1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/statfs.h> 12 #include <linux/buffer_head.h> 13 #include <linux/backing-dev.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 27 #include "f2fs.h" 28 #include "node.h" 29 #include "segment.h" 30 #include "xattr.h" 31 #include "gc.h" 32 #include "trace.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/f2fs.h> 36 37 static struct kmem_cache *f2fs_inode_cachep; 38 39 #ifdef CONFIG_F2FS_FAULT_INJECTION 40 41 const char *f2fs_fault_name[FAULT_MAX] = { 42 [FAULT_KMALLOC] = "kmalloc", 43 [FAULT_KVMALLOC] = "kvmalloc", 44 [FAULT_PAGE_ALLOC] = "page alloc", 45 [FAULT_PAGE_GET] = "page get", 46 [FAULT_ALLOC_BIO] = "alloc bio", 47 [FAULT_ALLOC_NID] = "alloc nid", 48 [FAULT_ORPHAN] = "orphan", 49 [FAULT_BLOCK] = "no more block", 50 [FAULT_DIR_DEPTH] = "too big dir depth", 51 [FAULT_EVICT_INODE] = "evict_inode fail", 52 [FAULT_TRUNCATE] = "truncate fail", 53 [FAULT_READ_IO] = "read IO error", 54 [FAULT_CHECKPOINT] = "checkpoint error", 55 [FAULT_DISCARD] = "discard error", 56 [FAULT_WRITE_IO] = "write IO error", 57 }; 58 59 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 60 unsigned int type) 61 { 62 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 63 64 if (rate) { 65 atomic_set(&ffi->inject_ops, 0); 66 ffi->inject_rate = rate; 67 } 68 69 if (type) 70 ffi->inject_type = type; 71 72 if (!rate && !type) 73 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 74 } 75 #endif 76 77 /* f2fs-wide shrinker description */ 78 static struct shrinker f2fs_shrinker_info = { 79 .scan_objects = f2fs_shrink_scan, 80 .count_objects = f2fs_shrink_count, 81 .seeks = DEFAULT_SEEKS, 82 }; 83 84 enum { 85 Opt_gc_background, 86 Opt_disable_roll_forward, 87 Opt_norecovery, 88 Opt_discard, 89 Opt_nodiscard, 90 Opt_noheap, 91 Opt_heap, 92 Opt_user_xattr, 93 Opt_nouser_xattr, 94 Opt_acl, 95 Opt_noacl, 96 Opt_active_logs, 97 Opt_disable_ext_identify, 98 Opt_inline_xattr, 99 Opt_noinline_xattr, 100 Opt_inline_xattr_size, 101 Opt_inline_data, 102 Opt_inline_dentry, 103 Opt_noinline_dentry, 104 Opt_flush_merge, 105 Opt_noflush_merge, 106 Opt_nobarrier, 107 Opt_fastboot, 108 Opt_extent_cache, 109 Opt_noextent_cache, 110 Opt_noinline_data, 111 Opt_data_flush, 112 Opt_reserve_root, 113 Opt_resgid, 114 Opt_resuid, 115 Opt_mode, 116 Opt_io_size_bits, 117 Opt_fault_injection, 118 Opt_fault_type, 119 Opt_lazytime, 120 Opt_nolazytime, 121 Opt_quota, 122 Opt_noquota, 123 Opt_usrquota, 124 Opt_grpquota, 125 Opt_prjquota, 126 Opt_usrjquota, 127 Opt_grpjquota, 128 Opt_prjjquota, 129 Opt_offusrjquota, 130 Opt_offgrpjquota, 131 Opt_offprjjquota, 132 Opt_jqfmt_vfsold, 133 Opt_jqfmt_vfsv0, 134 Opt_jqfmt_vfsv1, 135 Opt_whint, 136 Opt_alloc, 137 Opt_fsync, 138 Opt_test_dummy_encryption, 139 Opt_checkpoint, 140 Opt_err, 141 }; 142 143 static match_table_t f2fs_tokens = { 144 {Opt_gc_background, "background_gc=%s"}, 145 {Opt_disable_roll_forward, "disable_roll_forward"}, 146 {Opt_norecovery, "norecovery"}, 147 {Opt_discard, "discard"}, 148 {Opt_nodiscard, "nodiscard"}, 149 {Opt_noheap, "no_heap"}, 150 {Opt_heap, "heap"}, 151 {Opt_user_xattr, "user_xattr"}, 152 {Opt_nouser_xattr, "nouser_xattr"}, 153 {Opt_acl, "acl"}, 154 {Opt_noacl, "noacl"}, 155 {Opt_active_logs, "active_logs=%u"}, 156 {Opt_disable_ext_identify, "disable_ext_identify"}, 157 {Opt_inline_xattr, "inline_xattr"}, 158 {Opt_noinline_xattr, "noinline_xattr"}, 159 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 160 {Opt_inline_data, "inline_data"}, 161 {Opt_inline_dentry, "inline_dentry"}, 162 {Opt_noinline_dentry, "noinline_dentry"}, 163 {Opt_flush_merge, "flush_merge"}, 164 {Opt_noflush_merge, "noflush_merge"}, 165 {Opt_nobarrier, "nobarrier"}, 166 {Opt_fastboot, "fastboot"}, 167 {Opt_extent_cache, "extent_cache"}, 168 {Opt_noextent_cache, "noextent_cache"}, 169 {Opt_noinline_data, "noinline_data"}, 170 {Opt_data_flush, "data_flush"}, 171 {Opt_reserve_root, "reserve_root=%u"}, 172 {Opt_resgid, "resgid=%u"}, 173 {Opt_resuid, "resuid=%u"}, 174 {Opt_mode, "mode=%s"}, 175 {Opt_io_size_bits, "io_bits=%u"}, 176 {Opt_fault_injection, "fault_injection=%u"}, 177 {Opt_fault_type, "fault_type=%u"}, 178 {Opt_lazytime, "lazytime"}, 179 {Opt_nolazytime, "nolazytime"}, 180 {Opt_quota, "quota"}, 181 {Opt_noquota, "noquota"}, 182 {Opt_usrquota, "usrquota"}, 183 {Opt_grpquota, "grpquota"}, 184 {Opt_prjquota, "prjquota"}, 185 {Opt_usrjquota, "usrjquota=%s"}, 186 {Opt_grpjquota, "grpjquota=%s"}, 187 {Opt_prjjquota, "prjjquota=%s"}, 188 {Opt_offusrjquota, "usrjquota="}, 189 {Opt_offgrpjquota, "grpjquota="}, 190 {Opt_offprjjquota, "prjjquota="}, 191 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 192 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 193 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 194 {Opt_whint, "whint_mode=%s"}, 195 {Opt_alloc, "alloc_mode=%s"}, 196 {Opt_fsync, "fsync_mode=%s"}, 197 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 198 {Opt_checkpoint, "checkpoint=%s"}, 199 {Opt_err, NULL}, 200 }; 201 202 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 203 { 204 struct va_format vaf; 205 va_list args; 206 207 va_start(args, fmt); 208 vaf.fmt = fmt; 209 vaf.va = &args; 210 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 211 va_end(args); 212 } 213 214 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 215 { 216 block_t limit = (sbi->user_block_count << 1) / 1000; 217 218 /* limit is 0.2% */ 219 if (test_opt(sbi, RESERVE_ROOT) && 220 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 221 F2FS_OPTION(sbi).root_reserved_blocks = limit; 222 f2fs_msg(sbi->sb, KERN_INFO, 223 "Reduce reserved blocks for root = %u", 224 F2FS_OPTION(sbi).root_reserved_blocks); 225 } 226 if (!test_opt(sbi, RESERVE_ROOT) && 227 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 228 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 229 !gid_eq(F2FS_OPTION(sbi).s_resgid, 230 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 231 f2fs_msg(sbi->sb, KERN_INFO, 232 "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 233 from_kuid_munged(&init_user_ns, 234 F2FS_OPTION(sbi).s_resuid), 235 from_kgid_munged(&init_user_ns, 236 F2FS_OPTION(sbi).s_resgid)); 237 } 238 239 static void init_once(void *foo) 240 { 241 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 242 243 inode_init_once(&fi->vfs_inode); 244 } 245 246 #ifdef CONFIG_QUOTA 247 static const char * const quotatypes[] = INITQFNAMES; 248 #define QTYPE2NAME(t) (quotatypes[t]) 249 