xref: /openbmc/linux/fs/f2fs/super.c (revision bf070bb0)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29 
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39 
40 static struct kmem_cache *f2fs_inode_cachep;
41 
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 
44 char *fault_name[FAULT_MAX] = {
45 	[FAULT_KMALLOC]		= "kmalloc",
46 	[FAULT_PAGE_ALLOC]	= "page alloc",
47 	[FAULT_PAGE_GET]	= "page get",
48 	[FAULT_ALLOC_BIO]	= "alloc bio",
49 	[FAULT_ALLOC_NID]	= "alloc nid",
50 	[FAULT_ORPHAN]		= "orphan",
51 	[FAULT_BLOCK]		= "no more block",
52 	[FAULT_DIR_DEPTH]	= "too big dir depth",
53 	[FAULT_EVICT_INODE]	= "evict_inode fail",
54 	[FAULT_TRUNCATE]	= "truncate fail",
55 	[FAULT_IO]		= "IO error",
56 	[FAULT_CHECKPOINT]	= "checkpoint error",
57 };
58 
59 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
60 						unsigned int rate)
61 {
62 	struct f2fs_fault_info *ffi = &sbi->fault_info;
63 
64 	if (rate) {
65 		atomic_set(&ffi->inject_ops, 0);
66 		ffi->inject_rate = rate;
67 		ffi->inject_type = (1 << FAULT_MAX) - 1;
68 	} else {
69 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
70 	}
71 }
72 #endif
73 
74 /* f2fs-wide shrinker description */
75 static struct shrinker f2fs_shrinker_info = {
76 	.scan_objects = f2fs_shrink_scan,
77 	.count_objects = f2fs_shrink_count,
78 	.seeks = DEFAULT_SEEKS,
79 };
80 
81 enum {
82 	Opt_gc_background,
83 	Opt_disable_roll_forward,
84 	Opt_norecovery,
85 	Opt_discard,
86 	Opt_nodiscard,
87 	Opt_noheap,
88 	Opt_heap,
89 	Opt_user_xattr,
90 	Opt_nouser_xattr,
91 	Opt_acl,
92 	Opt_noacl,
93 	Opt_active_logs,
94 	Opt_disable_ext_identify,
95 	Opt_inline_xattr,
96 	Opt_noinline_xattr,
97 	Opt_inline_xattr_size,
98 	Opt_inline_data,
99 	Opt_inline_dentry,
100 	Opt_noinline_dentry,
101 	Opt_flush_merge,
102 	Opt_noflush_merge,
103 	Opt_nobarrier,
104 	Opt_fastboot,
105 	Opt_extent_cache,
106 	Opt_noextent_cache,
107 	Opt_noinline_data,
108 	Opt_data_flush,
109 	Opt_mode,
110 	Opt_io_size_bits,
111 	Opt_fault_injection,
112 	Opt_lazytime,
113 	Opt_nolazytime,
114 	Opt_quota,
115 	Opt_noquota,
116 	Opt_usrquota,
117 	Opt_grpquota,
118 	Opt_prjquota,
119 	Opt_usrjquota,
120 	Opt_grpjquota,
121 	Opt_prjjquota,
122 	Opt_offusrjquota,
123 	Opt_offgrpjquota,
124 	Opt_offprjjquota,
125 	Opt_jqfmt_vfsold,
126 	Opt_jqfmt_vfsv0,
127 	Opt_jqfmt_vfsv1,
128 	Opt_err,
129 };
130 
131 static match_table_t f2fs_tokens = {
132 	{Opt_gc_background, "background_gc=%s"},
133 	{Opt_disable_roll_forward, "disable_roll_forward"},
134 	{Opt_norecovery, "norecovery"},
135 	{Opt_discard, "discard"},
136 	{Opt_nodiscard, "nodiscard"},
137 	{Opt_noheap, "no_heap"},
138 	{Opt_heap, "heap"},
139 	{Opt_user_xattr, "user_xattr"},
140 	{Opt_nouser_xattr, "nouser_xattr"},
141 	{Opt_acl, "acl"},
142 	{Opt_noacl, "noacl"},
143 	{Opt_active_logs, "active_logs=%u"},
144 	{Opt_disable_ext_identify, "disable_ext_identify"},
145 	{Opt_inline_xattr, "inline_xattr"},
146 	{Opt_noinline_xattr, "noinline_xattr"},
147 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
148 	{Opt_inline_data, "inline_data"},
149 	{Opt_inline_dentry, "inline_dentry"},
150 	{Opt_noinline_dentry, "noinline_dentry"},
151 	{Opt_flush_merge, "flush_merge"},
152 	{Opt_noflush_merge, "noflush_merge"},
153 	{Opt_nobarrier, "nobarrier"},
154 	{Opt_fastboot, "fastboot"},
155 	{Opt_extent_cache, "extent_cache"},
156 	{Opt_noextent_cache, "noextent_cache"},
157 	{Opt_noinline_data, "noinline_data"},
158 	{Opt_data_flush, "data_flush"},
159 	{Opt_mode, "mode=%s"},
160 	{Opt_io_size_bits, "io_bits=%u"},
161 	{Opt_fault_injection, "fault_injection=%u"},
162 	{Opt_lazytime, "lazytime"},
163 	{Opt_nolazytime, "nolazytime"},
164 	{Opt_quota, "quota"},
165 	{Opt_noquota, "noquota"},
166 	{Opt_usrquota, "usrquota"},
167 	{Opt_grpquota, "grpquota"},
168 	{Opt_prjquota, "prjquota"},
169 	{Opt_usrjquota, "usrjquota=%s"},
170 	{Opt_grpjquota, "grpjquota=%s"},
171 	{Opt_prjjquota, "prjjquota=%s"},
172 	{Opt_offusrjquota, "usrjquota="},
173 	{Opt_offgrpjquota, "grpjquota="},
174 	{Opt_offprjjquota, "prjjquota="},
175 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
176 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
177 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
178 	{Opt_err, NULL},
179 };
180 
181 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
182 {
183 	struct va_format vaf;
184 	va_list args;
185 
186 	va_start(args, fmt);
187 	vaf.fmt = fmt;
188 	vaf.va = &args;
189 	printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
190 	va_end(args);
191 }
192 
193 static void init_once(void *foo)
194 {
195 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
196 
197 	inode_init_once(&fi->vfs_inode);
198 }
199 
200 #ifdef CONFIG_QUOTA
201 static const char * const quotatypes[] = INITQFNAMES;
202 #define QTYPE2NAME(t) (quotatypes[t])
203 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
204 							substring_t *args)
205 {
206 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
207 	char *qname;
208 	int ret = -EINVAL;
209 
210 	if (sb_any_quota_loaded(sb) && !sbi->s_qf_names[qtype]) {
211 		f2fs_msg(sb, KERN_ERR,
212 			"Cannot change journaled "
213 			"quota options when quota turned on");
214 		return -EINVAL;
215 	}
216 	if (f2fs_sb_has_quota_ino(sb)) {
217 		f2fs_msg(sb, KERN_INFO,
218 			"QUOTA feature is enabled, so ignore qf_name");
219 		return 0;
220 	}
221 
222 	qname = match_strdup(args);
223 	if (!qname) {
224 		f2fs_msg(sb, KERN_ERR,
225 			"Not enough memory for storing quotafile name");
226 		return -EINVAL;
227 	}
228 	if (sbi->s_qf_names[qtype]) {
229 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
230 			ret = 0;
231 		else
232 			f2fs_msg(sb, KERN_ERR,
233 				 "%s quota file already specified",
234 				 QTYPE2NAME(qtype));
235 		goto errout;
236 	}
237 	if (strchr(qname, '/')) {
238 		f2fs_msg(sb, KERN_ERR,
239 			"quotafile must be on filesystem root");
240 		goto errout;
241 	}
242 	sbi->s_qf_names[qtype] = qname;
243 	set_opt(sbi, QUOTA);
244 	return 0;
245 errout:
246 	kfree(qname);
247 	return ret;
248 }
249 
250 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
251 {
252 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
253 
254 	if (sb_any_quota_loaded(sb) && sbi->s_qf_names[qtype]) {
255 		f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
256 			" when quota turned on");
257 		return -EINVAL;
258 	}
259 	kfree(sbi->s_qf_names[qtype]);
260 	sbi->s_qf_names[qtype] = NULL;
261 	return 0;
262 }
263 
264 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
265 {
266 	/*
267 	 * We do the test below only for project quotas. 'usrquota' and
268 	 * 'grpquota' mount options are allowed even without quota feature
269 	 * to support legacy quotas in quota files.
270 	 */
271 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
272 		f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
273 			 "Cannot enable project quota enforcement.");
274 		return -1;
275 	}
276 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA] ||
277 			sbi->s_qf_names[PRJQUOTA]) {
278 		if (test_opt(sbi, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
279 			clear_opt(sbi, USRQUOTA);
280 
281 		if (test_opt(sbi, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
282 			clear_opt(sbi, GRPQUOTA);
283 
284 		if (test_opt(sbi, PRJQUOTA) && sbi->s_qf_names[PRJQUOTA])
285 			clear_opt(sbi, PRJQUOTA);
286 
287 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
288 				test_opt(sbi, PRJQUOTA)) {
289 			f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
290 					"format mixing");
291 			return -1;
292 		}
293 
294 		if (!sbi->s_jquota_fmt) {
295 			f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
296 					"not specified");
297 			return -1;
298 		}
299 	}
300 
301 	if (f2fs_sb_has_quota_ino(sbi->sb) && sbi->s_jquota_fmt) {
302 		f2fs_msg(sbi->sb, KERN_INFO,
303 			"QUOTA feature is enabled, so ignore jquota_fmt");
304 		sbi->s_jquota_fmt = 0;
305 	}
306 	if (f2fs_sb_has_quota_ino(sbi->sb) && sb_rdonly(sbi->sb)) {
307 		f2fs_msg(sbi->sb, KERN_INFO,
308 			 "Filesystem with quota feature cannot be mounted RDWR "
309 			 "without CONFIG_QUOTA");
310 		return -1;
311 	}
312 	return 0;
313 }
314 #endif
315 
316 static int parse_options(struct super_block *sb, char *options)
317 {
318 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
319 	struct request_queue *q;
320 	substring_t args[MAX_OPT_ARGS];
321 	char *p, *name;
322 	int arg = 0;
323 #ifdef CONFIG_QUOTA
324 	int ret;
325 #endif
326 
327 	if (!options)
328 		return 0;
329 
330 	while ((p = strsep(&options, ",")) != NULL) {
331 		int token;
332 		if (!*p)
333 			continue;
334 		/*
335 		 * Initialize args struct so we know whether arg was
336 		 * found; some options take optional arguments.
