(seq, ",noinline_xattr"); 2024 if (test_opt(sbi, INLINE_XATTR_SIZE)) 2025 seq_printf(seq, ",inline_xattr_size=%u", 2026 F2FS_OPTION(sbi).inline_xattr_size); 2027 #endif 2028 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2029 if (test_opt(sbi, POSIX_ACL)) 2030 seq_puts(seq, ",acl"); 2031 else 2032 seq_puts(seq, ",noacl"); 2033 #endif 2034 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 2035 seq_puts(seq, ",disable_ext_identify"); 2036 if (test_opt(sbi, INLINE_DATA)) 2037 seq_puts(seq, ",inline_data"); 2038 else 2039 seq_puts(seq, ",noinline_data"); 2040 if (test_opt(sbi, INLINE_DENTRY)) 2041 seq_puts(seq, ",inline_dentry"); 2042 else 2043 seq_puts(seq, ",noinline_dentry"); 2044 if (test_opt(sbi, FLUSH_MERGE)) 2045 seq_puts(seq, ",flush_merge"); 2046 else 2047 seq_puts(seq, ",noflush_merge"); 2048 if (test_opt(sbi, NOBARRIER)) 2049 seq_puts(seq, ",nobarrier"); 2050 else 2051 seq_puts(seq, ",barrier"); 2052 if (test_opt(sbi, FASTBOOT)) 2053 seq_puts(seq, ",fastboot"); 2054 if (test_opt(sbi, READ_EXTENT_CACHE)) 2055 seq_puts(seq, ",extent_cache"); 2056 else 2057 seq_puts(seq, ",noextent_cache"); 2058 if (test_opt(sbi, AGE_EXTENT_CACHE)) 2059 seq_puts(seq, ",age_extent_cache"); 2060 if (test_opt(sbi, DATA_FLUSH)) 2061 seq_puts(seq, ",data_flush"); 2062 2063 seq_puts(seq, ",mode="); 2064 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 2065 seq_puts(seq, "adaptive"); 2066 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 2067 seq_puts(seq, "lfs"); 2068 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 2069 seq_puts(seq, "fragment:segment"); 2070 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2071 seq_puts(seq, "fragment:block"); 2072 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 2073 if (test_opt(sbi, RESERVE_ROOT)) 2074 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 2075 F2FS_OPTION(sbi).root_reserved_blocks, 2076 from_kuid_munged(&init_user_ns, 2077 F2FS_OPTION(sbi).s_resuid), 2078 from_kgid_munged(&init_user_ns, 2079 F2FS_OPTION(sbi).s_resgid)); 2080 if (F2FS_IO_SIZE_BITS(sbi)) 2081 seq_printf(seq, ",io_bits=%u", 2082 F2FS_OPTION(sbi).write_io_size_bits); 2083 #ifdef CONFIG_F2FS_FAULT_INJECTION 2084 if (test_opt(sbi, FAULT_INJECTION)) { 2085 seq_printf(seq, ",fault_injection=%u", 2086 F2FS_OPTION(sbi).fault_info.inject_rate); 2087 seq_printf(seq, ",fault_type=%u", 2088 F2FS_OPTION(sbi).fault_info.inject_type); 2089 } 2090 #endif 2091 #ifdef CONFIG_QUOTA 2092 if (test_opt(sbi, QUOTA)) 2093 seq_puts(seq, ",quota"); 2094 if (test_opt(sbi, USRQUOTA)) 2095 seq_puts(seq, ",usrquota"); 2096 if (test_opt(sbi, GRPQUOTA)) 2097 seq_puts(seq, ",grpquota"); 2098 if (test_opt(sbi, PRJQUOTA)) 2099 seq_puts(seq, ",prjquota"); 2100 #endif 2101 f2fs_show_quota_options(seq, sbi->sb); 2102 2103 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 2104 2105 if (sbi->sb->s_flags & SB_INLINECRYPT) 2106 seq_puts(seq, ",inlinecrypt"); 2107 2108 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 2109 seq_printf(seq, ",alloc_mode=%s", "default"); 2110 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2111 seq_printf(seq, ",alloc_mode=%s", "reuse"); 2112 2113 if (test_opt(sbi, DISABLE_CHECKPOINT)) 2114 seq_printf(seq, ",checkpoint=disable:%u", 2115 F2FS_OPTION(sbi).unusable_cap); 2116 if (test_opt(sbi, MERGE_CHECKPOINT)) 2117 seq_puts(seq, ",checkpoint_merge"); 2118 else 2119 seq_puts(seq, ",nocheckpoint_merge"); 2120 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 2121 seq_printf(seq, ",fsync_mode=%s", "posix"); 2122 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 2123 seq_printf(seq, ",fsync_mode=%s", "strict"); 2124 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 2125 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 2126 2127 #ifdef CONFIG_F2FS_FS_COMPRESSION 2128 f2fs_show_compress_options(seq, sbi->sb); 2129 #endif 2130 2131 if (test_opt(sbi, ATGC)) 2132 seq_puts(seq, ",atgc"); 2133 2134 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL) 2135 seq_printf(seq, ",memory=%s", "normal"); 2136 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW) 2137 seq_printf(seq, ",memory=%s", "low"); 2138 2139 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2140 seq_printf(seq, ",errors=%s", "remount-ro"); 2141 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE) 2142 seq_printf(seq, ",errors=%s", "continue"); 2143 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC) 2144 seq_printf(seq, ",errors=%s", "panic"); 2145 2146 return 0; 2147 } 2148 2149 static void default_options(struct f2fs_sb_info *sbi, bool remount) 2150 { 2151 /* init some FS parameters */ 2152 if (!remount) { 2153 set_opt(sbi, READ_EXTENT_CACHE); 2154 clear_opt(sbi, DISABLE_CHECKPOINT); 2155 2156 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2157 set_opt(sbi, DISCARD); 2158 2159 if (f2fs_sb_has_blkzoned(sbi)) 2160 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2161 else 2162 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2163 } 2164 2165 if (f2fs_sb_has_readonly(sbi)) 2166 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2167 else 2168 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2169 2170 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2171 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <= 2172 SMALL_VOLUME_SEGMENTS) 2173 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 2174 else 2175 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2176 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2177 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2178 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2179 if (f2fs_sb_has_compression(sbi)) { 2180 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2181 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2182 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2183 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2184 } 2185 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2186 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL; 2187 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE; 2188 2189 sbi->sb->s_flags &= ~SB_INLINECRYPT; 2190 2191 set_opt(sbi, INLINE_XATTR); 2192 set_opt(sbi, INLINE_DATA); 2193 set_opt(sbi, INLINE_DENTRY); 2194 set_opt(sbi, NOHEAP); 2195 set_opt(sbi, MERGE_CHECKPOINT); 2196 F2FS_OPTION(sbi).unusable_cap = 0; 2197 sbi->sb->s_flags |= SB_LAZYTIME; 2198 if (!f2fs_is_readonly(sbi)) 2199 set_opt(sbi, FLUSH_MERGE); 2200 if (f2fs_sb_has_blkzoned(sbi)) 2201 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2202 else 2203 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2204 2205 #ifdef CONFIG_F2FS_FS_XATTR 2206 set_opt(sbi, XATTR_USER); 2207 #endif 2208 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2209 set_opt(sbi, POSIX_ACL); 2210 #endif 2211 2212 f2fs_build_fault_attr(sbi, 0, 0); 2213 } 2214 2215 #ifdef CONFIG_QUOTA 2216 static int f2fs_enable_quotas(struct super_block *sb); 2217 #endif 2218 2219 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2220 { 2221 unsigned int s_flags = sbi->sb->s_flags; 2222 struct cp_control cpc; 2223 unsigned int gc_mode = sbi->gc_mode; 2224 int err = 0; 2225 int ret; 2226 block_t unusable; 2227 2228 if (s_flags & SB_RDONLY) { 2229 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2230 return -EINVAL; 2231 } 2232 sbi->sb->s_flags |= SB_ACTIVE; 2233 2234 /* check if we need more GC first */ 2235 unusable = f2fs_get_unusable_blocks(sbi); 2236 if (!f2fs_disable_cp_again(sbi, unusable)) 2237 goto skip_gc; 2238 2239 f2fs_update_time(sbi, DISABLE_TIME); 2240 2241 sbi->gc_mode = GC_URGENT_HIGH; 2242 2243 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2244 struct f2fs_gc_control gc_control = { 2245 .victim_segno = NULL_SEGNO, 2246 .init_gc_type = FG_GC, 2247 .should_migrate_blocks = false, 2248 .err_gc_skipped = true, 2249 .nr_free_secs = 1 }; 2250 2251 f2fs_down_write(&sbi->gc_lock); 2252 stat_inc_gc_call_count(sbi, FOREGROUND); 2253 err = f2fs_gc(sbi, &gc_control); 2254 if (err == -ENODATA) { 2255 err = 0; 2256 break; 2257 } 2258 if (err && err != -EAGAIN) 2259 break; 2260 } 2261 2262 ret = sync_filesystem(sbi->sb); 2263 if (ret || err) { 2264 err = ret ? ret : err; 2265 goto restore_flag; 2266 } 2267 2268 unusable = f2fs_get_unusable_blocks(sbi); 2269 if (f2fs_disable_cp_again(sbi, unusable)) { 2270 err = -EAGAIN; 2271 goto restore_flag; 2272 } 2273 2274 skip_gc: 2275 f2fs_down_write(&sbi->gc_lock); 2276 cpc.reason = CP_PAUSE; 2277 set_sbi_flag(sbi, SBI_CP_DISABLED); 2278 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2279 err = f2fs_write_checkpoint(sbi, &cpc); 2280 if (err) 2281 goto out_unlock; 2282 2283 spin_lock(&sbi->stat_lock); 2284 sbi->unusable_block_count = unusable; 2285 spin_unlock(&sbi->stat_lock); 2286 2287 out_unlock: 2288 f2fs_up_write(&sbi->gc_lock); 2289 restore_flag: 2290 sbi->gc_mode = gc_mode; 2291 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2292 return err; 2293 } 2294 2295 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2296 { 2297 int retry = DEFAULT_RETRY_IO_COUNT; 2298 2299 /* we should flush all the data to keep data consistency */ 2300 do { 2301 sync_inodes_sb(sbi->sb); 2302 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2303 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2304 2305 if (unlikely(retry < 0)) 2306 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2307 2308 f2fs_down_write(&sbi->gc_lock); 2309 f2fs_dirty_to_prefree(sbi); 2310 2311 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2312 set_sbi_flag(sbi, SBI_IS_DIRTY); 2313 f2fs_up_write(&sbi->gc_lock); 2314 2315 f2fs_sync_fs(sbi->sb, 1); 2316 2317 /* Let's ensure there's no pending checkpoint anymore */ 2318 f2fs_flush_ckpt_thread(sbi); 2319 } 2320 2321 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2322 { 2323 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2324 struct f2fs_mount_info org_mount_opt; 2325 unsigned long old_sb_flags; 2326 int err; 2327 bool need_restart_gc = false, need_stop_gc = false; 2328 bool need_restart_ckpt = false, need_stop_ckpt = false; 2329 bool need_restart_flush = false, need_stop_flush = false; 2330 bool need_restart_discard = false, need_stop_discard = false; 2331 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE); 2332 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE); 2333 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2334 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 2335 bool no_atgc = !test_opt(sbi, ATGC); 2336 bool no_discard = !test_opt(sbi, DISCARD); 2337 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2338 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2339 #ifdef CONFIG_QUOTA 2340 int i, j; 2341 #endif 2342 2343 /* 2344 * Save the old mount options in case we 2345 * need to restore them. 2346 */ 2347 org_mount_opt = sbi->mount_opt; 2348 old_sb_flags = sb->s_flags; 2349 2350 #ifdef CONFIG_QUOTA 2351 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2352 for (i = 0; i < MAXQUOTAS; i++) { 2353 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2354 org_mount_opt.s_qf_names[i] = 2355 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2356 GFP_KERNEL); 2357 if (!org_mount_opt.s_qf_names[i]) { 2358 for (j = 0; j < i; j++) 2359 kfree(org_mount_opt.s_qf_names[j]); 2360 return -ENOMEM; 2361 } 2362 } else { 2363 org_mount_opt.s_qf_names[i] = NULL; 2364 } 2365 } 2366 #endif 2367 2368 /* recover superblocks we couldn't write due to previous RO mount */ 2369 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2370 err = f2fs_commit_super(sbi, false); 2371 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2372 err); 2373 if (!err) 2374 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2375 } 2376 2377 default_options(sbi, true); 2378 2379 /* parse mount options */ 2380 err = parse_options(sb, data, true); 2381 if (err) 2382 goto restore_opts; 2383 2384 /* flush outstanding errors before changing fs state */ 2385 flush_work(&sbi->s_error_work); 2386 2387 /* 2388 * Previous and new state of filesystem is RO, 2389 * so skip checking GC and FLUSH_MERGE conditions. 