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 250 substring_t *args) 251 { 252 struct f2fs_sb_info *sbi = F2FS_SB(sb); 253 char *qname; 254 int ret = -EINVAL; 255 256 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 257 f2fs_msg(sb, KERN_ERR, 258 "Cannot change journaled " 259 "quota options when quota turned on"); 260 return -EINVAL; 261 } 262 if (f2fs_sb_has_quota_ino(sbi)) { 263 f2fs_msg(sb, KERN_INFO, 264 "QUOTA feature is enabled, so ignore qf_name"); 265 return 0; 266 } 267 268 qname = match_strdup(args); 269 if (!qname) { 270 f2fs_msg(sb, KERN_ERR, 271 "Not enough memory for storing quotafile name"); 272 return -ENOMEM; 273 } 274 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 275 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 276 ret = 0; 277 else 278 f2fs_msg(sb, KERN_ERR, 279 "%s quota file already specified", 280 QTYPE2NAME(qtype)); 281 goto errout; 282 } 283 if (strchr(qname, '/')) { 284 f2fs_msg(sb, KERN_ERR, 285 "quotafile must be on filesystem root"); 286 goto errout; 287 } 288 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 289 set_opt(sbi, QUOTA); 290 return 0; 291 errout: 292 kvfree(qname); 293 return ret; 294 } 295 296 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 297 { 298 struct f2fs_sb_info *sbi = F2FS_SB(sb); 299 300 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 301 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options" 302 " when quota turned on"); 303 return -EINVAL; 304 } 305 kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 306 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 307 return 0; 308 } 309 310 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 311 { 312 /* 313 * We do the test below only for project quotas. 'usrquota' and 314 * 'grpquota' mount options are allowed even without quota feature 315 * to support legacy quotas in quota files. 316 */ 317 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 318 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. " 319 "Cannot enable project quota enforcement."); 320 return -1; 321 } 322 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 323 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 324 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 325 if (test_opt(sbi, USRQUOTA) && 326 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 327 clear_opt(sbi, USRQUOTA); 328 329 if (test_opt(sbi, GRPQUOTA) && 330 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 331 clear_opt(sbi, GRPQUOTA); 332 333 if (test_opt(sbi, PRJQUOTA) && 334 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 335 clear_opt(sbi, PRJQUOTA); 336 337 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 338 test_opt(sbi, PRJQUOTA)) { 339 f2fs_msg(sbi->sb, KERN_ERR, "old and new quota " 340 "format mixing"); 341 return -1; 342 } 343 344 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 345 f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format " 346 "not specified"); 347 return -1; 348 } 349 } 350 351 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 352 f2fs_msg(sbi->sb, KERN_INFO, 353 "QUOTA feature is enabled, so ignore jquota_fmt"); 354 F2FS_OPTION(sbi).s_jquota_fmt = 0; 355 } 356 return 0; 357 } 358 #endif 359 360 static int parse_options(struct super_block *sb, char *options) 361 { 362 struct f2fs_sb_info *sbi = F2FS_SB(sb); 363 substring_t args[MAX_OPT_ARGS]; 364 char *p, *name; 365 int arg = 0; 366 kuid_t uid; 367 kgid_t gid; 368 #ifdef CONFIG_QUOTA 369 int ret; 370 #endif 371 372 if (!options) 373 return 0; 374 375 while ((p = strsep(&options, ",")) != NULL) { 376 int token; 377 if (!*p) 378 continue; 379 /* 380 * Initialize args struct so we know whether arg was 381 * found; some options take optional arguments. 382 */ 383 args[0].to = args[0].from = NULL; 384 token = match_token(p, f2fs_tokens, args); 385 386 switch (token) { 387 case Opt_gc_background: 388 name = match_strdup(&args[0]); 389 390 if (!name) 391 return -ENOMEM; 392 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 393 set_opt(sbi, BG_GC); 394 clear_opt(sbi, FORCE_FG_GC); 395 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 396 clear_opt(sbi, BG_GC); 397 clear_opt(sbi, FORCE_FG_GC); 398 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 399 set_opt(sbi, BG_GC); 400 set_opt(sbi, FORCE_FG_GC); 401 } else { 402 kvfree(name); 403 return -EINVAL; 404 } 405 kvfree(name); 406 break; 407 case Opt_disable_roll_forward: 408 set_opt(sbi, DISABLE_ROLL_FORWARD); 409 break; 410 case Opt_norecovery: 411 /* this option mounts f2fs with ro */ 412 set_opt(sbi, DISABLE_ROLL_FORWARD); 413 if (!f2fs_readonly(sb)) 414 return -EINVAL; 415 break; 416 case Opt_discard: 417 set_opt(sbi, DISCARD); 418 break; 419 case Opt_nodiscard: 420 if (f2fs_sb_has_blkzoned(sbi)) { 421 f2fs_msg(sb, KERN_WARNING, 422 "discard is required for zoned block devices"); 423 return -EINVAL; 424 } 425 clear_opt(sbi, DISCARD); 426 break; 427 case Opt_noheap: 428 set_opt(sbi, NOHEAP); 429 break; 430 case Opt_heap: 431 clear_opt(sbi, NOHEAP); 432 break; 433 #ifdef CONFIG_F2FS_FS_XATTR 434 case Opt_user_xattr: 435 set_opt(sbi, XATTR_USER); 436 break; 437 case Opt_nouser_xattr: 438 clear_opt(sbi, XATTR_USER); 439 break; 440 case Opt_inline_xattr: 441 set_opt(sbi, INLINE_XATTR); 442 break; 443 case Opt_noinline_xattr: 444 clear_opt(sbi, INLINE_XATTR); 445 break; 446 case Opt_inline_xattr_size: 447 if (args->from && match_int(args, &arg)) 448 return -EINVAL; 449 set_opt(sbi, INLINE_XATTR_SIZE); 450 F2FS_OPTION(sbi).inline_xattr_size = arg; 451 break; 452 #else 453 case Opt_user_xattr: 454 f2fs_msg(sb, KERN_INFO, 455 "user_xattr options not supported"); 456 break; 457 case Opt_nouser_xattr: 458 f2fs_msg(sb, KERN_INFO, 459 "nouser_xattr options not supported"); 460 break; 461 case Opt_inline_xattr: 462 f2fs_msg(sb, KERN_INFO, 463 "inline_xattr options not supported"); 464 break; 465 case Opt_noinline_xattr: 466 f2fs_msg(sb, KERN_INFO, 467 "noinline_xattr options not supported"); 468 break; 469 #endif 470 #ifdef CONFIG_F2FS_FS_POSIX_ACL 471 case Opt_acl: 472 set_opt(sbi, POSIX_ACL); 473 break; 474 case Opt_noacl: 475 clear_opt(sbi, POSIX_ACL); 476 break; 477 #else 478 case Opt_acl: 479 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 480 break; 481 case Opt_noacl: 482 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 483 break; 484 #endif 485 case Opt_active_logs: 486 if (args->from && match_int(args, &arg)) 487 return -EINVAL; 488 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 