337 		 */
338 		args[0].to = args[0].from = NULL;
339 		token = match_token(p, f2fs_tokens, args);
340 
341 		switch (token) {
342 		case Opt_gc_background:
343 			name = match_strdup(&args[0]);
344 
345 			if (!name)
346 				return -ENOMEM;
347 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
348 				set_opt(sbi, BG_GC);
349 				clear_opt(sbi, FORCE_FG_GC);
350 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
351 				clear_opt(sbi, BG_GC);
352 				clear_opt(sbi, FORCE_FG_GC);
353 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
354 				set_opt(sbi, BG_GC);
355 				set_opt(sbi, FORCE_FG_GC);
356 			} else {
357 				kfree(name);
358 				return -EINVAL;
359 			}
360 			kfree(name);
361 			break;
362 		case Opt_disable_roll_forward:
363 			set_opt(sbi, DISABLE_ROLL_FORWARD);
364 			break;
365 		case Opt_norecovery:
366 			/* this option mounts f2fs with ro */
367 			set_opt(sbi, DISABLE_ROLL_FORWARD);
368 			if (!f2fs_readonly(sb))
369 				return -EINVAL;
370 			break;
371 		case Opt_discard:
372 			q = bdev_get_queue(sb->s_bdev);
373 			if (blk_queue_discard(q)) {
374 				set_opt(sbi, DISCARD);
375 			} else if (!f2fs_sb_mounted_blkzoned(sb)) {
376 				f2fs_msg(sb, KERN_WARNING,
377 					"mounting with \"discard\" option, but "
378 					"the device does not support discard");
379 			}
380 			break;
381 		case Opt_nodiscard:
382 			if (f2fs_sb_mounted_blkzoned(sb)) {
383 				f2fs_msg(sb, KERN_WARNING,
384 					"discard is required for zoned block devices");
385 				return -EINVAL;
386 			}
387 			clear_opt(sbi, DISCARD);
388 			break;
389 		case Opt_noheap:
390 			set_opt(sbi, NOHEAP);
391 			break;
392 		case Opt_heap:
393 			clear_opt(sbi, NOHEAP);
394 			break;
395 #ifdef CONFIG_F2FS_FS_XATTR
396 		case Opt_user_xattr:
397 			set_opt(sbi, XATTR_USER);
398 			break;
399 		case Opt_nouser_xattr:
400 			clear_opt(sbi, XATTR_USER);
401 			break;
402 		case Opt_inline_xattr:
403 			set_opt(sbi, INLINE_XATTR);
404 			break;
405 		case Opt_noinline_xattr:
406 			clear_opt(sbi, INLINE_XATTR);
407 			break;
408 		case Opt_inline_xattr_size:
409 			if (args->from && match_int(args, &arg))
410 				return -EINVAL;
411 			set_opt(sbi, INLINE_XATTR_SIZE);
412 			sbi->inline_xattr_size = arg;
413 			break;
414 #else
415 		case Opt_user_xattr:
416 			f2fs_msg(sb, KERN_INFO,
417 				"user_xattr options not supported");
418 			break;
419 		case Opt_nouser_xattr:
420 			f2fs_msg(sb, KERN_INFO,
421 				"nouser_xattr options not supported");
422 			break;
423 		case Opt_inline_xattr:
424 			f2fs_msg(sb, KERN_INFO,
425 				"inline_xattr options not supported");
426 			break;
427 		case Opt_noinline_xattr:
428 			f2fs_msg(sb, KERN_INFO,
429 				"noinline_xattr options not supported");
430 			break;
431 #endif
432 #ifdef CONFIG_F2FS_FS_POSIX_ACL
433 		case Opt_acl:
434 			set_opt(sbi, POSIX_ACL);
435 			break;
436 		case Opt_noacl:
437 			clear_opt(sbi, POSIX_ACL);
438 			break;
439 #else
440 		case Opt_acl:
441 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
442 			break;
443 		case Opt_noacl:
444 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
445 			break;
446 #endif
447 		case Opt_active_logs:
448 			if (args->from && match_int(args, &arg))
449 				return -EINVAL;
450 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
451 				return -EINVAL;
452 			sbi->active_logs = arg;
453 			break;
454 		case Opt_disable_ext_identify:
455 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
456 			break;
457 		case Opt_inline_data:
458 			set_opt(sbi, INLINE_DATA);
459 			break;
460 		case Opt_inline_dentry:
461 			set_opt(sbi, INLINE_DENTRY);
462 			break;
463 		case Opt_noinline_dentry:
464 			clear_opt(sbi, INLINE_DENTRY);
465 			break;
466 		case Opt_flush_merge:
467 			set_opt(sbi, FLUSH_MERGE);
468 			break;
469 		case Opt_noflush_merge:
470 			clear_opt(sbi, FLUSH_MERGE);
471 			break;
472 		case Opt_nobarrier:
473 			set_opt(sbi, NOBARRIER);
474 			break;
475 		case Opt_fastboot:
476 			set_opt(sbi, FASTBOOT);
477 			break;
478 		case Opt_extent_cache:
479 			set_opt(sbi, EXTENT_CACHE);
480 			break;
481 		case Opt_noextent_cache:
482 			clear_opt(sbi, EXTENT_CACHE);
483 			break;
484 		case Opt_noinline_data:
485 			clear_opt(sbi, INLINE_DATA);
486 			break;
487 		case Opt_data_flush:
488 			set_opt(sbi, DATA_FLUSH);
489 			break;
490 		case Opt_mode:
491 			name = match_strdup(&args[0]);
492 
493 			if (!name)
494 				return -ENOMEM;
495 			if (strlen(name) == 8 &&
496 					!strncmp(name, "adaptive", 8)) {
497 				if (f2fs_sb_mounted_blkzoned(sb)) {
498 					f2fs_msg(sb, KERN_WARNING,
499 						 "adaptive mode is not allowed with "
500 						 "zoned block device feature");
501 					kfree(name);
502 					return -EINVAL;
503 				}
504 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
505 			} else if (strlen(name) == 3 &&
506 					!strncmp(name, "lfs", 3)) {
507 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
508 			} else {
509 				kfree(name);
510 				return -EINVAL;
511 			}
512 			kfree(name);
513 			break;
514 		case Opt_io_size_bits:
515 			if (args->from && match_int(args, &arg))
516 				return -EINVAL;
517 			if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
518 				f2fs_msg(sb, KERN_WARNING,
519 					"Not support %d, larger than %d",
520 					1 << arg, BIO_MAX_PAGES);
521 				return -EINVAL;
522 			}
523 			sbi->write_io_size_bits = arg;
524 			break;
525 		case Opt_fault_injection:
526 			if (args->from && match_int(args, &arg))
527 				return -EINVAL;
528 #ifdef CONFIG_F2FS_FAULT_INJECTION
529 			f2fs_build_fault_attr(sbi, arg);
530 			set_opt(sbi, FAULT_INJECTION);
531 #else
532 			f2fs_msg(sb, KERN_INFO,
533 				"FAULT_INJECTION was not selected");
534 #endif
535 			break;
536 		case Opt_lazytime:
537 			sb->s_flags |= MS_LAZYTIME;
538 			break;
539 		case Opt_nolazytime:
540 			sb->s_flags &= ~MS_LAZYTIME;
541 			break;
542 #ifdef CONFIG_QUOTA
543 		case Opt_quota:
544 		case Opt_usrquota:
545 			set_opt(sbi, USRQUOTA);
546 			break;
547 		case Opt_grpquota:
548 			set_opt(sbi, GRPQUOTA);
549 			break;
550 		case Opt_prjquota:
551 			set_opt(sbi, PRJQUOTA);
552 			break;
553 		case Opt_usrjquota:
554 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
555 			if (ret)
556 				return ret;
557 			break;
558 		case Opt_grpjquota:
559 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
560 			if (ret)
561 				return ret;
562 			break;
563 		case Opt_prjjquota:
564 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
565 			if (ret)
566 				return ret;
567 			break;
568 		case Opt_offusrjquota:
569 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
570 			if (ret)
571 				return ret;
572 			break;
573 		case Opt_offgrpjquota:
574 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
575 			if (ret)
576 				return ret;
577 			break;
578 		case Opt_offprjjquota:
579 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
580 			if (ret)
581 				return ret;
582 			break;
583 		case Opt_jqfmt_vfsold:
584 			sbi->s_jquota_fmt = QFMT_VFS_OLD;
585 			break;
586 		case Opt_jqfmt_vfsv0:
587 			sbi->s_jquota_fmt = QFMT_VFS_V0;
588 			break;
589 		case Opt_jqfmt_vfsv1:
590 			sbi->s_jquota_fmt = QFMT_VFS_V1;
591 			break;
592 		case Opt_noquota:
593 			clear_opt(sbi, QUOTA);
594 			clear_opt(sbi, USRQUOTA);
595 			clear_opt(sbi, GRPQUOTA);
596 			clear_opt(sbi, PRJQUOTA);
597 			break;
598 #else
599 		case Opt_quota:
600 		case Opt_usrquota:
601 		case Opt_grpquota:
602 		case Opt_prjquota:
603 		case Opt_usrjquota:
604 		case Opt_grpjquota:
605 		case Opt_prjjquota:
606 		case Opt_offusrjquota:
607 		case Opt_offgrpjquota:
608 		case Opt_offprjjquota:
609 		case Opt_jqfmt_vfsold:
610 		case Opt_jqfmt_vfsv0:
611 		case Opt_jqfmt_vfsv1:
612 		case Opt_noquota:
613 			f2fs_msg(sb, KERN_INFO,
614 					"quota operations not supported");
615 			break;
616 #endif
617 		default:
618 			f2fs_msg(sb, KERN_ERR,
619 				"Unrecognized mount option \"%s\" or missing value",
620 				p);
621 			return -EINVAL;
622 		}
623 	}
624 #ifdef CONFIG_QUOTA
625 	if (f2fs_check_quota_options(sbi))
626 		return -EINVAL;
627 #endif
628 
629 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
630 		f2fs_msg(sb, KERN_ERR,
631 				"Should set mode=lfs with %uKB-sized IO",
632 				F2FS_IO_SIZE_KB(sbi));
633 		return -EINVAL;
634 	}
635 
636 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
637 		if (!test_opt(sbi, INLINE_XATTR)) {
638 			f2fs_msg(sb, KERN_ERR,
639 					"inline_xattr_size option should be "
640 					"set with inline_xattr option");
641 			return -EINVAL;
642 		}
643 		if (!sbi->inline_xattr_size ||
644 			sbi->inline_xattr_size >= DEF_ADDRS_PER_INODE -
645 					F2FS_TOTAL_EXTRA_ATTR_SIZE -
646 					DEF_INLINE_RESERVED_SIZE -
647 					DEF_MIN_INLINE_SIZE) {
648 			f2fs_msg(sb, KERN_ERR,
649 					"inline xattr size is out of range");
650 			return -EINVAL;
651 		}
652 	}
653 	return 0;
654 }
655 
656 static struct inode *f2fs_alloc_inode(struct super_block *sb)
657 {
658 	struct f2fs_inode_info *fi;
659 
660 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
661 	if (!fi)
662 		return NULL;
663 
664 	init_once((void *) fi);
665 
666 	/* Initialize f2fs-specific inode info */
667 	atomic_set(&fi->dirty_pages, 0);
668 	fi->i_current_depth = 1;
669 	fi->i_advise = 0;
670 	init_rwsem(&fi->i_sem);
671 	INIT_LIST_HEAD(&fi->dirty_list);
672 	INIT_LIST_HEAD(&fi->gdirty_list);
673 	INIT_LIST_HEAD(&fi->inmem_ilist);
674 	INIT_LIST_HEAD(&fi->inmem_pages);
675 	mutex_init(&fi->inmem_lock);
676 	init_rwsem(&fi->dio_rwsem[READ]);
677 	init_rwsem(&fi->dio_rwsem[WRITE]);
678 	init_rwsem(&fi->i_mmap_sem);
679 	init_rwsem(&fi->i_xattr_sem);
680 
681 #ifdef CONFIG_QUOTA
682 	memset(&fi->i_dquot, 0, sizeof(fi->i_dquot));
683 	fi->i_reserved_quota = 0;
684 #endif
685 	/* Will be used by directory only */
686 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
687 
688 	return &fi->vfs_inode;
689 }
690 
691 static int f2fs_drop_inode(struct inode *inode)
692 {
693 	int ret;
694 	/*
695 	 * This is to avoid a deadlock condition like below.
