xref: /openbmc/linux/fs/f2fs/super.c (revision bc05aa6e)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29 
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39 
40 static struct kmem_cache *f2fs_inode_cachep;
41 
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 
44 char *fault_name[FAULT_MAX] = {
45 	[FAULT_KMALLOC]		= "kmalloc",
46 	[FAULT_KVMALLOC]	= "kvmalloc",
47 	[FAULT_PAGE_ALLOC]	= "page alloc",
48 	[FAULT_PAGE_GET]	= "page get",
49 	[FAULT_ALLOC_BIO]	= "alloc bio",
50 	[FAULT_ALLOC_NID]	= "alloc nid",
51 	[FAULT_ORPHAN]		= "orphan",
52 	[FAULT_BLOCK]		= "no more block",
53 	[FAULT_DIR_DEPTH]	= "too big dir depth",
54 	[FAULT_EVICT_INODE]	= "evict_inode fail",
55 	[FAULT_TRUNCATE]	= "truncate fail",
56 	[FAULT_IO]		= "IO error",
57 	[FAULT_CHECKPOINT]	= "checkpoint error",
58 };
59 
60 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
61 						unsigned int rate)
62 {
63 	struct f2fs_fault_info *ffi = &sbi->fault_info;
64 
65 	if (rate) {
66 		atomic_set(&ffi->inject_ops, 0);
67 		ffi->inject_rate = rate;
68 		ffi->inject_type = (1 << FAULT_MAX) - 1;
69 	} else {
70 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
71 	}
72 }
73 #endif
74 
75 /* f2fs-wide shrinker description */
76 static struct shrinker f2fs_shrinker_info = {
77 	.scan_objects = f2fs_shrink_scan,
78 	.count_objects = f2fs_shrink_count,
79 	.seeks = DEFAULT_SEEKS,
80 };
81 
82 enum {
83 	Opt_gc_background,
84 	Opt_disable_roll_forward,
85 	Opt_norecovery,
86 	Opt_discard,
87 	Opt_nodiscard,
88 	Opt_noheap,
89 	Opt_heap,
90 	Opt_user_xattr,
91 	Opt_nouser_xattr,
92 	Opt_acl,
93 	Opt_noacl,
94 	Opt_active_logs,
95 	Opt_disable_ext_identify,
96 	Opt_inline_xattr,
97 	Opt_noinline_xattr,
98 	Opt_inline_xattr_size,
99 	Opt_inline_data,
100 	Opt_inline_dentry,
101 	Opt_noinline_dentry,
102 	Opt_flush_merge,
103 	Opt_noflush_merge,
104 	Opt_nobarrier,
105 	Opt_fastboot,
106 	Opt_extent_cache,
107 	Opt_noextent_cache,
108 	Opt_noinline_data,
109 	Opt_data_flush,
110 	Opt_reserve_root,
111 	Opt_resgid,
112 	Opt_resuid,
113 	Opt_mode,
114 	Opt_io_size_bits,
115 	Opt_fault_injection,
116 	Opt_lazytime,
117 	Opt_nolazytime,
118 	Opt_quota,
119 	Opt_noquota,
120 	Opt_usrquota,
121 	Opt_grpquota,
122 	Opt_prjquota,
123 	Opt_usrjquota,
124 	Opt_grpjquota,
125 	Opt_prjjquota,
126 	Opt_offusrjquota,
127 	Opt_offgrpjquota,
128 	Opt_offprjjquota,
129 	Opt_jqfmt_vfsold,
130 	Opt_jqfmt_vfsv0,
131 	Opt_jqfmt_vfsv1,
132 	Opt_err,
133 };
134 
135 static match_table_t f2fs_tokens = {
136 	{Opt_gc_background, "background_gc=%s"},
137 	{Opt_disable_roll_forward, "disable_roll_forward"},
138 	{Opt_norecovery, "norecovery"},
139 	{Opt_discard, "discard"},
140 	{Opt_nodiscard, "nodiscard"},
141 	{Opt_noheap, "no_heap"},
142 	{Opt_heap, "heap"},
143 	{Opt_user_xattr, "user_xattr"},
144 	{Opt_nouser_xattr, "nouser_xattr"},
145 	{Opt_acl, "acl"},
146 	{Opt_noacl, "noacl"},
147 	{Opt_active_logs, "active_logs=%u"},
148 	{Opt_disable_ext_identify, "disable_ext_identify"},
149 	{Opt_inline_xattr, "inline_xattr"},
150 	{Opt_noinline_xattr, "noinline_xattr"},
151 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
152 	{Opt_inline_data, "inline_data"},
153 	{Opt_inline_dentry, "inline_dentry"},
154 	{Opt_noinline_dentry, "noinline_dentry"},
155 	{Opt_flush_merge, "flush_merge"},
156 	{Opt_noflush_merge, "noflush_merge"},
157 	{Opt_nobarrier, "nobarrier"},
158 	{Opt_fastboot, "fastboot"},
159 	{Opt_extent_cache, "extent_cache"},
160 	{Opt_noextent_cache, "noextent_cache"},
161 	{Opt_noinline_data, "noinline_data"},
162 	{Opt_data_flush, "data_flush"},
163 	{Opt_reserve_root, "reserve_root=%u"},
164 	{Opt_resgid, "resgid=%u"},
165 	{Opt_resuid, "resuid=%u"},
166 	{Opt_mode, "mode=%s"},
167 	{Opt_io_size_bits, "io_bits=%u"},
168 	{Opt_fault_injection, "fault_injection=%u"},
169 	{Opt_lazytime, "lazytime"},
170 	{Opt_nolazytime, "nolazytime"},
171 	{Opt_quota, "quota"},
172 	{Opt_noquota, "noquota"},
173 	{Opt_usrquota, "usrquota"},
174 	{Opt_grpquota, "grpquota"},
175 	{Opt_prjquota, "prjquota"},
176 	{Opt_usrjquota, "usrjquota=%s"},
177 	{Opt_grpjquota, "grpjquota=%s"},
178 	{Opt_prjjquota, "prjjquota=%s"},
179 	{Opt_offusrjquota, "usrjquota="},
180 	{Opt_offgrpjquota, "grpjquota="},
181 	{Opt_offprjjquota, "prjjquota="},
182 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
183 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
184 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
185 	{Opt_err, NULL},
186 };
187 
188 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
189 {
190 	struct va_format vaf;
191 	va_list args;
192 
193 	va_start(args, fmt);
194 	vaf.fmt = fmt;
195 	vaf.va = &args;
196 	printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
197 	va_end(args);
198 }
199 
200 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
201 {
202 	block_t limit = (sbi->user_block_count << 1) / 1000;
203 
204 	/* limit is 0.2% */
205 	if (test_opt(sbi, RESERVE_ROOT) && sbi->root_reserved_blocks > limit) {
206 		sbi->root_reserved_blocks = limit;
207 		f2fs_msg(sbi->sb, KERN_INFO,
208 			"Reduce reserved blocks for root = %u",
209 				sbi->root_reserved_blocks);
210 	}
211 	if (!test_opt(sbi, RESERVE_ROOT) &&
212 		(!uid_eq(sbi->s_resuid,
213 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
214 		!gid_eq(sbi->s_resgid,
215 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
216 		f2fs_msg(sbi->sb, KERN_INFO,
217 			"Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
218 				from_kuid_munged(&init_user_ns, sbi->s_resuid),
219 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
220 }
221 
222 static void init_once(void *foo)
223 {
224 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
225 
226 	inode_init_once(&fi->vfs_inode);
227 }
228 
229 #ifdef CONFIG_QUOTA
230 static const char * const quotatypes[] = INITQFNAMES;
231 #define QTYPE2NAME(t) (quotatypes[t])
232 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
233 							substring_t *args)
234 {
235 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
236 	char *qname;
237 	int ret = -EINVAL;
238 
239 	if (sb_any_quota_loaded(sb) && !sbi->s_qf_names[qtype]) {
240 		f2fs_msg(sb, KERN_ERR,
241 			"Cannot change journaled "
242 			"quota options when quota turned on");
243 		return -EINVAL;
244 	}
245 	if (f2fs_sb_has_quota_ino(sb)) {
246 		f2fs_msg(sb, KERN_INFO,
247 			"QUOTA feature is enabled, so ignore qf_name");
248 		return 0;
249 	}
250 
251 	qname = match_strdup(args);
252 	if (!qname) {
253 		f2fs_msg(sb, KERN_ERR,
254 			"Not enough memory for storing quotafile name");
255 		return -EINVAL;
256 	}
257 	if (sbi->s_qf_names[qtype]) {
258 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
259 			ret = 0;
260 		else
261 			f2fs_msg(sb, KERN_ERR,
262 				 "%s quota file already specified",
263 				 QTYPE2NAME(qtype));
264 		goto errout;
265 	}
266 	if (strchr(qname, '/')) {
267 		f2fs_msg(sb, KERN_ERR,
268 			"quotafile must be on filesystem root");
269 		goto errout;
270 	}
271 	sbi->s_qf_names[qtype] = qname;
272 	set_opt(sbi, QUOTA);
273 	return 0;
274 errout:
275 	kfree(qname);
276 	return ret;
277 }
278 
279 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
280 {
281 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
282 
283 	if (sb_any_quota_loaded(sb) && sbi->s_qf_names[qtype]) {
284 		f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
285 			" when quota turned on");
286 		return -EINVAL;
287 	}
288 	kfree(sbi->s_qf_names[qtype]);
289 	sbi->s_qf_names[qtype] = NULL;
290 	return 0;
291 }
292 
293 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
294 {
295 	/*
296 	 * We do the test below only for project quotas. 'usrquota' and
297 	 * 'grpquota' mount options are allowed even without quota feature
298 	 * to support legacy quotas in quota files.
299 	 */
300 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
301 		f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
302 			 "Cannot enable project quota enforcement.");
303 		return -1;
304 	}
305 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA] ||
306 			sbi->s_qf_names[PRJQUOTA]) {
307 		if (test_opt(sbi, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
308 			clear_opt(sbi, USRQUOTA);
309 
310 		if (test_opt(sbi, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
311 			clear_opt(sbi, GRPQUOTA);
312 
313 		if (test_opt(sbi, PRJQUOTA) && sbi->s_qf_names[PRJQUOTA])
314 			clear_opt(sbi, PRJQUOTA);
315 
316 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
317 				test_opt(sbi, PRJQUOTA)) {
318 			f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
319 					"format mixing");
320 			return -1;
321 		}
322 
323 		if (!sbi->s_jquota_fmt) {
324 			f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
325 					"not specified");
326 			return -1;
327 		}
328 	}
329 
330 	if (f2fs_sb_has_quota_ino(sbi->sb) && sbi->s_jquota_fmt) {
331 		f2fs_msg(sbi->sb, KERN_INFO,
332 			"QUOTA feature is enabled, so ignore jquota_fmt");
333 		sbi->s_jquota_fmt = 0;
334 	}
335 	if (f2fs_sb_has_quota_ino(sbi->sb) && sb_rdonly(sbi->sb)) {
336 		f2fs_msg(sbi->sb, KERN_INFO,
337 			 "Filesystem with quota feature cannot be mounted RDWR "
338 			 "without CONFIG_QUOTA");
339 		return -1;
340 	}
341 	return 0;
342 }
343 #endif
344 
345 static int parse_options(struct super_block *sb, char *options)
346 {
347 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
348 	struct request_queue *q;
349 	substring_t args[MAX_OPT_ARGS];
350 	char *p, *name;
351 	int arg = 0;
352 	kuid_t uid;
353 	kgid_t gid;
354 #ifdef CONFIG_QUOTA
355 	int ret;
356 #endif
357 
358 	if (!options)
359 		return 0;
360 
361 	while ((p = strsep(&options, ",")) != NULL) {
362 		int token;
363 		if (!*p)
364 			continue;
365 		/*
366 		 * Initialize args struct so we know whether arg was
367 		 * found; some options take optional arguments.