489 return -EINVAL; 490 F2FS_OPTION(sbi).active_logs = arg; 491 break; 492 case Opt_disable_ext_identify: 493 set_opt(sbi, DISABLE_EXT_IDENTIFY); 494 break; 495 case Opt_inline_data: 496 set_opt(sbi, INLINE_DATA); 497 break; 498 case Opt_inline_dentry: 499 set_opt(sbi, INLINE_DENTRY); 500 break; 501 case Opt_noinline_dentry: 502 clear_opt(sbi, INLINE_DENTRY); 503 break; 504 case Opt_flush_merge: 505 set_opt(sbi, FLUSH_MERGE); 506 break; 507 case Opt_noflush_merge: 508 clear_opt(sbi, FLUSH_MERGE); 509 break; 510 case Opt_nobarrier: 511 set_opt(sbi, NOBARRIER); 512 break; 513 case Opt_fastboot: 514 set_opt(sbi, FASTBOOT); 515 break; 516 case Opt_extent_cache: 517 set_opt(sbi, EXTENT_CACHE); 518 break; 519 case Opt_noextent_cache: 520 clear_opt(sbi, EXTENT_CACHE); 521 break; 522 case Opt_noinline_data: 523 clear_opt(sbi, INLINE_DATA); 524 break; 525 case Opt_data_flush: 526 set_opt(sbi, DATA_FLUSH); 527 break; 528 case Opt_reserve_root: 529 if (args->from && match_int(args, &arg)) 530 return -EINVAL; 531 if (test_opt(sbi, RESERVE_ROOT)) { 532 f2fs_msg(sb, KERN_INFO, 533 "Preserve previous reserve_root=%u", 534 F2FS_OPTION(sbi).root_reserved_blocks); 535 } else { 536 F2FS_OPTION(sbi).root_reserved_blocks = arg; 537 set_opt(sbi, RESERVE_ROOT); 538 } 539 break; 540 case Opt_resuid: 541 if (args->from && match_int(args, &arg)) 542 return -EINVAL; 543 uid = make_kuid(current_user_ns(), arg); 544 if (!uid_valid(uid)) { 545 f2fs_msg(sb, KERN_ERR, 546 "Invalid uid value %d", arg); 547 return -EINVAL; 548 } 549 F2FS_OPTION(sbi).s_resuid = uid; 550 break; 551 case Opt_resgid: 552 if (args->from && match_int(args, &arg)) 553 return -EINVAL; 554 gid = make_kgid(current_user_ns(), arg); 555 if (!gid_valid(gid)) { 556 f2fs_msg(sb, KERN_ERR, 557 "Invalid gid value %d", arg); 558 return -EINVAL; 559 } 560 F2FS_OPTION(sbi).s_resgid = gid; 561 break; 562 case Opt_mode: 563 name = match_strdup(&args[0]); 564 565 if (!name) 566 return -ENOMEM; 567 if (strlen(name) == 8 && 568 !strncmp(name, "adaptive", 8)) { 569 if (f2fs_sb_has_blkzoned(sbi)) { 570 f2fs_msg(sb, KERN_WARNING, 571 "adaptive mode is not allowed with " 572 "zoned block device feature"); 573 kvfree(name); 574 return -EINVAL; 575 } 576 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 577 } else if (strlen(name) == 3 && 578 !strncmp(name, "lfs", 3)) { 579 set_opt_mode(sbi, F2FS_MOUNT_LFS); 580 } else { 581 kvfree(name); 582 return -EINVAL; 583 } 584 kvfree(name); 585 break; 586 case Opt_io_size_bits: 587 if (args->from && match_int(args, &arg)) 588 return -EINVAL; 589 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) { 590 f2fs_msg(sb, KERN_WARNING, 591 "Not support %d, larger than %d", 592 1 << arg, BIO_MAX_PAGES); 593 return -EINVAL; 594 } 595 F2FS_OPTION(sbi).write_io_size_bits = arg; 596 break; 597 #ifdef CONFIG_F2FS_FAULT_INJECTION 598 case Opt_fault_injection: 599 if (args->from && match_int(args, &arg)) 600 return -EINVAL; 601 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 602 set_opt(sbi, FAULT_INJECTION); 603 break; 604 605 case Opt_fault_type: 606 if (args->from && match_int(args, &arg)) 607 return -EINVAL; 608 f2fs_build_fault_attr(sbi, 0, arg); 609 set_opt(sbi, FAULT_INJECTION); 610 break; 611 #else 612 case Opt_fault_injection: 613 f2fs_msg(sb, KERN_INFO, 614 "fault_injection options not supported"); 615 break; 616 617 case Opt_fault_type: 618 f2fs_msg(sb, KERN_INFO, 619 "fault_type options not supported"); 620 break; 621 #endif 622 case Opt_lazytime: 623 sb->s_flags |= SB_LAZYTIME; 624 break; 625 case Opt_nolazytime: 626 sb->s_flags &= ~SB_LAZYTIME; 627 break; 628 #ifdef CONFIG_QUOTA 629 case Opt_quota: 630 case Opt_usrquota: 631 set_opt(sbi, USRQUOTA); 632 break; 633 case Opt_grpquota: 634 set_opt(sbi, GRPQUOTA); 635 break; 636 case Opt_prjquota: 637 set_opt(sbi, PRJQUOTA); 638 break; 639 case Opt_usrjquota: 640 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 641 if (ret) 642 return ret; 643 break; 644 case Opt_grpjquota: 645 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 646 if (ret) 647 return ret; 648 break; 649 case Opt_prjjquota: 650 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 651 if (ret) 652 return ret; 653 break; 654 case Opt_offusrjquota: 655 ret = f2fs_clear_qf_name(sb, USRQUOTA); 656 if (ret) 657 return ret; 658 break; 659 case Opt_offgrpjquota: 660 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 661 if (ret) 662 return ret; 663 break; 664 case Opt_offprjjquota: 665 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 666 if (ret) 667 return ret; 668 break; 669 case Opt_jqfmt_vfsold: 670 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 671 break; 672 case Opt_jqfmt_vfsv0: 673 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 674 break; 675 case Opt_jqfmt_vfsv1: 676 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 677 break; 678 case Opt_noquota: 679 clear_opt(sbi, QUOTA); 680 clear_opt(sbi, USRQUOTA); 681 clear_opt(sbi, GRPQUOTA); 682 clear_opt(sbi, PRJQUOTA); 683 break; 684 #else 685 case Opt_quota: 686 case Opt_usrquota: 687 case Opt_grpquota: 688 case Opt_prjquota: 689 case Opt_usrjquota: 690 case Opt_grpjquota: 691 case Opt_prjjquota: 692 case Opt_offusrjquota: 693 case Opt_offgrpjquota: 694 case Opt_offprjjquota: 695 case Opt_jqfmt_vfsold: 696 case Opt_jqfmt_vfsv0: 697 case Opt_jqfmt_vfsv1: 698 case Opt_noquota: 699 f2fs_msg(sb, KERN_INFO, 700 "quota operations not supported"); 701 break; 702 #endif 703 case Opt_whint: 704 name = match_strdup(&args[0]); 705 if (!name) 706 return -ENOMEM; 707 if (strlen(name) == 10 && 708 !strncmp(name, "user-based", 10)) { 709 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 710 } else if (strlen(name) == 3 && 711 !strncmp(name, "off", 3)) { 712 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 713 } else if (strlen(name) == 8 && 714 !strncmp(name, "fs-based", 8)) { 715 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 716 } else { 717 kvfree(name); 718 return -EINVAL; 719 } 720 kvfree(name); 721 break; 722 case Opt_alloc: 723 name = match_strdup(&args[0]); 724 if (!name) 725 return -ENOMEM; 726 727 if (strlen(name) == 7 && 728 !strncmp(name, "default", 7)) { 729 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 730 } else if (strlen(name) == 5 && 731 !strncmp(name, "reuse", 5)) { 732 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 733 } else { 734 kvfree(name); 735 return -EINVAL; 736 } 737 kvfree(name); 738 break; 739 case Opt_fsync: 740 