2390 */ 2391 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2392 goto skip; 2393 2394 if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) { 2395 err = -EROFS; 2396 goto restore_opts; 2397 } 2398 2399 #ifdef CONFIG_QUOTA 2400 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2401 err = dquot_suspend(sb, -1); 2402 if (err < 0) 2403 goto restore_opts; 2404 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2405 /* dquot_resume needs RW */ 2406 sb->s_flags &= ~SB_RDONLY; 2407 if (sb_any_quota_suspended(sb)) { 2408 dquot_resume(sb, -1); 2409 } else if (f2fs_sb_has_quota_ino(sbi)) { 2410 err = f2fs_enable_quotas(sb); 2411 if (err) 2412 goto restore_opts; 2413 } 2414 } 2415 #endif 2416 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) { 2417 err = -EINVAL; 2418 f2fs_warn(sbi, "LFS is not compatible with IPU"); 2419 goto restore_opts; 2420 } 2421 2422 /* disallow enable atgc dynamically */ 2423 if (no_atgc == !!test_opt(sbi, ATGC)) { 2424 err = -EINVAL; 2425 f2fs_warn(sbi, "switch atgc option is not allowed"); 2426 goto restore_opts; 2427 } 2428 2429 /* disallow enable/disable extent_cache dynamically */ 2430 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) { 2431 err = -EINVAL; 2432 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2433 goto restore_opts; 2434 } 2435 /* disallow enable/disable age extent_cache dynamically */ 2436 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) { 2437 err = -EINVAL; 2438 f2fs_warn(sbi, "switch age_extent_cache option is not allowed"); 2439 goto restore_opts; 2440 } 2441 2442 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 2443 err = -EINVAL; 2444 f2fs_warn(sbi, "switch io_bits option is not allowed"); 2445 goto restore_opts; 2446 } 2447 2448 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2449 err = -EINVAL; 2450 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2451 goto restore_opts; 2452 } 2453 2454 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2455 err = -EINVAL; 2456 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2457 goto restore_opts; 2458 } 2459 2460 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2461 err = -EINVAL; 2462 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2463 goto restore_opts; 2464 } 2465 2466 /* 2467 * We stop the GC thread if FS is mounted as RO 2468 * or if background_gc = off is passed in mount 2469 * option. Also sync the filesystem. 2470 */ 2471 if ((*flags & SB_RDONLY) || 2472 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2473 !test_opt(sbi, GC_MERGE))) { 2474 if (sbi->gc_thread) { 2475 f2fs_stop_gc_thread(sbi); 2476 need_restart_gc = true; 2477 } 2478 } else if (!sbi->gc_thread) { 2479 err = f2fs_start_gc_thread(sbi); 2480 if (err) 2481 goto restore_opts; 2482 need_stop_gc = true; 2483 } 2484 2485 if (*flags & SB_RDONLY) { 2486 sync_inodes_sb(sb); 2487 2488 set_sbi_flag(sbi, SBI_IS_DIRTY); 2489 set_sbi_flag(sbi, SBI_IS_CLOSE); 2490 f2fs_sync_fs(sb, 1); 2491 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2492 } 2493 2494 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2495 !test_opt(sbi, MERGE_CHECKPOINT)) { 2496 f2fs_stop_ckpt_thread(sbi); 2497 need_restart_ckpt = true; 2498 } else { 2499 /* Flush if the prevous checkpoint, if exists. */ 2500 f2fs_flush_ckpt_thread(sbi); 2501 2502 err = f2fs_start_ckpt_thread(sbi); 2503 if (err) { 2504 f2fs_err(sbi, 2505 "Failed to start F2FS issue_checkpoint_thread (%d)", 2506 err); 2507 goto restore_gc; 2508 } 2509 need_stop_ckpt = true; 2510 } 2511 2512 /* 2513 * We stop issue flush thread if FS is mounted as RO 2514 * or if flush_merge is not passed in mount option. 2515 */ 2516 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2517 clear_opt(sbi, FLUSH_MERGE); 2518 f2fs_destroy_flush_cmd_control(sbi, false); 2519 need_restart_flush = true; 2520 } else { 2521 err = f2fs_create_flush_cmd_control(sbi); 2522 if (err) 2523 goto restore_ckpt; 2524 need_stop_flush = true; 2525 } 2526 2527 if (no_discard == !!test_opt(sbi, DISCARD)) { 2528 if (test_opt(sbi, DISCARD)) { 2529 err = f2fs_start_discard_thread(sbi); 2530 if (err) 2531 goto restore_flush; 2532 need_stop_discard = true; 2533 } else { 2534 f2fs_stop_discard_thread(sbi); 2535 f2fs_issue_discard_timeout(sbi); 2536 need_restart_discard = true; 2537 } 2538 } 2539 2540 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2541 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2542 err = f2fs_disable_checkpoint(sbi); 2543 if (err) 2544 goto restore_discard; 2545 } else { 2546 f2fs_enable_checkpoint(sbi); 2547 } 2548 } 2549 2550 skip: 2551 #ifdef CONFIG_QUOTA 2552 /* Release old quota file names */ 2553 for (i = 0; i < MAXQUOTAS; i++) 2554 kfree(org_mount_opt.s_qf_names[i]); 2555 #endif 2556 /* Update the POSIXACL Flag */ 2557 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2558 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2559 2560 limit_reserve_root(sbi); 2561 adjust_unusable_cap_perc(sbi); 2562 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2563 return 0; 2564 restore_discard: 2565 if (need_restart_discard) { 2566 if (f2fs_start_discard_thread(sbi)) 2567 f2fs_warn(sbi, "discard has been stopped"); 2568 } else if (need_stop_discard) { 2569 f2fs_stop_discard_thread(sbi); 2570 } 2571 restore_flush: 2572 if (need_restart_flush) { 2573 if (f2fs_create_flush_cmd_control(sbi)) 2574 f2fs_warn(sbi, "background flush thread has stopped"); 2575 } else if (need_stop_flush) { 2576 clear_opt(sbi, FLUSH_MERGE); 2577 f2fs_destroy_flush_cmd_control(sbi, false); 2578 } 2579 restore_ckpt: 2580 if (need_restart_ckpt) { 2581 if (f2fs_start_ckpt_thread(sbi)) 2582 f2fs_warn(sbi, "background ckpt thread has stopped"); 2583 } else if (need_stop_ckpt) { 2584 f2fs_stop_ckpt_thread(sbi); 2585 } 2586 restore_gc: 2587 if (need_restart_gc) { 2588 if (f2fs_start_gc_thread(sbi)) 2589 f2fs_warn(sbi, "background gc thread has stopped"); 2590 } else if (need_stop_gc) { 2591 f2fs_stop_gc_thread(sbi); 2592 } 2593 restore_opts: 2594 #ifdef CONFIG_QUOTA 2595 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2596 for (i = 0; i < MAXQUOTAS; i++) { 2597 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2598 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2599 } 2600 #endif 2601 sbi->mount_opt = org_mount_opt; 2602 sb->s_flags = old_sb_flags; 2603 return err; 2604 } 2605 2606 #ifdef CONFIG_QUOTA 2607 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi) 2608 { 2609 /* need to recovery orphan */ 2610 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 2611 return true; 2612 /* need to recovery data */ 2613 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 2614 return false; 2615 if (test_opt(sbi, NORECOVERY)) 2616 return false; 2617 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG); 2618 } 2619 2620 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi) 2621 { 2622 bool readonly = f2fs_readonly(sbi->sb); 2623 2624 if (!f2fs_need_recovery(sbi)) 2625 return false; 2626 2627 /* it doesn't need to check f2fs_sb_has_readonly() */ 2628 if (f2fs_hw_is_readonly(sbi)) 2629 return false; 2630 2631 if (readonly) { 2632 sbi->sb->s_flags &= ~SB_RDONLY; 2633 set_sbi_flag(sbi, SBI_IS_WRITABLE); 2634 } 2635 2636 /* 2637 * Turn on quotas which were not enabled for read-only mounts if 2638 * filesystem has quota feature, so that they are updated correctly. 2639 */ 2640 return f2fs_enable_quota_files(sbi, readonly); 2641 } 2642 2643 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi, 2644 bool quota_enabled) 2645 { 2646 if (quota_enabled) 2647 f2fs_quota_off_umount(sbi->sb); 2648 2649 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) { 2650 clear_sbi_flag(sbi, SBI_IS_WRITABLE); 2651 sbi->sb->s_flags |= SB_RDONLY; 2652 } 2653 } 2654 2655 /* Read data from quotafile */ 2656 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2657 size_t len, loff_t off) 2658 { 2659 struct inode *inode = sb_dqopt(sb)->files[type]; 2660 struct address_space *mapping = inode->i_mapping; 2661 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2662 int offset = off & (sb->s_blocksize - 1); 2663 int tocopy; 2664 size_t toread; 2665 loff_t i_size = i_size_read(inode); 2666 struct page *page; 2667 2668 if (off > i_size) 2669 return 0; 2670 2671 if (off + len > i_size) 2672 len = i_size - off; 2673 toread = len; 2674 while (toread > 0) { 2675 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2676 repeat: 2677 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2678 if (IS_ERR(page)) { 2679 if (PTR_ERR(page) == -ENOMEM) { 2680 memalloc_retry_wait(GFP_NOFS); 2681 goto repeat; 2682 } 2683 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2684 return PTR_ERR(page); 2685 } 2686 2687 lock_page(page); 2688 2689 if (unlikely(page->mapping != mapping)) { 2690 f2fs_put_page(page, 1); 2691 goto repeat; 2692 } 2693 if (unlikely(!PageUptodate(page))) { 2694 f2fs_put_page(page, 1); 2695 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2696 return -EIO; 2697 } 2698 2699 memcpy_from_page(data, page, offset, tocopy); 2700 f2fs_put_page(page, 1); 2701 2702 offset = 0; 2703 toread -= tocopy; 2704 data += tocopy; 2705 blkidx++; 2706 } 2707 return len; 2708 } 2709 2710 /* Write to quotafile */ 2711 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2712 const char *data, size_t len, loff_t off) 2713 { 2714 struct inode *inode = sb_dqopt(sb)->files[type]; 2715 struct address_space *mapping = inode->i_mapping; 2716 const struct address_space_operations *a_ops = mapping->a_ops; 2717 int offset = off & (sb->s_blocksize - 1); 2718 size_t towrite = len; 2719 struct page *page; 2720 void *fsdata = NULL; 2721 int err = 0; 2722 int tocopy; 2723 2724 while (towrite > 0) { 2725 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2726 towrite); 2727 retry: 2728 err = a_ops->write_begin(NULL, mapping, off, tocopy, 2729 &page, &fsdata); 2730 if (unlikely(err)) { 2731 if (err == -ENOMEM) { 2732 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2733 goto retry; 2734 } 2735 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2736 break; 2737 } 2738 2739 memcpy_to_page(page, offset, data, tocopy); 2740 2741 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2742 page, fsdata); 2743 offset = 0; 2744 towrite -= tocopy; 2745 off += tocopy; 2746 data += tocopy; 2747 cond_resched(); 2748 } 2749 2750 if (len == towrite) 2751 return err; 2752 inode->i_mtime = inode_set_ctime_current(inode); 2753 f2fs_mark_inode_dirty_sync(inode, false); 2754 return len - towrite; 2755 } 2756 2757 int f2fs_dquot_initialize(struct inode *inode) 2758 { 2759 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) 2760 return -ESRCH; 2761 2762 return dquot_initialize(inode); 2763 } 2764 2765 static struct dquot __rcu **f2fs_get_dquots(struct inode *inode) 2766 { 2767 return F2FS_I(inode)->i_dquot; 2768 } 2769 2770 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2771 { 2772 return &F2FS_I(inode)->i_reserved_quota; 2773 } 2774 2775 