368 		 */
369 		args[0].to = args[0].from = NULL;
370 		token = match_token(p, f2fs_tokens, args);
371 
372 		switch (token) {
373 		case Opt_gc_background:
374 			name = match_strdup(&args[0]);
375 
376 			if (!name)
377 				return -ENOMEM;
378 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
379 				set_opt(sbi, BG_GC);
380 				clear_opt(sbi, FORCE_FG_GC);
381 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
382 				clear_opt(sbi, BG_GC);
383 				clear_opt(sbi, FORCE_FG_GC);
384 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
385 				set_opt(sbi, BG_GC);
386 				set_opt(sbi, FORCE_FG_GC);
387 			} else {
388 				kfree(name);
389 				return -EINVAL;
390 			}
391 			kfree(name);
392 			break;
393 		case Opt_disable_roll_forward:
394 			set_opt(sbi, DISABLE_ROLL_FORWARD);
395 			break;
396 		case Opt_norecovery:
397 			/* this option mounts f2fs with ro */
398 			set_opt(sbi, DISABLE_ROLL_FORWARD);
399 			if (!f2fs_readonly(sb))
400 				return -EINVAL;
401 			break;
402 		case Opt_discard:
403 			q = bdev_get_queue(sb->s_bdev);
404 			if (blk_queue_discard(q)) {
405 				set_opt(sbi, DISCARD);
406 			} else if (!f2fs_sb_mounted_blkzoned(sb)) {
407 				f2fs_msg(sb, KERN_WARNING,
408 					"mounting with \"discard\" option, but "
409 					"the device does not support discard");
410 			}
411 			break;
412 		case Opt_nodiscard:
413 			if (f2fs_sb_mounted_blkzoned(sb)) {
414 				f2fs_msg(sb, KERN_WARNING,
415 					"discard is required for zoned block devices");
416 				return -EINVAL;
417 			}
418 			clear_opt(sbi, DISCARD);
419 			break;
420 		case Opt_noheap:
421 			set_opt(sbi, NOHEAP);
422 			break;
423 		case Opt_heap:
424 			clear_opt(sbi, NOHEAP);
425 			break;
426 #ifdef CONFIG_F2FS_FS_XATTR
427 		case Opt_user_xattr:
428 			set_opt(sbi, XATTR_USER);
429 			break;
430 		case Opt_nouser_xattr:
431 			clear_opt(sbi, XATTR_USER);
432 			break;
433 		case Opt_inline_xattr:
434 			set_opt(sbi, INLINE_XATTR);
435 			break;
436 		case Opt_noinline_xattr:
437 			clear_opt(sbi, INLINE_XATTR);
438 			break;
439 		case Opt_inline_xattr_size:
440 			if (args->from && match_int(args, &arg))
441 				return -EINVAL;
442 			set_opt(sbi, INLINE_XATTR_SIZE);
443 			sbi->inline_xattr_size = arg;
444 			break;
445 #else
446 		case Opt_user_xattr:
447 			f2fs_msg(sb, KERN_INFO,
448 				"user_xattr options not supported");
449 			break;
450 		case Opt_nouser_xattr:
451 			f2fs_msg(sb, KERN_INFO,
452 				"nouser_xattr options not supported");
453 			break;
454 		case Opt_inline_xattr:
455 			f2fs_msg(sb, KERN_INFO,
456 				"inline_xattr options not supported");
457 			break;
458 		case Opt_noinline_xattr:
459 			f2fs_msg(sb, KERN_INFO,
460 				"noinline_xattr options not supported");
461 			break;
462 #endif
463 #ifdef CONFIG_F2FS_FS_POSIX_ACL
464 		case Opt_acl:
465 			set_opt(sbi, POSIX_ACL);
466 			break;
467 		case Opt_noacl:
468 			clear_opt(sbi, POSIX_ACL);
469 			break;
470 #else
471 		case Opt_acl:
472 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
473 			break;
474 		case Opt_noacl:
475 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
476 			break;
477 #endif
478 		case Opt_active_logs:
479 			if (args->from && match_int(args, &arg))
480 				return -EINVAL;
481 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
482 				return -EINVAL;
483 			sbi->active_logs = arg;
484 			break;
485 		case Opt_disable_ext_identify:
486 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
487 			break;
488 		case Opt_inline_data:
489 			set_opt(sbi, INLINE_DATA);
490 			break;
491 		case Opt_inline_dentry:
492 			set_opt(sbi, INLINE_DENTRY);
493 			break;
494 		case Opt_noinline_dentry:
495 			clear_opt(sbi, INLINE_DENTRY);
496 			break;
497 		case Opt_flush_merge:
498 			set_opt(sbi, FLUSH_MERGE);
499 			break;
500 		case Opt_noflush_merge:
501 			clear_opt(sbi, FLUSH_MERGE);
502 			break;
503 		case Opt_nobarrier:
504 			set_opt(sbi, NOBARRIER);
505 			break;
506 		case Opt_fastboot:
507 			set_opt(sbi, FASTBOOT);
508 			break;
509 		case Opt_extent_cache:
510 			set_opt(sbi, EXTENT_CACHE);
511 			break;
512 		case Opt_noextent_cache:
513 			clear_opt(sbi, EXTENT_CACHE);
514 			break;
515 		case Opt_noinline_data:
516 			clear_opt(sbi, INLINE_DATA);
517 			break;
518 		case Opt_data_flush:
519 			set_opt(sbi, DATA_FLUSH);
520 			break;
521 		case Opt_reserve_root:
522 			if (args->from && match_int(args, &arg))
523 				return -EINVAL;
524 			if (test_opt(sbi, RESERVE_ROOT)) {
525 				f2fs_msg(sb, KERN_INFO,
526 					"Preserve previous reserve_root=%u",
527 					sbi->root_reserved_blocks);
528 			} else {
529 				sbi->root_reserved_blocks = arg;
530 				set_opt(sbi, RESERVE_ROOT);
531 			}
532 			break;
533 		case Opt_resuid:
534 			if (args->from && match_int(args, &arg))
535 				return -EINVAL;
536 			uid = make_kuid(current_user_ns(), arg);
537 			if (!uid_valid(uid)) {
538 				f2fs_msg(sb, KERN_ERR,
539 					"Invalid uid value %d", arg);
540 				return -EINVAL;
541 			}
542 			sbi->s_resuid = uid;
543 			break;
544 		case Opt_resgid:
545 			if (args->from && match_int(args, &arg))
546 				return -EINVAL;
547 			gid = make_kgid(current_user_ns(), arg);
548 			if (!gid_valid(gid)) {
549 				f2fs_msg(sb, KERN_ERR,
550 					"Invalid gid value %d", arg);
551 				return -EINVAL;
552 			}
553 			sbi->s_resgid = gid;
554 			break;
555 		case Opt_mode:
556 			name = match_strdup(&args[0]);
557 
558 			if (!name)
559 				return -ENOMEM;
560 			if (strlen(name) == 8 &&
561 					!strncmp(name, "adaptive", 8)) {
562 				if (f2fs_sb_mounted_blkzoned(sb)) {
563 					f2fs_msg(sb, KERN_WARNING,
564 						 "adaptive mode is not allowed with "
565 						 "zoned block device feature");
566 					kfree(name);
567 					return -EINVAL;
568 				}
569 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
570 			} else if (strlen(name) == 3 &&
571 					!strncmp(name, "lfs", 3)) {
572 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
573 			} else {
574 				kfree(name);
575 				return -EINVAL;
576 			}
577 			kfree(name);
578 			break;
579 		case Opt_io_size_bits:
580 			if (args->from && match_int(args, &arg))
581 				return -EINVAL;
582 			if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
583 				f2fs_msg(sb, KERN_WARNING,
584 					"Not support %d, larger than %d",
585 					1 << arg, BIO_MAX_PAGES);
586 				return -EINVAL;
587 			}
588 			sbi->write_io_size_bits = arg;
589 			break;
590 		case Opt_fault_injection:
591 			if (args->from && match_int(args, &arg))
592 				return -EINVAL;
593 #ifdef CONFIG_F2FS_FAULT_INJECTION
594 			f2fs_build_fault_attr(sbi, arg);
595 			set_opt(sbi, FAULT_INJECTION);
596 #else
597 			f2fs_msg(sb, KERN_INFO,
598 				"FAULT_INJECTION was not selected");
599 #endif
600 			break;
601 		case Opt_lazytime:
602 			sb->s_flags |= SB_LAZYTIME;
603 			break;
604 		case Opt_nolazytime:
605 			sb->s_flags &= ~SB_LAZYTIME;
606 			break;
607 #ifdef CONFIG_QUOTA
608 		case Opt_quota:
609 		case Opt_usrquota:
610 			set_opt(sbi, USRQUOTA);
611 			break;
612 		case Opt_grpquota:
613 			set_opt(sbi, GRPQUOTA);
614 			break;
615 		case Opt_prjquota:
616 			set_opt(sbi, PRJQUOTA);
617 			break;
618 		case Opt_usrjquota:
619 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
620 			if (ret)
621 				return ret;
622 			break;
623 		case Opt_grpjquota:
624 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
625 			if (ret)
626 				return ret;
627 			break;
628 		case Opt_prjjquota:
629 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
630 			if (ret)
631 				return ret;
632 			break;
633 		case Opt_offusrjquota:
634 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
635 			if (ret)
636 				return ret;
637 			break;
638 		case Opt_offgrpjquota:
639 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
640 			if (ret)
641 				return ret;
642 			break;
643 		case Opt_offprjjquota:
644 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
645 			if (ret)
646 				return ret;
647 			break;
648 		case Opt_jqfmt_vfsold:
649 			sbi->s_jquota_fmt = QFMT_VFS_OLD;
650 			break;
651 		case Opt_jqfmt_vfsv0:
652 			sbi->s_jquota_fmt = QFMT_VFS_V0;
653 			break;
654 		case Opt_jqfmt_vfsv1:
655 			sbi->s_jquota_fmt = QFMT_VFS_V1;
656 			break;
657 		case Opt_noquota:
658 			clear_opt(sbi, QUOTA);
659 			clear_opt(sbi, USRQUOTA);
660 			clear_opt(sbi, GRPQUOTA);
661 			clear_opt(sbi, PRJQUOTA);
662 			break;
663 #else
664 		case Opt_quota:
665 		case Opt_usrquota:
666 		case Opt_grpquota:
667 		case Opt_prjquota:
668 		case Opt_usrjquota:
669 		case Opt_grpjquota:
670 		case Opt_prjjquota:
671 		case Opt_offusrjquota:
672 		case Opt_offgrpjquota:
673 		case Opt_offprjjquota:
674 		case Opt_jqfmt_vfsold:
675 		case Opt_jqfmt_vfsv0:
676 		case Opt_jqfmt_vfsv1:
677 		case Opt_noquota:
678 			f2fs_msg(sb, KERN_INFO,
679 					"quota operations not supported");
680 			break;
681 #endif
682 		default:
683 			f2fs_msg(sb, KERN_ERR,
684 				"Unrecognized mount option \"%s\" or missing value",
685 				p);
686 			return -EINVAL;
687 		}
688 	}
689 #ifdef CONFIG_QUOTA
690 	if (f2fs_check_quota_options(sbi))
691 		return -EINVAL;
692 #endif
693 
694 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
695 		f2fs_msg(sb, KERN_ERR,
696 				"Should set mode=lfs with %uKB-sized IO",
697 				F2FS_IO_SIZE_KB(sbi));
698 		return -EINVAL;
699 	}
700 
701 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
702 		if (!test_opt(sbi, INLINE_XATTR)) {
703 			f2fs_msg(sb, KERN_ERR,
704 					"inline_xattr_size option should be "
705 					"set with inline_xattr option");
706 			return -EINVAL;
707 		}
708 		if (!sbi->inline_xattr_size ||
709 			sbi->inline_xattr_size >= DEF_ADDRS_PER_INODE -
710 					F2FS_TOTAL_EXTRA_ATTR_SIZE -
711 					DEF_INLINE_RESERVED_SIZE -
712 					DEF_MIN_INLINE_SIZE) {
713 			f2fs_msg(sb, KERN_ERR,
714 					"inline xattr size is out of range");
715 			return -EINVAL;
716 		}
717 	}
718 	return 0;
719 }
720 
721 static struct inode *f2fs_alloc_inode(struct super_block *sb)
722 {
723 	struct f2fs_inode_info *fi;
724 
725 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
726 	if (!fi)
727 		return NULL;
728 
729 	init_once((void *) fi);
730 
731 	/* Initialize f2fs-specific inode info */
732 	atomic_set(&fi->dirty_pages, 0);
733 	fi->i_current_depth = 1;
734 	fi->i_advise = 0;
735 	init_rwsem(&fi->i_sem);
736 	INIT_LIST_HEAD(&fi->dirty_list);
737 	INIT_LIST_HEAD(&fi->gdirty_list);
738 	INIT_LIST_HEAD(&fi->inmem_ilist);
739 	INIT_LIST_HEAD(&fi->inmem_pages);
740 	mutex_init(&fi->inmem_lock);
741 	init_rwsem(&fi->dio_rwsem[READ]);
742 	init_rwsem(&fi->dio_rwsem[WRITE]);
743 	init_rwsem(&fi->i_mmap_sem);
744 	init_rwsem(&fi->i_xattr_sem);
745 
746 #ifdef CONFIG_QUOTA
747 	memset(&fi->i_dquot, 0, sizeof(fi->i_dquot));
748 	fi->i_reserved_quota = 0;
749 #endif
750 	/* Will be used by directory only */
751 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
752 
753 	return &fi->vfs_inode;
754 }
755 
756 static int f2fs_drop_inode(struct inode *inode)
757 {
758 	int ret;
759 	/*
760 	 * This is to avoid a deadlock condition like below.