696 	 * writeback_single_inode(inode)
697 	 *  - f2fs_write_data_page
698 	 *    - f2fs_gc -> iput -> evict
699 	 *       - inode_wait_for_writeback(inode)
700 	 */
701 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
702 		if (!inode->i_nlink && !is_bad_inode(inode)) {
703 			/* to avoid evict_inode call simultaneously */
704 			atomic_inc(&inode->i_count);
705 			spin_unlock(&inode->i_lock);
706 
707 			/* some remained atomic pages should discarded */
708 			if (f2fs_is_atomic_file(inode))
709 				drop_inmem_pages(inode);
710 
711 			/* should remain fi->extent_tree for writepage */
712 			f2fs_destroy_extent_node(inode);
713 
714 			sb_start_intwrite(inode->i_sb);
715 			f2fs_i_size_write(inode, 0);
716 
717 			if (F2FS_HAS_BLOCKS(inode))
718 				f2fs_truncate(inode);
719 
720 			sb_end_intwrite(inode->i_sb);
721 
722 			spin_lock(&inode->i_lock);
723 			atomic_dec(&inode->i_count);
724 		}
725 		trace_f2fs_drop_inode(inode, 0);
726 		return 0;
727 	}
728 	ret = generic_drop_inode(inode);
729 	trace_f2fs_drop_inode(inode, ret);
730 	return ret;
731 }
732 
733 int f2fs_inode_dirtied(struct inode *inode, bool sync)
734 {
735 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
736 	int ret = 0;
737 
738 	spin_lock(&sbi->inode_lock[DIRTY_META]);
739 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
740 		ret = 1;
741 	} else {
742 		set_inode_flag(inode, FI_DIRTY_INODE);
743 		stat_inc_dirty_inode(sbi, DIRTY_META);
744 	}
745 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
746 		list_add_tail(&F2FS_I(inode)->gdirty_list,
747 				&sbi->inode_list[DIRTY_META]);
748 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
749 	}
750 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
751 	return ret;
752 }
753 
754 void f2fs_inode_synced(struct inode *inode)
755 {
756 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
757 
758 	spin_lock(&sbi->inode_lock[DIRTY_META]);
759 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
760 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
761 		return;
762 	}
763 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
764 		list_del_init(&F2FS_I(inode)->gdirty_list);
765 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
766 	}
767 	clear_inode_flag(inode, FI_DIRTY_INODE);
768 	clear_inode_flag(inode, FI_AUTO_RECOVER);
769 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
770 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
771 }
772 
773 /*
774  * f2fs_dirty_inode() is called from __mark_inode_dirty()
775  *
776  * We should call set_dirty_inode to write the dirty inode through write_inode.
777  */
778 static void f2fs_dirty_inode(struct inode *inode, int flags)
779 {
780 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
781 
782 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
783 			inode->i_ino == F2FS_META_INO(sbi))
784 		return;
785 
786 	if (flags == I_DIRTY_TIME)
787 		return;
788 
789 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
790 		clear_inode_flag(inode, FI_AUTO_RECOVER);
791 
792 	f2fs_inode_dirtied(inode, false);
793 }
794 
795 static void f2fs_i_callback(struct rcu_head *head)
796 {
797 	struct inode *inode = container_of(head, struct inode, i_rcu);
798 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
799 }
800 
801 static void f2fs_destroy_inode(struct inode *inode)
802 {
803 	call_rcu(&inode->i_rcu, f2fs_i_callback);
804 }
805 
806 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
807 {
808 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
809 	percpu_counter_destroy(&sbi->total_valid_inode_count);
810 }
811 
812 static void destroy_device_list(struct f2fs_sb_info *sbi)
813 {
814 	int i;
815 
816 	for (i = 0; i < sbi->s_ndevs; i++) {
817 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
818 #ifdef CONFIG_BLK_DEV_ZONED
819 		kfree(FDEV(i).blkz_type);
820 #endif
821 	}
822 	kfree(sbi->devs);
823 }
824 
825 static void f2fs_put_super(struct super_block *sb)
826 {
827 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
828 	int i;
829 	bool dropped;
830 
831 	f2fs_quota_off_umount(sb);
832 
833 	/* prevent remaining shrinker jobs */
834 	mutex_lock(&sbi->umount_mutex);
835 
836 	/*
837 	 * We don't need to do checkpoint when superblock is clean.
838 	 * But, the previous checkpoint was not done by umount, it needs to do
839 	 * clean checkpoint again.
840 	 */
841 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
842 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
843 		struct cp_control cpc = {
844 			.reason = CP_UMOUNT,
845 		};
846 		write_checkpoint(sbi, &cpc);
847 	}
848 
849 	/* be sure to wait for any on-going discard commands */
850 	dropped = f2fs_wait_discard_bios(sbi);
851 
852 	if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
853 		struct cp_control cpc = {
854 			.reason = CP_UMOUNT | CP_TRIMMED,
855 		};
856 		write_checkpoint(sbi, &cpc);
857 	}
858 
859 	/* write_checkpoint can update stat informaion */
860 	f2fs_destroy_stats(sbi);
861 
862 	/*
863 	 * normally superblock is clean, so we need to release this.
864 	 * In addition, EIO will skip do checkpoint, we need this as well.
865 	 */
866 	release_ino_entry(sbi, true);
867 
868 	f2fs_leave_shrinker(sbi);
869 	mutex_unlock(&sbi->umount_mutex);
870 
871 	/* our cp_error case, we can wait for any writeback page */
872 	f2fs_flush_merged_writes(sbi);
873 
874 	iput(sbi->node_inode);
875 	iput(sbi->meta_inode);
876 
877 	/* destroy f2fs internal modules */
878 	destroy_node_manager(sbi);
879 	destroy_segment_manager(sbi);
880 
881 	kfree(sbi->ckpt);
882 
883 	f2fs_unregister_sysfs(sbi);
884 
885 	sb->s_fs_info = NULL;
886 	if (sbi->s_chksum_driver)
887 		crypto_free_shash(sbi->s_chksum_driver);
888 	kfree(sbi->raw_super);
889 
890 	destroy_device_list(sbi);
891 	mempool_destroy(sbi->write_io_dummy);
892 #ifdef CONFIG_QUOTA
893 	for (i = 0; i < MAXQUOTAS; i++)
894 		kfree(sbi->s_qf_names[i]);
895 #endif
896 	destroy_percpu_info(sbi);
897 	for (i = 0; i < NR_PAGE_TYPE; i++)
898 		kfree(sbi->write_io[i]);
899 	kfree(sbi);
900 }
901 
902 int f2fs_sync_fs(struct super_block *sb, int sync)
903 {
904 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
905 	int err = 0;
906 
907 	if (unlikely(f2fs_cp_error(sbi)))
908 		return 0;
909 
910 	trace_f2fs_sync_fs(sb, sync);
911 
912 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
913 		return -EAGAIN;
914 
915 	if (sync) {
916 		struct cp_control cpc;
917 
918 		cpc.reason = __get_cp_reason(sbi);
919 
920 		mutex_lock(&sbi->gc_mutex);
921 		err = write_checkpoint(sbi, &cpc);
922 		mutex_unlock(&sbi->gc_mutex);
923 	}
924 	f2fs_trace_ios(NULL, 1);
925 
926 	return err;
927 }
928 
929 static int f2fs_freeze(struct super_block *sb)
930 {
931 	if (f2fs_readonly(sb))
932 		return 0;
933 
934 	/* IO error happened before */
935 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
936 		return -EIO;
937 
938 	/* must be clean, since sync_filesystem() was already called */
939 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
940 		return -EINVAL;
941 	return 0;
942 }
943 
944 static int f2fs_unfreeze(struct super_block *sb)
945 {
946 	return 0;
947 }
948 
949 #ifdef CONFIG_QUOTA
950 static int f2fs_statfs_project(struct super_block *sb,
951 				kprojid_t projid, struct kstatfs *buf)
952 {
953 	struct kqid qid;
954 	struct dquot *dquot;
955 	u64 limit;
956 	u64 curblock;
957 
958 	qid = make_kqid_projid(projid);
959 	dquot = dqget(sb, qid);
960 	if (IS_ERR(dquot))
961 		return PTR_ERR(dquot);
962 	spin_lock(&dq_data_lock);
963 
964 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
965 		 dquot->dq_dqb.dqb_bsoftlimit :
966 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
967 	if (limit && buf->f_blocks > limit) {
968 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
969 		buf->f_blocks = limit;
970 		buf->f_bfree = buf->f_bavail =
971 			(buf->f_blocks > curblock) ?
972 			 (buf->f_blocks - curblock) : 0;
973 	}
974 
975 	limit = dquot->dq_dqb.dqb_isoftlimit ?
976 		dquot->dq_dqb.dqb_isoftlimit :
977 		dquot->dq_dqb.dqb_ihardlimit;
978 	if (limit && buf->f_files > limit) {
979 		buf->f_files = limit;
980 		buf->f_ffree =
981 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
982 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
983 	}
984 
985 	spin_unlock(&dq_data_lock);
986 	dqput(dquot);
987 	return 0;
988 }
989 #endif
990 
991 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
992 {
993 	struct super_block *sb = dentry->d_sb;
994 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
995 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
996 	block_t total_count, user_block_count, start_count, ovp_count;
997 	u64 avail_node_count;
998 
999 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1000 	user_block_count = sbi->user_block_count;
1001 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1002 	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
1003 	buf->f_type = F2FS_SUPER_MAGIC;
1004 	buf->f_bsize = sbi->blocksize;
1005 
1006 	buf->f_blocks = total_count - start_count;
1007 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
1008 	buf->f_bavail = user_block_count - valid_user_blocks(sbi) -
1009 						sbi->current_reserved_blocks;
1010 
1011 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1012 
1013 	if (avail_node_count > user_block_count) {
1014 		buf->f_files = user_block_count;
1015 		buf->f_ffree = buf->f_bavail;
1016 	} else {
1017 		buf->f_files = avail_node_count;
1018 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1019 					buf->f_bavail);
1020 	}
1021 
1022 	buf->f_namelen = F2FS_NAME_LEN;
1023 	buf->f_fsid.val[0] = (u32)id;
1024 	buf->f_fsid.val[1] = (u32)(id >> 32);
1025 
1026 #ifdef CONFIG_QUOTA
1027 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1028 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1029 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1030 	}
1031 #endif
1032 	return 0;
1033 }
1034 
1035 static inline void f2fs_show_quota_options(struct seq_file *seq,
1036 					   struct super_block *sb)
1037 {
1038 #ifdef CONFIG_QUOTA
1039 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1040 
1041 	if (sbi->s_jquota_fmt) {
1042 		char *fmtname = "";
1043 
1044 		switch (sbi->s_jquota_fmt) {
1045 		case QFMT_VFS_OLD:
1046 			fmtname = "vfsold";
1047 			break;
1048 		case QFMT_VFS_V0:
1049 			fmtname = "vfsv0";
1050 			break;
1051 		case QFMT_VFS_V1:
1052 			fmtname = "vfsv1";
1053 			break;
1054 		}
1055 		seq_printf(seq, ",jqfmt=%s", fmtname);
1056 	}
1057 
1058 	if (sbi->s_qf_names[USRQUOTA])
1059 		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1060 
1061 	if (sbi->s_qf_names[GRPQUOTA])
1062 		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1063 
1064 	if (sbi->s_qf_names[PRJQUOTA])
1065 		seq_show_option(seq, "prjjquota", sbi->s_qf_names[PRJQUOTA]);