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2776 { 2777 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2778 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2779 return 0; 2780 } 2781 2782 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2783 F2FS_OPTION(sbi).s_jquota_fmt, type); 2784 } 2785 2786 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2787 { 2788 int enabled = 0; 2789 int i, err; 2790 2791 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2792 err = f2fs_enable_quotas(sbi->sb); 2793 if (err) { 2794 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2795 return 0; 2796 } 2797 return 1; 2798 } 2799 2800 for (i = 0; i < MAXQUOTAS; i++) { 2801 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2802 err = f2fs_quota_on_mount(sbi, i); 2803 if (!err) { 2804 enabled = 1; 2805 continue; 2806 } 2807 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2808 err, i); 2809 } 2810 } 2811 return enabled; 2812 } 2813 2814 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2815 unsigned int flags) 2816 { 2817 struct inode *qf_inode; 2818 unsigned long qf_inum; 2819 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL; 2820 int err; 2821 2822 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2823 2824 qf_inum = f2fs_qf_ino(sb, type); 2825 if (!qf_inum) 2826 return -EPERM; 2827 2828 qf_inode = f2fs_iget(sb, qf_inum); 2829 if (IS_ERR(qf_inode)) { 2830 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2831 return PTR_ERR(qf_inode); 2832 } 2833 2834 /* Don't account quota for quota files to avoid recursion */ 2835 inode_lock(qf_inode); 2836 qf_inode->i_flags |= S_NOQUOTA; 2837 2838 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) { 2839 F2FS_I(qf_inode)->i_flags |= qf_flag; 2840 f2fs_set_inode_flags(qf_inode); 2841 } 2842 inode_unlock(qf_inode); 2843 2844 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2845 iput(qf_inode); 2846 return err; 2847 } 2848 2849 static int f2fs_enable_quotas(struct super_block *sb) 2850 { 2851 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2852 int type, err = 0; 2853 unsigned long qf_inum; 2854 bool quota_mopt[MAXQUOTAS] = { 2855 test_opt(sbi, USRQUOTA), 2856 test_opt(sbi, GRPQUOTA), 2857 test_opt(sbi, PRJQUOTA), 2858 }; 2859 2860 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2861 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2862 return 0; 2863 } 2864 2865 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2866 2867 for (type = 0; type < MAXQUOTAS; type++) { 2868 qf_inum = f2fs_qf_ino(sb, type); 2869 if (qf_inum) { 2870 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2871 DQUOT_USAGE_ENABLED | 2872 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2873 if (err) { 2874 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2875 type, err); 2876 for (type--; type >= 0; type--) 2877 dquot_quota_off(sb, type); 2878 set_sbi_flag(F2FS_SB(sb), 2879 SBI_QUOTA_NEED_REPAIR); 2880 return err; 2881 } 2882 } 2883 } 2884 return 0; 2885 } 2886 2887 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2888 { 2889 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2890 struct address_space *mapping = dqopt->files[type]->i_mapping; 2891 int ret = 0; 2892 2893 ret = dquot_writeback_dquots(sbi->sb, type); 2894 if (ret) 2895 goto out; 2896 2897 ret = filemap_fdatawrite(mapping); 2898 if (ret) 2899 goto out; 2900 2901 /* if we are using journalled quota */ 2902 if (is_journalled_quota(sbi)) 2903 goto out; 2904 2905 ret = filemap_fdatawait(mapping); 2906 2907 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2908 out: 2909 if (ret) 2910 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2911 return ret; 2912 } 2913 2914 int f2fs_quota_sync(struct super_block *sb, int type) 2915 { 2916 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2917 struct quota_info *dqopt = sb_dqopt(sb); 2918 int cnt; 2919 int ret = 0; 2920 2921 /* 2922 * Now when everything is written we can discard the pagecache so 2923 * that userspace sees the changes. 2924 */ 2925 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2926 2927 if (type != -1 && cnt != type) 2928 continue; 2929 2930 if (!sb_has_quota_active(sb, cnt)) 2931 continue; 2932 2933 if (!f2fs_sb_has_quota_ino(sbi)) 2934 inode_lock(dqopt->files[cnt]); 2935 2936 /* 2937 * do_quotactl 2938 * f2fs_quota_sync 2939 * f2fs_down_read(quota_sem) 2940 * dquot_writeback_dquots() 2941 * f2fs_dquot_commit 2942 * block_operation 2943 * f2fs_down_read(quota_sem) 2944 */ 2945 f2fs_lock_op(sbi); 2946 f2fs_down_read(&sbi->quota_sem); 2947 2948 ret = f2fs_quota_sync_file(sbi, cnt); 2949 2950 f2fs_up_read(&sbi->quota_sem); 2951 f2fs_unlock_op(sbi); 2952 2953 if (!f2fs_sb_has_quota_ino(sbi)) 2954 inode_unlock(dqopt->files[cnt]); 2955 2956 if (ret) 2957 break; 2958 } 2959 return ret; 2960 } 2961 2962 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2963 const struct path *path) 2964 { 2965 struct inode *inode; 2966 int err; 2967 2968 /* if quota sysfile exists, deny enabling quota with specific file */ 2969 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2970 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2971 return -EBUSY; 2972 } 2973 2974 if (path->dentry->d_sb != sb) 2975 return -EXDEV; 2976 2977 err = f2fs_quota_sync(sb, type); 2978 if (err) 2979 return err; 2980 2981 inode = d_inode(path->dentry); 2982 2983 err = filemap_fdatawrite(inode->i_mapping); 2984 if (err) 2985 return err; 2986 2987 err = filemap_fdatawait(inode->i_mapping); 2988 if (err) 2989 return err; 2990 2991 err = dquot_quota_on(sb, type, format_id, path); 2992 if (err) 2993 return err; 2994 2995 inode_lock(inode); 2996 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL; 2997 f2fs_set_inode_flags(inode); 2998 inode_unlock(inode); 2999 f2fs_mark_inode_dirty_sync(inode, false); 3000 3001 return 0; 3002 } 3003 3004 static int __f2fs_quota_off(struct super_block *sb, int type) 3005 { 3006 struct inode *inode = sb_dqopt(sb)->files[type]; 3007 int err; 3008 3009 if (!inode || !igrab(inode)) 3010 return dquot_quota_off(sb, type); 3011 3012 err = f2fs_quota_sync(sb, type); 3013 if (err) 3014 goto out_put; 3015 3016 err = dquot_quota_off(sb, type); 3017 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 3018 goto out_put; 3019 3020 inode_lock(inode); 3021 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL; 3022 f2fs_set_inode_flags(inode); 3023 inode_unlock(inode); 3024 f2fs_mark_inode_dirty_sync(inode, false); 3025 out_put: 3026 iput(inode); 3027 return err; 3028 } 3029 3030 static int f2fs_quota_off(struct super_block *sb, int type) 3031 { 3032 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3033 int err; 3034 3035 err = __f2fs_quota_off(sb, type); 3036 3037 /* 3038 * quotactl can shutdown journalled quota, result in inconsistence 3039 * between quota record and fs data by following updates, tag the 3040 * flag to let fsck be aware of it. 3041 */ 3042 if (is_journalled_quota(sbi)) 3043 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3044 return err; 3045 } 3046 3047 void f2fs_quota_off_umount(struct super_block *sb) 3048 { 3049 int type; 3050 int err; 3051 3052 for (type = 0; type < MAXQUOTAS; type++) { 3053 err = __f2fs_quota_off(sb, type); 3054 if (err) { 3055 int ret = dquot_quota_off(sb, type); 3056 3057 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 3058 type, err, ret); 3059 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 3060 } 3061 } 3062 /* 3063 * In case of checkpoint=disable, we must flush quota blocks. 3064 * This can cause NULL exception for node_inode in end_io, since 3065 * put_super already dropped it. 3066 */ 3067 sync_filesystem(sb); 3068 } 3069 3070 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 3071 { 3072 struct quota_info *dqopt = sb_dqopt(sb); 3073 int type; 3074 3075 for (type = 0; type < MAXQUOTAS; type++) { 3076 if (!dqopt->files[type]) 3077 continue; 3078 f2fs_inode_synced(dqopt->files[type]); 3079 } 3080 } 3081 3082 static int f2fs_dquot_commit(struct dquot *dquot) 3083 { 3084 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3085 int ret; 3086 3087 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 3088 ret = dquot_commit(dquot); 3089 if (ret < 0) 3090 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3091 f2fs_up_read(&sbi->quota_sem); 3092 return ret; 3093 } 3094 3095 static int f2fs_dquot_acquire(struct dquot *dquot) 3096 { 3097 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3098 int ret; 3099 3100 f2fs_down_read(&sbi->quota_sem); 3101 ret = dquot_acquire(dquot); 3102 if (ret < 0) 3103 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3104 f2fs_up_read(&sbi->quota_sem); 3105 return ret; 3106 } 3107 3108 static int f2fs_dquot_release(struct dquot *dquot) 3109 { 3110 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3111 int ret = dquot_release(dquot); 3112 3113 if (ret < 0) 3114 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3115 return ret; 3116 } 3117 3118 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 3119 { 3120 struct super_block *sb = dquot->dq_sb; 3121 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3122 int ret = dquot_mark_dquot_dirty(dquot); 3123 3124 /* if we are using journalled quota */ 3125 if (is_journalled_quota(sbi)) 3126 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 3127 3128 return ret; 3129 } 3130 3131 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 3132 { 3133 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3134 int ret = dquot_commit_info(sb, type); 3135 3136 if (ret < 0) 3137 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3138 return ret; 3139 } 3140 3141 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 3142 { 3143 *projid = F2FS_I(inode)->i_projid; 3144 return 0; 3145 } 3146 3147 static const struct dquot_operations f2fs_quota_operations = { 3148 .get_reserved_space = f2fs_get_reserved_space, 3149 .write_dquot = f2fs_dquot_commit, 3150 .acquire_dquot = f2fs_dquot_acquire, 3151 .release_dquot = f2fs_dquot_release, 3152 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 3153 .write_info = f2fs_dquot_commit_info, 3154 .alloc_dquot = dquot_alloc, 3155 .destroy_dquot = dquot_destroy, 3156 .get_projid = f2fs_get_projid, 3157 .get_next_id = dquot_get_next_id, 3158 }; 3159 3160 static const struct quotactl_ops f2fs_quotactl_ops = { 3161 .quota_on = f2fs_quota_on, 3162 .quota_off = f2fs_quota_off, 3163 .quota_sync = f2fs_quota_sync, 3164 .get_state = dquot_get_state, 3165 .set_info = dquot_set_dqinfo, 3166 .get_dqblk = dquot_get_dqblk, 3167 .set_dqblk = dquot_set_dqblk, 3168 .get_nextdqblk = dquot_get_next_dqblk, 3169 }; 3170 #else 3171 int f2fs_dquot_initialize(struct inode *inode) 3172 { 3173 return 0; 3174 } 3175 3176 int f2fs_quota_sync(struct super_block *sb, int type) 3177 { 3178 return 0; 3179 } 3180 3181 void f2fs_quota_off_umount(struct super_block *sb) 3182 { 3183 } 3184 #endif 3185 3186 static const struct super_operations f2fs_sops = { 3187 .alloc_inode = f2fs_alloc_inode, 3188 .free_inode = f2fs_free_inode, 3189 .drop_inode = f2fs_drop_inode, 3190 .write_inode = f2fs_write_inode, 3191 .dirty_inode = f2fs_dirty_inode, 3192 .show_options = f2fs_show_options, 3193 #ifdef CONFIG_QUOTA 3194 .quota_read = f2fs_quota_read, 3195 .quota_write = f2fs_quota_write, 3196 .get_dquots = f2fs_get_dquots, 3197 #endif 3198 .evict_inode = f2fs_evict_inode, 3199 .put_super = f2fs_put_super, 3200 .sync_fs = f2fs_sync_fs, 3201 .freeze_fs = f2fs_freeze, 3202 .unfreeze_fs = f2fs_unfreeze, 3203 .statfs = f2fs_statfs, 3204 .remount_fs = f2fs_remount, 3205 }; 3206 3207 #ifdef CONFIG_FS_ENCRYPTION 3208 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 3209 { 3210 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3211 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3212 ctx, len, NULL); 3213 } 3214 3215 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 3216 void *fs_data) 3217 { 3218 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3219 3220 /* 3221 * Encrypting the root directory is not allowed because fsck 3222 * expects lost+found directory to exist and remain unencrypted 3223 * if LOST_FOUND feature is enabled. 