name = match_strdup(&args[0]); 741 if (!name) 742 return -ENOMEM; 743 if (strlen(name) == 5 && 744 !strncmp(name, "posix", 5)) { 745 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 746 } else if (strlen(name) == 6 && 747 !strncmp(name, "strict", 6)) { 748 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 749 } else if (strlen(name) == 9 && 750 !strncmp(name, "nobarrier", 9)) { 751 F2FS_OPTION(sbi).fsync_mode = 752 FSYNC_MODE_NOBARRIER; 753 } else { 754 kvfree(name); 755 return -EINVAL; 756 } 757 kvfree(name); 758 break; 759 case Opt_test_dummy_encryption: 760 #ifdef CONFIG_FS_ENCRYPTION 761 if (!f2fs_sb_has_encrypt(sbi)) { 762 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off"); 763 return -EINVAL; 764 } 765 766 F2FS_OPTION(sbi).test_dummy_encryption = true; 767 f2fs_msg(sb, KERN_INFO, 768 "Test dummy encryption mode enabled"); 769 #else 770 f2fs_msg(sb, KERN_INFO, 771 "Test dummy encryption mount option ignored"); 772 #endif 773 break; 774 case Opt_checkpoint: 775 name = match_strdup(&args[0]); 776 if (!name) 777 return -ENOMEM; 778 779 if (strlen(name) == 6 && 780 !strncmp(name, "enable", 6)) { 781 clear_opt(sbi, DISABLE_CHECKPOINT); 782 } else if (strlen(name) == 7 && 783 !strncmp(name, "disable", 7)) { 784 set_opt(sbi, DISABLE_CHECKPOINT); 785 } else { 786 kvfree(name); 787 return -EINVAL; 788 } 789 kvfree(name); 790 break; 791 default: 792 f2fs_msg(sb, KERN_ERR, 793 "Unrecognized mount option \"%s\" or missing value", 794 p); 795 return -EINVAL; 796 } 797 } 798 #ifdef CONFIG_QUOTA 799 if (f2fs_check_quota_options(sbi)) 800 return -EINVAL; 801 #else 802 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 803 f2fs_msg(sbi->sb, KERN_INFO, 804 "Filesystem with quota feature cannot be mounted RDWR " 805 "without CONFIG_QUOTA"); 806 return -EINVAL; 807 } 808 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 809 f2fs_msg(sb, KERN_ERR, 810 "Filesystem with project quota feature cannot be " 811 "mounted RDWR without CONFIG_QUOTA"); 812 return -EINVAL; 813 } 814 #endif 815 816 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { 817 f2fs_msg(sb, KERN_ERR, 818 "Should set mode=lfs with %uKB-sized IO", 819 F2FS_IO_SIZE_KB(sbi)); 820 return -EINVAL; 821 } 822 823 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 824 int min_size, max_size; 825 826 if (!f2fs_sb_has_extra_attr(sbi) || 827 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 828 f2fs_msg(sb, KERN_ERR, 829 "extra_attr or flexible_inline_xattr " 830 "feature is off"); 831 return -EINVAL; 832 } 833 if (!test_opt(sbi, INLINE_XATTR)) { 834 f2fs_msg(sb, KERN_ERR, 835 "inline_xattr_size option should be " 836 "set with inline_xattr option"); 837 return -EINVAL; 838 } 839 840 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 841 max_size = MAX_INLINE_XATTR_SIZE; 842 843 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 844 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 845 f2fs_msg(sb, KERN_ERR, 846 "inline xattr size is out of range: %d ~ %d", 847 min_size, max_size); 848 return -EINVAL; 849 } 850 } 851 852 if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) { 853 f2fs_msg(sb, KERN_ERR, 854 "LFS not compatible with checkpoint=disable\n"); 855 return -EINVAL; 856 } 857 858 /* Not pass down write hints if the number of active logs is lesser 859 * than NR_CURSEG_TYPE. 860 */ 861 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 862 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 863 return 0; 864 } 865 866 static struct inode *f2fs_alloc_inode(struct super_block *sb) 867 { 868 struct f2fs_inode_info *fi; 869 870 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 871 if (!fi) 872 return NULL; 873 874 init_once((void *) fi); 875 876 /* Initialize f2fs-specific inode info */ 877 atomic_set(&fi->dirty_pages, 0); 878 init_rwsem(&fi->i_sem); 879 INIT_LIST_HEAD(&fi->dirty_list); 880 INIT_LIST_HEAD(&fi->gdirty_list); 881 INIT_LIST_HEAD(&fi->inmem_ilist); 882 INIT_LIST_HEAD(&fi->inmem_pages); 883 mutex_init(&fi->inmem_lock); 884 init_rwsem(&fi->i_gc_rwsem[READ]); 885 init_rwsem(&fi->i_gc_rwsem[WRITE]); 886 init_rwsem(&fi->i_mmap_sem); 887 init_rwsem(&fi->i_xattr_sem); 888 889 /* Will be used by directory only */ 890 fi->i_dir_level = F2FS_SB(sb)->dir_level; 891 892 return &fi->vfs_inode; 893 } 894 895 static int f2fs_drop_inode(struct inode *inode) 896 { 897 int ret; 898 /* 899 * This is to avoid a deadlock condition like below. 900 * writeback_single_inode(inode) 901 * - f2fs_write_data_page 902 * - f2fs_gc -> iput -> evict 903 * - inode_wait_for_writeback(inode) 904 */ 905 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 906 if (!inode->i_nlink && !is_bad_inode(inode)) { 907 /* to avoid evict_inode call simultaneously */ 908 atomic_inc(&inode->i_count); 909 spin_unlock(&inode->i_lock); 910 911 /* some remained atomic pages should discarded */ 912 if (f2fs_is_atomic_file(inode)) 913 f2fs_drop_inmem_pages(inode); 914 915 /* should remain fi->extent_tree for writepage */ 916 f2fs_destroy_extent_node(inode); 917 918 sb_start_intwrite(inode->i_sb); 919 f2fs_i_size_write(inode, 0); 920 921 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 922 inode, NULL, 0, DATA); 923 truncate_inode_pages_final(inode->i_mapping); 924 925 if (F2FS_HAS_BLOCKS(inode)) 926 f2fs_truncate(inode); 927 928 sb_end_intwrite(inode->i_sb); 929 930 spin_lock(&inode->i_lock); 931 atomic_dec(&inode->i_count); 932 } 933 trace_f2fs_drop_inode(inode, 0); 934 return 0; 935 } 936 ret = generic_drop_inode(inode); 937 trace_f2fs_drop_inode(inode, ret); 938 return ret; 939 } 940 941 int f2fs_inode_dirtied(struct inode *inode, bool sync) 942 { 943 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 944 int ret = 0; 945 946 spin_lock(&sbi->inode_lock[DIRTY_META]); 947 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 948 ret = 1; 949 } else { 950 set_inode_flag(inode, FI_DIRTY_INODE); 951 stat_inc_dirty_inode(sbi, DIRTY_META); 952 } 953 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 954 list_add_tail(&F2FS_I(inode)->gdirty_list, 955 &sbi->inode_list[DIRTY_META]); 956 inc_page_count(sbi, F2FS_DIRTY_IMETA); 957 } 958 spin_unlock(&sbi->inode_lock[DIRTY_META]); 959 return ret; 960 } 961 962 void f2fs_inode_synced(struct inode *inode) 963 { 964 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 965 966 spin_lock(&sbi->inode_lock[DIRTY_META]); 967 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 968 spin_unlock(&sbi->inode_lock[DIRTY_META]); 969 return; 970 } 971 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 972 list_del_init(&F2FS_I(inode)->gdirty_list); 973 dec_page_count(sbi, F2FS_DIRTY_IMETA); 974 } 975 clear_inode_flag(inode, FI_DIRTY_INODE); 976 clear_inode_flag(inode, FI_AUTO_RECOVER); 977 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 978 spin_unlock(&sbi->inode_lock[DIRTY_META]); 979 } 980 981 /* 982 * f2fs_dirty_inode() is called from __mark_inode_dirty() 983 * 984 * We should call set_dirty_inode to write the dirty inode through write_inode. 