1066 #endif
1067 }
1068 
1069 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1070 {
1071 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1072 
1073 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1074 		if (test_opt(sbi, FORCE_FG_GC))
1075 			seq_printf(seq, ",background_gc=%s", "sync");
1076 		else
1077 			seq_printf(seq, ",background_gc=%s", "on");
1078 	} else {
1079 		seq_printf(seq, ",background_gc=%s", "off");
1080 	}
1081 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1082 		seq_puts(seq, ",disable_roll_forward");
1083 	if (test_opt(sbi, DISCARD))
1084 		seq_puts(seq, ",discard");
1085 	if (test_opt(sbi, NOHEAP))
1086 		seq_puts(seq, ",no_heap");
1087 	else
1088 		seq_puts(seq, ",heap");
1089 #ifdef CONFIG_F2FS_FS_XATTR
1090 	if (test_opt(sbi, XATTR_USER))
1091 		seq_puts(seq, ",user_xattr");
1092 	else
1093 		seq_puts(seq, ",nouser_xattr");
1094 	if (test_opt(sbi, INLINE_XATTR))
1095 		seq_puts(seq, ",inline_xattr");
1096 	else
1097 		seq_puts(seq, ",noinline_xattr");
1098 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1099 		seq_printf(seq, ",inline_xattr_size=%u",
1100 					sbi->inline_xattr_size);
1101 #endif
1102 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1103 	if (test_opt(sbi, POSIX_ACL))
1104 		seq_puts(seq, ",acl");
1105 	else
1106 		seq_puts(seq, ",noacl");
1107 #endif
1108 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1109 		seq_puts(seq, ",disable_ext_identify");
1110 	if (test_opt(sbi, INLINE_DATA))
1111 		seq_puts(seq, ",inline_data");
1112 	else
1113 		seq_puts(seq, ",noinline_data");
1114 	if (test_opt(sbi, INLINE_DENTRY))
1115 		seq_puts(seq, ",inline_dentry");
1116 	else
1117 		seq_puts(seq, ",noinline_dentry");
1118 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1119 		seq_puts(seq, ",flush_merge");
1120 	if (test_opt(sbi, NOBARRIER))
1121 		seq_puts(seq, ",nobarrier");
1122 	if (test_opt(sbi, FASTBOOT))
1123 		seq_puts(seq, ",fastboot");
1124 	if (test_opt(sbi, EXTENT_CACHE))
1125 		seq_puts(seq, ",extent_cache");
1126 	else
1127 		seq_puts(seq, ",noextent_cache");
1128 	if (test_opt(sbi, DATA_FLUSH))
1129 		seq_puts(seq, ",data_flush");
1130 
1131 	seq_puts(seq, ",mode=");
1132 	if (test_opt(sbi, ADAPTIVE))
1133 		seq_puts(seq, "adaptive");
1134 	else if (test_opt(sbi, LFS))
1135 		seq_puts(seq, "lfs");
1136 	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
1137 	if (F2FS_IO_SIZE_BITS(sbi))
1138 		seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1139 #ifdef CONFIG_F2FS_FAULT_INJECTION
1140 	if (test_opt(sbi, FAULT_INJECTION))
1141 		seq_printf(seq, ",fault_injection=%u",
1142 				sbi->fault_info.inject_rate);
1143 #endif
1144 #ifdef CONFIG_QUOTA
1145 	if (test_opt(sbi, QUOTA))
1146 		seq_puts(seq, ",quota");
1147 	if (test_opt(sbi, USRQUOTA))
1148 		seq_puts(seq, ",usrquota");
1149 	if (test_opt(sbi, GRPQUOTA))
1150 		seq_puts(seq, ",grpquota");
1151 	if (test_opt(sbi, PRJQUOTA))
1152 		seq_puts(seq, ",prjquota");
1153 #endif
1154 	f2fs_show_quota_options(seq, sbi->sb);
1155 
1156 	return 0;
1157 }
1158 
1159 static void default_options(struct f2fs_sb_info *sbi)
1160 {
1161 	/* init some FS parameters */
1162 	sbi->active_logs = NR_CURSEG_TYPE;
1163 	sbi->inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1164 
1165 	set_opt(sbi, BG_GC);
1166 	set_opt(sbi, INLINE_XATTR);
1167 	set_opt(sbi, INLINE_DATA);
1168 	set_opt(sbi, INLINE_DENTRY);
1169 	set_opt(sbi, EXTENT_CACHE);
1170 	set_opt(sbi, NOHEAP);
1171 	sbi->sb->s_flags |= MS_LAZYTIME;
1172 	set_opt(sbi, FLUSH_MERGE);
1173 	if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1174 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1175 		set_opt(sbi, DISCARD);
1176 	} else {
1177 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1178 	}
1179 
1180 #ifdef CONFIG_F2FS_FS_XATTR
1181 	set_opt(sbi, XATTR_USER);
1182 #endif
1183 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1184 	set_opt(sbi, POSIX_ACL);
1185 #endif
1186 
1187 #ifdef CONFIG_F2FS_FAULT_INJECTION
1188 	f2fs_build_fault_attr(sbi, 0);
1189 #endif
1190 }
1191 
1192 #ifdef CONFIG_QUOTA
1193 static int f2fs_enable_quotas(struct super_block *sb);
1194 #endif
1195 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1196 {
1197 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1198 	struct f2fs_mount_info org_mount_opt;
1199 	unsigned long old_sb_flags;
1200 	int err, active_logs;
1201 	bool need_restart_gc = false;
1202 	bool need_stop_gc = false;
1203 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1204 #ifdef CONFIG_F2FS_FAULT_INJECTION
1205 	struct f2fs_fault_info ffi = sbi->fault_info;
1206 #endif
1207 #ifdef CONFIG_QUOTA
1208 	int s_jquota_fmt;
1209 	char *s_qf_names[MAXQUOTAS];
1210 	int i, j;
1211 #endif
1212 
1213 	/*
1214 	 * Save the old mount options in case we
1215 	 * need to restore them.
1216 	 */
1217 	org_mount_opt = sbi->mount_opt;
1218 	old_sb_flags = sb->s_flags;
1219 	active_logs = sbi->active_logs;
1220 
1221 #ifdef CONFIG_QUOTA
1222 	s_jquota_fmt = sbi->s_jquota_fmt;
1223 	for (i = 0; i < MAXQUOTAS; i++) {
1224 		if (sbi->s_qf_names[i]) {
1225 			s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
1226 							 GFP_KERNEL);
1227 			if (!s_qf_names[i]) {
1228 				for (j = 0; j < i; j++)
1229 					kfree(s_qf_names[j]);
1230 				return -ENOMEM;
1231 			}
1232 		} else {
1233 			s_qf_names[i] = NULL;
1234 		}
1235 	}
1236 #endif
1237 
1238 	/* recover superblocks we couldn't write due to previous RO mount */
1239 	if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1240 		err = f2fs_commit_super(sbi, false);
1241 		f2fs_msg(sb, KERN_INFO,
1242 			"Try to recover all the superblocks, ret: %d", err);
1243 		if (!err)
1244 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1245 	}
1246 
1247 	default_options(sbi);
1248 
1249 	/* parse mount options */
1250 	err = parse_options(sb, data);
1251 	if (err)
1252 		goto restore_opts;
1253 
1254 	/*
1255 	 * Previous and new state of filesystem is RO,
1256 	 * so skip checking GC and FLUSH_MERGE conditions.
1257 	 */
1258 	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1259 		goto skip;
1260 
1261 #ifdef CONFIG_QUOTA
1262 	if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) {
1263 		err = dquot_suspend(sb, -1);
1264 		if (err < 0)
1265 			goto restore_opts;
1266 	} else {
1267 		/* dquot_resume needs RW */
1268 		sb->s_flags &= ~MS_RDONLY;
1269 		if (sb_any_quota_suspended(sb)) {
1270 			dquot_resume(sb, -1);
1271 		} else if (f2fs_sb_has_quota_ino(sb)) {
1272 			err = f2fs_enable_quotas(sb);
1273 			if (err)
1274 				goto restore_opts;
1275 		}
1276 	}
1277 #endif
1278 	/* disallow enable/disable extent_cache dynamically */
1279 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1280 		err = -EINVAL;
1281 		f2fs_msg(sbi->sb, KERN_WARNING,
1282 				"switch extent_cache option is not allowed");
1283 		goto restore_opts;
1284 	}
1285 
1286 	/*
1287 	 * We stop the GC thread if FS is mounted as RO
1288 	 * or if background_gc = off is passed in mount
1289 	 * option. Also sync the filesystem.
1290 	 */
1291 	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1292 		if (sbi->gc_thread) {
1293 			stop_gc_thread(sbi);
1294 			need_restart_gc = true;
1295 		}
1296 	} else if (!sbi->gc_thread) {
1297 		err = start_gc_thread(sbi);
1298 		if (err)
1299 			goto restore_opts;
1300 		need_stop_gc = true;
1301 	}
1302 
1303 	if (*flags & MS_RDONLY) {
1304 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1305 		sync_inodes_sb(sb);
1306 
1307 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1308 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1309 		f2fs_sync_fs(sb, 1);
1310 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1311 	}
1312 
1313 	/*
1314 	 * We stop issue flush thread if FS is mounted as RO
1315 	 * or if flush_merge is not passed in mount option.
1316 	 */
1317 	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1318 		clear_opt(sbi, FLUSH_MERGE);
1319 		destroy_flush_cmd_control(sbi, false);
1320 	} else {
1321 		err = create_flush_cmd_control(sbi);
1322 		if (err)
1323 			goto restore_gc;
1324 	}
1325 skip:
1326 #ifdef CONFIG_QUOTA
1327 	/* Release old quota file names */
1328 	for (i = 0; i < MAXQUOTAS; i++)
1329 		kfree(s_qf_names[i]);
1330 #endif
1331 	/* Update the POSIXACL Flag */
1332 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1333 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1334 
1335 	return 0;
1336 restore_gc:
1337 	if (need_restart_gc) {
1338 		if (start_gc_thread(sbi))
1339 			f2fs_msg(sbi->sb, KERN_WARNING,
1340 				"background gc thread has stopped");
1341 	} else if (need_stop_gc) {
1342 		stop_gc_thread(sbi);
1343 	}
1344 restore_opts:
1345 #ifdef CONFIG_QUOTA
1346 	sbi->s_jquota_fmt = s_jquota_fmt;
1347 	for (i = 0; i < MAXQUOTAS; i++) {
1348 		kfree(sbi->s_qf_names[i]);
1349 		sbi->s_qf_names[i] = s_qf_names[i];
1350 	}
1351 #endif
1352 	sbi->mount_opt = org_mount_opt;
1353 	sbi->active_logs = active_logs;
1354 	sb->s_flags = old_sb_flags;
1355 #ifdef CONFIG_F2FS_FAULT_INJECTION
1356 	sbi->fault_info = ffi;
1357 #endif
1358 	return err;
1359 }
1360 
1361 #ifdef CONFIG_QUOTA
1362 /* Read data from quotafile */
1363 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1364 			       size_t len, loff_t off)
1365 {
1366 	struct inode *inode = sb_dqopt(sb)->files[type];
1367 	struct address_space *mapping = inode->i_mapping;
1368 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1369 	int offset = off & (sb->s_blocksize - 1);
1370 	int tocopy;
1371 	size_t toread;
1372 	loff_t i_size = i_size_read(inode);
1373 	struct page *page;
1374 	char *kaddr;
1375 
1376 	if (off > i_size)
1377 		return 0;
1378 
1379 	if (off + len > i_size)
1380 		len = i_size - off;
1381 	toread = len;
1382 	while (toread > 0) {
1383 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1384 repeat:
1385 		page = read_mapping_page(mapping, blkidx, NULL);
1386 		if (IS_ERR(page)) {
1387 			if (PTR_ERR(page) == -ENOMEM) {
1388 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1389 				goto repeat;
1390 			}
1391 			return PTR_ERR(page);
1392 		}
1393 
1394 		lock_page(page);
1395 
1396 		if (unlikely(page->mapping != mapping)) {
1397 			f2fs_put_page(page, 1);
1398 			goto repeat;
1399 		}
1400 		if (unlikely(!PageUptodate(page))) {
1401 			f2fs_put_page(page, 1);
1402 			return -EIO;
1403 		}
1404 
1405 		kaddr = kmap_atomic(page);
1406 		memcpy(data, kaddr + offset, tocopy);
1407 		kunmap_atomic(kaddr);
1408 		f2fs_put_page(page, 1);
1409 
1410 		offset = 0;
1411 		toread -= tocopy;
1412 		data += tocopy;
1413 		blkidx++;
1414 	}
1415 	return len;
1416 }
1417 
1418 /* Write to quotafile */
1419 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1420 				const char *data, size_t len, loff_t off)
1421 {
1422 	struct inode *inode = sb_dqopt(sb)->files[type];