761 	 * writeback_single_inode(inode)
762 	 *  - f2fs_write_data_page
763 	 *    - f2fs_gc -> iput -> evict
764 	 *       - inode_wait_for_writeback(inode)
765 	 */
766 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
767 		if (!inode->i_nlink && !is_bad_inode(inode)) {
768 			/* to avoid evict_inode call simultaneously */
769 			atomic_inc(&inode->i_count);
770 			spin_unlock(&inode->i_lock);
771 
772 			/* some remained atomic pages should discarded */
773 			if (f2fs_is_atomic_file(inode))
774 				drop_inmem_pages(inode);
775 
776 			/* should remain fi->extent_tree for writepage */
777 			f2fs_destroy_extent_node(inode);
778 
779 			sb_start_intwrite(inode->i_sb);
780 			f2fs_i_size_write(inode, 0);
781 
782 			if (F2FS_HAS_BLOCKS(inode))
783 				f2fs_truncate(inode);
784 
785 			sb_end_intwrite(inode->i_sb);
786 
787 			spin_lock(&inode->i_lock);
788 			atomic_dec(&inode->i_count);
789 		}
790 		trace_f2fs_drop_inode(inode, 0);
791 		return 0;
792 	}
793 	ret = generic_drop_inode(inode);
794 	trace_f2fs_drop_inode(inode, ret);
795 	return ret;
796 }
797 
798 int f2fs_inode_dirtied(struct inode *inode, bool sync)
799 {
800 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
801 	int ret = 0;
802 
803 	spin_lock(&sbi->inode_lock[DIRTY_META]);
804 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
805 		ret = 1;
806 	} else {
807 		set_inode_flag(inode, FI_DIRTY_INODE);
808 		stat_inc_dirty_inode(sbi, DIRTY_META);
809 	}
810 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
811 		list_add_tail(&F2FS_I(inode)->gdirty_list,
812 				&sbi->inode_list[DIRTY_META]);
813 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
814 	}
815 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
816 	return ret;
817 }
818 
819 void f2fs_inode_synced(struct inode *inode)
820 {
821 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
822 
823 	spin_lock(&sbi->inode_lock[DIRTY_META]);
824 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
825 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
826 		return;
827 	}
828 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
829 		list_del_init(&F2FS_I(inode)->gdirty_list);
830 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
831 	}
832 	clear_inode_flag(inode, FI_DIRTY_INODE);
833 	clear_inode_flag(inode, FI_AUTO_RECOVER);
834 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
835 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
836 }
837 
838 /*
839  * f2fs_dirty_inode() is called from __mark_inode_dirty()
840  *
841  * We should call set_dirty_inode to write the dirty inode through write_inode.
842  */
843 static void f2fs_dirty_inode(struct inode *inode, int flags)
844 {
845 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
846 
847 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
848 			inode->i_ino == F2FS_META_INO(sbi))
849 		return;
850 
851 	if (flags == I_DIRTY_TIME)
852 		return;
853 
854 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
855 		clear_inode_flag(inode, FI_AUTO_RECOVER);
856 
857 	f2fs_inode_dirtied(inode, false);
858 }
859 
860 static void f2fs_i_callback(struct rcu_head *head)
861 {
862 	struct inode *inode = container_of(head, struct inode, i_rcu);
863 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
864 }
865 
866 static void f2fs_destroy_inode(struct inode *inode)
867 {
868 	call_rcu(&inode->i_rcu, f2fs_i_callback);
869 }
870 
871 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
872 {
873 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
874 	percpu_counter_destroy(&sbi->total_valid_inode_count);
875 }
876 
877 static void destroy_device_list(struct f2fs_sb_info *sbi)
878 {
879 	int i;
880 
881 	for (i = 0; i < sbi->s_ndevs; i++) {
882 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
883 #ifdef CONFIG_BLK_DEV_ZONED
884 		kfree(FDEV(i).blkz_type);
885 #endif
886 	}
887 	kfree(sbi->devs);
888 }
889 
890 static void f2fs_put_super(struct super_block *sb)
891 {
892 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
893 	int i;
894 	bool dropped;
895 
896 	f2fs_quota_off_umount(sb);
897 
898 	/* prevent remaining shrinker jobs */
899 	mutex_lock(&sbi->umount_mutex);
900 
901 	/*
902 	 * We don't need to do checkpoint when superblock is clean.
903 	 * But, the previous checkpoint was not done by umount, it needs to do
904 	 * clean checkpoint again.
905 	 */
906 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
907 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
908 		struct cp_control cpc = {
909 			.reason = CP_UMOUNT,
910 		};
911 		write_checkpoint(sbi, &cpc);
912 	}
913 
914 	/* be sure to wait for any on-going discard commands */
915 	dropped = f2fs_wait_discard_bios(sbi);
916 
917 	if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
918 		struct cp_control cpc = {
919 			.reason = CP_UMOUNT | CP_TRIMMED,
920 		};
921 		write_checkpoint(sbi, &cpc);
922 	}
923 
924 	/* write_checkpoint can update stat informaion */
925 	f2fs_destroy_stats(sbi);
926 
927 	/*
928 	 * normally superblock is clean, so we need to release this.
929 	 * In addition, EIO will skip do checkpoint, we need this as well.
930 	 */
931 	release_ino_entry(sbi, true);
932 
933 	f2fs_leave_shrinker(sbi);
934 	mutex_unlock(&sbi->umount_mutex);
935 
936 	/* our cp_error case, we can wait for any writeback page */
937 	f2fs_flush_merged_writes(sbi);
938 
939 	iput(sbi->node_inode);
940 	iput(sbi->meta_inode);
941 
942 	/* destroy f2fs internal modules */
943 	destroy_node_manager(sbi);
944 	destroy_segment_manager(sbi);
945 
946 	kfree(sbi->ckpt);
947 
948 	f2fs_unregister_sysfs(sbi);
949 
950 	sb->s_fs_info = NULL;
951 	if (sbi->s_chksum_driver)
952 		crypto_free_shash(sbi->s_chksum_driver);
953 	kfree(sbi->raw_super);
954 
955 	destroy_device_list(sbi);
956 	mempool_destroy(sbi->write_io_dummy);
957 #ifdef CONFIG_QUOTA
958 	for (i = 0; i < MAXQUOTAS; i++)
959 		kfree(sbi->s_qf_names[i]);
960 #endif
961 	destroy_percpu_info(sbi);
962 	for (i = 0; i < NR_PAGE_TYPE; i++)
963 		kfree(sbi->write_io[i]);
964 	kfree(sbi);
965 }
966 
967 int f2fs_sync_fs(struct super_block *sb, int sync)
968 {
969 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
970 	int err = 0;
971 
972 	if (unlikely(f2fs_cp_error(sbi)))
973 		return 0;
974 
975 	trace_f2fs_sync_fs(sb, sync);
976 
977 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
978 		return -EAGAIN;
979 
980 	if (sync) {
981 		struct cp_control cpc;
982 
983 		cpc.reason = __get_cp_reason(sbi);
984 
985 		mutex_lock(&sbi->gc_mutex);
986 		err = write_checkpoint(sbi, &cpc);
987 		mutex_unlock(&sbi->gc_mutex);
988 	}
989 	f2fs_trace_ios(NULL, 1);
990 
991 	return err;
992 }
993 
994 static int f2fs_freeze(struct super_block *sb)
995 {
996 	if (f2fs_readonly(sb))
997 		return 0;
998 
999 	/* IO error happened before */
1000 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1001 		return -EIO;
1002 
1003 	/* must be clean, since sync_filesystem() was already called */
1004 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1005 		return -EINVAL;
1006 	return 0;
1007 }
1008 
1009 static int f2fs_unfreeze(struct super_block *sb)
1010 {
1011 	return 0;
1012 }
1013 
1014 #ifdef CONFIG_QUOTA
1015 static int f2fs_statfs_project(struct super_block *sb,
1016 				kprojid_t projid, struct kstatfs *buf)
1017 {
1018 	struct kqid qid;
1019 	struct dquot *dquot;
1020 	u64 limit;
1021 	u64 curblock;
1022 
1023 	qid = make_kqid_projid(projid);
1024 	dquot = dqget(sb, qid);
1025 	if (IS_ERR(dquot))
1026 		return PTR_ERR(dquot);
1027 	spin_lock(&dq_data_lock);
1028 
1029 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1030 		 dquot->dq_dqb.dqb_bsoftlimit :
1031 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1032 	if (limit && buf->f_blocks > limit) {
1033 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1034 		buf->f_blocks = limit;
1035 		buf->f_bfree = buf->f_bavail =
1036 			(buf->f_blocks > curblock) ?
1037 			 (buf->f_blocks - curblock) : 0;
1038 	}
1039 
1040 	limit = dquot->dq_dqb.dqb_isoftlimit ?