985 */ 986 static void f2fs_dirty_inode(struct inode *inode, int flags) 987 { 988 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 989 990 if (inode->i_ino == F2FS_NODE_INO(sbi) || 991 inode->i_ino == F2FS_META_INO(sbi)) 992 return; 993 994 if (flags == I_DIRTY_TIME) 995 return; 996 997 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 998 clear_inode_flag(inode, FI_AUTO_RECOVER); 999 1000 f2fs_inode_dirtied(inode, false); 1001 } 1002 1003 static void f2fs_free_inode(struct inode *inode) 1004 { 1005 fscrypt_free_inode(inode); 1006 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1007 } 1008 1009 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1010 { 1011 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1012 percpu_counter_destroy(&sbi->total_valid_inode_count); 1013 } 1014 1015 static void destroy_device_list(struct f2fs_sb_info *sbi) 1016 { 1017 int i; 1018 1019 for (i = 0; i < sbi->s_ndevs; i++) { 1020 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1021 #ifdef CONFIG_BLK_DEV_ZONED 1022 kvfree(FDEV(i).blkz_seq); 1023 #endif 1024 } 1025 kvfree(sbi->devs); 1026 } 1027 1028 static void f2fs_put_super(struct super_block *sb) 1029 { 1030 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1031 int i; 1032 bool dropped; 1033 1034 f2fs_quota_off_umount(sb); 1035 1036 /* prevent remaining shrinker jobs */ 1037 mutex_lock(&sbi->umount_mutex); 1038 1039 /* 1040 * We don't need to do checkpoint when superblock is clean. 1041 * But, the previous checkpoint was not done by umount, it needs to do 1042 * clean checkpoint again. 1043 */ 1044 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1045 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1046 struct cp_control cpc = { 1047 .reason = CP_UMOUNT, 1048 }; 1049 f2fs_write_checkpoint(sbi, &cpc); 1050 } 1051 1052 /* be sure to wait for any on-going discard commands */ 1053 dropped = f2fs_issue_discard_timeout(sbi); 1054 1055 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1056 !sbi->discard_blks && !dropped) { 1057 struct cp_control cpc = { 1058 .reason = CP_UMOUNT | CP_TRIMMED, 1059 }; 1060 f2fs_write_checkpoint(sbi, &cpc); 1061 } 1062 1063 /* 1064 * normally superblock is clean, so we need to release this. 1065 * In addition, EIO will skip do checkpoint, we need this as well. 1066 */ 1067 f2fs_release_ino_entry(sbi, true); 1068 1069 f2fs_leave_shrinker(sbi); 1070 mutex_unlock(&sbi->umount_mutex); 1071 1072 /* our cp_error case, we can wait for any writeback page */ 1073 f2fs_flush_merged_writes(sbi); 1074 1075 f2fs_wait_on_all_pages_writeback(sbi); 1076 1077 f2fs_bug_on(sbi, sbi->fsync_node_num); 1078 1079 iput(sbi->node_inode); 1080 sbi->node_inode = NULL; 1081 1082 iput(sbi->meta_inode); 1083 sbi->meta_inode = NULL; 1084 1085 /* 1086 * iput() can update stat information, if f2fs_write_checkpoint() 1087 * above failed with error. 1088 */ 1089 f2fs_destroy_stats(sbi); 1090 1091 /* destroy f2fs internal modules */ 1092 f2fs_destroy_node_manager(sbi); 1093 f2fs_destroy_segment_manager(sbi); 1094 1095 kvfree(sbi->ckpt); 1096 1097 f2fs_unregister_sysfs(sbi); 1098 1099 sb->s_fs_info = NULL; 1100 if (sbi->s_chksum_driver) 1101 crypto_free_shash(sbi->s_chksum_driver); 1102 kvfree(sbi->raw_super); 1103 1104 destroy_device_list(sbi); 1105 mempool_destroy(sbi->write_io_dummy); 1106 #ifdef CONFIG_QUOTA 1107 for (i = 0; i < MAXQUOTAS; i++) 1108 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1109 #endif 1110 destroy_percpu_info(sbi); 1111 for (i = 0; i < NR_PAGE_TYPE; i++) 1112 kvfree(sbi->write_io[i]); 1113 kvfree(sbi); 1114 } 1115 1116 int f2fs_sync_fs(struct super_block *sb, int sync) 1117 { 1118 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1119 int err = 0; 1120 1121 if (unlikely(f2fs_cp_error(sbi))) 1122 return 0; 1123 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1124 return 0; 1125 1126 trace_f2fs_sync_fs(sb, sync); 1127 1128 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1129 return -EAGAIN; 1130 1131 if (sync) { 1132 struct cp_control cpc; 1133 1134 cpc.reason = __get_cp_reason(sbi); 1135 1136 mutex_lock(&sbi->gc_mutex); 1137 err = f2fs_write_checkpoint(sbi, &cpc); 1138 mutex_unlock(&sbi->gc_mutex); 1139 } 1140 f2fs_trace_ios(NULL, 1); 1141 1142 return err; 1143 } 1144 1145 static int f2fs_freeze(struct super_block *sb) 1146 { 1147 if (f2fs_readonly(sb)) 1148 return 0; 1149 1150 /* IO error happened before */ 1151 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1152 return -EIO; 1153 1154 /* must be clean, since sync_filesystem() was already called */ 1155 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1156 return -EINVAL; 1157 return 0; 1158 } 1159 1160 static int f2fs_unfreeze(struct super_block *sb) 1161 { 1162 return 0; 1163 } 1164 1165 #ifdef CONFIG_QUOTA 1166 static int f2fs_statfs_project(struct super_block *sb, 1167 kprojid_t projid, struct kstatfs *buf) 1168 { 1169 struct kqid qid; 1170 struct dquot *dquot; 1171 u64 limit; 1172 u64 curblock; 1173 1174 qid = make_kqid_projid(projid); 1175 dquot = dqget(sb, qid); 1176 if (IS_ERR(dquot)) 1177 return PTR_ERR(dquot); 1178 spin_lock(&dquot->dq_dqb_lock); 1179 1180 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 1181 dquot->dq_dqb.dqb_bsoftlimit : 1182 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 1183 if (limit && buf->f_blocks > limit) { 1184 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 1185 buf->f_blocks = limit; 1186 buf->f_bfree = buf->f_bavail = 1187 (buf->f_blocks > curblock) ? 1188 (buf->f_blocks - curblock) : 0; 1189 } 1190 1191 limit = dquot->dq_dqb.dqb_isoftlimit ? 