1423 	struct address_space *mapping = inode->i_mapping;
1424 	const struct address_space_operations *a_ops = mapping->a_ops;
1425 	int offset = off & (sb->s_blocksize - 1);
1426 	size_t towrite = len;
1427 	struct page *page;
1428 	char *kaddr;
1429 	int err = 0;
1430 	int tocopy;
1431 
1432 	while (towrite > 0) {
1433 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1434 								towrite);
1435 retry:
1436 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1437 							&page, NULL);
1438 		if (unlikely(err)) {
1439 			if (err == -ENOMEM) {
1440 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1441 				goto retry;
1442 			}
1443 			break;
1444 		}
1445 
1446 		kaddr = kmap_atomic(page);
1447 		memcpy(kaddr + offset, data, tocopy);
1448 		kunmap_atomic(kaddr);
1449 		flush_dcache_page(page);
1450 
1451 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1452 						page, NULL);
1453 		offset = 0;
1454 		towrite -= tocopy;
1455 		off += tocopy;
1456 		data += tocopy;
1457 		cond_resched();
1458 	}
1459 
1460 	if (len == towrite)
1461 		return err;
1462 	inode->i_mtime = inode->i_ctime = current_time(inode);
1463 	f2fs_mark_inode_dirty_sync(inode, false);
1464 	return len - towrite;
1465 }
1466 
1467 static struct dquot **f2fs_get_dquots(struct inode *inode)
1468 {
1469 	return F2FS_I(inode)->i_dquot;
1470 }
1471 
1472 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1473 {
1474 	return &F2FS_I(inode)->i_reserved_quota;
1475 }
1476 
1477 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1478 {
1479 	return dquot_quota_on_mount(sbi->sb, sbi->s_qf_names[type],
1480 						sbi->s_jquota_fmt, type);
1481 }
1482 
1483 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1484 {
1485 	int enabled = 0;
1486 	int i, err;
1487 
1488 	if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1489 		err = f2fs_enable_quotas(sbi->sb);
1490 		if (err) {
1491 			f2fs_msg(sbi->sb, KERN_ERR,
1492 					"Cannot turn on quota_ino: %d", err);
1493 			return 0;
1494 		}
1495 		return 1;
1496 	}
1497 
1498 	for (i = 0; i < MAXQUOTAS; i++) {
1499 		if (sbi->s_qf_names[i]) {
1500 			err = f2fs_quota_on_mount(sbi, i);
1501 			if (!err) {
1502 				enabled = 1;
1503 				continue;
1504 			}
1505 			f2fs_msg(sbi->sb, KERN_ERR,
1506 				"Cannot turn on quotas: %d on %d", err, i);
1507 		}
1508 	}
1509 	return enabled;
1510 }
1511 
1512 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1513 			     unsigned int flags)
1514 {
1515 	struct inode *qf_inode;
1516 	unsigned long qf_inum;
1517 	int err;
1518 
1519 	BUG_ON(!f2fs_sb_has_quota_ino(sb));
1520 
1521 	qf_inum = f2fs_qf_ino(sb, type);
1522 	if (!qf_inum)
1523 		return -EPERM;
1524 
1525 	qf_inode = f2fs_iget(sb, qf_inum);
1526 	if (IS_ERR(qf_inode)) {
1527 		f2fs_msg(sb, KERN_ERR,
1528 			"Bad quota inode %u:%lu", type, qf_inum);
1529 		return PTR_ERR(qf_inode);
1530 	}
1531 
1532 	/* Don't account quota for quota files to avoid recursion */
1533 	qf_inode->i_flags |= S_NOQUOTA;
1534 	err = dquot_enable(qf_inode, type, format_id, flags);
1535 	iput(qf_inode);
1536 	return err;
1537 }
1538 
1539 static int f2fs_enable_quotas(struct super_block *sb)
1540 {
1541 	int type, err = 0;
1542 	unsigned long qf_inum;
1543 	bool quota_mopt[MAXQUOTAS] = {
1544 		test_opt(F2FS_SB(sb), USRQUOTA),
1545 		test_opt(F2FS_SB(sb), GRPQUOTA),
1546 		test_opt(F2FS_SB(sb), PRJQUOTA),
1547 	};
1548 
1549 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
1550 	for (type = 0; type < MAXQUOTAS; type++) {
1551 		qf_inum = f2fs_qf_ino(sb, type);
1552 		if (qf_inum) {
1553 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1554 				DQUOT_USAGE_ENABLED |
1555 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1556 			if (err) {
1557 				f2fs_msg(sb, KERN_ERR,
1558 					"Failed to enable quota tracking "
1559 					"(type=%d, err=%d). Please run "
1560 					"fsck to fix.", type, err);
1561 				for (type--; type >= 0; type--)
1562 					dquot_quota_off(sb, type);
1563 				return err;
1564 			}
1565 		}
1566 	}
1567 	return 0;
1568 }
1569 
1570 static int f2fs_quota_sync(struct super_block *sb, int type)
1571 {
1572 	struct quota_info *dqopt = sb_dqopt(sb);
1573 	int cnt;
1574 	int ret;
1575 
1576 	ret = dquot_writeback_dquots(sb, type);
1577 	if (ret)
1578 		return ret;
1579 
1580 	/*
1581 	 * Now when everything is written we can discard the pagecache so
1582 	 * that userspace sees the changes.
1583 	 */
1584 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1585 		if (type != -1 && cnt != type)
1586 			continue;
1587 		if (!sb_has_quota_active(sb, cnt))
1588 			continue;
1589 
1590 		ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1591 		if (ret)
1592 			return ret;
1593 
1594 		inode_lock(dqopt->files[cnt]);
1595 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1596 		inode_unlock(dqopt->files[cnt]);
1597 	}
1598 	return 0;
1599 }
1600 
1601 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1602 							const struct path *path)
1603 {
1604 	struct inode *inode;
1605 	int err;
1606 
1607 	err = f2fs_quota_sync(sb, type);
1608 	if (err)
1609 		return err;
1610 
1611 	err = dquot_quota_on(sb, type, format_id, path);
1612 	if (err)
1613 		return err;
1614 
1615 	inode = d_inode(path->dentry);
1616 
1617 	inode_lock(inode);
1618 	F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1619 	inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1620 					S_NOATIME | S_IMMUTABLE);
1621 	inode_unlock(inode);
1622 	f2fs_mark_inode_dirty_sync(inode, false);
1623 
1624 	return 0;
1625 }
1626 
1627 static int f2fs_quota_off(struct super_block *sb, int type)
1628 {
1629 	struct inode *inode = sb_dqopt(sb)->files[type];
1630 	int err;
1631 
1632 	if (!inode || !igrab(inode))
1633 		return dquot_quota_off(sb, type);
1634 
1635 	f2fs_quota_sync(sb, type);
1636 
1637 	err = dquot_quota_off(sb, type);
1638 	if (err || f2fs_sb_has_quota_ino(sb))
1639 		goto out_put;
1640 
1641 	inode_lock(inode);
1642 	F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1643 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1644 	inode_unlock(inode);
1645 	f2fs_mark_inode_dirty_sync(inode, false);
1646 out_put:
1647 	iput(inode);
1648 	return err;
1649 }
1650 
1651 void f2fs_quota_off_umount(struct super_block *sb)
1652 {
1653 	int type;
1654 
1655 	for (type = 0; type < MAXQUOTAS; type++)
1656 		f2fs_quota_off(sb, type);
1657 }
1658 
1659 int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1660 {
1661 	*projid = F2FS_I(inode)->i_projid;
1662 	return 0;
1663 }
1664 
1665 static const struct dquot_operations f2fs_quota_operations = {
1666 	.get_reserved_space = f2fs_get_reserved_space,
1667 	.write_dquot	= dquot_commit,
1668 	.acquire_dquot	= dquot_acquire,
1669 	.release_dquot	= dquot_release,
1670 	.mark_dirty	= dquot_mark_dquot_dirty,
1671 	.write_info	= dquot_commit_info,
1672 	.alloc_dquot	= dquot_alloc,
1673 	.destroy_dquot	= dquot_destroy,
1674 	.get_projid	= f2fs_get_projid,
1675 	.get_next_id	= dquot_get_next_id,
1676 };
1677 
1678 static const struct quotactl_ops f2fs_quotactl_ops = {
1679 	.quota_on	= f2fs_quota_on,
1680 	.quota_off	= f2fs_quota_off,
1681 	.quota_sync	= f2fs_quota_sync,
1682 	.get_state	= dquot_get_state,
1683 	.set_info	= dquot_set_dqinfo,
1684 	.get_dqblk	= dquot_get_dqblk,
1685 	.set_dqblk	= dquot_set_dqblk,
1686 	.get_nextdqblk	= dquot_get_next_dqblk,
1687 };
1688 #else
1689 void f2fs_quota_off_umount(struct super_block *sb)
1690 {
1691 }
1692 #endif
1693 
1694 static const struct super_operations f2fs_sops = {
1695 	.alloc_inode	= f2fs_alloc_inode,
1696 	.drop_inode	= f2fs_drop_inode,
1697 	.destroy_inode	= f2fs_destroy_inode,
1698 	.write_inode	= f2fs_write_inode,
1699 	.dirty_inode	= f2fs_dirty_inode,
1700 	.show_options	= f2fs_show_options,
1701 #ifdef CONFIG_QUOTA
1702 	.quota_read	= f2fs_quota_read,
1703 	.quota_write	= f2fs_quota_write,
1704 	.get_dquots	= f2fs_get_dquots,
1705 #endif
1706 	.evict_inode	= f2fs_evict_inode,
1707 	.put_super	= f2fs_put_super,
1708 	.sync_fs	= f2fs_sync_fs,
1709 	.freeze_fs	= f2fs_freeze,
1710 	.unfreeze_fs	= f2fs_unfreeze,
1711 	.statfs		= f2fs_statfs,
1712 	.remount_fs	= f2fs_remount,
1713 };
1714 
1715 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1716 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1717 {
1718 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1719 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1720 				ctx, len, NULL);
1721 }
1722 
1723 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1724 							void *fs_data)
1725 {
1726 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1727 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1728 				ctx, len, fs_data, XATTR_CREATE);
1729 }
1730 
1731 static unsigned f2fs_max_namelen(struct inode *inode)
1732 {
1733 	return S_ISLNK(inode->i_mode) ?
1734 			inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1735 }
1736 
1737 static const struct fscrypt_operations f2fs_cryptops = {
1738 	.key_prefix	= "f2fs:",
1739 	.get_context	= f2fs_get_context,
1740 	.set_context	= f2fs_set_context,
1741 	.empty_dir	= f2fs_empty_dir,
1742 	.max_namelen	= f2fs_max_namelen,
1743 };
1744 #endif
1745 
1746 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1747 		u64 ino, u32 generation)
1748 {
1749 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1750 	struct inode *inode;
1751 
1752 	if (check_nid_range(sbi, ino))
1753 		return ERR_PTR(-ESTALE);
1754 
1755 	/*
1756 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
1757 	 * However f2fs_iget currently does appropriate checks to handle stale
1758 	 * inodes so everything is OK.
1759 	 */
1760 	inode = f2fs_iget(sb, ino);
1761 	if (IS_ERR(inode))
1762 		return ERR_CAST(inode);
1763 	if (unlikely(generation && inode->i_generation != generation)) {
1764 		/* we didn't find the right inode.. */
1765 		iput(inode);
1766 		return ERR_PTR(-ESTALE);
1767 	}
1768 	return inode;
1769 }
1770 
1771 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1772 		int fh_len, int fh_type)
1773 {
1774 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1775 				    f2fs_nfs_get_inode);
1776 }
1777 
1778 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1779 		int fh_len, int fh_type)
1780 {
1781 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1782 				    f2fs_nfs_get_inode);
1783 }
1784 
1785 static const struct export_operations f2fs_export_ops = {
1786 	.fh_to_dentry = f2fs_fh_to_dentry,
1787 	.fh_to_parent = f2fs_fh_to_parent,
1788 	.get_parent = f2fs_get_parent,
1789 };
1790 
1791 static loff_t max_file_blocks(void)
1792 {
1793 	loff_t result = 0;
1794 	loff_t leaf_count = ADDRS_PER_BLOCK;
1795 
1796 	/*
1797 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
1798 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
1799 	 * space in inode.i_addr, it will be more safe to reassign
1800 	 * result as zero.