3224 * 3225 */ 3226 if (f2fs_sb_has_lost_found(sbi) && 3227 inode->i_ino == F2FS_ROOT_INO(sbi)) 3228 return -EPERM; 3229 3230 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3231 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3232 ctx, len, fs_data, XATTR_CREATE); 3233 } 3234 3235 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 3236 { 3237 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 3238 } 3239 3240 static bool f2fs_has_stable_inodes(struct super_block *sb) 3241 { 3242 return true; 3243 } 3244 3245 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 3246 int *ino_bits_ret, int *lblk_bits_ret) 3247 { 3248 *ino_bits_ret = 8 * sizeof(nid_t); 3249 *lblk_bits_ret = 8 * sizeof(block_t); 3250 } 3251 3252 static struct block_device **f2fs_get_devices(struct super_block *sb, 3253 unsigned int *num_devs) 3254 { 3255 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3256 struct block_device **devs; 3257 int i; 3258 3259 if (!f2fs_is_multi_device(sbi)) 3260 return NULL; 3261 3262 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL); 3263 if (!devs) 3264 return ERR_PTR(-ENOMEM); 3265 3266 for (i = 0; i < sbi->s_ndevs; i++) 3267 devs[i] = FDEV(i).bdev; 3268 *num_devs = sbi->s_ndevs; 3269 return devs; 3270 } 3271 3272 static const struct fscrypt_operations f2fs_cryptops = { 3273 .key_prefix = "f2fs:", 3274 .get_context = f2fs_get_context, 3275 .set_context = f2fs_set_context, 3276 .get_dummy_policy = f2fs_get_dummy_policy, 3277 .empty_dir = f2fs_empty_dir, 3278 .has_stable_inodes = f2fs_has_stable_inodes, 3279 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 3280 .get_devices = f2fs_get_devices, 3281 }; 3282 #endif 3283 3284 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3285 u64 ino, u32 generation) 3286 { 3287 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3288 struct inode *inode; 3289 3290 if (f2fs_check_nid_range(sbi, ino)) 3291 return ERR_PTR(-ESTALE); 3292 3293 /* 3294 * f2fs_iget isn't quite right if the inode is currently unallocated! 3295 * However f2fs_iget currently does appropriate checks to handle stale 3296 * inodes so everything is OK. 3297 */ 3298 inode = f2fs_iget(sb, ino); 3299 if (IS_ERR(inode)) 3300 return ERR_CAST(inode); 3301 if (unlikely(generation && inode->i_generation != generation)) { 3302 /* we didn't find the right inode.. */ 3303 iput(inode); 3304 return ERR_PTR(-ESTALE); 3305 } 3306 return inode; 3307 } 3308 3309 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3310 int fh_len, int fh_type) 3311 { 3312 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3313 f2fs_nfs_get_inode); 3314 } 3315 3316 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3317 int fh_len, int fh_type) 3318 { 3319 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3320 f2fs_nfs_get_inode); 3321 } 3322 3323 static const struct export_operations f2fs_export_ops = { 3324 .fh_to_dentry = f2fs_fh_to_dentry, 3325 .fh_to_parent = f2fs_fh_to_parent, 3326 .get_parent = f2fs_get_parent, 3327 }; 3328 3329 loff_t max_file_blocks(struct inode *inode) 3330 { 3331 loff_t result = 0; 3332 loff_t leaf_count; 3333 3334 /* 3335 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3336 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3337 * space in inode.i_addr, it will be more safe to reassign 3338 * result as zero. 3339 */ 3340 3341 if (inode && f2fs_compressed_file(inode)) 3342 leaf_count = ADDRS_PER_BLOCK(inode); 3343 else 3344 leaf_count = DEF_ADDRS_PER_BLOCK; 3345 3346 /* two direct node blocks */ 3347 result += (leaf_count * 2); 3348 3349 /* two indirect node blocks */ 3350 leaf_count *= NIDS_PER_BLOCK; 3351 result += (leaf_count * 2); 3352 3353 /* one double indirect node block */ 3354 leaf_count *= NIDS_PER_BLOCK; 3355 result += leaf_count; 3356 3357 return result; 3358 } 3359 3360 static int __f2fs_commit_super(struct buffer_head *bh, 3361 struct f2fs_super_block *super) 3362 { 3363 lock_buffer(bh); 3364 if (super) 3365 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 3366 set_buffer_dirty(bh); 3367 unlock_buffer(bh); 3368 3369 /* it's rare case, we can do fua all the time */ 3370 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 3371 } 3372 3373 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3374 struct buffer_head *bh) 3375 { 3376 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3377 (bh->b_data + F2FS_SUPER_OFFSET); 3378 struct super_block *sb = sbi->sb; 3379 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3380 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3381 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3382 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3383 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3384 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3385 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3386 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3387 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3388 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3389 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3390 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3391 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3392 u64 main_end_blkaddr = main_blkaddr + 3393 (segment_count_main << log_blocks_per_seg); 3394 u64 seg_end_blkaddr = segment0_blkaddr + 3395 (segment_count << log_blocks_per_seg); 3396 3397 if (segment0_blkaddr != cp_blkaddr) { 3398 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3399 segment0_blkaddr, cp_blkaddr); 3400 return true; 3401 } 3402 3403 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3404 sit_blkaddr) { 3405 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3406 cp_blkaddr, sit_blkaddr, 3407 segment_count_ckpt << log_blocks_per_seg); 3408 return true; 3409 } 3410 3411 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3412 nat_blkaddr) { 3413 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3414 sit_blkaddr, nat_blkaddr, 3415 segment_count_sit << log_blocks_per_seg); 3416 return true; 3417 } 3418 3419 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3420 ssa_blkaddr) { 3421 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3422 nat_blkaddr, ssa_blkaddr, 3423 segment_count_nat << log_blocks_per_seg); 3424 return true; 3425 } 3426 3427 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3428 main_blkaddr) { 3429 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3430 ssa_blkaddr, main_blkaddr, 3431 segment_count_ssa << log_blocks_per_seg); 3432 return true; 3433 } 3434 3435 if (main_end_blkaddr > seg_end_blkaddr) { 3436 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3437 main_blkaddr, seg_end_blkaddr, 3438 segment_count_main << log_blocks_per_seg); 3439 return true; 3440 } else if (main_end_blkaddr < seg_end_blkaddr) { 3441 int err = 0; 3442 char *res; 3443 3444 /* fix in-memory information all the time */ 3445 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3446 segment0_blkaddr) >> log_blocks_per_seg); 3447 3448 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) { 3449 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3450 res = "internally"; 3451 } else { 3452 err = __f2fs_commit_super(bh, NULL); 3453 res = err ? "failed" : "done"; 3454 } 3455 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3456 res, main_blkaddr, seg_end_blkaddr, 3457 segment_count_main << log_blocks_per_seg); 3458 if (err) 3459 return true; 3460 } 3461 return false; 3462 } 3463 3464 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3465 struct buffer_head *bh) 3466 { 3467 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3468 block_t total_sections, blocks_per_seg; 3469 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3470 (bh->b_data + F2FS_SUPER_OFFSET); 3471 size_t crc_offset = 0; 3472 __u32 crc = 0; 3473 3474 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3475 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3476 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3477 return -EINVAL; 3478 } 3479 3480 /* Check checksum_offset and crc in superblock */ 3481 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3482 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3483 if (crc_offset != 3484 offsetof(struct f2fs_super_block, crc)) { 3485 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3486 crc_offset); 3487 return -EFSCORRUPTED; 3488 } 3489 crc = le32_to_cpu(raw_super->crc); 3490 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3491 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3492 return -EFSCORRUPTED; 3493 } 3494 } 3495 3496 /* Currently, support only 4KB block size */ 3497 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3498 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3499 le32_to_cpu(raw_super->log_blocksize), 3500 F2FS_BLKSIZE_BITS); 3501 return -EFSCORRUPTED; 3502 } 3503 3504 /* check log blocks per segment */ 3505 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3506 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3507 le32_to_cpu(raw_super->log_blocks_per_seg)); 3508 return -EFSCORRUPTED; 3509 } 3510 3511 /* Currently, support 512/1024/2048/4096 bytes sector size */ 3512 if (le32_to_cpu(raw_super->log_sectorsize) > 3513 F2FS_MAX_LOG_SECTOR_SIZE || 3514 le32_to_cpu(raw_super->log_sectorsize) < 3515 F2FS_MIN_LOG_SECTOR_SIZE) { 3516 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3517 le32_to_cpu(raw_super->log_sectorsize)); 3518 return -EFSCORRUPTED; 3519 } 3520 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3521 le32_to_cpu(raw_super->log_sectorsize) != 3522 F2FS_MAX_LOG_SECTOR_SIZE) { 3523 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3524 le32_to_cpu(raw_super->log_sectors_per_block), 3525 le32_to_cpu(raw_super->log_sectorsize)); 3526 return -EFSCORRUPTED; 3527 } 3528 3529 segment_count = le32_to_cpu(raw_super->segment_count); 3530 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3531 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3532 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3533 total_sections = le32_to_cpu(raw_super->section_count); 3534 3535 /* blocks_per_seg should be 512, given the above check */ 3536 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg)); 3537 3538 if (segment_count > F2FS_MAX_SEGMENT || 3539 segment_count < F2FS_MIN_SEGMENTS) { 3540 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3541 return -EFSCORRUPTED; 3542 } 3543 3544 if (total_sections > segment_count_main || total_sections < 1 || 3545 segs_per_sec > segment_count || !segs_per_sec) { 3546 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3547 segment_count, total_sections, segs_per_sec); 3548 return -EFSCORRUPTED; 3549 } 3550 3551 if (segment_count_main != total_sections * segs_per_sec) { 3552 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3553 segment_count_main, total_sections, segs_per_sec); 3554 return -EFSCORRUPTED; 3555 } 3556 3557 if ((segment_count / segs_per_sec) < total_sections) { 3558 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3559 segment_count, segs_per_sec, total_sections); 3560 return -EFSCORRUPTED; 3561 } 3562 3563 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3564 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3565 segment_count, le64_to_cpu(raw_super->block_count)); 3566 return -EFSCORRUPTED; 3567 } 3568 3569 if (RDEV(0).path[0]) { 3570 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3571 int i = 1; 3572 3573 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3574 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3575 i++; 3576 } 3577 if (segment_count != dev_seg_count) { 3578 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3579 segment_count, dev_seg_count); 3580 return -EFSCORRUPTED; 3581 } 3582 } else { 3583 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3584 !bdev_is_zoned(sbi->sb->s_bdev)) { 3585 f2fs_info(sbi, "Zoned block device path is missing"); 3586 return -EFSCORRUPTED; 3587 } 3588 } 3589 3590 if (secs_per_zone > total_sections || !secs_per_zone) { 3591 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3592 secs_per_zone, total_sections); 3593 return -EFSCORRUPTED; 3594 } 3595 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3596 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3597 (le32_to_cpu(raw_super->extension_count) + 3598 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3599 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3600 le32_to_cpu(raw_super->extension_count), 3601 raw_super->hot_ext_count, 3602 F2FS_MAX_EXTENSION); 3603 return -EFSCORRUPTED; 3604 } 3605 3606 if (le32_to_cpu(raw_super->cp_payload) >= 3607 (blocks_per_seg - F2FS_CP_PACKS - 3608 NR_CURSEG_PERSIST_TYPE)) { 3609 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3610 le32_to_cpu(raw_super->cp_payload), 3611 blocks_per_seg - F2FS_CP_PACKS - 3612 NR_CURSEG_PERSIST_TYPE); 3613 return -EFSCORRUPTED; 3614 } 3615 3616 /* check reserved ino info */ 3617 if (le32_to_cpu(raw_super->node_ino) != 1 || 3618 le32_to_cpu(raw_super->meta_ino) != 2 || 3619 le32_to_cpu(raw_super->root_ino) != 3) { 3620 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3621 le32_to_cpu(raw_super->node_ino), 3622 le32_to_cpu(raw_super->meta_ino), 3623 le32_to_cpu(raw_super->root_ino)); 3624 return -EFSCORRUPTED; 3625 } 3626 3627 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3628 if (sanity_check_area_boundary(sbi, bh)) 3629 return -EFSCORRUPTED; 3630 3631 return 0; 3632 } 3633 3634 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3635 { 3636 unsigned int total, fsmeta; 3637 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3638 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3639 unsigned int ovp_segments, reserved_segments; 3640 unsigned int main_segs, blocks_per_seg; 3641 unsigned int sit_segs, nat_segs; 3642 unsigned int sit_bitmap_size, nat_bitmap_size; 3643 unsigned int log_blocks_per_seg; 3644 unsigned int segment_count_main; 3645 unsigned int cp_pack_start_sum, cp_payload; 3646 block_t user_block_count, valid_user_blocks; 3647 block_t avail_node_count, valid_node_count; 3648 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3649 int i, j; 3650 3651 total = le32_to_cpu(raw_super->segment_count); 3652 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3653 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3654 fsmeta += sit_segs; 3655 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3656 fsmeta += nat_segs; 3657 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3658 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3659 3660 if (unlikely(fsmeta >= total)) 3661 return 1; 3662 3663 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3664 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3665 3666 if (!f2fs_sb_has_readonly(sbi) && 3667 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3668 ovp_segments == 0 || reserved_segments == 0)) { 3669 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3670 return 1; 3671 } 3672 user_block_count = le64_to_cpu(ckpt->user_block_count); 3673 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3674 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3675 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3676 if (!user_block_count || user_block_count >= 3677 segment_count_main << log_blocks_per_seg) { 3678 f2fs_err(sbi, "Wrong user_block_count: %u", 3679 user_block_count); 3680 return 1; 3681 } 3682 3683 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3684 if (valid_user_blocks > user_block_count) { 3685 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3686 valid_user_blocks, user_block_count); 3687 return 1; 3688 } 3689 3690 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3691 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3692 if (valid_node_count > avail_node_count) { 3693 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3694 valid_node_count, avail_node_count); 3695 return 1; 3696 } 3697 3698 main_segs = le32_to_cpu(raw_super->segment_count_main); 3699 blocks_per_seg = sbi->blocks_per_seg; 3700 3701 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3702 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3703 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3704 return 1; 3705 3706 if (f2fs_sb_has_readonly(sbi)) 3707 goto check_data; 3708 3709 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3710 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3711 le32_to_cpu(ckpt->cur_node_segno[j])) { 3712 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3713 i, j, 3714 le32_to_cpu(ckpt->cur_node_segno[i])); 3715 return 1; 3716 } 3717 } 3718 } 3719 check_data: 3720 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3721 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3722 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3723 return 1; 3724 3725 if (f2fs_sb_has_readonly(sbi)) 3726 goto skip_cross; 3727 3728 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3729 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3730 le32_to_cpu(ckpt->cur_data_segno[j])) { 3731 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3732 i, j, 3733 le32_to_cpu(ckpt->cur_data_segno[i])); 3734 return 1; 3735 } 3736 } 3737 } 3738 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3739 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3740 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3741 le32_to_cpu(ckpt->cur_data_segno[j])) { 3742 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3743 i, j, 3744 le32_to_cpu(ckpt->cur_node_segno[i])); 3745 return 1; 3746 } 3747 } 3748 } 3749 skip_cross: 3750 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3751 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3752 3753 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3754 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3755 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3756 sit_bitmap_size, nat_bitmap_size); 3757 return 1; 3758 } 3759 3760 cp_pack_start_sum = __start_sum_addr(sbi); 3761 cp_payload = __cp_payload(sbi); 3762 if (cp_pack_start_sum < cp_payload + 1 || 3763 cp_pack_start_sum > blocks_per_seg - 1 - 3764 NR_CURSEG_PERSIST_TYPE) { 3765 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3766 cp_pack_start_sum); 3767 return 1; 3768 } 3769 3770 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3771 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3772 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3773 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3774 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3775 le32_to_cpu(ckpt->checksum_offset)); 3776 return 1; 3777 } 3778 3779 nat_blocks = nat_segs << log_blocks_per_seg; 3780 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3781 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3782 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3783 (cp_payload + F2FS_CP_PACKS + 3784 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3785 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3786 cp_payload, nat_bits_blocks); 3787 return 1; 3788 } 3789 3790 if (unlikely(f2fs_cp_error(sbi))) { 3791 f2fs_err(sbi, "A bug case: need to run fsck"); 3792 return 1; 3793 } 3794 return 0; 3795 } 3796 3797 static void init_sb_info(struct f2fs_sb_info *sbi) 3798 { 3799 struct f2fs_super_block *raw_super = sbi->raw_super; 3800 int i; 3801 3802 sbi->log_sectors_per_block = 3803 le32_to_cpu(raw_super->log_sectors_per_block); 3804 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3805 sbi->blocksize = BIT(sbi->log_blocksize); 3806 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3807 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg); 3808 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3809 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3810 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3811 sbi->total_node_count = 3812 (le32_to_cpu(raw_super->segment_count_nat) / 2) 3813 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 3814 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3815 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3816 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3817 sbi->cur_victim_sec = NULL_SECNO; 3818 sbi->gc_mode = GC_NORMAL; 3819 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3820 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3821 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3822 sbi->migration_granularity = sbi->segs_per_sec; 3823 sbi->seq_file_ra_mul = MIN_RA_MUL; 3824 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3825 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3826 spin_lock_init(&sbi->gc_remaining_trials_lock); 3827 atomic64_set(&sbi->current_atomic_write, 0); 3828 3829 sbi->dir_level = DEF_DIR_LEVEL; 3830 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3831 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3832 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3833 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3834 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3835 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3836 DEF_UMOUNT_DISCARD_TIMEOUT; 3837 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3838 3839 for (i = 0; i < NR_COUNT_TYPE; i++) 3840 atomic_set(&sbi->nr_pages[i], 0); 3841 3842 for (i = 0; i < META; i++) 3843 atomic_set(&sbi->wb_sync_req[i], 0); 3844 3845 INIT_LIST_HEAD(&sbi->s_list); 3846 mutex_init(&sbi->umount_mutex); 3847 init_f2fs_rwsem(&sbi->io_order_lock); 3848 spin_lock_init(&sbi->cp_lock); 3849 3850 sbi->dirty_device = 0; 3851 spin_lock_init(&sbi->dev_lock); 3852 3853 init_f2fs_rwsem(&sbi->sb_lock); 3854 init_f2fs_rwsem(&sbi->pin_sem); 3855 } 3856 3857 static int init_percpu_info(struct f2fs_sb_info *sbi) 3858 { 3859 int err; 3860 3861 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3862 if (err) 3863 return err; 3864 3865 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 3866 if (err) 3867 goto err_valid_block; 3868 3869 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3870 GFP_KERNEL); 3871 if (err) 3872 goto err_node_block; 3873 return 0; 3874 3875 err_node_block: 3876 percpu_counter_destroy(&sbi->rf_node_block_count); 3877 err_valid_block: 3878 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3879 return err; 3880 } 3881 3882 #ifdef CONFIG_BLK_DEV_ZONED 3883 3884 struct f2fs_report_zones_args { 3885 struct f2fs_sb_info *sbi; 3886 struct f2fs_dev_info *dev; 