1192 dquot->dq_dqb.dqb_isoftlimit : 1193 dquot->dq_dqb.dqb_ihardlimit; 1194 if (limit && buf->f_files > limit) { 1195 buf->f_files = limit; 1196 buf->f_ffree = 1197 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1198 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1199 } 1200 1201 spin_unlock(&dquot->dq_dqb_lock); 1202 dqput(dquot); 1203 return 0; 1204 } 1205 #endif 1206 1207 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1208 { 1209 struct super_block *sb = dentry->d_sb; 1210 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1211 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1212 block_t total_count, user_block_count, start_count; 1213 u64 avail_node_count; 1214 1215 total_count = le64_to_cpu(sbi->raw_super->block_count); 1216 user_block_count = sbi->user_block_count; 1217 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1218 buf->f_type = F2FS_SUPER_MAGIC; 1219 buf->f_bsize = sbi->blocksize; 1220 1221 buf->f_blocks = total_count - start_count; 1222 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1223 sbi->current_reserved_blocks; 1224 1225 spin_lock(&sbi->stat_lock); 1226 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1227 buf->f_bfree = 0; 1228 else 1229 buf->f_bfree -= sbi->unusable_block_count; 1230 spin_unlock(&sbi->stat_lock); 1231 1232 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1233 buf->f_bavail = buf->f_bfree - 1234 F2FS_OPTION(sbi).root_reserved_blocks; 1235 else 1236 buf->f_bavail = 0; 1237 1238 avail_node_count = sbi->total_node_count - sbi->nquota_files - 1239 F2FS_RESERVED_NODE_NUM; 1240 1241 if (avail_node_count > user_block_count) { 1242 buf->f_files = user_block_count; 1243 buf->f_ffree = buf->f_bavail; 1244 } else { 1245 buf->f_files = avail_node_count; 1246 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1247 buf->f_bavail); 1248 } 1249 1250 buf->f_namelen = F2FS_NAME_LEN; 1251 buf->f_fsid.val[0] = (u32)id; 1252 buf->f_fsid.val[1] = (u32)(id >> 32); 1253 1254 #ifdef CONFIG_QUOTA 1255 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1256 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1257 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1258 } 1259 #endif 1260 return 0; 1261 } 1262 1263 static inline void f2fs_show_quota_options(struct seq_file *seq, 1264 struct super_block *sb) 1265 { 1266 #ifdef CONFIG_QUOTA 1267 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1268 1269 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1270 char *fmtname = ""; 1271 1272 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1273 case QFMT_VFS_OLD: 1274 fmtname = "vfsold"; 1275 break; 1276 case QFMT_VFS_V0: 1277 fmtname = "vfsv0"; 1278 break; 1279 case QFMT_VFS_V1: 1280 fmtname = "vfsv1"; 1281 break; 1282 } 1283 seq_printf(seq, ",jqfmt=%s", fmtname); 1284 } 1285 1286 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1287 seq_show_option(seq, "usrjquota", 1288 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1289 1290 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1291 seq_show_option(seq, "grpjquota", 1292 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1293 1294 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1295 seq_show_option(seq, "prjjquota", 1296 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1297 #endif 1298 } 1299 1300 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1301 { 1302 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1303 1304 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 1305 if (test_opt(sbi, FORCE_FG_GC)) 1306 seq_printf(seq, ",background_gc=%s", "sync"); 1307 else 1308 seq_printf(seq, ",background_gc=%s", "on"); 1309 } else { 1310 seq_printf(seq, ",background_gc=%s", "off"); 1311 } 1312 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1313 seq_puts(seq, ",disable_roll_forward"); 1314 if (test_opt(sbi, DISCARD)) 1315 seq_puts(seq, ",discard"); 1316 if (test_opt(sbi, NOHEAP)) 1317 seq_puts(seq, ",no_heap"); 1318 else 1319 seq_puts(seq, ",heap"); 1320 #ifdef CONFIG_F2FS_FS_XATTR 1321 if (test_opt(sbi, XATTR_USER)) 1322 seq_puts(seq, ",user_xattr"); 1323 else 1324 seq_puts(seq, ",nouser_xattr"); 1325 if (test_opt(sbi, INLINE_XATTR)) 1326 seq_puts(seq, ",inline_xattr"); 1327 else 1328 seq_puts(seq, ",noinline_xattr"); 1329 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1330 seq_printf(seq, ",inline_xattr_size=%u", 1331 F2FS_OPTION(sbi).inline_xattr_size); 1332 #endif 1333 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1334 if (test_opt(sbi, POSIX_ACL)) 1335 seq_puts(seq, ",acl"); 1336 else 1337 seq_puts(seq, ",noacl"); 1338 #endif 1339 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1340 seq_puts(seq, ",disable_ext_identify"); 1341 if (test_opt(sbi, INLINE_DATA)) 1342 seq_puts(seq, ",inline_data"); 1343 else 1344 seq_puts(seq, ",noinline_data"); 1345 if (test_opt(sbi, INLINE_DENTRY)) 1346 seq_puts(seq, ",inline_dentry"); 1347 else 1348 seq_puts(seq, ",noinline_dentry"); 1349 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1350 seq_puts(seq, ",flush_merge"); 1351 if (test_opt(sbi, NOBARRIER)) 1352 seq_puts(seq, ",nobarrier"); 1353 if (test_opt(sbi, FASTBOOT)) 1354 seq_puts(seq, ",fastboot"); 1355 if (test_opt(sbi, EXTENT_CACHE)) 1356 seq_puts(seq, ",extent_cache"); 1357 else 1358 seq_puts(seq, ",noextent_cache"); 1359 if (test_opt(sbi, DATA_FLUSH)) 1360 seq_puts(seq, ",data_flush"); 1361 1362 seq_puts(seq, ",mode="); 1363 if (test_opt(sbi, ADAPTIVE)) 1364 seq_puts(seq, "adaptive"); 1365 else if (test_opt(sbi, LFS)) 1366 seq_puts(seq, "lfs"); 1367 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1368 if (test_opt(sbi, RESERVE_ROOT)) 1369 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1370 F2FS_OPTION(sbi).root_reserved_blocks, 1371 from_kuid_munged(&init_user_ns, 1372 F2FS_OPTION(sbi).s_resuid), 1373 from_kgid_munged(&init_user_ns, 1374 F2FS_OPTION(sbi).s_resgid)); 1375 if (F2FS_IO_SIZE_BITS(sbi)) 1376 seq_printf(seq, ",io_bits=%u", 1377 F2FS_OPTION(sbi).write_io_size_bits); 1378 #ifdef CONFIG_F2FS_FAULT_INJECTION 1379 if (test_opt(sbi, FAULT_INJECTION)) { 1380 seq_printf(seq, ",fault_injection=%u", 1381 F2FS_OPTION(sbi).fault_info.inject_rate); 1382 seq_printf(seq, ",fault_type=%u", 1383 F2FS_OPTION(sbi).fault_info.inject_type); 1384 } 1385 #endif 1386 #ifdef CONFIG_QUOTA 1387 if (test_opt(sbi, QUOTA)) 1388 seq_puts(seq, ",quota"); 1389 if (test_opt(sbi, USRQUOTA)) 1390 seq_puts(seq, ",usrquota"); 1391 if (test_opt(sbi, GRPQUOTA)) 1392 seq_puts(seq, ",grpquota"); 1393 if (test_opt(sbi, PRJQUOTA)) 1394 seq_puts(seq, ",prjquota"); 1395 #endif 1396 f2fs_show_quota_options(seq, sbi->sb); 1397 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1398 seq_printf(seq, ",whint_mode=%s", "user-based"); 1399 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1400 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1401 #ifdef CONFIG_FS_ENCRYPTION 