1801 	 */
1802 
1803 	/* two direct node blocks */
1804 	result += (leaf_count * 2);
1805 
1806 	/* two indirect node blocks */
1807 	leaf_count *= NIDS_PER_BLOCK;
1808 	result += (leaf_count * 2);
1809 
1810 	/* one double indirect node block */
1811 	leaf_count *= NIDS_PER_BLOCK;
1812 	result += leaf_count;
1813 
1814 	return result;
1815 }
1816 
1817 static int __f2fs_commit_super(struct buffer_head *bh,
1818 			struct f2fs_super_block *super)
1819 {
1820 	lock_buffer(bh);
1821 	if (super)
1822 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1823 	set_buffer_uptodate(bh);
1824 	set_buffer_dirty(bh);
1825 	unlock_buffer(bh);
1826 
1827 	/* it's rare case, we can do fua all the time */
1828 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1829 }
1830 
1831 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1832 					struct buffer_head *bh)
1833 {
1834 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1835 					(bh->b_data + F2FS_SUPER_OFFSET);
1836 	struct super_block *sb = sbi->sb;
1837 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1838 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1839 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1840 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1841 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1842 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1843 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1844 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1845 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1846 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1847 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1848 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
1849 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1850 	u64 main_end_blkaddr = main_blkaddr +
1851 				(segment_count_main << log_blocks_per_seg);
1852 	u64 seg_end_blkaddr = segment0_blkaddr +
1853 				(segment_count << log_blocks_per_seg);
1854 
1855 	if (segment0_blkaddr != cp_blkaddr) {
1856 		f2fs_msg(sb, KERN_INFO,
1857 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1858 			segment0_blkaddr, cp_blkaddr);
1859 		return true;
1860 	}
1861 
1862 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1863 							sit_blkaddr) {
1864 		f2fs_msg(sb, KERN_INFO,
1865 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1866 			cp_blkaddr, sit_blkaddr,
1867 			segment_count_ckpt << log_blocks_per_seg);
1868 		return true;
1869 	}
1870 
1871 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1872 							nat_blkaddr) {
1873 		f2fs_msg(sb, KERN_INFO,
1874 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1875 			sit_blkaddr, nat_blkaddr,
1876 			segment_count_sit << log_blocks_per_seg);
1877 		return true;
1878 	}
1879 
1880 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1881 							ssa_blkaddr) {
1882 		f2fs_msg(sb, KERN_INFO,
1883 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1884 			nat_blkaddr, ssa_blkaddr,
1885 			segment_count_nat << log_blocks_per_seg);
1886 		return true;
1887 	}
1888 
1889 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1890 							main_blkaddr) {
1891 		f2fs_msg(sb, KERN_INFO,
1892 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1893 			ssa_blkaddr, main_blkaddr,
1894 			segment_count_ssa << log_blocks_per_seg);
1895 		return true;
1896 	}
1897 
1898 	if (main_end_blkaddr > seg_end_blkaddr) {
1899 		f2fs_msg(sb, KERN_INFO,
1900 			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1901 			main_blkaddr,
1902 			segment0_blkaddr +
1903 				(segment_count << log_blocks_per_seg),
1904 			segment_count_main << log_blocks_per_seg);
1905 		return true;
1906 	} else if (main_end_blkaddr < seg_end_blkaddr) {
1907 		int err = 0;
1908 		char *res;
1909 
1910 		/* fix in-memory information all the time */
1911 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1912 				segment0_blkaddr) >> log_blocks_per_seg);
1913 
1914 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1915 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1916 			res = "internally";
1917 		} else {
1918 			err = __f2fs_commit_super(bh, NULL);
1919 			res = err ? "failed" : "done";
1920 		}
1921 		f2fs_msg(sb, KERN_INFO,
1922 			"Fix alignment : %s, start(%u) end(%u) block(%u)",
1923 			res, main_blkaddr,
1924 			segment0_blkaddr +
1925 				(segment_count << log_blocks_per_seg),
1926 			segment_count_main << log_blocks_per_seg);
1927 		if (err)
1928 			return true;
1929 	}
1930 	return false;
1931 }
1932 
1933 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1934 				struct buffer_head *bh)
1935 {
1936 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1937 					(bh->b_data + F2FS_SUPER_OFFSET);
1938 	struct super_block *sb = sbi->sb;
1939 	unsigned int blocksize;
1940 
1941 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1942 		f2fs_msg(sb, KERN_INFO,
1943 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
1944 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1945 		return 1;
1946 	}
1947 
1948 	/* Currently, support only 4KB page cache size */
1949 	if (F2FS_BLKSIZE != PAGE_SIZE) {
1950 		f2fs_msg(sb, KERN_INFO,
1951 			"Invalid page_cache_size (%lu), supports only 4KB\n",
1952 			PAGE_SIZE);
1953 		return 1;
1954 	}
1955 
1956 	/* Currently, support only 4KB block size */
1957 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1958 	if (blocksize != F2FS_BLKSIZE) {
1959 		f2fs_msg(sb, KERN_INFO,
1960 			"Invalid blocksize (%u), supports only 4KB\n",
1961 			blocksize);
1962 		return 1;
1963 	}
1964 
1965 	/* check log blocks per segment */
1966 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1967 		f2fs_msg(sb, KERN_INFO,
1968 			"Invalid log blocks per segment (%u)\n",
1969 			le32_to_cpu(raw_super->log_blocks_per_seg));
1970 		return 1;
1971 	}
1972 
1973 	/* Currently, support 512/1024/2048/4096 bytes sector size */
1974 	if (le32_to_cpu(raw_super->log_sectorsize) >
1975 				F2FS_MAX_LOG_SECTOR_SIZE ||
1976 		le32_to_cpu(raw_super->log_sectorsize) <
1977 				F2FS_MIN_LOG_SECTOR_SIZE) {
1978 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1979 			le32_to_cpu(raw_super->log_sectorsize));
1980 		return 1;
1981 	}
1982 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
1983 		le32_to_cpu(raw_super->log_sectorsize) !=
1984 			F2FS_MAX_LOG_SECTOR_SIZE) {
1985 		f2fs_msg(sb, KERN_INFO,
1986 			"Invalid log sectors per block(%u) log sectorsize(%u)",
1987 			le32_to_cpu(raw_super->log_sectors_per_block),
1988 			le32_to_cpu(raw_super->log_sectorsize));
1989 		return 1;
1990 	}
1991 
1992 	/* check reserved ino info */
1993 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
1994 		le32_to_cpu(raw_super->meta_ino) != 2 ||
1995 		le32_to_cpu(raw_super->root_ino) != 3) {
1996 		f2fs_msg(sb, KERN_INFO,
1997 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1998 			le32_to_cpu(raw_super->node_ino),
1999 			le32_to_cpu(raw_super->meta_ino),
2000 			le32_to_cpu(raw_super->root_ino));
2001 		return 1;
2002 	}
2003 
2004 	if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
2005 		f2fs_msg(sb, KERN_INFO,
2006 			"Invalid segment count (%u)",
2007 			le32_to_cpu(raw_super->segment_count));
2008 		return 1;
2009 	}
2010 
2011 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2012 	if (sanity_check_area_boundary(sbi, bh))
2013 		return 1;
2014 
2015 	return 0;
2016 }
2017 
2018 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
2019 {
2020 	unsigned int total, fsmeta;
2021 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2022 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2023 	unsigned int ovp_segments, reserved_segments;
2024 	unsigned int main_segs, blocks_per_seg;
2025 	int i;
2026 
2027 	total = le32_to_cpu(raw_super->segment_count);
2028 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2029 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
2030 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
2031 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2032 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2033 
2034 	if (unlikely(fsmeta >= total))
2035 		return 1;
2036 
2037 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2038 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2039 
2040 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2041 			ovp_segments == 0 || reserved_segments == 0)) {
2042 		f2fs_msg(sbi->sb, KERN_ERR,
2043 			"Wrong layout: check mkfs.f2fs version");
2044 		return 1;
2045 	}
2046 
2047 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2048 	blocks_per_seg = sbi->blocks_per_seg;
2049 
2050 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2051 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2052 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2053 			return 1;
2054 	}
2055 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2056 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2057 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2058 			return 1;
2059 	}
2060 
2061 	if (unlikely(f2fs_cp_error(sbi))) {
2062 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2063 		return 1;
2064 	}
2065 	return 0;
2066 }
2067 
2068 static void init_sb_info(struct f2fs_sb_info *sbi)
2069 {
2070 	struct f2fs_super_block *raw_super = sbi->raw_super;
2071 	int i, j;
2072 
2073 	sbi->log_sectors_per_block =
2074 		le32_to_cpu(raw_super->log_sectors_per_block);
2075 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2076 	sbi->blocksize = 1 << sbi->log_blocksize;
2077 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2078 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2079 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2080 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2081 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2082 	sbi->total_node_count =
2083 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2084 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2085 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2086 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2087 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2088 	sbi->cur_victim_sec = NULL_SECNO;
2089 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2090 
2091 	sbi->dir_level = DEF_DIR_LEVEL;
2092 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2093 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2094 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
2095 
2096 	for (i = 0; i < NR_COUNT_TYPE; i++)
2097 		atomic_set(&sbi->nr_pages[i], 0);
2098 
2099 	atomic_set(&sbi->wb_sync_req, 0);
2100 
2101 	INIT_LIST_HEAD(&sbi->s_list);
2102 	mutex_init(&sbi->umount_mutex);
2103 	for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2104 		for (j = HOT; j < NR_TEMP_TYPE; j++)
2105 			mutex_init(&sbi->wio_mutex[i][j]);
2106 	spin_lock_init(&sbi->cp_lock);
2107 
2108 	sbi->dirty_device = 0;
2109 	spin_lock_init(&sbi->dev_lock);
2110 }
2111 
2112 static int init_percpu_info(struct f2fs_sb_info *sbi)
2113 {
2114 	int err;
2115 
2116 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2117 	if (err)
2118 		return err;
2119 
2120 	return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2121 								GFP_KERNEL);
2122 }
2123 
2124 #ifdef CONFIG_BLK_DEV_ZONED
2125 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2126 {
2127 	struct block_device *bdev = FDEV(devi).bdev;
2128 	sector_t nr_sectors = bdev->bd_part->nr_sects;
2129 	sector_t sector = 0;
2130 	struct blk_zone *zones;
2131 	unsigned int i, nr_zones;
2132 	unsigned int n = 0;
2133 	int err = -EIO;
2134 
2135 	if (!f2fs_sb_mounted_blkzoned(sbi->sb))
2136 		return 0;
2137 
2138 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2139 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2140 		return -EINVAL;
2141 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2142 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2143 				__ilog2_u32(sbi->blocks_per_blkz))
2144 		return -EINVAL;
2145 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2146 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2147 					sbi->log_blocks_per_blkz;
2148 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2149 		FDEV(devi).nr_blkz++;
2150 
2151 	FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
2152 	if (!FDEV(devi).blkz_type)
2153 		return -ENOMEM;
2154 
2155 #define F2FS_REPORT_NR_ZONES   4096
2156 
2157 	zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
2158 			GFP_KERNEL);
2159 	if (!zones)
2160 		return -ENOMEM;
2161 
2162 	/* Get block zones type */
2163 	while (zones && sector < nr_sectors) {
2164 
2165 		nr_zones = F2FS_REPORT_NR_ZONES;
2166 		err = blkdev_report_zones(bdev, sector,
2167 					  zones, &nr_zones,
2168 					  GFP_KERNEL);
2169 		if (err)
2170 			break;
2171 		if (!nr_zones) {
2172 			err = -EIO;
2173 			break;
2174 		}
2175 
2176 		for (i = 0; i < nr_zones; i++) {
2177 			FDEV(devi).blkz_type[n] = zones[i].type;
2178 			sector += zones[i].len;
2179 			n++;
2180 		}
2181 	}
2182 
2183 	kfree(zones);
2184 
2185 	return err;
2186 }
2187 #endif
2188 
2189 /*
2190  * Read f2fs raw super block.
2191  * Because we have two copies of super block, so read both of them
2192  * to get the first valid one. If any one of them is broken, we pass
2193  * them recovery flag back to the caller.