3887 }; 3888 3889 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3890 void *data) 3891 { 3892 struct f2fs_report_zones_args *rz_args = data; 3893 block_t unusable_blocks = (zone->len - zone->capacity) >> 3894 F2FS_LOG_SECTORS_PER_BLOCK; 3895 3896 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3897 return 0; 3898 3899 set_bit(idx, rz_args->dev->blkz_seq); 3900 if (!rz_args->sbi->unusable_blocks_per_sec) { 3901 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; 3902 return 0; 3903 } 3904 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { 3905 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); 3906 return -EINVAL; 3907 } 3908 return 0; 3909 } 3910 3911 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3912 { 3913 struct block_device *bdev = FDEV(devi).bdev; 3914 sector_t nr_sectors = bdev_nr_sectors(bdev); 3915 struct f2fs_report_zones_args rep_zone_arg; 3916 u64 zone_sectors; 3917 int ret; 3918 3919 if (!f2fs_sb_has_blkzoned(sbi)) 3920 return 0; 3921 3922 zone_sectors = bdev_zone_sectors(bdev); 3923 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3924 SECTOR_TO_BLOCK(zone_sectors)) 3925 return -EINVAL; 3926 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors); 3927 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors), 3928 sbi->blocks_per_blkz); 3929 if (nr_sectors & (zone_sectors - 1)) 3930 FDEV(devi).nr_blkz++; 3931 3932 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3933 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3934 * sizeof(unsigned long), 3935 GFP_KERNEL); 3936 if (!FDEV(devi).blkz_seq) 3937 return -ENOMEM; 3938 3939 rep_zone_arg.sbi = sbi; 3940 rep_zone_arg.dev = &FDEV(devi); 3941 3942 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3943 &rep_zone_arg); 3944 if (ret < 0) 3945 return ret; 3946 return 0; 3947 } 3948 #endif 3949 3950 /* 3951 * Read f2fs raw super block. 3952 * Because we have two copies of super block, so read both of them 3953 * to get the first valid one. If any one of them is broken, we pass 3954 * them recovery flag back to the caller. 3955 */ 3956 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3957 struct f2fs_super_block **raw_super, 3958 int *valid_super_block, int *recovery) 3959 { 3960 struct super_block *sb = sbi->sb; 3961 int block; 3962 struct buffer_head *bh; 3963 struct f2fs_super_block *super; 3964 int err = 0; 3965 3966 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3967 if (!super) 3968 return -ENOMEM; 3969 3970 for (block = 0; block < 2; block++) { 3971 bh = sb_bread(sb, block); 3972 if (!bh) { 3973 f2fs_err(sbi, "Unable to read %dth superblock", 3974 block + 1); 3975 err = -EIO; 3976 *recovery = 1; 3977 continue; 3978 } 3979 3980 /* sanity checking of raw super */ 3981 err = sanity_check_raw_super(sbi, bh); 3982 if (err) { 3983 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3984 block + 1); 3985 brelse(bh); 3986 *recovery = 1; 3987 continue; 3988 } 3989 3990 if (!*raw_super) { 3991 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3992 sizeof(*super)); 3993 *valid_super_block = block; 3994 *raw_super = super; 3995 } 3996 brelse(bh); 3997 } 3998 3999 /* No valid superblock */ 4000 if (!*raw_super) 4001 kfree(super); 4002 else 4003 err = 0; 4004 4005 return err; 4006 } 4007 4008 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 4009 { 4010 struct buffer_head *bh; 4011 __u32 crc = 0; 4012 int err; 4013 4014 if ((recover && f2fs_readonly(sbi->sb)) || 4015 f2fs_hw_is_readonly(sbi)) { 4016 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 4017 return -EROFS; 4018 } 4019 4020 /* we should update superblock crc here */ 4021 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 4022 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 4023 offsetof(struct f2fs_super_block, crc)); 4024 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 4025 } 4026 4027 /* write back-up superblock first */ 4028 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 4029 if (!bh) 4030 return -EIO; 4031 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 4032 brelse(bh); 4033 4034 /* if we are in recovery path, skip writing valid superblock */ 4035 if (recover || err) 4036 return err; 4037 4038 /* write current valid superblock */ 4039 bh = sb_bread(sbi->sb, sbi->valid_super_block); 4040 if (!bh) 4041 return -EIO; 4042 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 4043 brelse(bh); 4044 return err; 4045 } 4046 4047 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason) 4048 { 4049 unsigned long flags; 4050 4051 spin_lock_irqsave(&sbi->error_lock, flags); 4052 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0)) 4053 sbi->stop_reason[reason]++; 4054 spin_unlock_irqrestore(&sbi->error_lock, flags); 4055 } 4056 4057 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi) 4058 { 4059 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4060 unsigned long flags; 4061 int err; 4062 4063 f2fs_down_write(&sbi->sb_lock); 4064 4065 spin_lock_irqsave(&sbi->error_lock, flags); 4066 if (sbi->error_dirty) { 4067 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4068 MAX_F2FS_ERRORS); 4069 sbi->error_dirty = false; 4070 } 4071 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON); 4072 spin_unlock_irqrestore(&sbi->error_lock, flags); 4073 4074 err = f2fs_commit_super(sbi, false); 4075 4076 f2fs_up_write(&sbi->sb_lock); 4077 if (err) 4078 f2fs_err(sbi, "f2fs_commit_super fails to record err:%d", err); 4079 } 4080 4081 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag) 4082 { 4083 unsigned long flags; 4084 4085 spin_lock_irqsave(&sbi->error_lock, flags); 4086 if (!test_bit(flag, (unsigned long *)sbi->errors)) { 4087 set_bit(flag, (unsigned long *)sbi->errors); 4088 sbi->error_dirty = true; 4089 } 4090 spin_unlock_irqrestore(&sbi->error_lock, flags); 4091 } 4092 4093 static bool f2fs_update_errors(struct f2fs_sb_info *sbi) 4094 { 4095 unsigned long flags; 4096 bool need_update = false; 4097 4098 spin_lock_irqsave(&sbi->error_lock, flags); 4099 if (sbi->error_dirty) { 4100 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4101 MAX_F2FS_ERRORS); 4102 sbi->error_dirty = false; 4103 need_update = true; 4104 } 4105 spin_unlock_irqrestore(&sbi->error_lock, flags); 4106 4107 return need_update; 4108 } 4109 4110 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error) 4111 { 4112 int err; 4113 4114 f2fs_down_write(&sbi->sb_lock); 4115 4116 if (!f2fs_update_errors(sbi)) 4117 goto out_unlock; 4118 4119 err = f2fs_commit_super(sbi, false); 4120 if (err) 4121 f2fs_err(sbi, "f2fs_commit_super fails to record errors:%u, err:%d", 4122 error, err); 4123 out_unlock: 4124 f2fs_up_write(&sbi->sb_lock); 4125 } 4126 4127 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error) 4128 { 4129 f2fs_save_errors(sbi, error); 4130 f2fs_record_errors(sbi, error); 4131 } 4132 4133 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error) 4134 { 4135 f2fs_save_errors(sbi, error); 4136 4137 if (!sbi->error_dirty) 4138 return; 4139 if (!test_bit(error, (unsigned long *)sbi->errors)) 4140 return; 4141 schedule_work(&sbi->s_error_work); 4142 } 4143 4144 static bool system_going_down(void) 4145 { 4146 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 4147 || system_state == SYSTEM_RESTART; 4148 } 4149 4150 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, 4151 bool irq_context) 4152 { 4153 struct super_block *sb = sbi->sb; 4154 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN; 4155 bool continue_fs = !shutdown && 4156 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE; 4157 4158 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4159 4160 if (!f2fs_hw_is_readonly(sbi)) { 4161 save_stop_reason(sbi, reason); 4162 4163 if (irq_context && !shutdown) 4164 schedule_work(&sbi->s_error_work); 4165 else 4166 f2fs_record_stop_reason(sbi); 4167 } 4168 4169 /* 4170 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 4171 * could panic during 'reboot -f' as the underlying device got already 4172 * disabled. 4173 */ 4174 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC && 4175 !shutdown && !system_going_down() && 4176 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) 4177 panic("F2FS-fs (device %s): panic forced after error\n", 4178 sb->s_id); 4179 4180 if (shutdown) 4181 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 4182 4183 /* continue filesystem operators if errors=continue */ 4184 if (continue_fs || f2fs_readonly(sb)) 4185 return; 4186 4187 f2fs_warn(sbi, "Remounting filesystem read-only"); 4188 /* 4189 * Make sure updated value of ->s_mount_flags will be visible before 4190 * ->s_flags update 4191 */ 4192 smp_wmb(); 4193 sb->s_flags |= SB_RDONLY; 4194 } 4195 4196 static void f2fs_record_error_work(struct work_struct *work) 4197 { 4198 struct f2fs_sb_info *sbi = container_of(work, 4199 struct f2fs_sb_info, s_error_work); 4200 4201 f2fs_record_stop_reason(sbi); 4202 } 4203 4204 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 4205 { 4206 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4207 unsigned int max_devices = MAX_DEVICES; 4208 unsigned int logical_blksize; 4209 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags); 4210 int i; 4211 4212 /* Initialize single device information */ 4213 if (!RDEV(0).path[0]) { 4214 if (!bdev_is_zoned(sbi->sb->s_bdev)) 4215 return 0; 4216 max_devices = 1; 4217 } 4218 4219 /* 4220 * Initialize multiple devices information, or single 4221 * zoned block device information. 4222 */ 4223 sbi->devs = f2fs_kzalloc(sbi, 4224 array_size(max_devices, 4225 sizeof(struct f2fs_dev_info)), 4226 GFP_KERNEL); 4227 if (!sbi->devs) 4228 return -ENOMEM; 4229 4230 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 4231 sbi->aligned_blksize = true; 4232 4233 for (i = 0; i < max_devices; i++) { 4234 if (i == 0) 4235 FDEV(0).bdev = sbi->sb->s_bdev; 4236 else if (!RDEV(i).path[0]) 4237 break; 4238 4239 if (max_devices > 1) { 4240 /* Multi-device mount */ 4241 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 4242 FDEV(i).total_segments = 4243 le32_to_cpu(RDEV(i).total_segments); 4244 if (i == 0) { 4245 FDEV(i).start_blk = 0; 4246 FDEV(i).end_blk = FDEV(i).start_blk + 4247 (FDEV(i).total_segments << 4248 sbi->log_blocks_per_seg) - 1 + 4249 le32_to_cpu(raw_super->segment0_blkaddr); 4250 } else { 4251 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 4252 FDEV(i).end_blk = FDEV(i).start_blk + 4253 (FDEV(i).total_segments << 4254 sbi->log_blocks_per_seg) - 1; 4255 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 4256 mode, sbi->sb, NULL); 4257 } 4258 } 4259 if (IS_ERR(FDEV(i).bdev)) 4260 return PTR_ERR(FDEV(i).bdev); 4261 4262 /* to release errored devices */ 4263 sbi->s_ndevs = i + 1; 4264 4265 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 4266 sbi->aligned_blksize = false; 4267 4268 #ifdef CONFIG_BLK_DEV_ZONED 4269 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 4270 !f2fs_sb_has_blkzoned(sbi)) { 4271 f2fs_err(sbi, "Zoned block device feature not enabled"); 4272 return -EINVAL; 4273 } 4274 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 4275 if (init_blkz_info(sbi, i)) { 4276 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 4277 return -EINVAL; 4278 } 4279 if (max_devices == 1) 4280 break; 4281 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 4282 i, FDEV(i).path, 4283 FDEV(i).total_segments, 4284 FDEV(i).start_blk, FDEV(i).end_blk, 4285 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 4286 "Host-aware" : "Host-managed"); 4287 continue; 4288 } 4289 #endif 4290 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 4291 i, FDEV(i).path, 4292 FDEV(i).total_segments, 4293 FDEV(i).start_blk, FDEV(i).end_blk); 4294 } 4295 f2fs_info(sbi, 4296 "IO Block Size: %8ld KB", F2FS_IO_SIZE_KB(sbi)); 4297 return 0; 4298 } 4299 4300 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 4301 { 4302 #if IS_ENABLED(CONFIG_UNICODE) 4303 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 4304 const struct f2fs_sb_encodings *encoding_info; 4305 struct unicode_map *encoding; 4306 __u16 encoding_flags; 4307 4308 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 4309 if (!encoding_info) { 4310 f2fs_err(sbi, 4311 "Encoding requested by superblock is unknown"); 4312 return -EINVAL; 4313 } 4314 4315 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 4316 encoding = utf8_load(encoding_info->version); 4317 if (IS_ERR(encoding)) { 4318 f2fs_err(sbi, 4319 "can't mount with superblock charset: %s-%u.