1041 		dquot->dq_dqb.dqb_isoftlimit :
1042 		dquot->dq_dqb.dqb_ihardlimit;
1043 	if (limit && buf->f_files > limit) {
1044 		buf->f_files = limit;
1045 		buf->f_ffree =
1046 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1047 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1048 	}
1049 
1050 	spin_unlock(&dq_data_lock);
1051 	dqput(dquot);
1052 	return 0;
1053 }
1054 #endif
1055 
1056 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1057 {
1058 	struct super_block *sb = dentry->d_sb;
1059 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1060 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1061 	block_t total_count, user_block_count, start_count;
1062 	u64 avail_node_count;
1063 
1064 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1065 	user_block_count = sbi->user_block_count;
1066 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1067 	buf->f_type = F2FS_SUPER_MAGIC;
1068 	buf->f_bsize = sbi->blocksize;
1069 
1070 	buf->f_blocks = total_count - start_count;
1071 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1072 						sbi->current_reserved_blocks;
1073 	if (buf->f_bfree > sbi->root_reserved_blocks)
1074 		buf->f_bavail = buf->f_bfree - sbi->root_reserved_blocks;
1075 	else
1076 		buf->f_bavail = 0;
1077 
1078 	avail_node_count = sbi->total_node_count - sbi->nquota_files -
1079 						F2FS_RESERVED_NODE_NUM;
1080 
1081 	if (avail_node_count > user_block_count) {
1082 		buf->f_files = user_block_count;
1083 		buf->f_ffree = buf->f_bavail;
1084 	} else {
1085 		buf->f_files = avail_node_count;
1086 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1087 					buf->f_bavail);
1088 	}
1089 
1090 	buf->f_namelen = F2FS_NAME_LEN;
1091 	buf->f_fsid.val[0] = (u32)id;
1092 	buf->f_fsid.val[1] = (u32)(id >> 32);
1093 
1094 #ifdef CONFIG_QUOTA
1095 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1096 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1097 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1098 	}
1099 #endif
1100 	return 0;
1101 }
1102 
1103 static inline void f2fs_show_quota_options(struct seq_file *seq,
1104 					   struct super_block *sb)
1105 {
1106 #ifdef CONFIG_QUOTA
1107 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1108 
1109 	if (sbi->s_jquota_fmt) {
1110 		char *fmtname = "";
1111 
1112 		switch (sbi->s_jquota_fmt) {
1113 		case QFMT_VFS_OLD:
1114 			fmtname = "vfsold";
1115 			break;
1116 		case QFMT_VFS_V0:
1117 			fmtname = "vfsv0";
1118 			break;
1119 		case QFMT_VFS_V1:
1120 			fmtname = "vfsv1";
1121 			break;
1122 		}
1123 		seq_printf(seq, ",jqfmt=%s", fmtname);
1124 	}
1125 
1126 	if (sbi->s_qf_names[USRQUOTA])
1127 		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1128 
1129 	if (sbi->s_qf_names[GRPQUOTA])
1130 		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1131 
1132 	if (sbi->s_qf_names[PRJQUOTA])
1133 		seq_show_option(seq, "prjjquota", sbi->s_qf_names[PRJQUOTA]);
1134 #endif
1135 }
1136 
1137 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1138 {
1139 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1140 
1141 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1142 		if (test_opt(sbi, FORCE_FG_GC))
1143 			seq_printf(seq, ",background_gc=%s", "sync");
1144 		else
1145 			seq_printf(seq, ",background_gc=%s", "on");
1146 	} else {
1147 		seq_printf(seq, ",background_gc=%s", "off");
1148 	}
1149 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1150 		seq_puts(seq, ",disable_roll_forward");
1151 	if (test_opt(sbi, DISCARD))
1152 		seq_puts(seq, ",discard");
1153 	if (test_opt(sbi, NOHEAP))
1154 		seq_puts(seq, ",no_heap");
1155 	else
1156 		seq_puts(seq, ",heap");
1157 #ifdef CONFIG_F2FS_FS_XATTR
1158 	if (test_opt(sbi, XATTR_USER))
1159 		seq_puts(seq, ",user_xattr");
1160 	else
1161 		seq_puts(seq, ",nouser_xattr");
1162 	if (test_opt(sbi, INLINE_XATTR))
1163 		seq_puts(seq, ",inline_xattr");
1164 	else
1165 		seq_puts(seq, ",noinline_xattr");
1166 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1167 		seq_printf(seq, ",inline_xattr_size=%u",
1168 					sbi->inline_xattr_size);
1169 #endif
1170 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1171 	if (test_opt(sbi, POSIX_ACL))
1172 		seq_puts(seq, ",acl");
1173 	else
1174 		seq_puts(seq, ",noacl");
1175 #endif
1176 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1177 		seq_puts(seq, ",disable_ext_identify");
1178 	if (test_opt(sbi, INLINE_DATA))
1179 		seq_puts(seq, ",inline_data");
1180 	else
1181 		seq_puts(seq, ",noinline_data");
1182 	if (test_opt(sbi, INLINE_DENTRY))
1183 		seq_puts(seq, ",inline_dentry");
1184 	else
1185 		seq_puts(seq, ",noinline_dentry");
1186 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1187 		seq_puts(seq, ",flush_merge");
1188 	if (test_opt(sbi, NOBARRIER))
1189 		seq_puts(seq, ",nobarrier");
1190 	if (test_opt(sbi, FASTBOOT))
1191 		seq_puts(seq, ",fastboot");
1192 	if (test_opt(sbi, EXTENT_CACHE))
1193 		seq_puts(seq, ",extent_cache");
1194 	else
1195 		seq_puts(seq, ",noextent_cache");
1196 	if (test_opt(sbi, DATA_FLUSH))
1197 		seq_puts(seq, ",data_flush");
1198 
1199 	seq_puts(seq, ",mode=");
1200 	if (test_opt(sbi, ADAPTIVE))
1201 		seq_puts(seq, "adaptive");
1202 	else if (test_opt(sbi, LFS))
1203 		seq_puts(seq, "lfs");
1204 	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
1205 	if (test_opt(sbi, RESERVE_ROOT))
1206 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1207 				sbi->root_reserved_blocks,
1208 				from_kuid_munged(&init_user_ns, sbi->s_resuid),
1209 				from_kgid_munged(&init_user_ns, sbi->s_resgid));
1210 	if (F2FS_IO_SIZE_BITS(sbi))
1211 		seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1212 #ifdef CONFIG_F2FS_FAULT_INJECTION
1213 	if (test_opt(sbi, FAULT_INJECTION))
1214 		seq_printf(seq, ",fault_injection=%u",
1215 				sbi->fault_info.inject_rate);
1216 #endif
1217 #ifdef CONFIG_QUOTA
1218 	if (test_opt(sbi, QUOTA))
1219 		seq_puts(seq, ",quota");
1220 	if (test_opt(sbi, USRQUOTA))
1221 		seq_puts(seq, ",usrquota");
1222 	if (test_opt(sbi, GRPQUOTA))
1223 		seq_puts(seq, ",grpquota");
1224 	if (test_opt(sbi, PRJQUOTA))
1225 		seq_puts(seq, ",prjquota");
1226 #endif
1227 	f2fs_show_quota_options(seq, sbi->sb);
1228 
1229 	return 0;
1230 }
1231 
1232 static void default_options(struct f2fs_sb_info *sbi)
1233 {
1234 	/* init some FS parameters */
1235 	sbi->active_logs = NR_CURSEG_TYPE;
1236 	sbi->inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1237 
1238 	set_opt(sbi, BG_GC);
1239 	set_opt(sbi, INLINE_XATTR);
1240 	set_opt(sbi, INLINE_DATA);
1241 	set_opt(sbi, INLINE_DENTRY);
1242 	set_opt(sbi, EXTENT_CACHE);
1243 	set_opt(sbi, NOHEAP);
1244 	sbi->sb->s_flags |= SB_LAZYTIME;
1245 	set_opt(sbi, FLUSH_MERGE);
1246 	if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1247 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1248 		set_opt(sbi, DISCARD);
1249 	} else {
1250 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1251 	}
1252 
1253 #ifdef CONFIG_F2FS_FS_XATTR
1254 	set_opt(sbi, XATTR_USER);
1255 #endif
1256 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1257 	set_opt(sbi, POSIX_ACL);
1258 #endif
1259 
1260 #ifdef CONFIG_F2FS_FAULT_INJECTION
1261 	f2fs_build_fault_attr(sbi, 0);
1262 #endif
1263 }
1264 
1265 #ifdef CONFIG_QUOTA
1266 static int f2fs_enable_quotas(struct super_block *sb);
1267 #endif
1268 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1269 {
1270 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1271 	struct f2fs_mount_info org_mount_opt;
1272 	unsigned long old_sb_flags;
1273 	int err, active_logs;
1274 	bool need_restart_gc = false;
1275 	bool need_stop_gc = false;
1276 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1277 #ifdef CONFIG_F2FS_FAULT_INJECTION
1278 	struct f2fs_fault_info ffi = sbi->fault_info;
1279 #endif
1280 #ifdef CONFIG_QUOTA
1281 	int s_jquota_fmt;
1282 	char *s_qf_names[MAXQUOTAS];
1283 	int i, j;
1284 #endif
1285 
1286 	/*
1287 	 * Save the old mount options in case we
1288 	 * need to restore them.
1289 	 */
1290 	org_mount_opt = sbi->mount_opt;
1291 	old_sb_flags = sb->s_flags;
1292 	active_logs = sbi->active_logs;
1293 
1294 #ifdef CONFIG_QUOTA
1295 	s_jquota_fmt = sbi->s_jquota_fmt;
1296 	for (i = 0; i < MAXQUOTAS; i++) {
1297 		if (sbi->s_qf_names[i]) {
1298 			s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
1299 							 GFP_KERNEL);
1300 			if (!s_qf_names[i]) {
1301 				for (j = 0; j < i; j++)
1302 					kfree(s_qf_names[j]);
1303 				return -ENOMEM;
1304 			}
1305 		} else {
1306 			s_qf_names[i] = NULL;
1307 		}
1308 	}
1309 #endif
1310 
1311 	/* recover superblocks we couldn't write due to previous RO mount */
1312 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1313 		err = f2fs_commit_super(sbi, false);
1314 		f2fs_msg(sb, KERN_INFO,
1315 			"Try to recover all the superblocks, ret: %d", err);
1316 		if (!err)
1317 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1318 	}
1319 
1320 	default_options(sbi);
1321 
1322 	/* parse mount options */
1323 	err = parse_options(sb, data);
1324 	if (err)
1325 		goto restore_opts;
1326 
1327 	/*
1328 	 * Previous and new state of filesystem is RO,
1329 	 * so skip checking GC and FLUSH_MERGE conditions.
1330 	 */
1331 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1332 		goto skip;
1333 
1334 #ifdef CONFIG_QUOTA
1335 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1336 		err = dquot_suspend(sb, -1);
1337 		if (err < 0)
1338 			goto restore_opts;
1339 	} else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
1340 		/* dquot_resume needs RW */
1341 		sb->s_flags &= ~SB_RDONLY;
1342 		if (sb_any_quota_suspended(sb)) {
1343 			dquot_resume(sb, -1);
1344 		} else if (f2fs_sb_has_quota_ino(sb)) {
1345 			err = f2fs_enable_quotas(sb);
1346 			if (err)
1347 				goto restore_opts;
1348 		}
1349 	}
1350 #endif
1351 	/* disallow enable/disable extent_cache dynamically */
1352 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1353 		err = -EINVAL;
1354 		f2fs_msg(sbi->sb, KERN_WARNING,
1355 				"switch extent_cache option is not allowed");
1356 		goto restore_opts;
1357 	}
1358 
1359 	/*
1360 	 * We stop the GC thread if FS is mounted as RO
1361 	 * or if background_gc = off is passed in mount
1362 	 * option. Also sync the filesystem.
1363 	 */
1364 	if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1365 		if (sbi->gc_thread) {
1366 			stop_gc_thread(sbi);
1367 			need_restart_gc = true;
1368 		}
1369 	} else if (!sbi->gc_thread) {
1370 		err = start_gc_thread(sbi);
1371 		if (err)
1372 			goto restore_opts;
1373 		need_stop_gc = true;
1374 	}
1375 
1376 	if (*flags & SB_RDONLY) {
1377 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1378 		sync_inodes_sb(sb);
1379 
1380 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1381 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1382 		f2fs_sync_fs(sb, 1);
1383 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1384 	}
1385 
1386 	/*
1387 	 * We stop issue flush thread if FS is mounted as RO
1388 	 * or if flush_merge is not passed in mount option.