2194  */
2195 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2196 			struct f2fs_super_block **raw_super,
2197 			int *valid_super_block, int *recovery)
2198 {
2199 	struct super_block *sb = sbi->sb;
2200 	int block;
2201 	struct buffer_head *bh;
2202 	struct f2fs_super_block *super;
2203 	int err = 0;
2204 
2205 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2206 	if (!super)
2207 		return -ENOMEM;
2208 
2209 	for (block = 0; block < 2; block++) {
2210 		bh = sb_bread(sb, block);
2211 		if (!bh) {
2212 			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2213 				block + 1);
2214 			err = -EIO;
2215 			continue;
2216 		}
2217 
2218 		/* sanity checking of raw super */
2219 		if (sanity_check_raw_super(sbi, bh)) {
2220 			f2fs_msg(sb, KERN_ERR,
2221 				"Can't find valid F2FS filesystem in %dth superblock",
2222 				block + 1);
2223 			err = -EINVAL;
2224 			brelse(bh);
2225 			continue;
2226 		}
2227 
2228 		if (!*raw_super) {
2229 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2230 							sizeof(*super));
2231 			*valid_super_block = block;
2232 			*raw_super = super;
2233 		}
2234 		brelse(bh);
2235 	}
2236 
2237 	/* Fail to read any one of the superblocks*/
2238 	if (err < 0)
2239 		*recovery = 1;
2240 
2241 	/* No valid superblock */
2242 	if (!*raw_super)
2243 		kfree(super);
2244 	else
2245 		err = 0;
2246 
2247 	return err;
2248 }
2249 
2250 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2251 {
2252 	struct buffer_head *bh;
2253 	int err;
2254 
2255 	if ((recover && f2fs_readonly(sbi->sb)) ||
2256 				bdev_read_only(sbi->sb->s_bdev)) {
2257 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2258 		return -EROFS;
2259 	}
2260 
2261 	/* write back-up superblock first */
2262 	bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
2263 	if (!bh)
2264 		return -EIO;
2265 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2266 	brelse(bh);
2267 
2268 	/* if we are in recovery path, skip writing valid superblock */
2269 	if (recover || err)
2270 		return err;
2271 
2272 	/* write current valid superblock */
2273 	bh = sb_getblk(sbi->sb, sbi->valid_super_block);
2274 	if (!bh)
2275 		return -EIO;
2276 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2277 	brelse(bh);
2278 	return err;
2279 }
2280 
2281 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2282 {
2283 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2284 	unsigned int max_devices = MAX_DEVICES;
2285 	int i;
2286 
2287 	/* Initialize single device information */
2288 	if (!RDEV(0).path[0]) {
2289 		if (!bdev_is_zoned(sbi->sb->s_bdev))
2290 			return 0;
2291 		max_devices = 1;
2292 	}
2293 
2294 	/*
2295 	 * Initialize multiple devices information, or single
2296 	 * zoned block device information.
2297 	 */
2298 	sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
2299 				GFP_KERNEL);
2300 	if (!sbi->devs)
2301 		return -ENOMEM;
2302 
2303 	for (i = 0; i < max_devices; i++) {
2304 
2305 		if (i > 0 && !RDEV(i).path[0])
2306 			break;
2307 
2308 		if (max_devices == 1) {
2309 			/* Single zoned block device mount */
2310 			FDEV(0).bdev =
2311 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2312 					sbi->sb->s_mode, sbi->sb->s_type);
2313 		} else {
2314 			/* Multi-device mount */
2315 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2316 			FDEV(i).total_segments =
2317 				le32_to_cpu(RDEV(i).total_segments);
2318 			if (i == 0) {
2319 				FDEV(i).start_blk = 0;
2320 				FDEV(i).end_blk = FDEV(i).start_blk +
2321 				    (FDEV(i).total_segments <<
2322 				    sbi->log_blocks_per_seg) - 1 +
2323 				    le32_to_cpu(raw_super->segment0_blkaddr);
2324 			} else {
2325 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2326 				FDEV(i).end_blk = FDEV(i).start_blk +
2327 					(FDEV(i).total_segments <<
2328 					sbi->log_blocks_per_seg) - 1;
2329 			}
2330 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2331 					sbi->sb->s_mode, sbi->sb->s_type);
2332 		}
2333 		if (IS_ERR(FDEV(i).bdev))
2334 			return PTR_ERR(FDEV(i).bdev);
2335 
2336 		/* to release errored devices */
2337 		sbi->s_ndevs = i + 1;
2338 
2339 #ifdef CONFIG_BLK_DEV_ZONED
2340 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2341 				!f2fs_sb_mounted_blkzoned(sbi->sb)) {
2342 			f2fs_msg(sbi->sb, KERN_ERR,
2343 				"Zoned block device feature not enabled\n");
2344 			return -EINVAL;
2345 		}
2346 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2347 			if (init_blkz_info(sbi, i)) {
2348 				f2fs_msg(sbi->sb, KERN_ERR,
2349 					"Failed to initialize F2FS blkzone information");
2350 				return -EINVAL;
2351 			}
2352 			if (max_devices == 1)
2353 				break;
2354 			f2fs_msg(sbi->sb, KERN_INFO,
2355 				"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2356 				i, FDEV(i).path,
2357 				FDEV(i).total_segments,
2358 				FDEV(i).start_blk, FDEV(i).end_blk,
2359 				bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2360 				"Host-aware" : "Host-managed");
2361 			continue;
2362 		}
2363 #endif
2364 		f2fs_msg(sbi->sb, KERN_INFO,
2365 			"Mount Device [%2d]: %20s, %8u, %8x - %8x",
2366 				i, FDEV(i).path,
2367 				FDEV(i).total_segments,
2368 				FDEV(i).start_blk, FDEV(i).end_blk);
2369 	}
2370 	f2fs_msg(sbi->sb, KERN_INFO,
2371 			"IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2372 	return 0;
2373 }
2374 
2375 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2376 {
2377 	struct f2fs_sb_info *sbi;
2378 	struct f2fs_super_block *raw_super;
2379 	struct inode *root;
2380 	int err;
2381 	bool retry = true, need_fsck = false;
2382 	char *options = NULL;
2383 	int recovery, i, valid_super_block;
2384 	struct curseg_info *seg_i;
2385 
2386 try_onemore:
2387 	err = -EINVAL;
2388 	raw_super = NULL;
2389 	valid_super_block = -1;
2390 	recovery = 0;
2391 
2392 	/* allocate memory for f2fs-specific super block info */
2393 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2394 	if (!sbi)
2395 		return -ENOMEM;
2396 
2397 	sbi->sb = sb;
2398 
2399 	/* Load the checksum driver */
2400 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2401 	if (IS_ERR(sbi->s_chksum_driver)) {
2402 		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2403 		err = PTR_ERR(sbi->s_chksum_driver);
2404 		sbi->s_chksum_driver = NULL;
2405 		goto free_sbi;
2406 	}
2407 
2408 	/* set a block size */
2409 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2410 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2411 		goto free_sbi;
2412 	}
2413 
2414 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2415 								&recovery);
2416 	if (err)
2417 		goto free_sbi;
2418 
2419 	sb->s_fs_info = sbi;
2420 	sbi->raw_super = raw_super;
2421 
2422 	/* precompute checksum seed for metadata */
2423 	if (f2fs_sb_has_inode_chksum(sb))
2424 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2425 						sizeof(raw_super->uuid));
2426 
2427 	/*
2428 	 * The BLKZONED feature indicates that the drive was formatted with
2429 	 * zone alignment optimization. This is optional for host-aware
2430 	 * devices, but mandatory for host-managed zoned block devices.
2431 	 */
2432 #ifndef CONFIG_BLK_DEV_ZONED
2433 	if (f2fs_sb_mounted_blkzoned(sb)) {
2434 		f2fs_msg(sb, KERN_ERR,
2435 			 "Zoned block device support is not enabled\n");
2436 		err = -EOPNOTSUPP;
2437 		goto free_sb_buf;
2438 	}
2439 #endif
2440 	default_options(sbi);
2441 	/* parse mount options */
2442 	options = kstrdup((const char *)data, GFP_KERNEL);
2443 	if (data && !options) {
2444 		err = -ENOMEM;
2445 		goto free_sb_buf;
2446 	}
2447 
2448 	err = parse_options(sb, options);
2449 	if (err)
2450 		goto free_options;
2451 
2452 	sbi->max_file_blocks = max_file_blocks();
2453 	sb->s_maxbytes = sbi->max_file_blocks <<
2454 				le32_to_cpu(raw_super->log_blocksize);
2455 	sb->s_max_links = F2FS_LINK_MAX;
2456 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2457 
2458 #ifdef CONFIG_QUOTA
2459 	sb->dq_op = &f2fs_quota_operations;
2460 	if (f2fs_sb_has_quota_ino(sb))
2461 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
2462 	else
2463 		sb->s_qcop = &f2fs_quotactl_ops;
2464 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2465 #endif
2466 
2467 	sb->s_op = &f2fs_sops;
2468 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2469 	sb->s_cop = &f2fs_cryptops;
2470 #endif
2471 	sb->s_xattr = f2fs_xattr_handlers;
2472 	sb->s_export_op = &f2fs_export_ops;
2473 	sb->s_magic = F2FS_SUPER_MAGIC;
2474 	sb->s_time_gran = 1;
2475 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2476 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
2477 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2478 
2479 	/* init f2fs-specific super block info */
2480 	sbi->valid_super_block = valid_super_block;
2481 	mutex_init(&sbi->gc_mutex);
2482 	mutex_init(&sbi->cp_mutex);
2483 	init_rwsem(&sbi->node_write);
2484 	init_rwsem(&sbi->node_change);
2485 
2486 	/* disallow all the data/node/meta page writes */
2487 	set_sbi_flag(sbi, SBI_POR_DOING);
2488 	spin_lock_init(&sbi->stat_lock);
2489 
2490 	/* init iostat info */
2491 	spin_lock_init(&sbi->iostat_lock);
2492 	sbi->iostat_enable = false;
2493 
2494 	for (i = 0; i < NR_PAGE_TYPE; i++) {
2495 		int n = (i == META) ? 1: NR_TEMP_TYPE;
2496 		int j;
2497 
2498 		sbi->write_io[i] = kmalloc(n * sizeof(struct f2fs_bio_info),
2499 								GFP_KERNEL);
2500 		if (!sbi->write_io[i]) {
2501 			err = -ENOMEM;
2502 			goto free_options;
2503 		}
2504 
2505 		for (j = HOT; j < n; j++) {
2506 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
2507 			sbi->write_io[i][j].sbi = sbi;
2508 			sbi->write_io[i][j].bio = NULL;
2509 			spin_lock_init(&sbi->write_io[i][j].io_lock);
2510 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2511 		}
2512 	}
2513 
2514 	init_rwsem(&sbi->cp_rwsem);
2515 	init_waitqueue_head(&sbi->cp_wait);
2516 	init_sb_info(sbi);
2517 
2518 	err = init_percpu_info(sbi);
2519 	if (err)
2520 		goto free_options;
2521 
2522 	if (F2FS_IO_SIZE(sbi) > 1) {
2523 		sbi->write_io_dummy =
2524 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2525 		if (!sbi->write_io_dummy) {
2526 			err = -ENOMEM;
2527 			goto free_options;
2528 		}
2529 	}
2530 
2531 	/* get an inode for meta space */
2532 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2533 	if (IS_ERR(sbi->meta_inode)) {
2534 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2535 		err = PTR_ERR(sbi->meta_inode);
2536 		goto free_io_dummy;
2537 	}
2538 
2539 	err = get_valid_checkpoint(sbi);
2540 	if (err) {
2541 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2542 		goto free_meta_inode;
2543 	}
2544 
2545 	/* Initialize device list */
2546 	err = f2fs_scan_devices(sbi);
2547 	if (err) {
2548 		f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2549 		goto free_devices;
2550 	}
2551 
2552 	sbi->total_valid_node_count =
2553 				le32_to_cpu(sbi->ckpt->valid_node_count);
2554 	percpu_counter_set(&sbi->total_valid_inode_count,
2555 				le32_to_cpu(sbi->ckpt->valid_inode_count));
2556 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2557 	sbi->total_valid_block_count =
2558 				le64_to_cpu(sbi->ckpt->valid_block_count);
2559 	sbi->last_valid_block_count = sbi->total_valid_block_count;
2560 	sbi->reserved_blocks = 0;
2561 	sbi->current_reserved_blocks = 0;
2562 
2563 	for (i = 0; i < NR_INODE_TYPE; i++) {
2564 		INIT_LIST_HEAD(&sbi->inode_list[i]);
2565 		spin_lock_init(&sbi->inode_lock[i]);
2566 	}
2567 
2568 	init_extent_cache_info(sbi);
2569 
2570 	init_ino_entry_info(sbi);
2571 
2572 	/* setup f2fs internal modules */
2573 	err = build_segment_manager(sbi);
2574 	if (err) {
2575 		f2fs_msg(sb, KERN_ERR,
2576 			"Failed to initialize F2FS segment manager");
2577 		goto free_sm;
2578 	}
2579 	err = build_node_manager(sbi);
2580 	if (err) {
2581 		f2fs_msg(sb, KERN_ERR,
2582 			"Failed to initialize F2FS node manager");
2583 		goto free_nm;
2584 	}
2585 
2586 	/* For write statistics */
2587 	if (sb->s_bdev->bd_part)
2588 		sbi->sectors_written_start =
2589 			(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2590 
2591 	/* Read accumulated write IO statistics if exists */
2592 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2593 	if (__exist_node_summaries(sbi))
2594 		sbi->kbytes_written =
2595 			le64_to_cpu(seg_i->journal->info.kbytes_written);
2596 
2597 	build_gc_manager(sbi);
2598 
2599 	/* get an inode for node space */
2600 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2601 	if (IS_ERR(sbi->node_inode)) {
2602 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2603 		err = PTR_ERR(sbi->node_inode);
2604 		goto free_nm;
2605 	}
2606 
2607 	f2fs_join_shrinker(sbi);
2608 
2609 	err = f2fs_build_stats(sbi);
2610 	if (err)
2611 		goto free_nm;
2612 
2613 	/* read root inode and dentry */
2614 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2615 	if (IS_ERR(root)) {
2616 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2617 		err = PTR_ERR(root);
2618 		goto free_node_inode;
2619 	}
2620 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2621 		iput(root);
2622 		err = -EINVAL;
2623 		goto free_node_inode;
2624 	}
2625 
2626 	sb->s_root = d_make_root(root); /* allocate root dentry */
2627 	if (!sb->s_root) {
2628 		err = -ENOMEM;
2629 		goto free_root_inode;
2630 	}
2631 
2632 	err = f2fs_register_sysfs(sbi);
2633 	if (err)
2634 		goto free_root_inode;
2635 
2636 #ifdef CONFIG_QUOTA
2637 	/*
2638 	 * Turn on quotas which were not enabled for read-only mounts if
2639 	 * filesystem has quota feature, so that they are updated correctly.