1402 if (F2FS_OPTION(sbi).test_dummy_encryption) 1403 seq_puts(seq, ",test_dummy_encryption"); 1404 #endif 1405 1406 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1407 seq_printf(seq, ",alloc_mode=%s", "default"); 1408 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1409 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1410 1411 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1412 seq_puts(seq, ",checkpoint=disable"); 1413 1414 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1415 seq_printf(seq, ",fsync_mode=%s", "posix"); 1416 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1417 seq_printf(seq, ",fsync_mode=%s", "strict"); 1418 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1419 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1420 return 0; 1421 } 1422 1423 static void default_options(struct f2fs_sb_info *sbi) 1424 { 1425 /* init some FS parameters */ 1426 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE; 1427 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1428 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1429 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1430 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1431 F2FS_OPTION(sbi).test_dummy_encryption = false; 1432 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1433 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1434 1435 set_opt(sbi, BG_GC); 1436 set_opt(sbi, INLINE_XATTR); 1437 set_opt(sbi, INLINE_DATA); 1438 set_opt(sbi, INLINE_DENTRY); 1439 set_opt(sbi, EXTENT_CACHE); 1440 set_opt(sbi, NOHEAP); 1441 clear_opt(sbi, DISABLE_CHECKPOINT); 1442 sbi->sb->s_flags |= SB_LAZYTIME; 1443 set_opt(sbi, FLUSH_MERGE); 1444 set_opt(sbi, DISCARD); 1445 if (f2fs_sb_has_blkzoned(sbi)) 1446 set_opt_mode(sbi, F2FS_MOUNT_LFS); 1447 else 1448 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 1449 1450 #ifdef CONFIG_F2FS_FS_XATTR 1451 set_opt(sbi, XATTR_USER); 1452 #endif 1453 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1454 set_opt(sbi, POSIX_ACL); 1455 #endif 1456 1457 f2fs_build_fault_attr(sbi, 0, 0); 1458 } 1459 1460 #ifdef CONFIG_QUOTA 1461 static int f2fs_enable_quotas(struct super_block *sb); 1462 #endif 1463 1464 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 1465 { 1466 unsigned int s_flags = sbi->sb->s_flags; 1467 struct cp_control cpc; 1468 int err = 0; 1469 int ret; 1470 1471 if (s_flags & SB_RDONLY) { 1472 f2fs_msg(sbi->sb, KERN_ERR, 1473 "checkpoint=disable on readonly fs"); 1474 return -EINVAL; 1475 } 1476 sbi->sb->s_flags |= SB_ACTIVE; 1477 1478 f2fs_update_time(sbi, DISABLE_TIME); 1479 1480 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 1481 mutex_lock(&sbi->gc_mutex); 1482 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1483 if (err == -ENODATA) { 1484 err = 0; 1485 break; 1486 } 1487 if (err && err != -EAGAIN) 1488 break; 1489 } 1490 1491 ret = sync_filesystem(sbi->sb); 1492 if (ret || err) { 1493 err = ret ? ret: err; 1494 goto restore_flag; 1495 } 1496 1497 if (f2fs_disable_cp_again(sbi)) { 1498 err = -EAGAIN; 1499 goto restore_flag; 1500 } 1501 1502 mutex_lock(&sbi->gc_mutex); 1503 cpc.reason = CP_PAUSE; 1504 set_sbi_flag(sbi, SBI_CP_DISABLED); 1505 err = f2fs_write_checkpoint(sbi, &cpc); 1506 if (err) 1507 goto out_unlock; 1508 1509 spin_lock(&sbi->stat_lock); 1510 sbi->unusable_block_count = 0; 1511 spin_unlock(&sbi->stat_lock); 1512 1513 out_unlock: 1514 mutex_unlock(&sbi->gc_mutex); 1515 restore_flag: 1516 sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1517 return err; 1518 } 1519 1520 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 1521 { 1522 mutex_lock(&sbi->gc_mutex); 1523 f2fs_dirty_to_prefree(sbi); 1524 1525 clear_sbi_flag(sbi, SBI_CP_DISABLED); 1526 set_sbi_flag(sbi, SBI_IS_DIRTY); 1527 mutex_unlock(&sbi->gc_mutex); 1528 1529 f2fs_sync_fs(sbi->sb, 1); 1530 } 1531 1532 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1533 { 1534 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1535 struct f2fs_mount_info org_mount_opt; 1536 unsigned long old_sb_flags; 1537 int err; 1538 bool need_restart_gc = false; 1539 bool need_stop_gc = false; 1540 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1541 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); 1542 bool checkpoint_changed; 1543 #ifdef CONFIG_QUOTA 1544 int i, j; 1545 #endif 1546 1547 /* 1548 * Save the old mount options in case we 1549 * need to restore them. 1550 */ 1551 org_mount_opt = sbi->mount_opt; 1552 old_sb_flags = sb->s_flags; 1553 1554 #ifdef CONFIG_QUOTA 1555 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1556 for (i = 0; i < MAXQUOTAS; i++) { 1557 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1558 org_mount_opt.s_qf_names[i] = 1559 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1560 GFP_KERNEL); 1561 if (!org_mount_opt.s_qf_names[i]) { 1562 for (j = 0; j < i; j++) 1563 kvfree(org_mount_opt.s_qf_names[j]); 1564 return -ENOMEM; 1565 } 1566 } else { 1567 org_mount_opt.s_qf_names[i] = NULL; 1568 } 1569 } 1570 #endif 1571 1572 /* recover superblocks we couldn't write due to previous RO mount */ 1573 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1574 err = f2fs_commit_super(sbi, false); 1575 f2fs_msg(sb, KERN_INFO, 1576 "Try to recover all the superblocks, ret: %d", err); 1577 if (!err) 1578 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1579 } 1580 1581 default_options(sbi); 1582 1583 /* parse mount options */ 1584 err = parse_options(sb, data); 1585 if (err) 1586 goto restore_opts; 1587 checkpoint_changed = 1588 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); 1589 1590 /* 1591 * Previous and new state of filesystem is RO, 1592 * so skip checking GC and FLUSH_MERGE conditions. 1593 */ 1594 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1595 goto skip; 1596 1597 #ifdef CONFIG_QUOTA 1598 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1599 err = dquot_suspend(sb, -1); 1600 if (err < 0) 1601 goto restore_opts; 1602 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 1603 /* dquot_resume needs RW */ 1604 sb->s_flags &= ~SB_RDONLY; 1605 if (sb_any_quota_suspended(sb)) { 1606 dquot_resume(sb, -1); 1607 } else if (f2fs_sb_has_quota_ino(sbi)) { 1608 err = f2fs_enable_quotas(sb); 1609 if (err) 1610 goto restore_opts; 1611 } 1612 } 1613 #endif 1614 /* disallow enable/disable extent_cache dynamically */ 1615 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1616 err = -EINVAL; 1617 f2fs_msg(sbi->sb, KERN_WARNING, 1618 "switch extent_cache option is not allowed"); 1619 goto restore_opts; 1620 } 1621 1622 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 1623 err = -EINVAL; 1624 f2fs_msg(sbi->sb, KERN_WARNING, 1625 "disabling checkpoint not compatible with read-only"); 1626 goto restore_opts; 1627 } 1628 1629 /* 1630 * We stop the GC thread if FS is mounted as RO 1631 * or if background_gc = off is passed in mount 1632 * option. Also sync the filesystem. 