1389 	 */
1390 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1391 		clear_opt(sbi, FLUSH_MERGE);
1392 		destroy_flush_cmd_control(sbi, false);
1393 	} else {
1394 		err = create_flush_cmd_control(sbi);
1395 		if (err)
1396 			goto restore_gc;
1397 	}
1398 skip:
1399 #ifdef CONFIG_QUOTA
1400 	/* Release old quota file names */
1401 	for (i = 0; i < MAXQUOTAS; i++)
1402 		kfree(s_qf_names[i]);
1403 #endif
1404 	/* Update the POSIXACL Flag */
1405 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1406 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1407 
1408 	limit_reserve_root(sbi);
1409 	return 0;
1410 restore_gc:
1411 	if (need_restart_gc) {
1412 		if (start_gc_thread(sbi))
1413 			f2fs_msg(sbi->sb, KERN_WARNING,
1414 				"background gc thread has stopped");
1415 	} else if (need_stop_gc) {
1416 		stop_gc_thread(sbi);
1417 	}
1418 restore_opts:
1419 #ifdef CONFIG_QUOTA
1420 	sbi->s_jquota_fmt = s_jquota_fmt;
1421 	for (i = 0; i < MAXQUOTAS; i++) {
1422 		kfree(sbi->s_qf_names[i]);
1423 		sbi->s_qf_names[i] = s_qf_names[i];
1424 	}
1425 #endif
1426 	sbi->mount_opt = org_mount_opt;
1427 	sbi->active_logs = active_logs;
1428 	sb->s_flags = old_sb_flags;
1429 #ifdef CONFIG_F2FS_FAULT_INJECTION
1430 	sbi->fault_info = ffi;
1431 #endif
1432 	return err;
1433 }
1434 
1435 #ifdef CONFIG_QUOTA
1436 /* Read data from quotafile */
1437 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1438 			       size_t len, loff_t off)
1439 {
1440 	struct inode *inode = sb_dqopt(sb)->files[type];
1441 	struct address_space *mapping = inode->i_mapping;
1442 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1443 	int offset = off & (sb->s_blocksize - 1);
1444 	int tocopy;
1445 	size_t toread;
1446 	loff_t i_size = i_size_read(inode);
1447 	struct page *page;
1448 	char *kaddr;
1449 
1450 	if (off > i_size)
1451 		return 0;
1452 
1453 	if (off + len > i_size)
1454 		len = i_size - off;
1455 	toread = len;
1456 	while (toread > 0) {
1457 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1458 repeat:
1459 		page = read_mapping_page(mapping, blkidx, NULL);
1460 		if (IS_ERR(page)) {
1461 			if (PTR_ERR(page) == -ENOMEM) {
1462 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1463 				goto repeat;
1464 			}
1465 			return PTR_ERR(page);
1466 		}
1467 
1468 		lock_page(page);
1469 
1470 		if (unlikely(page->mapping != mapping)) {
1471 			f2fs_put_page(page, 1);
1472 			goto repeat;
1473 		}
1474 		if (unlikely(!PageUptodate(page))) {
1475 			f2fs_put_page(page, 1);
1476 			return -EIO;
1477 		}
1478 
1479 		kaddr = kmap_atomic(page);
1480 		memcpy(data, kaddr + offset, tocopy);
1481 		kunmap_atomic(kaddr);
1482 		f2fs_put_page(page, 1);
1483 
1484 		offset = 0;
1485 		toread -= tocopy;
1486 		data += tocopy;
1487 		blkidx++;
1488 	}
1489 	return len;
1490 }
1491 
1492 /* Write to quotafile */
1493 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1494 				const char *data, size_t len, loff_t off)
1495 {
1496 	struct inode *inode = sb_dqopt(sb)->files[type];
1497 	struct address_space *mapping = inode->i_mapping;
1498 	const struct address_space_operations *a_ops = mapping->a_ops;
1499 	int offset = off & (sb->s_blocksize - 1);
1500 	size_t towrite = len;
1501 	struct page *page;
1502 	char *kaddr;
1503 	int err = 0;
1504 	int tocopy;
1505 
1506 	while (towrite > 0) {
1507 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1508 								towrite);
1509 retry:
1510 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1511 							&page, NULL);
1512 		if (unlikely(err)) {
1513 			if (err == -ENOMEM) {
1514 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1515 				goto retry;
1516 			}
1517 			break;
1518 		}
1519 
1520 		kaddr = kmap_atomic(page);
1521 		memcpy(kaddr + offset, data, tocopy);
1522 		kunmap_atomic(kaddr);
1523 		flush_dcache_page(page);
1524 
1525 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1526 						page, NULL);
1527 		offset = 0;
1528 		towrite -= tocopy;
1529 		off += tocopy;
1530 		data += tocopy;
1531 		cond_resched();
1532 	}
1533 
1534 	if (len == towrite)
1535 		return err;
1536 	inode->i_mtime = inode->i_ctime = current_time(inode);
1537 	f2fs_mark_inode_dirty_sync(inode, false);
1538 	return len - towrite;
1539 }
1540 
1541 static struct dquot **f2fs_get_dquots(struct inode *inode)
1542 {
1543 	return F2FS_I(inode)->i_dquot;
1544 }
1545 
1546 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1547 {
1548 	return &F2FS_I(inode)->i_reserved_quota;
1549 }
1550 
1551 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1552 {
1553 	return dquot_quota_on_mount(sbi->sb, sbi->s_qf_names[type],
1554 						sbi->s_jquota_fmt, type);
1555 }
1556 
1557 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1558 {
1559 	int enabled = 0;
1560 	int i, err;
1561 
1562 	if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1563 		err = f2fs_enable_quotas(sbi->sb);
1564 		if (err) {
1565 			f2fs_msg(sbi->sb, KERN_ERR,
1566 					"Cannot turn on quota_ino: %d", err);
1567 			return 0;
1568 		}
1569 		return 1;
1570 	}
1571 
1572 	for (i = 0; i < MAXQUOTAS; i++) {
1573 		if (sbi->s_qf_names[i]) {
1574 			err = f2fs_quota_on_mount(sbi, i);
1575 			if (!err) {
1576 				enabled = 1;
1577 				continue;
1578 			}
1579 			f2fs_msg(sbi->sb, KERN_ERR,
1580 				"Cannot turn on quotas: %d on %d", err, i);
1581 		}
1582 	}
1583 	return enabled;
1584 }
1585 
1586 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1587 			     unsigned int flags)
1588 {
1589 	struct inode *qf_inode;
1590 	unsigned long qf_inum;
1591 	int err;
1592 
1593 	BUG_ON(!f2fs_sb_has_quota_ino(sb));
1594 
1595 	qf_inum = f2fs_qf_ino(sb, type);
1596 	if (!qf_inum)
1597 		return -EPERM;
1598 
1599 	qf_inode = f2fs_iget(sb, qf_inum);
1600 	if (IS_ERR(qf_inode)) {
1601 		f2fs_msg(sb, KERN_ERR,
1602 			"Bad quota inode %u:%lu", type, qf_inum);
1603 		return PTR_ERR(qf_inode);
1604 	}
1605 
1606 	/* Don't account quota for quota files to avoid recursion */
1607 	qf_inode->i_flags |= S_NOQUOTA;
1608 	err = dquot_enable(qf_inode, type, format_id, flags);
1609 	iput(qf_inode);
1610 	return err;
1611 }
1612 
1613 static int f2fs_enable_quotas(struct super_block *sb)
1614 {
1615 	int type, err = 0;
1616 	unsigned long qf_inum;
1617 	bool quota_mopt[MAXQUOTAS] = {
1618 		test_opt(F2FS_SB(sb), USRQUOTA),
1619 		test_opt(F2FS_SB(sb), GRPQUOTA),
1620 		test_opt(F2FS_SB(sb), PRJQUOTA),
1621 	};
1622 
1623 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
1624 	for (type = 0; type < MAXQUOTAS; type++) {
1625 		qf_inum = f2fs_qf_ino(sb, type);
1626 		if (qf_inum) {
1627 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1628 				DQUOT_USAGE_ENABLED |
1629 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1630 			if (err) {
1631 				f2fs_msg(sb, KERN_ERR,
1632 					"Failed to enable quota tracking "
1633 					"(type=%d, err=%d). Please run "
1634 					"fsck to fix.", type, err);
1635 				for (type--; type >= 0; type--)
1636 					dquot_quota_off(sb, type);
1637 				return err;
1638 			}
1639 		}
1640 	}
1641 	return 0;
1642 }
1643 
1644 static int f2fs_quota_sync(struct super_block *sb, int type)
1645 {
1646 	struct quota_info *dqopt = sb_dqopt(sb);
1647 	int cnt;
1648 	int ret;
1649 
1650 	ret = dquot_writeback_dquots(sb, type);
1651 	if (ret)
1652 		return ret;
1653 
1654 	/*
1655 	 * Now when everything is written we can discard the pagecache so
1656 	 * that userspace sees the changes.
1657 	 */
1658 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1659 		if (type != -1 && cnt != type)
1660 			continue;
1661 		if (!sb_has_quota_active(sb, cnt))
1662 			continue;
1663 
1664 		ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1665 		if (ret)
1666 			return ret;
1667 
1668 		inode_lock(dqopt->files[cnt]);
1669 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1670 		inode_unlock(dqopt->files[cnt]);
1671 	}
1672 	return 0;
1673 }
1674 
1675 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1676 							const struct path *path)
1677 {
1678 	struct inode *inode;
1679 	int err;
1680 
1681 	err = f2fs_quota_sync(sb, type);
1682 	if (err)
1683 		return err;
1684 
1685 	err = dquot_quota_on(sb, type, format_id, path);
1686 	if (err)
1687 		return err;
1688 
1689 	inode = d_inode(path->dentry);
1690 
1691 	inode_lock(inode);
1692 	F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1693 	inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1694 					S_NOATIME | S_IMMUTABLE);
1695 	inode_unlock(inode);
1696 	f2fs_mark_inode_dirty_sync(inode, false);
1697 
1698 	return 0;
1699 }
1700 
1701 static int f2fs_quota_off(struct super_block *sb, int type)
1702 {
1703 	struct inode *inode = sb_dqopt(sb)->files[type];
1704 	int err;
1705 
1706 	if (!inode || !igrab(inode))
1707 		return dquot_quota_off(sb, type);
1708 
1709 	f2fs_quota_sync(sb, type);
1710 
1711 	err = dquot_quota_off(sb, type);
1712 	if (err || f2fs_sb_has_quota_ino(sb))
1713 		goto out_put;
1714 
1715 	inode_lock(inode);
1716 	F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1717 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1718 	inode_unlock(inode);
1719 	f2fs_mark_inode_dirty_sync(inode, false);
1720 out_put:
1721 	iput(inode);
1722 	return err;
1723 }
1724 
1725 void f2fs_quota_off_umount(struct super_block *sb)
1726 {
1727 	int type;
1728 
1729 	for (type = 0; type < MAXQUOTAS; type++)
1730 		f2fs_quota_off(sb, type);
1731 }
1732 
1733 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1734 {
1735 	*projid = F2FS_I(inode)->i_projid;
1736 	return 0;
1737 }
1738 
1739 static const struct dquot_operations f2fs_quota_operations = {
1740 	.get_reserved_space = f2fs_get_reserved_space,
1741 	.write_dquot	= dquot_commit,
1742 	.acquire_dquot	= dquot_acquire,
1743 	.release_dquot	= dquot_release,
1744 	.mark_dirty	= dquot_mark_dquot_dirty,
1745 	.write_info	= dquot_commit_info,
1746 	.alloc_dquot	= dquot_alloc,
1747 	.destroy_dquot	= dquot_destroy,
1748 	.get_projid	= f2fs_get_projid,
1749 	.get_next_id	= dquot_get_next_id,
1750 };
1751 
1752 static const struct quotactl_ops f2fs_quotactl_ops = {
1753 	.quota_on	= f2fs_quota_on,
1754 	.quota_off	= f2fs_quota_off,
1755 	.quota_sync	= f2fs_quota_sync,
1756 	.get_state	= dquot_get_state,
1757 	.set_info	= dquot_set_dqinfo,
1758 	.get_dqblk	= dquot_get_dqblk,
1759 	.set_dqblk	= dquot_set_dqblk,
1760 	.get_nextdqblk	= dquot_get_next_dqblk,
1761 };
1762 #else
1763 void f2fs_quota_off_umount(struct super_block *sb)
1764 {
1765 }
1766 #endif
1767 
1768 static const struct super_operations f2fs_sops = {
1769 	.alloc_inode	= f2fs_alloc_inode,
1770 	.drop_inode	= f2fs_drop_inode,
1771 	.destroy_inode	= f2fs_destroy_inode,
1772 	.write_inode	= f2fs_write_inode,
1773 	.dirty_inode	= f2fs_dirty_inode,
1774 	.show_options	= f2fs_show_options,
1775 #ifdef CONFIG_QUOTA
1776 	.quota_read	= f2fs_quota_read,
1777 	.quota_write	= f2fs_quota_write,
1778 	.get_dquots	= f2fs_get_dquots,
1779 #endif
1780 	.evict_inode	= f2fs_evict_inode,
1781 	.put_super	= f2fs_put_super,
1782 	.sync_fs	= f2fs_sync_fs,
1783 	.freeze_fs	= f2fs_freeze,
1784 	.unfreeze_fs	= f2fs_unfreeze,
1785 	.statfs		= f2fs_statfs,
1786 	.remount_fs	= f2fs_remount,
1787 };
1788 
1789 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1790 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1791 {
1792 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1793 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1794 				ctx, len, NULL);
1795 }
1796 
1797 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1798 							void *fs_data)
1799 {
1800 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1801 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1802 				ctx, len, fs_data, XATTR_CREATE);
1803 }
1804 
1805 static unsigned f2fs_max_namelen(struct inode *inode)
1806 {
1807 	return S_ISLNK(inode->i_mode) ?
1808 			inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1809 }
1810 
1811 static const struct fscrypt_operations f2fs_cryptops = {
1812 	.key_prefix	= "f2fs:",
1813 	.get_context	= f2fs_get_context,
1814 	.set_context	= f2fs_set_context,
1815 	.empty_dir	= f2fs_empty_dir,
1816 	.max_namelen	= f2fs_max_namelen,
1817 };
1818 #endif
1819 
1820 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1821 		u64 ino, u32 generation)
1822 {
1823 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1824 	struct inode *inode;
1825 
1826 	if (check_nid_range(sbi, ino))
1827 		return ERR_PTR(-ESTALE);
1828 
1829 	/*
1830 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
1831 	 * However f2fs_iget currently does appropriate checks to handle stale
1832 	 * inodes so everything is OK.
1833 	 */
1834 	inode = f2fs_iget(sb, ino);
1835 	if (IS_ERR(inode))
1836 		return ERR_CAST(inode);
1837 	if (unlikely(generation && inode->i_generation != generation)) {
1838 		/* we didn't find the right inode.. */
1839 		iput(inode);
1840 		return ERR_PTR(-ESTALE);
1841 	}
1842 	return inode;
1843 }
1844 
1845 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1846 		int fh_len, int fh_type)
1847 {
1848 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1849 				    f2fs_nfs_get_inode);
1850 }
1851 
1852 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1853 		int fh_len, int fh_type)
1854 {
1855 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1856 				    f2fs_nfs_get_inode);
1857 }
1858 
1859 static const struct export_operations f2fs_export_ops = {
1860 	.fh_to_dentry = f2fs_fh_to_dentry,
1861 	.fh_to_parent = f2fs_fh_to_parent,
1862 	.get_parent = f2fs_get_parent,
1863 };
1864 
1865 static loff_t max_file_blocks(void)
1866 {
1867 	loff_t result = 0;
1868 	loff_t leaf_count = ADDRS_PER_BLOCK;
1869 
1870 	/*
1871 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
1872 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
1873 	 * space in inode.i_addr, it will be more safe to reassign
1874 	 * result as zero.