%u.%u " 4320 "not supported by the kernel. flags: 0x%x.", 4321 encoding_info->name, 4322 unicode_major(encoding_info->version), 4323 unicode_minor(encoding_info->version), 4324 unicode_rev(encoding_info->version), 4325 encoding_flags); 4326 return PTR_ERR(encoding); 4327 } 4328 f2fs_info(sbi, "Using encoding defined by superblock: " 4329 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4330 unicode_major(encoding_info->version), 4331 unicode_minor(encoding_info->version), 4332 unicode_rev(encoding_info->version), 4333 encoding_flags); 4334 4335 sbi->sb->s_encoding = encoding; 4336 sbi->sb->s_encoding_flags = encoding_flags; 4337 } 4338 #else 4339 if (f2fs_sb_has_casefold(sbi)) { 4340 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 4341 return -EINVAL; 4342 } 4343 #endif 4344 return 0; 4345 } 4346 4347 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 4348 { 4349 /* adjust parameters according to the volume size */ 4350 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) { 4351 if (f2fs_block_unit_discard(sbi)) 4352 SM_I(sbi)->dcc_info->discard_granularity = 4353 MIN_DISCARD_GRANULARITY; 4354 if (!f2fs_lfs_mode(sbi)) 4355 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) | 4356 BIT(F2FS_IPU_HONOR_OPU_WRITE); 4357 } 4358 4359 sbi->readdir_ra = true; 4360 } 4361 4362 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 4363 { 4364 struct f2fs_sb_info *sbi; 4365 struct f2fs_super_block *raw_super; 4366 struct inode *root; 4367 int err; 4368 bool skip_recovery = false, need_fsck = false; 4369 char *options = NULL; 4370 int recovery, i, valid_super_block; 4371 struct curseg_info *seg_i; 4372 int retry_cnt = 1; 4373 #ifdef CONFIG_QUOTA 4374 bool quota_enabled = false; 4375 #endif 4376 4377 try_onemore: 4378 err = -EINVAL; 4379 raw_super = NULL; 4380 valid_super_block = -1; 4381 recovery = 0; 4382 4383 /* allocate memory for f2fs-specific super block info */ 4384 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 4385 if (!sbi) 4386 return -ENOMEM; 4387 4388 sbi->sb = sb; 4389 4390 /* initialize locks within allocated memory */ 4391 init_f2fs_rwsem(&sbi->gc_lock); 4392 mutex_init(&sbi->writepages); 4393 init_f2fs_rwsem(&sbi->cp_global_sem); 4394 init_f2fs_rwsem(&sbi->node_write); 4395 init_f2fs_rwsem(&sbi->node_change); 4396 spin_lock_init(&sbi->stat_lock); 4397 init_f2fs_rwsem(&sbi->cp_rwsem); 4398 init_f2fs_rwsem(&sbi->quota_sem); 4399 init_waitqueue_head(&sbi->cp_wait); 4400 spin_lock_init(&sbi->error_lock); 4401 4402 for (i = 0; i < NR_INODE_TYPE; i++) { 4403 INIT_LIST_HEAD(&sbi->inode_list[i]); 4404 spin_lock_init(&sbi->inode_lock[i]); 4405 } 4406 mutex_init(&sbi->flush_lock); 4407 4408 /* Load the checksum driver */ 4409 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 4410 if (IS_ERR(sbi->s_chksum_driver)) { 4411 f2fs_err(sbi, "Cannot load crc32 driver."); 4412 err = PTR_ERR(sbi->s_chksum_driver); 4413 sbi->s_chksum_driver = NULL; 4414 goto free_sbi; 4415 } 4416 4417 /* set a block size */ 4418 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 4419 f2fs_err(sbi, "unable to set blocksize"); 4420 goto free_sbi; 4421 } 4422 4423 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4424 &recovery); 4425 if (err) 4426 goto free_sbi; 4427 4428 sb->s_fs_info = sbi; 4429 sbi->raw_super = raw_super; 4430 4431 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work); 4432 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS); 4433 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON); 4434 4435 /* precompute checksum seed for metadata */ 4436 if (f2fs_sb_has_inode_chksum(sbi)) 4437 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 4438 sizeof(raw_super->uuid)); 4439 4440 default_options(sbi, false); 4441 /* parse mount options */ 4442 options = kstrdup((const char *)data, GFP_KERNEL); 4443 if (data && !options) { 4444 err = -ENOMEM; 4445 goto free_sb_buf; 4446 } 4447 4448 err = parse_options(sb, options, false); 4449 if (err) 4450 goto free_options; 4451 4452 sb->s_maxbytes = max_file_blocks(NULL) << 4453 le32_to_cpu(raw_super->log_blocksize); 4454 sb->s_max_links = F2FS_LINK_MAX; 4455 4456 err = f2fs_setup_casefold(sbi); 4457 if (err) 4458 goto free_options; 4459 4460 #ifdef CONFIG_QUOTA 4461 sb->dq_op = &f2fs_quota_operations; 4462 sb->s_qcop = &f2fs_quotactl_ops; 4463 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4464 4465 if (f2fs_sb_has_quota_ino(sbi)) { 4466 for (i = 0; i < MAXQUOTAS; i++) { 4467 if (f2fs_qf_ino(sbi->sb, i)) 4468 sbi->nquota_files++; 4469 } 4470 } 4471 #endif 4472 4473 sb->s_op = &f2fs_sops; 4474 #ifdef CONFIG_FS_ENCRYPTION 4475 sb->s_cop = &f2fs_cryptops; 4476 #endif 4477 #ifdef CONFIG_FS_VERITY 4478 sb->s_vop = &f2fs_verityops; 4479 #endif 4480 sb->s_xattr = f2fs_xattr_handlers; 4481 sb->s_export_op = &f2fs_export_ops; 4482 sb->s_magic = F2FS_SUPER_MAGIC; 4483 sb->s_time_gran = 1; 4484 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4485 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4486 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 4487 sb->s_iflags |= SB_I_CGROUPWB; 4488 4489 /* init f2fs-specific super block info */ 4490 sbi->valid_super_block = valid_super_block; 4491 4492 /* disallow all the data/node/meta page writes */ 4493 set_sbi_flag(sbi, SBI_POR_DOING); 4494 4495 err = f2fs_init_write_merge_io(sbi); 4496 if (err) 4497 goto free_bio_info; 4498 4499 init_sb_info(sbi); 4500 4501 err = f2fs_init_iostat(sbi); 4502 if (err) 4503 goto free_bio_info; 4504 4505 err = init_percpu_info(sbi); 4506 if (err) 4507 goto free_iostat; 4508 4509 if (F2FS_IO_ALIGNED(sbi)) { 4510 sbi->write_io_dummy = 4511 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 4512 if (!sbi->write_io_dummy) { 4513 err = -ENOMEM; 4514 goto free_percpu; 4515 } 4516 } 4517 4518 /* init per sbi slab cache */ 4519 err = f2fs_init_xattr_caches(sbi); 4520 if (err) 4521 goto free_io_dummy; 4522 err = f2fs_init_page_array_cache(sbi); 4523 if (err) 4524 goto free_xattr_cache; 4525 4526 /* get an inode for meta space */ 4527 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4528 if (IS_ERR(sbi->meta_inode)) { 4529 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4530 err = PTR_ERR(sbi->meta_inode); 4531 goto free_page_array_cache; 4532 } 4533 4534 err = f2fs_get_valid_checkpoint(sbi); 4535 if (err) { 4536 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4537 goto free_meta_inode; 4538 } 4539 4540 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4541 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4542 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4543 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4544 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4545 } 4546 4547 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4548 set_sbi_flag(sbi, SBI_NEED_FSCK); 4549 4550 /* Initialize device list */ 4551 err = f2fs_scan_devices(sbi); 4552 if (err) { 4553 f2fs_err(sbi, "Failed to find devices"); 4554 goto free_devices; 4555 } 4556 4557 err = f2fs_init_post_read_wq(sbi); 4558 if (err) { 4559 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4560 goto free_devices; 4561 } 4562 4563 sbi->total_valid_node_count = 4564 le32_to_cpu(sbi->ckpt->valid_node_count); 4565 percpu_counter_set(&sbi->total_valid_inode_count, 4566 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4567 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4568 sbi->total_valid_block_count = 4569 le64_to_cpu(sbi->ckpt->valid_block_count); 4570 sbi->last_valid_block_count = sbi->total_valid_block_count; 4571 sbi->reserved_blocks = 0; 4572 sbi->current_reserved_blocks = 0; 4573 limit_reserve_root(sbi); 4574 adjust_unusable_cap_perc(sbi); 4575 4576 f2fs_init_extent_cache_info(sbi); 4577 4578 f2fs_init_ino_entry_info(sbi); 4579 4580 f2fs_init_fsync_node_info(sbi); 4581 4582 /* setup checkpoint request control and start checkpoint issue thread */ 4583 f2fs_init_ckpt_req_control(sbi); 4584 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4585 test_opt(sbi, MERGE_CHECKPOINT)) { 4586 err = f2fs_start_ckpt_thread(sbi); 4587 if (err) { 4588 f2fs_err(sbi, 4589 "Failed to start F2FS issue_checkpoint_thread (%d)", 4590 err); 4591 goto stop_ckpt_thread; 4592 } 4593 } 4594 4595 /* setup f2fs internal modules */ 4596 err = f2fs_build_segment_manager(sbi); 4597 if (err) { 4598 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4599 err); 4600 goto free_sm; 4601 } 4602 err = f2fs_build_node_manager(sbi); 4603 if (err) { 4604 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4605 err); 4606 goto free_nm; 4607 } 4608 4609 err = adjust_reserved_segment(sbi); 4610 if (err) 4611 goto free_nm; 4612 4613 /* For write statistics */ 4614 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4615 4616 /* Read accumulated write IO statistics if exists */ 4617 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4618 if (__exist_node_summaries(sbi)) 4619 sbi->kbytes_written = 4620 le64_to_cpu(seg_i->journal->info.kbytes_written); 4621 4622 f2fs_build_gc_manager(sbi); 4623 4624 err = f2fs_build_stats(sbi); 4625 if (err) 4626 goto free_nm; 4627 4628 /* get an inode for node space */ 4629 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4630 if (IS_ERR(sbi->node_inode)) { 4631 f2fs_err(sbi, "Failed to read node inode"); 4632 err = PTR_ERR(sbi->node_inode); 4633 goto free_stats; 4634 } 4635 4636 /* read root inode and dentry */ 4637 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4638 if (IS_ERR(root)) { 4639 f2fs_err(sbi, "Failed to read root inode"); 4640 err = PTR_ERR(root); 4641 goto free_node_inode; 4642 } 4643 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4644 !root->i_size || !root->i_nlink) { 4645 iput(root); 4646 err = -EINVAL; 4647 goto free_node_inode; 4648 } 4649 4650 sb->s_root = d_make_root(root); /* allocate root dentry */ 4651 if (!sb->s_root) { 4652 err = -ENOMEM; 4653 goto free_node_inode; 4654 } 4655 4656 err = f2fs_init_compress_inode(sbi); 4657 if (err) 4658 goto free_root_inode; 4659 4660 err = f2fs_register_sysfs(sbi); 4661 if (err) 4662 goto free_compress_inode; 4663 4664 #ifdef CONFIG_QUOTA 4665 /* Enable quota usage during mount */ 4666 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4667 err = f2fs_enable_quotas(sb); 4668 if (err) 4669 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4670 } 4671 4672 quota_enabled = f2fs_recover_quota_begin(sbi); 4673 #endif 4674 /* if there are any orphan inodes, free them */ 4675 err = f2fs_recover_orphan_inodes(sbi); 4676 if (err) 4677 goto free_meta; 4678 4679 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4680 goto reset_checkpoint; 4681 4682 /* recover fsynced data */ 4683 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4684 !test_opt(sbi, NORECOVERY)) { 4685 /* 4686 * mount should be failed, when device has readonly mode, and 4687 * previous checkpoint was not done by clean system shutdown. 