2640 	 */
2641 	if (f2fs_sb_has_quota_ino(sb) && !sb_rdonly(sb)) {
2642 		err = f2fs_enable_quotas(sb);
2643 		if (err) {
2644 			f2fs_msg(sb, KERN_ERR,
2645 				"Cannot turn on quotas: error %d", err);
2646 			goto free_sysfs;
2647 		}
2648 	}
2649 #endif
2650 	/* if there are nt orphan nodes free them */
2651 	err = recover_orphan_inodes(sbi);
2652 	if (err)
2653 		goto free_meta;
2654 
2655 	/* recover fsynced data */
2656 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2657 		/*
2658 		 * mount should be failed, when device has readonly mode, and
2659 		 * previous checkpoint was not done by clean system shutdown.
2660 		 */
2661 		if (bdev_read_only(sb->s_bdev) &&
2662 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2663 			err = -EROFS;
2664 			goto free_meta;
2665 		}
2666 
2667 		if (need_fsck)
2668 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2669 
2670 		if (!retry)
2671 			goto skip_recovery;
2672 
2673 		err = recover_fsync_data(sbi, false);
2674 		if (err < 0) {
2675 			need_fsck = true;
2676 			f2fs_msg(sb, KERN_ERR,
2677 				"Cannot recover all fsync data errno=%d", err);
2678 			goto free_meta;
2679 		}
2680 	} else {
2681 		err = recover_fsync_data(sbi, true);
2682 
2683 		if (!f2fs_readonly(sb) && err > 0) {
2684 			err = -EINVAL;
2685 			f2fs_msg(sb, KERN_ERR,
2686 				"Need to recover fsync data");
2687 			goto free_meta;
2688 		}
2689 	}
2690 skip_recovery:
2691 	/* recover_fsync_data() cleared this already */
2692 	clear_sbi_flag(sbi, SBI_POR_DOING);
2693 
2694 	/*
2695 	 * If filesystem is not mounted as read-only then
2696 	 * do start the gc_thread.
2697 	 */
2698 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2699 		/* After POR, we can run background GC thread.*/
2700 		err = start_gc_thread(sbi);
2701 		if (err)
2702 			goto free_meta;
2703 	}
2704 	kfree(options);
2705 
2706 	/* recover broken superblock */
2707 	if (recovery) {
2708 		err = f2fs_commit_super(sbi, true);
2709 		f2fs_msg(sb, KERN_INFO,
2710 			"Try to recover %dth superblock, ret: %d",
2711 			sbi->valid_super_block ? 1 : 2, err);
2712 	}
2713 
2714 	f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2715 				cur_cp_version(F2FS_CKPT(sbi)));
2716 	f2fs_update_time(sbi, CP_TIME);
2717 	f2fs_update_time(sbi, REQ_TIME);
2718 	return 0;
2719 
2720 free_meta:
2721 #ifdef CONFIG_QUOTA
2722 	if (f2fs_sb_has_quota_ino(sb) && !sb_rdonly(sb))
2723 		f2fs_quota_off_umount(sbi->sb);
2724 #endif
2725 	f2fs_sync_inode_meta(sbi);
2726 	/*
2727 	 * Some dirty meta pages can be produced by recover_orphan_inodes()
2728 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2729 	 * followed by write_checkpoint() through f2fs_write_node_pages(), which
2730 	 * falls into an infinite loop in sync_meta_pages().
2731 	 */
2732 	truncate_inode_pages_final(META_MAPPING(sbi));
2733 #ifdef CONFIG_QUOTA
2734 free_sysfs:
2735 #endif
2736 	f2fs_unregister_sysfs(sbi);
2737 free_root_inode:
2738 	dput(sb->s_root);
2739 	sb->s_root = NULL;
2740 free_node_inode:
2741 	truncate_inode_pages_final(NODE_MAPPING(sbi));
2742 	mutex_lock(&sbi->umount_mutex);
2743 	release_ino_entry(sbi, true);
2744 	f2fs_leave_shrinker(sbi);
2745 	iput(sbi->node_inode);
2746 	mutex_unlock(&sbi->umount_mutex);
2747 	f2fs_destroy_stats(sbi);
2748 free_nm:
2749 	destroy_node_manager(sbi);
2750 free_sm:
2751 	destroy_segment_manager(sbi);
2752 free_devices:
2753 	destroy_device_list(sbi);
2754 	kfree(sbi->ckpt);
2755 free_meta_inode:
2756 	make_bad_inode(sbi->meta_inode);
2757 	iput(sbi->meta_inode);
2758 free_io_dummy:
2759 	mempool_destroy(sbi->write_io_dummy);
2760 free_options:
2761 	for (i = 0; i < NR_PAGE_TYPE; i++)
2762 		kfree(sbi->write_io[i]);
2763 	destroy_percpu_info(sbi);
2764 #ifdef CONFIG_QUOTA
2765 	for (i = 0; i < MAXQUOTAS; i++)
2766 		kfree(sbi->s_qf_names[i]);
2767 #endif
2768 	kfree(options);
2769 free_sb_buf:
2770 	kfree(raw_super);
2771 free_sbi:
2772 	if (sbi->s_chksum_driver)
2773 		crypto_free_shash(sbi->s_chksum_driver);
2774 	kfree(sbi);
2775 
2776 	/* give only one another chance */
2777 	if (retry) {
2778 		retry = false;
2779 		shrink_dcache_sb(sb);
2780 		goto try_onemore;
2781 	}
2782 	return err;
2783 }
2784 
2785 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2786 			const char *dev_name, void *data)
2787 {
2788 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2789 }
2790 
2791 static void kill_f2fs_super(struct super_block *sb)
2792 {
2793 	if (sb->s_root) {
2794 		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2795 		stop_gc_thread(F2FS_SB(sb));
2796 		stop_discard_thread(F2FS_SB(sb));
2797 	}
2798 	kill_block_super(sb);
2799 }
2800 
2801 static struct file_system_type f2fs_fs_type = {
2802 	.owner		= THIS_MODULE,
2803 	.name		= "f2fs",
2804 	.mount		= f2fs_mount,
2805 	.kill_sb	= kill_f2fs_super,
2806 	.fs_flags	= FS_REQUIRES_DEV,
2807 };
2808 MODULE_ALIAS_FS("f2fs");
2809 
2810 static int __init init_inodecache(void)
2811 {
2812 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2813 			sizeof(struct f2fs_inode_info), 0,
2814 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2815 	if (!f2fs_inode_cachep)
2816 		return -ENOMEM;
2817 	return 0;
2818 }
2819 
2820 static void destroy_inodecache(void)
2821 {
2822 	/*
2823 	 * Make sure all delayed rcu free inodes are flushed before we
2824 	 * destroy cache.
2825 	 */
2826 	rcu_barrier();
2827 	kmem_cache_destroy(f2fs_inode_cachep);
2828 }
2829 
2830 static int __init init_f2fs_fs(void)
2831 {
2832 	int err;
2833 
2834 	f2fs_build_trace_ios();
2835 
2836 	err = init_inodecache();
2837 	if (err)
2838 		goto fail;
2839 	err = create_node_manager_caches();
2840 	if (err)
2841 		goto free_inodecache;
2842 	err = create_segment_manager_caches();
2843 	if (err)
2844 		goto free_node_manager_caches;
2845 	err = create_checkpoint_caches();
2846 	if (err)
2847 		goto free_segment_manager_caches;
2848 	err = create_extent_cache();
2849 	if (err)
2850 		goto free_checkpoint_caches;
2851 	err = f2fs_init_sysfs();
2852 	if (err)
2853 		goto free_extent_cache;
2854 	err = register_shrinker(&f2fs_shrinker_info);
2855 	if (err)
2856 		goto free_sysfs;
2857 	err = register_filesystem(&f2fs_fs_type);
2858 	if (err)
2859 		goto free_shrinker;
2860 	err = f2fs_create_root_stats();
2861 	if (err)
2862 		goto free_filesystem;
2863 	return 0;
2864 
2865 free_filesystem:
2866 	unregister_filesystem(&f2fs_fs_type);
2867 free_shrinker:
2868 	unregister_shrinker(&f2fs_shrinker_info);
2869 free_sysfs:
2870 	f2fs_exit_sysfs();
2871 free_extent_cache:
2872 	destroy_extent_cache();
2873 free_checkpoint_caches:
2874 	destroy_checkpoint_caches();
2875 free_segment_manager_caches:
2876 	destroy_segment_manager_caches();
2877 free_node_manager_caches:
2878 	destroy_node_manager_caches();
2879 free_inodecache:
2880 	destroy_inodecache();
2881 fail:
2882 	return err;
2883 }
2884 
2885 static void __exit exit_f2fs_fs(void)
2886 {
2887 	f2fs_destroy_root_stats();
2888 	unregister_filesystem(&f2fs_fs_type);
2889 	unregister_shrinker(&f2fs_shrinker_info);
2890 	f2fs_exit_sysfs();
2891 	destroy_extent_cache();
2892 	destroy_checkpoint_caches();
2893 	destroy_segment_manager_caches();
2894 	destroy_node_manager_caches();
2895 	destroy_inodecache();
2896 	f2fs_destroy_trace_ios();
2897 }
2898 
2899 module_init(init_f2fs_fs)
2900 module_exit(exit_f2fs_fs)
2901 
2902 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2903 MODULE_DESCRIPTION("Flash Friendly File System");
2904 MODULE_LICENSE("GPL");
2905 
2906