1875 	 */
1876 
1877 	/* two direct node blocks */
1878 	result += (leaf_count * 2);
1879 
1880 	/* two indirect node blocks */
1881 	leaf_count *= NIDS_PER_BLOCK;
1882 	result += (leaf_count * 2);
1883 
1884 	/* one double indirect node block */
1885 	leaf_count *= NIDS_PER_BLOCK;
1886 	result += leaf_count;
1887 
1888 	return result;
1889 }
1890 
1891 static int __f2fs_commit_super(struct buffer_head *bh,
1892 			struct f2fs_super_block *super)
1893 {
1894 	lock_buffer(bh);
1895 	if (super)
1896 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1897 	set_buffer_uptodate(bh);
1898 	set_buffer_dirty(bh);
1899 	unlock_buffer(bh);
1900 
1901 	/* it's rare case, we can do fua all the time */
1902 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1903 }
1904 
1905 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1906 					struct buffer_head *bh)
1907 {
1908 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1909 					(bh->b_data + F2FS_SUPER_OFFSET);
1910 	struct super_block *sb = sbi->sb;
1911 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1912 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1913 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1914 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1915 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1916 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1917 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1918 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1919 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1920 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1921 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1922 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
1923 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1924 	u64 main_end_blkaddr = main_blkaddr +
1925 				(segment_count_main << log_blocks_per_seg);
1926 	u64 seg_end_blkaddr = segment0_blkaddr +
1927 				(segment_count << log_blocks_per_seg);
1928 
1929 	if (segment0_blkaddr != cp_blkaddr) {
1930 		f2fs_msg(sb, KERN_INFO,
1931 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1932 			segment0_blkaddr, cp_blkaddr);
1933 		return true;
1934 	}
1935 
1936 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1937 							sit_blkaddr) {
1938 		f2fs_msg(sb, KERN_INFO,
1939 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1940 			cp_blkaddr, sit_blkaddr,
1941 			segment_count_ckpt << log_blocks_per_seg);
1942 		return true;
1943 	}
1944 
1945 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1946 							nat_blkaddr) {
1947 		f2fs_msg(sb, KERN_INFO,
1948 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1949 			sit_blkaddr, nat_blkaddr,
1950 			segment_count_sit << log_blocks_per_seg);
1951 		return true;
1952 	}
1953 
1954 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1955 							ssa_blkaddr) {
1956 		f2fs_msg(sb, KERN_INFO,
1957 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1958 			nat_blkaddr, ssa_blkaddr,
1959 			segment_count_nat << log_blocks_per_seg);
1960 		return true;
1961 	}
1962 
1963 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1964 							main_blkaddr) {
1965 		f2fs_msg(sb, KERN_INFO,
1966 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1967 			ssa_blkaddr, main_blkaddr,
1968 			segment_count_ssa << log_blocks_per_seg);
1969 		return true;
1970 	}
1971 
1972 	if (main_end_blkaddr > seg_end_blkaddr) {
1973 		f2fs_msg(sb, KERN_INFO,
1974 			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1975 			main_blkaddr,
1976 			segment0_blkaddr +
1977 				(segment_count << log_blocks_per_seg),
1978 			segment_count_main << log_blocks_per_seg);
1979 		return true;
1980 	} else if (main_end_blkaddr < seg_end_blkaddr) {
1981 		int err = 0;
1982 		char *res;
1983 
1984 		/* fix in-memory information all the time */
1985 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1986 				segment0_blkaddr) >> log_blocks_per_seg);
1987 
1988 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1989 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1990 			res = "internally";
1991 		} else {
1992 			err = __f2fs_commit_super(bh, NULL);
1993 			res = err ? "failed" : "done";
1994 		}
1995 		f2fs_msg(sb, KERN_INFO,
1996 			"Fix alignment : %s, start(%u) end(%u) block(%u)",
1997 			res, main_blkaddr,
1998 			segment0_blkaddr +
1999 				(segment_count << log_blocks_per_seg),
2000 			segment_count_main << log_blocks_per_seg);
2001 		if (err)
2002 			return true;
2003 	}
2004 	return false;
2005 }
2006 
2007 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2008 				struct buffer_head *bh)
2009 {
2010 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2011 					(bh->b_data + F2FS_SUPER_OFFSET);
2012 	struct super_block *sb = sbi->sb;
2013 	unsigned int blocksize;
2014 
2015 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2016 		f2fs_msg(sb, KERN_INFO,
2017 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
2018 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2019 		return 1;
2020 	}
2021 
2022 	/* Currently, support only 4KB page cache size */
2023 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2024 		f2fs_msg(sb, KERN_INFO,
2025 			"Invalid page_cache_size (%lu), supports only 4KB\n",
2026 			PAGE_SIZE);
2027 		return 1;
2028 	}
2029 
2030 	/* Currently, support only 4KB block size */
2031 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2032 	if (blocksize != F2FS_BLKSIZE) {
2033 		f2fs_msg(sb, KERN_INFO,
2034 			"Invalid blocksize (%u), supports only 4KB\n",
2035 			blocksize);
2036 		return 1;
2037 	}
2038 
2039 	/* check log blocks per segment */
2040 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2041 		f2fs_msg(sb, KERN_INFO,
2042 			"Invalid log blocks per segment (%u)\n",
2043 			le32_to_cpu(raw_super->log_blocks_per_seg));
2044 		return 1;
2045 	}
2046 
2047 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2048 	if (le32_to_cpu(raw_super->log_sectorsize) >
2049 				F2FS_MAX_LOG_SECTOR_SIZE ||
2050 		le32_to_cpu(raw_super->log_sectorsize) <
2051 				F2FS_MIN_LOG_SECTOR_SIZE) {
2052 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2053 			le32_to_cpu(raw_super->log_sectorsize));
2054 		return 1;
2055 	}
2056 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2057 		le32_to_cpu(raw_super->log_sectorsize) !=
2058 			F2FS_MAX_LOG_SECTOR_SIZE) {
2059 		f2fs_msg(sb, KERN_INFO,
2060 			"Invalid log sectors per block(%u) log sectorsize(%u)",
2061 			le32_to_cpu(raw_super->log_sectors_per_block),
2062 			le32_to_cpu(raw_super->log_sectorsize));
2063 		return 1;
2064 	}
2065 
2066 	/* check reserved ino info */
2067 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2068 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2069 		le32_to_cpu(raw_super->root_ino) != 3) {
2070 		f2fs_msg(sb, KERN_INFO,
2071 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2072 			le32_to_cpu(raw_super->node_ino),
2073 			le32_to_cpu(raw_super->meta_ino),
2074 			le32_to_cpu(raw_super->root_ino));
2075 		return 1;
2076 	}
2077 
2078 	if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
2079 		f2fs_msg(sb, KERN_INFO,
2080 			"Invalid segment count (%u)",
2081 			le32_to_cpu(raw_super->segment_count));
2082 		return 1;
2083 	}
2084 
2085 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2086 	if (sanity_check_area_boundary(sbi, bh))
2087 		return 1;
2088 
2089 	return 0;
2090 }
2091 
2092 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
2093 {
2094 	unsigned int total, fsmeta;
2095 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2096 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2097 	unsigned int ovp_segments, reserved_segments;
2098 	unsigned int main_segs, blocks_per_seg;
2099 	int i;
2100 
2101 	total = le32_to_cpu(raw_super->segment_count);
2102 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2103 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
2104 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
2105 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2106 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2107 
2108 	if (unlikely(fsmeta >= total))
2109 		return 1;
2110 
2111 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2112 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2113 
2114 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2115 			ovp_segments == 0 || reserved_segments == 0)) {
2116 		f2fs_msg(sbi->sb, KERN_ERR,
2117 			"Wrong layout: check mkfs.f2fs version");
2118 		return 1;
2119 	}
2120 
2121 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2122 	blocks_per_seg = sbi->blocks_per_seg;
2123 
2124 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2125 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2126 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2127 			return 1;
2128 	}
2129 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2130 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2131 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2132 			return 1;
2133 	}
2134 
2135 	if (unlikely(f2fs_cp_error(sbi))) {
2136 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2137 		return 1;
2138 	}
2139 	return 0;
2140 }
2141 
2142 static void init_sb_info(struct f2fs_sb_info *sbi)
2143 {
2144 	struct f2fs_super_block *raw_super = sbi->raw_super;
2145 	int i, j;
2146 
2147 	sbi->log_sectors_per_block =
2148 		le32_to_cpu(raw_super->log_sectors_per_block);
2149 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2150 	sbi->blocksize = 1 << sbi->log_blocksize;
2151 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2152 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2153 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2154 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2155 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2156 	sbi->total_node_count =
2157 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2158 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2159 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2160 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2161 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2162 	sbi->cur_victim_sec = NULL_SECNO;
2163 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2164 
2165 	sbi->dir_level = DEF_DIR_LEVEL;
2166 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2167 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2168 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
2169 
2170 	for (i = 0; i < NR_COUNT_TYPE; i++)
2171 		atomic_set(&sbi->nr_pages[i], 0);
2172 
2173 	atomic_set(&sbi->wb_sync_req, 0);
2174 
2175 	INIT_LIST_HEAD(&sbi->s_list);
2176 	mutex_init(&sbi->umount_mutex);
2177 	for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2178 		for (j = HOT; j < NR_TEMP_TYPE; j++)
2179 			mutex_init(&sbi->wio_mutex[i][j]);
2180 	spin_lock_init(&sbi->cp_lock);
2181 
2182 	sbi->dirty_device = 0;
2183 	spin_lock_init(&sbi->dev_lock);
2184 }
2185 
2186 static int init_percpu_info(struct f2fs_sb_info *sbi)
2187 {
2188 	int err;
2189 
2190 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2191 	if (err)
2192 		return err;
2193 
2194 	return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2195 								GFP_KERNEL);
2196 }
2197 
2198 #ifdef CONFIG_BLK_DEV_ZONED
2199 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2200 {
2201 	struct block_device *bdev = FDEV(devi).bdev;
2202 	sector_t nr_sectors = bdev->bd_part->nr_sects;
2203 	sector_t sector = 0;
2204 	struct blk_zone *zones;
2205 	unsigned int i, nr_zones;
2206 	unsigned int n = 0;
2207 	int err = -EIO;
2208 
2209 	if (!f2fs_sb_mounted_blkzoned(sbi->sb))
2210 		return 0;
2211 
2212 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2213 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2214 		return -EINVAL;
2215 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2216 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2217 				__ilog2_u32(sbi->blocks_per_blkz))
2218 		return -EINVAL;
2219 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2220 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2221 					sbi->log_blocks_per_blkz;
2222 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2223 		FDEV(devi).nr_blkz++;
2224 
2225 	FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2226 								GFP_KERNEL);
2227 	if (!FDEV(devi).blkz_type)
2228 		return -ENOMEM;
2229 
2230 #define F2FS_REPORT_NR_ZONES   4096
2231 
2232 	zones = f2fs_kzalloc(sbi, sizeof(struct blk_zone) *
2233 				F2FS_REPORT_NR_ZONES, GFP_KERNEL);
2234 	if (!zones)
2235 		return -ENOMEM;
2236 
2237 	/* Get block zones type */
2238 	while (zones && sector < nr_sectors) {
2239 
2240 		nr_zones = F2FS_REPORT_NR_ZONES;
2241 		err = blkdev_report_zones(bdev, sector,
2242 					  zones, &nr_zones,
2243 					  GFP_KERNEL);
2244 		if (err)
2245 			break;
2246 		if (!nr_zones) {
2247 			err = -EIO;
2248 			break;
2249 		}
2250 
2251 		for (i = 0; i < nr_zones; i++) {
2252 			FDEV(devi).blkz_type[n] = zones[i].type;
2253 			sector += zones[i].len;
2254 			n++;
2255 		}
2256 	}
2257 
2258 	kfree(zones);
2259 
2260 	return err;
2261 }
2262 #endif
2263 
2264 /*
2265  * Read f2fs raw super block.