4688 */ 4689 if (f2fs_hw_is_readonly(sbi)) { 4690 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4691 err = f2fs_recover_fsync_data(sbi, true); 4692 if (err > 0) { 4693 err = -EROFS; 4694 f2fs_err(sbi, "Need to recover fsync data, but " 4695 "write access unavailable, please try " 4696 "mount w/ disable_roll_forward or norecovery"); 4697 } 4698 if (err < 0) 4699 goto free_meta; 4700 } 4701 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4702 goto reset_checkpoint; 4703 } 4704 4705 if (need_fsck) 4706 set_sbi_flag(sbi, SBI_NEED_FSCK); 4707 4708 if (skip_recovery) 4709 goto reset_checkpoint; 4710 4711 err = f2fs_recover_fsync_data(sbi, false); 4712 if (err < 0) { 4713 if (err != -ENOMEM) 4714 skip_recovery = true; 4715 need_fsck = true; 4716 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4717 err); 4718 goto free_meta; 4719 } 4720 } else { 4721 err = f2fs_recover_fsync_data(sbi, true); 4722 4723 if (!f2fs_readonly(sb) && err > 0) { 4724 err = -EINVAL; 4725 f2fs_err(sbi, "Need to recover fsync data"); 4726 goto free_meta; 4727 } 4728 } 4729 4730 #ifdef CONFIG_QUOTA 4731 f2fs_recover_quota_end(sbi, quota_enabled); 4732 #endif 4733 4734 /* 4735 * If the f2fs is not readonly and fsync data recovery succeeds, 4736 * check zoned block devices' write pointer consistency. 4737 */ 4738 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 4739 err = f2fs_check_write_pointer(sbi); 4740 if (err) 4741 goto free_meta; 4742 } 4743 4744 reset_checkpoint: 4745 f2fs_init_inmem_curseg(sbi); 4746 4747 /* f2fs_recover_fsync_data() cleared this already */ 4748 clear_sbi_flag(sbi, SBI_POR_DOING); 4749 4750 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4751 err = f2fs_disable_checkpoint(sbi); 4752 if (err) 4753 goto sync_free_meta; 4754 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4755 f2fs_enable_checkpoint(sbi); 4756 } 4757 4758 /* 4759 * If filesystem is not mounted as read-only then 4760 * do start the gc_thread. 4761 */ 4762 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4763 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4764 /* After POR, we can run background GC thread.*/ 4765 err = f2fs_start_gc_thread(sbi); 4766 if (err) 4767 goto sync_free_meta; 4768 } 4769 kvfree(options); 4770 4771 /* recover broken superblock */ 4772 if (recovery) { 4773 err = f2fs_commit_super(sbi, true); 4774 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4775 sbi->valid_super_block ? 1 : 2, err); 4776 } 4777 4778 f2fs_join_shrinker(sbi); 4779 4780 f2fs_tuning_parameters(sbi); 4781 4782 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4783 cur_cp_version(F2FS_CKPT(sbi))); 4784 f2fs_update_time(sbi, CP_TIME); 4785 f2fs_update_time(sbi, REQ_TIME); 4786 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4787 return 0; 4788 4789 sync_free_meta: 4790 /* safe to flush all the data */ 4791 sync_filesystem(sbi->sb); 4792 retry_cnt = 0; 4793 4794 free_meta: 4795 #ifdef CONFIG_QUOTA 4796 f2fs_truncate_quota_inode_pages(sb); 4797 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4798 f2fs_quota_off_umount(sbi->sb); 4799 #endif 4800 /* 4801 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4802 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4803 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4804 * falls into an infinite loop in f2fs_sync_meta_pages(). 4805 */ 4806 truncate_inode_pages_final(META_MAPPING(sbi)); 4807 /* evict some inodes being cached by GC */ 4808 evict_inodes(sb); 4809 f2fs_unregister_sysfs(sbi); 4810 free_compress_inode: 4811 f2fs_destroy_compress_inode(sbi); 4812 free_root_inode: 4813 dput(sb->s_root); 4814 sb->s_root = NULL; 4815 free_node_inode: 4816 f2fs_release_ino_entry(sbi, true); 4817 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4818 iput(sbi->node_inode); 4819 sbi->node_inode = NULL; 4820 free_stats: 4821 f2fs_destroy_stats(sbi); 4822 free_nm: 4823 /* stop discard thread before destroying node manager */ 4824 f2fs_stop_discard_thread(sbi); 4825 f2fs_destroy_node_manager(sbi); 4826 free_sm: 4827 f2fs_destroy_segment_manager(sbi); 4828 stop_ckpt_thread: 4829 f2fs_stop_ckpt_thread(sbi); 4830 /* flush s_error_work before sbi destroy */ 4831 flush_work(&sbi->s_error_work); 4832 f2fs_destroy_post_read_wq(sbi); 4833 free_devices: 4834 destroy_device_list(sbi); 4835 kvfree(sbi->ckpt); 4836 free_meta_inode: 4837 make_bad_inode(sbi->meta_inode); 4838 iput(sbi->meta_inode); 4839 sbi->meta_inode = NULL; 4840 free_page_array_cache: 4841 f2fs_destroy_page_array_cache(sbi); 4842 free_xattr_cache: 4843 f2fs_destroy_xattr_caches(sbi); 4844 free_io_dummy: 4845 mempool_destroy(sbi->write_io_dummy); 4846 free_percpu: 4847 destroy_percpu_info(sbi); 4848 free_iostat: 4849 f2fs_destroy_iostat(sbi); 4850 free_bio_info: 4851 for (i = 0; i < NR_PAGE_TYPE; i++) 4852 kvfree(sbi->write_io[i]); 4853 4854 #if IS_ENABLED(CONFIG_UNICODE) 4855 utf8_unload(sb->s_encoding); 4856 sb->s_encoding = NULL; 4857 #endif 4858 free_options: 4859 #ifdef CONFIG_QUOTA 4860 for (i = 0; i < MAXQUOTAS; i++) 4861 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4862 #endif 4863 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4864 kvfree(options); 4865 free_sb_buf: 4866 kfree(raw_super); 4867 free_sbi: 4868 if (sbi->s_chksum_driver) 4869 crypto_free_shash(sbi->s_chksum_driver); 4870 kfree(sbi); 4871 4872 /* give only one another chance */ 4873 if (retry_cnt > 0 && skip_recovery) { 4874 retry_cnt--; 4875 shrink_dcache_sb(sb); 4876 goto try_onemore; 4877 } 4878 return err; 4879 } 4880 4881 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4882 const char *dev_name, void *data) 4883 { 4884 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4885 } 4886 4887 static void kill_f2fs_super(struct super_block *sb) 4888 { 4889 if (sb->s_root) { 4890 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4891 4892 set_sbi_flag(sbi, SBI_IS_CLOSE); 4893 f2fs_stop_gc_thread(sbi); 4894 f2fs_stop_discard_thread(sbi); 4895 4896 #ifdef CONFIG_F2FS_FS_COMPRESSION 4897 /* 4898 * latter evict_inode() can bypass checking and invalidating 4899 * compress inode cache. 4900 */ 4901 if (test_opt(sbi, COMPRESS_CACHE)) 4902 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4903 #endif 4904 4905 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4906 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4907 struct cp_control cpc = { 4908 .reason = CP_UMOUNT, 4909 }; 4910 stat_inc_cp_call_count(sbi, TOTAL_CALL); 4911 f2fs_write_checkpoint(sbi, &cpc); 4912 } 4913 4914 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4915 sb->s_flags &= ~SB_RDONLY; 4916 } 4917 kill_block_super(sb); 4918 } 4919 4920 static struct file_system_type f2fs_fs_type = { 4921 .owner = THIS_MODULE, 4922 .name = "f2fs", 4923 .mount = f2fs_mount, 4924 .kill_sb = kill_f2fs_super, 4925 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 4926 }; 4927 MODULE_ALIAS_FS("f2fs"); 4928 4929 static int __init init_inodecache(void) 4930 { 4931 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4932 sizeof(struct f2fs_inode_info), 0, 4933 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4934 return f2fs_inode_cachep ? 0 : -ENOMEM; 4935 } 4936 4937 static void destroy_inodecache(void) 4938 { 4939 /* 4940 * Make sure all delayed rcu free inodes are flushed before we 4941 * destroy cache. 4942 */ 4943 rcu_barrier(); 4944 kmem_cache_destroy(f2fs_inode_cachep); 4945 } 4946 4947 static int __init init_f2fs_fs(void) 4948 { 4949 int err; 4950 4951 if (PAGE_SIZE != F2FS_BLKSIZE) { 4952 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 4953 PAGE_SIZE, F2FS_BLKSIZE); 4954 return -EINVAL; 4955 } 4956 4957 err = init_inodecache(); 4958 if (err) 4959 goto fail; 4960 err = f2fs_create_node_manager_caches(); 4961 if (err) 4962 goto free_inodecache; 4963 err = f2fs_create_segment_manager_caches(); 4964 if (err) 4965 goto free_node_manager_caches; 4966 err = f2fs_create_checkpoint_caches(); 4967 if (err) 4968 goto free_segment_manager_caches; 4969 err = f2fs_create_recovery_cache(); 4970 if (err) 4971 goto free_checkpoint_caches; 4972 err = f2fs_create_extent_cache(); 4973 if (err) 4974 goto free_recovery_cache; 4975 err = f2fs_create_garbage_collection_cache(); 4976 if (err) 4977 goto free_extent_cache; 4978 err = f2fs_init_sysfs(); 4979 if (err) 4980 goto free_garbage_collection_cache; 4981 err = register_shrinker(&f2fs_shrinker_info, "f2fs-shrinker"); 4982 if (err) 4983 goto free_sysfs; 4984 err = register_filesystem(&f2fs_fs_type); 4985 if (err) 4986 goto free_shrinker; 4987 f2fs_create_root_stats(); 4988 err = f2fs_init_post_read_processing(); 4989 if (err) 4990 goto free_root_stats; 4991 err = f2fs_init_iostat_processing(); 4992 if (err) 4993 goto free_post_read; 4994 err = f2fs_init_bio_entry_cache(); 4995 if (err) 4996 goto free_iostat; 4997 err = f2fs_init_bioset(); 4998 if (err) 4999 goto free_bio_entry_cache; 5000 err = f2fs_init_compress_mempool(); 5001 if (err) 5002 goto free_bioset; 5003 err = f2fs_init_compress_cache(); 5004 if (err) 5005 goto free_compress_mempool; 5006 err = f2fs_create_casefold_cache(); 5007 if (err) 5008 goto free_compress_cache; 5009 return 0; 5010 free_compress_cache: 5011 f2fs_destroy_compress_cache(); 5012 free_compress_mempool: 5013 f2fs_destroy_compress_mempool(); 5014 free_bioset: 5015 f2fs_destroy_bioset(); 5016 free_bio_entry_cache: 5017 f2fs_destroy_bio_entry_cache(); 5018 free_iostat: 5019 f2fs_destroy_iostat_processing(); 5020 free_post_read: 5021 f2fs_destroy_post_read_processing(); 5022 free_root_stats: 5023 f2fs_destroy_root_stats(); 5024 unregister_filesystem(&f2fs_fs_type); 5025 free_shrinker: 5026 unregister_shrinker(&f2fs_shrinker_info); 5027 free_sysfs: 5028 f2fs_exit_sysfs(); 5029 free_garbage_collection_cache: 5030 f2fs_destroy_garbage_collection_cache(); 5031 free_extent_cache: 5032 f2fs_destroy_extent_cache(); 5033 free_recovery_cache: 5034 f2fs_destroy_recovery_cache(); 5035 free_checkpoint_caches: 5036 f2fs_destroy_checkpoint_caches(); 5037 free_segment_manager_caches: 5038 f2fs_destroy_segment_manager_caches(); 5039 free_node_manager_caches: 5040 f2fs_destroy_node_manager_caches(); 5041 free_inodecache: 5042 destroy_inodecache(); 5043 fail: 5044 return err; 5045 } 5046 5047 static void __exit exit_f2fs_fs(void) 5048 { 5049 f2fs_destroy_casefold_cache(); 5050 f2fs_destroy_compress_cache(); 5051 f2fs_destroy_compress_mempool(); 5052 f2fs_destroy_bioset(); 5053 f2fs_destroy_bio_entry_cache(); 5054 f2fs_destroy_iostat_processing(); 5055 f2fs_destroy_post_read_processing(); 5056 f2fs_destroy_root_stats(); 5057 unregister_filesystem(&f2fs_fs_type); 5058 unregister_shrinker(&f2fs_shrinker_info); 5059 f2fs_exit_sysfs(); 5060 f2fs_destroy_garbage_collection_cache(); 5061 f2fs_destroy_extent_cache(); 5062 f2fs_destroy_recovery_cache(); 5063 f2fs_destroy_checkpoint_caches(); 5064 f2fs_destroy_segment_manager_caches(); 5065 f2fs_destroy_node_manager_caches(); 5066 destroy_inodecache(); 5067 } 5068 5069 module_init(init_f2fs_fs) 5070 module_exit(exit_f2fs_fs) 5071 5072 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 5073 MODULE_DESCRIPTION("Flash Friendly File System"); 5074 MODULE_LICENSE("GPL"); 5075 MODULE_SOFTDEP("pre: crc32"); 5076 5077