2266  * Because we have two copies of super block, so read both of them
2267  * to get the first valid one. If any one of them is broken, we pass
2268  * them recovery flag back to the caller.
2269  */
2270 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2271 			struct f2fs_super_block **raw_super,
2272 			int *valid_super_block, int *recovery)
2273 {
2274 	struct super_block *sb = sbi->sb;
2275 	int block;
2276 	struct buffer_head *bh;
2277 	struct f2fs_super_block *super;
2278 	int err = 0;
2279 
2280 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2281 	if (!super)
2282 		return -ENOMEM;
2283 
2284 	for (block = 0; block < 2; block++) {
2285 		bh = sb_bread(sb, block);
2286 		if (!bh) {
2287 			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2288 				block + 1);
2289 			err = -EIO;
2290 			continue;
2291 		}
2292 
2293 		/* sanity checking of raw super */
2294 		if (sanity_check_raw_super(sbi, bh)) {
2295 			f2fs_msg(sb, KERN_ERR,
2296 				"Can't find valid F2FS filesystem in %dth superblock",
2297 				block + 1);
2298 			err = -EINVAL;
2299 			brelse(bh);
2300 			continue;
2301 		}
2302 
2303 		if (!*raw_super) {
2304 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2305 							sizeof(*super));
2306 			*valid_super_block = block;
2307 			*raw_super = super;
2308 		}
2309 		brelse(bh);
2310 	}
2311 
2312 	/* Fail to read any one of the superblocks*/
2313 	if (err < 0)
2314 		*recovery = 1;
2315 
2316 	/* No valid superblock */
2317 	if (!*raw_super)
2318 		kfree(super);
2319 	else
2320 		err = 0;
2321 
2322 	return err;
2323 }
2324 
2325 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2326 {
2327 	struct buffer_head *bh;
2328 	int err;
2329 
2330 	if ((recover && f2fs_readonly(sbi->sb)) ||
2331 				bdev_read_only(sbi->sb->s_bdev)) {
2332 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2333 		return -EROFS;
2334 	}
2335 
2336 	/* write back-up superblock first */
2337 	bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
2338 	if (!bh)
2339 		return -EIO;
2340 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2341 	brelse(bh);
2342 
2343 	/* if we are in recovery path, skip writing valid superblock */
2344 	if (recover || err)
2345 		return err;
2346 
2347 	/* write current valid superblock */
2348 	bh = sb_getblk(sbi->sb, sbi->valid_super_block);
2349 	if (!bh)
2350 		return -EIO;
2351 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2352 	brelse(bh);
2353 	return err;
2354 }
2355 
2356 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2357 {
2358 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2359 	unsigned int max_devices = MAX_DEVICES;
2360 	int i;
2361 
2362 	/* Initialize single device information */
2363 	if (!RDEV(0).path[0]) {
2364 		if (!bdev_is_zoned(sbi->sb->s_bdev))
2365 			return 0;
2366 		max_devices = 1;
2367 	}
2368 
2369 	/*
2370 	 * Initialize multiple devices information, or single
2371 	 * zoned block device information.
2372 	 */
2373 	sbi->devs = f2fs_kzalloc(sbi, sizeof(struct f2fs_dev_info) *
2374 						max_devices, GFP_KERNEL);
2375 	if (!sbi->devs)
2376 		return -ENOMEM;
2377 
2378 	for (i = 0; i < max_devices; i++) {
2379 
2380 		if (i > 0 && !RDEV(i).path[0])
2381 			break;
2382 
2383 		if (max_devices == 1) {
2384 			/* Single zoned block device mount */
2385 			FDEV(0).bdev =
2386 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2387 					sbi->sb->s_mode, sbi->sb->s_type);
2388 		} else {
2389 			/* Multi-device mount */
2390 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2391 			FDEV(i).total_segments =
2392 				le32_to_cpu(RDEV(i).total_segments);
2393 			if (i == 0) {
2394 				FDEV(i).start_blk = 0;
2395 				FDEV(i).end_blk = FDEV(i).start_blk +
2396 				    (FDEV(i).total_segments <<
2397 				    sbi->log_blocks_per_seg) - 1 +
2398 				    le32_to_cpu(raw_super->segment0_blkaddr);
2399 			} else {
2400 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2401 				FDEV(i).end_blk = FDEV(i).start_blk +
2402 					(FDEV(i).total_segments <<
2403 					sbi->log_blocks_per_seg) - 1;
2404 			}
2405 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2406 					sbi->sb->s_mode, sbi->sb->s_type);
2407 		}
2408 		if (IS_ERR(FDEV(i).bdev))
2409 			return PTR_ERR(FDEV(i).bdev);
2410 
2411 		/* to release errored devices */
2412 		sbi->s_ndevs = i + 1;
2413 
2414 #ifdef CONFIG_BLK_DEV_ZONED
2415 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2416 				!f2fs_sb_mounted_blkzoned(sbi->sb)) {
2417 			f2fs_msg(sbi->sb, KERN_ERR,
2418 				"Zoned block device feature not enabled\n");
2419 			return -EINVAL;
2420 		}
2421 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2422 			if (init_blkz_info(sbi, i)) {
2423 				f2fs_msg(sbi->sb, KERN_ERR,
2424 					"Failed to initialize F2FS blkzone information");
2425 				return -EINVAL;
2426 			}
2427 			if (max_devices == 1)
2428 				break;
2429 			f2fs_msg(sbi->sb, KERN_INFO,
2430 				"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2431 				i, FDEV(i).path,
2432 				FDEV(i).total_segments,
2433 				FDEV(i).start_blk, FDEV(i).end_blk,
2434 				bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2435 				"Host-aware" : "Host-managed");
2436 			continue;
2437 		}
2438 #endif
2439 		f2fs_msg(sbi->sb, KERN_INFO,
2440 			"Mount Device [%2d]: %20s, %8u, %8x - %8x",
2441 				i, FDEV(i).path,
2442 				FDEV(i).total_segments,
2443 				FDEV(i).start_blk, FDEV(i).end_blk);
2444 	}
2445 	f2fs_msg(sbi->sb, KERN_INFO,
2446 			"IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2447 	return 0;
2448 }
2449 
2450 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2451 {
2452 	struct f2fs_sb_info *sbi;
2453 	struct f2fs_super_block *raw_super;
2454 	struct inode *root;
2455 	int err;
2456 	bool retry = true, need_fsck = false;
2457 	char *options = NULL;
2458 	int recovery, i, valid_super_block;
2459 	struct curseg_info *seg_i;
2460 
2461 try_onemore:
2462 	err = -EINVAL;
2463 	raw_super = NULL;
2464 	valid_super_block = -1;
2465 	recovery = 0;
2466 
2467 	/* allocate memory for f2fs-specific super block info */
2468 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2469 	if (!sbi)
2470 		return -ENOMEM;
2471 
2472 	sbi->sb = sb;
2473 
2474 	/* Load the checksum driver */
2475 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2476 	if (IS_ERR(sbi->s_chksum_driver)) {
2477 		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2478 		err = PTR_ERR(sbi->s_chksum_driver);
2479 		sbi->s_chksum_driver = NULL;
2480 		goto free_sbi;
2481 	}
2482 
2483 	/* set a block size */
2484 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2485 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2486 		goto free_sbi;
2487 	}
2488 
2489 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2490 								&recovery);
2491 	if (err)
2492 		goto free_sbi;
2493 
2494 	sb->s_fs_info = sbi;
2495 	sbi->raw_super = raw_super;
2496 
2497 	sbi->s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2498 	sbi->s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2499 
2500 	/* precompute checksum seed for metadata */
2501 	if (f2fs_sb_has_inode_chksum(sb))
2502 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2503 						sizeof(raw_super->uuid));
2504 
2505 	/*
2506 	 * The BLKZONED feature indicates that the drive was formatted with
2507 	 * zone alignment optimization. This is optional for host-aware
2508 	 * devices, but mandatory for host-managed zoned block devices.
2509 	 */
2510 #ifndef CONFIG_BLK_DEV_ZONED
2511 	if (f2fs_sb_mounted_blkzoned(sb)) {
2512 		f2fs_msg(sb, KERN_ERR,
2513 			 "Zoned block device support is not enabled\n");
2514 		err = -EOPNOTSUPP;
2515 		goto free_sb_buf;
2516 	}
2517 #endif
2518 	default_options(sbi);
2519 	/* parse mount options */
2520 	options = kstrdup((const char *)data, GFP_KERNEL);
2521 	if (data && !options) {
2522 		err = -ENOMEM;
2523 		goto free_sb_buf;
2524 	}
2525 
2526 	err = parse_options(sb, options);
2527 	if (err)
2528 		goto free_options;
2529 
2530 	sbi->max_file_blocks = max_file_blocks();
2531 	sb->s_maxbytes = sbi->max_file_blocks <<
2532 				le32_to_cpu(raw_super->log_blocksize);
2533 	sb->s_max_links = F2FS_LINK_MAX;
2534 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2535 
2536 #ifdef CONFIG_QUOTA
2537 	sb->dq_op = &f2fs_quota_operations;
2538 	if (f2fs_sb_has_quota_ino(sb))
2539 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
2540 	else
2541 		sb->s_qcop = &f2fs_quotactl_ops;
2542 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2543 
2544 	if (f2fs_sb_has_quota_ino(sbi->sb)) {
2545 		for (i = 0; i < MAXQUOTAS; i++) {
2546 			if (f2fs_qf_ino(sbi->sb, i))
2547 				sbi->nquota_files++;
2548 		}
2549 	}
2550 #endif
2551 
2552 	sb->s_op = &f2fs_sops;
2553 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2554 	sb->s_cop = &f2fs_cryptops;
2555 #endif
2556 	sb->s_xattr = f2fs_xattr_handlers;
2557 	sb->s_export_op = &f2fs_export_ops;
2558 	sb->s_magic = F2FS_SUPER_MAGIC;
2559 	sb->s_time_gran = 1;
2560 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2561 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2562 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2563 	sb->s_iflags |= SB_I_CGROUPWB;
2564 
2565 	/* init f2fs-specific super block info */
2566 	sbi->valid_super_block = valid_super_block;
2567 	mutex_init(&sbi->gc_mutex);
2568 	mutex_init(&sbi->cp_mutex);
2569 	init_rwsem(&sbi->node_write);
2570 	init_rwsem(&sbi->node_change);
2571 
2572 	/* disallow all the data/node/meta page writes */
2573 	set_sbi_flag(sbi, SBI_POR_DOING);
2574 	spin_lock_init(&sbi->stat_lock);
2575 
2576 	/* init iostat info */
2577 	spin_lock_init(&sbi->iostat_lock);
2578 	sbi->iostat_enable = false;
2579 
2580 	for (i = 0; i < NR_PAGE_TYPE; i++) {
2581 		int n = (i == META) ? 1: NR_TEMP_TYPE;
2582 		int j;
2583 
2584 		sbi->write_io[i] = f2fs_kmalloc(sbi,
2585 					n * sizeof(struct f2fs_bio_info),
2586 					GFP_KERNEL);
2587 		if (!sbi->write_io[i]) {
2588 			err = -ENOMEM;
2589 			goto free_options;
2590 		}
2591 
2592 		for (j = HOT; j < n; j++) {
2593 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
2594 			sbi->write_io[i][j].sbi = sbi;
2595 			sbi->write_io[i][j].bio = NULL;
2596 			spin_lock_init(&sbi->write_io[i][j].io_lock);
2597 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2598 		}
2599 	}
2600 
2601 	init_rwsem(&sbi->cp_rwsem);
2602 	init_waitqueue_head(&sbi->cp_wait);
2603 	init_sb_info(sbi);
2604 
2605 	err = init_percpu_info(sbi);
2606 	if (err)
2607 		goto free_bio_info;
2608 
2609 	if (F2FS_IO_SIZE(sbi) > 1) {
2610 		sbi->write_io_dummy =
2611 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2612 		if (!sbi->write_io_dummy) {
2613 			err = -ENOMEM;
2614 			goto free_percpu;
2615 		}
2616 	}
2617 
2618 	/* get an inode for meta space */
2619 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2620 	if (IS_ERR(sbi->meta_inode)) {
2621 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2622 		err = PTR_ERR(sbi->meta_inode);
2623 		goto free_io_dummy;
2624 	}
2625 
2626 	err = get_valid_checkpoint(sbi);
2627 	if (err) {
2628 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2629 		goto free_meta_inode;
2630 	}
2631 
2632 	/* Initialize device list */
2633 	err = f2fs_scan_devices(sbi);
2634 	if (err) {
2635 		f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2636 		goto free_devices;
2637 	}
2638 
2639 	sbi->total_valid_node_count =
2640 				le32_to_cpu(sbi->ckpt->valid_node_count);
2641 	percpu_counter_set(&sbi->total_valid_inode_count,
2642 				le32_to_cpu(sbi->ckpt->valid_inode_count));
2643 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2644 	sbi->total_valid_block_count =
2645 				le64_to_cpu(sbi->ckpt->valid_block_count);
2646 	sbi->last_valid_block_count = sbi->total_valid_block_count;
2647 	sbi->reserved_blocks = 0;
2648 	sbi->current_reserved_blocks = 0;
2649 	limit_reserve_root(sbi);
2650 
2651 	for (i = 0; i < NR_INODE_TYPE; i++) {
2652 		INIT_LIST_HEAD(&sbi->inode_list[i]);
2653 		spin_lock_init(&sbi->inode_lock[i]);
2654 	}
2655 
2656 	init_extent_cache_info(sbi);
2657 
2658 	init_ino_entry_info(sbi);
2659 
2660 	/* setup f2fs internal modules */
2661 	err = build_segment_manager(sbi);
2662 	if (err) {
2663 		f2fs_msg(sb, KERN_ERR,
2664 			"Failed to initialize F2FS segment manager");
2665 		goto free_sm;
2666 	}
2667 	err = build_node_manager(sbi);
2668 	if (err) {
2669 		f2fs_msg(sb, KERN_ERR,
2670 			"Failed to initialize F2FS node manager");
2671 		goto free_nm;
2672 	}
2673 
2674 	/* For write statistics */
2675 	if (sb->s_bdev->bd_part)
2676 		sbi->sectors_written_start =
2677 			(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2678 
2679 	/* Read accumulated write IO statistics if exists */
2680 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2681 	if (__exist_node_summaries(sbi))
2682 		sbi->kbytes_written =
2683 			le64_to_cpu(seg_i->journal->info.kbytes_written);
2684 
2685 	build_gc_manager(sbi);
2686 
2687 	/* get an inode for node space */
2688 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2689 	if (IS_ERR(sbi->node_inode)) {
2690 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2691 		err = PTR_ERR(sbi->node_inode);
2692 		goto free_nm;
2693 	}
2694 
2695 	err = f2fs_build_stats(sbi);
2696 	if (err)
2697 		goto free_node_inode;
2698 
2699 	/* read root inode and dentry */
2700 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2701 	if (IS_ERR(root)) {
2702 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2703 		err = PTR_ERR(root);
2704 		goto free_stats;
2705 	}
2706 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2707 		iput(root);
2708 		err = -EINVAL;
2709 		goto free_node_inode;
2710 	}
2711 
2712 	sb->s_root = d_make_root(root); /* allocate root dentry */
2713 	if (!sb->s_root) {
2714 		err = -ENOMEM;
2715 		goto free_root_inode;
2716 	}
2717 
2718 	err = f2fs_register_sysfs(sbi);
2719 	if (err)
2720 		goto free_root_inode;
2721 
2722 #ifdef CONFIG_QUOTA
2723 	/*
2724 	 * Turn on quotas which were not enabled for read-only mounts if
2725 	 * filesystem has quota feature, so that they are updated correctly.
2726 	 */
2727 	if (f2fs_sb_has_quota_ino(sb) && !sb_rdonly(sb)) {
2728 		err = f2fs_enable_quotas(sb);
2729 		if (err) {
2730 			f2fs_msg(sb, KERN_ERR,
2731 				"Cannot turn on quotas: error %d", err);
2732 			goto free_sysfs;
2733 		}
2734 	}
2735 #endif
2736 	/* if there are nt orphan nodes free them */
2737 	err = recover_orphan_inodes(sbi);
2738 	if (err)
2739 		goto free_meta;
2740 
2741 	/* recover fsynced data */
2742 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2743 		/*
2744 		 * mount should be failed, when device has readonly mode, and
2745 		 * previous checkpoint was not done by clean system shutdown.
2746 		 */
2747 		if (bdev_read_only(sb->s_bdev) &&
2748 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2749 			err = -EROFS;
2750 			goto free_meta;
2751 		}
2752 
2753 		if (need_fsck)
2754 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2755 
2756 		if (!retry)
2757 			goto skip_recovery;
2758 
2759 		err = recover_fsync_data(sbi, false);
2760 		if (err < 0) {
2761 			need_fsck = true;
2762 			f2fs_msg(sb, KERN_ERR,
2763 				"Cannot recover all fsync data errno=%d", err);
2764 			goto free_meta;
2765 		}
2766 	} else {
2767 		err = recover_fsync_data(sbi, true);
2768 
2769 		if (!f2fs_readonly(sb) && err > 0) {
2770 			err = -EINVAL;
2771 			f2fs_msg(sb, KERN_ERR,
2772 				"Need to recover fsync data");
2773 			goto free_meta;
2774 		}
2775 	}
2776 skip_recovery:
2777 	/* recover_fsync_data() cleared this already */
2778 	clear_sbi_flag(sbi, SBI_POR_DOING);
2779 
2780 	/*
2781 	 * If filesystem is not mounted as read-only then
2782 	 * do start the gc_thread.
2783 	 */
2784 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2785 		/* After POR, we can run background GC thread.*/
2786 		err = start_gc_thread(sbi);
2787 		if (err)
2788 			goto free_meta;
2789 	}
2790 	kfree(options);
2791 
2792 	/* recover broken superblock */
2793 	if (recovery) {
2794 		err = f2fs_commit_super(sbi, true);
2795 		f2fs_msg(sb, KERN_INFO,
2796 			"Try to recover %dth superblock, ret: %d",
2797 			sbi->valid_super_block ? 1 : 2, err);
2798 	}
2799 
2800 	f2fs_join_shrinker(sbi);
2801 
2802 	f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2803 				cur_cp_version(F2FS_CKPT(sbi)));
2804 	f2fs_update_time(sbi, CP_TIME);
2805 	f2fs_update_time(sbi, REQ_TIME);
2806 	return 0;
2807 
2808 free_meta:
2809 #ifdef CONFIG_QUOTA
2810 	if (f2fs_sb_has_quota_ino(sb) && !sb_rdonly(sb))
2811 		f2fs_quota_off_umount(sbi->sb);
2812 #endif
2813 	f2fs_sync_inode_meta(sbi);
2814 	/*
2815 	 * Some dirty meta pages can be produced by recover_orphan_inodes()
2816 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2817 	 * followed by write_checkpoint() through f2fs_write_node_pages(), which
2818 	 * falls into an infinite loop in sync_meta_pages().
2819 	 */
2820 	truncate_inode_pages_final(META_MAPPING(sbi));
2821 #ifdef CONFIG_QUOTA
2822 free_sysfs:
2823 #endif
2824 	f2fs_unregister_sysfs(sbi);
2825 free_root_inode:
2826 	dput(sb->s_root);
2827 	sb->s_root = NULL;
2828 free_stats:
2829 	f2fs_destroy_stats(sbi);
2830 free_node_inode:
2831 	release_ino_entry(sbi, true);
2832 	truncate_inode_pages_final(NODE_MAPPING(sbi));
2833 	iput(sbi->node_inode);
2834 free_nm:
2835 	destroy_node_manager(sbi);
2836 free_sm:
2837 	destroy_segment_manager(sbi);
2838 free_devices:
2839 	destroy_device_list(sbi);
2840 	kfree(sbi->ckpt);
2841 free_meta_inode:
2842 	make_bad_inode(sbi->meta_inode);
2843 	iput(sbi->meta_inode);
2844 free_io_dummy:
2845 	mempool_destroy(sbi->write_io_dummy);
2846 free_percpu:
2847 	destroy_percpu_info(sbi);
2848 free_bio_info:
2849 	for (i = 0; i < NR_PAGE_TYPE; i++)
2850 		kfree(sbi->write_io[i]);
2851 free_options:
2852 #ifdef CONFIG_QUOTA
2853 	for (i = 0; i < MAXQUOTAS; i++)
2854 		kfree(sbi->s_qf_names[i]);
2855 #endif
2856 	kfree(options);
2857 free_sb_buf:
2858 	kfree(raw_super);
2859 free_sbi:
2860 	if (sbi->s_chksum_driver)
2861 		crypto_free_shash(sbi->s_chksum_driver);
2862 	kfree(sbi);
2863 
2864 	/* give only one another chance */
2865 	if (retry) {
2866 		retry = false;
2867 		shrink_dcache_sb(sb);
2868 		goto try_onemore;
2869 	}
2870 	return err;
2871 }
2872 
2873 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2874 			const char *dev_name, void *data)
2875 {
2876 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2877 }
2878 
2879 static void kill_f2fs_super(struct super_block *sb)
2880 {
2881 	if (sb->s_root) {
2882 		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2883 		stop_gc_thread(F2FS_SB(sb));
2884 		stop_discard_thread(F2FS_SB(sb));
2885 	}
2886 	kill_block_super(sb);
2887 }
2888 
2889 static struct file_system_type f2fs_fs_type = {
2890 	.owner		= THIS_MODULE,
2891 	.name		= "f2fs",
2892 	.mount		= f2fs_mount,
2893 	.kill_sb	= kill_f2fs_super,
2894 	.fs_flags	= FS_REQUIRES_DEV,
2895 };
2896 MODULE_ALIAS_FS("f2fs");
2897 
2898 static int __init init_inodecache(void)
2899 {
2900 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2901 			sizeof(struct f2fs_inode_info), 0,
2902 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2903 	if (!f2fs_inode_cachep)
2904 		return -ENOMEM;
2905 	return 0;
2906 }
2907 
2908 static void destroy_inodecache(void)
2909 {
2910 	/*
2911 	 * Make sure all delayed rcu free inodes are flushed before we
2912 	 * destroy cache.
2913 	 */
2914 	rcu_barrier();
2915 	kmem_cache_destroy(f2fs_inode_cachep);
2916 }
2917 
2918 static int __init init_f2fs_fs(void)
2919 {
2920 	int err;
2921 
2922 	f2fs_build_trace_ios();
2923 
2924 	err = init_inodecache();
2925 	if (err)
2926 		goto fail;
2927 	err = create_node_manager_caches();
2928 	if (err)
2929 		goto free_inodecache;
2930 	err = create_segment_manager_caches();
2931 	if (err)
2932 		goto free_node_manager_caches;
2933 	err = create_checkpoint_caches();
2934 	if (err)
2935 		goto free_segment_manager_caches;
2936 	err = create_extent_cache();
2937 	if (err)
2938 		goto free_checkpoint_caches;
2939 	err = f2fs_init_sysfs();
2940 	if (err)
2941 		goto free_extent_cache;
2942 	err = register_shrinker(&f2fs_shrinker_info);
2943 	if (err)
2944 		goto free_sysfs;
2945 	err = register_filesystem(&f2fs_fs_type);
2946 	if (err)
2947 		goto free_shrinker;
2948 	err = f2fs_create_root_stats();
2949 	if (err)
2950 		goto free_filesystem;
2951 	return 0;
2952 
2953 free_filesystem:
2954 	unregister_filesystem(&f2fs_fs_type);
2955 free_shrinker:
2956 	unregister_shrinker(&f2fs_shrinker_info);
2957 free_sysfs:
2958 	f2fs_exit_sysfs();
2959 free_extent_cache:
2960 	destroy_extent_cache();
2961 free_checkpoint_caches:
2962 	destroy_checkpoint_caches();
2963 free_segment_manager_caches:
2964 	destroy_segment_manager_caches();
2965 free_node_manager_caches:
2966 	destroy_node_manager_caches();
2967 free_inodecache:
2968 	destroy_inodecache();
2969 fail:
2970 	return err;
2971 }
2972 
2973 static void __exit exit_f2fs_fs(void)
2974 {
2975 	f2fs_destroy_root_stats();
2976 	unregister_filesystem(&f2fs_fs_type);
2977 	unregister_shrinker(&f2fs_shrinker_info);
2978 	f2fs_exit_sysfs();
2979 	destroy_extent_cache();
2980 	destroy_checkpoint_caches();
2981 	destroy_segment_manager_caches();
2982 	destroy_node_manager_caches();
2983 	destroy_inodecache();
2984 	f2fs_destroy_trace_ios();
2985 }
2986 
2987 module_init(init_f2fs_fs)
2988 module_exit(exit_f2fs_fs)
2989 
2990 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2991 MODULE_DESCRIPTION("Flash Friendly File System");
2992 MODULE_LICENSE("GPL");
2993 
2994