1633 */ 1634 if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) { 1635 if (sbi->gc_thread) { 1636 f2fs_stop_gc_thread(sbi); 1637 need_restart_gc = true; 1638 } 1639 } else if (!sbi->gc_thread) { 1640 err = f2fs_start_gc_thread(sbi); 1641 if (err) 1642 goto restore_opts; 1643 need_stop_gc = true; 1644 } 1645 1646 if (*flags & SB_RDONLY || 1647 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 1648 writeback_inodes_sb(sb, WB_REASON_SYNC); 1649 sync_inodes_sb(sb); 1650 1651 set_sbi_flag(sbi, SBI_IS_DIRTY); 1652 set_sbi_flag(sbi, SBI_IS_CLOSE); 1653 f2fs_sync_fs(sb, 1); 1654 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1655 } 1656 1657 if (checkpoint_changed) { 1658 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 1659 err = f2fs_disable_checkpoint(sbi); 1660 if (err) 1661 goto restore_gc; 1662 } else { 1663 f2fs_enable_checkpoint(sbi); 1664 } 1665 } 1666 1667 /* 1668 * We stop issue flush thread if FS is mounted as RO 1669 * or if flush_merge is not passed in mount option. 1670 */ 1671 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1672 clear_opt(sbi, FLUSH_MERGE); 1673 f2fs_destroy_flush_cmd_control(sbi, false); 1674 } else { 1675 err = f2fs_create_flush_cmd_control(sbi); 1676 if (err) 1677 goto restore_gc; 1678 } 1679 skip: 1680 #ifdef CONFIG_QUOTA 1681 /* Release old quota file names */ 1682 for (i = 0; i < MAXQUOTAS; i++) 1683 kvfree(org_mount_opt.s_qf_names[i]); 1684 #endif 1685 /* Update the POSIXACL Flag */ 1686 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 1687 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 1688 1689 limit_reserve_root(sbi); 1690 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 1691 return 0; 1692 restore_gc: 1693 if (need_restart_gc) { 1694 if (f2fs_start_gc_thread(sbi)) 1695 f2fs_msg(sbi->sb, KERN_WARNING, 1696 "background gc thread has stopped"); 1697 } else if (need_stop_gc) { 1698 f2fs_stop_gc_thread(sbi); 1699 } 1700 restore_opts: 1701 #ifdef CONFIG_QUOTA 1702 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 1703 for (i = 0; i < MAXQUOTAS; i++) { 1704 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1705 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 1706 } 1707 #endif 1708 sbi->mount_opt = org_mount_opt; 1709 sb->s_flags = old_sb_flags; 1710 return err; 1711 } 1712 1713 #ifdef CONFIG_QUOTA 1714 /* Read data from quotafile */ 1715 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 1716 size_t len, loff_t off) 1717 { 1718 struct inode *inode = sb_dqopt(sb)->files[type]; 1719 struct address_space *mapping = inode->i_mapping; 1720 block_t blkidx = F2FS_BYTES_TO_BLK(off); 1721 int offset = off & (sb->s_blocksize - 1); 1722 int tocopy; 1723 size_t toread; 1724 loff_t i_size = i_size_read(inode); 1725 struct page *page; 1726 char *kaddr; 1727 1728 if (off > i_size) 1729 return 0; 1730 1731 if (off + len > i_size) 1732 len = i_size - off; 1733 toread = len; 1734 while (toread > 0) { 1735 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 1736 repeat: 1737 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 1738 if (IS_ERR(page)) { 1739 if (PTR_ERR(page) == -ENOMEM) { 1740 congestion_wait(BLK_RW_ASYNC, HZ/50); 1741 goto repeat; 1742 } 1743 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1744 return PTR_ERR(page); 1745 } 1746 1747 lock_page(page); 1748 1749 if (unlikely(page->mapping != mapping)) { 1750 f2fs_put_page(page, 1); 1751 goto repeat; 1752 } 1753 if (unlikely(!PageUptodate(page))) { 1754 f2fs_put_page(page, 1); 1755 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1756 return -EIO; 1757 } 1758 1759 kaddr = kmap_atomic(page); 1760 memcpy(data, kaddr + offset, tocopy); 1761 kunmap_atomic(kaddr); 1762 f2fs_put_page(page, 1); 1763 1764 offset = 0; 1765 toread -= tocopy; 1766 data += tocopy; 1767 blkidx++; 1768 } 1769 return len; 1770 } 1771 1772 /* Write to quotafile */ 1773 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 1774 const char *data, size_t len, loff_t off) 1775 { 1776 struct inode *inode = sb_dqopt(sb)->files[type]; 1777 struct address_space *mapping = inode->i_mapping; 1778 const struct address_space_operations *a_ops = mapping->a_ops; 1779 int offset = off & (sb->s_blocksize - 1); 1780 size_t towrite = len; 1781 struct page *page; 1782 char *kaddr; 1783 int err = 0; 1784 int tocopy; 1785 1786 while (towrite > 0) { 1787 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 1788 towrite); 1789 retry: 1790 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 1791 &page, NULL); 1792 if (unlikely(err)) { 1793 if (err == -ENOMEM) { 1794 congestion_wait(BLK_RW_ASYNC, HZ/50); 1795 goto retry; 1796 } 1797 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1798 break; 1799 } 1800 1801 kaddr = kmap_atomic(page); 1802 memcpy(kaddr + offset, data, tocopy); 1803 kunmap_atomic(kaddr); 1804 flush_dcache_page(page); 1805 1806 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 1807 page, NULL); 1808 offset = 0; 1809 towrite -= tocopy; 1810 off += tocopy; 1811 data += tocopy; 1812 cond_resched(); 1813 } 1814 1815 if (len == towrite) 1816 return err; 1817 inode->i_mtime = inode->i_ctime = current_time(inode); 1818 f2fs_mark_inode_dirty_sync(inode, false); 1819 return len - towrite; 1820 } 1821 1822 static struct dquot **f2fs_get_dquots(struct inode *inode) 1823 { 1824 return F2FS_I(inode)->i_dquot; 1825 } 1826 1827 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 1828 { 1829 return &F2FS_I(inode)->i_reserved_quota; 1830 } 1831 1832 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 1833 { 1834 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 1835 f2fs_msg(sbi->sb, KERN_ERR, 1836 "quota sysfile may be corrupted, skip loading it"); 1837 return 0; 1838 } 1839 1840 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 1841 F2FS_OPTION(sbi).s_jquota_fmt, type); 1842 } 1843 1844 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 1845 { 1846 int enabled = 0; 1847 int i, err; 1848 1849 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 1850 err = f2fs_enable_quotas(sbi->sb); 1851 if (err) { 1852 f2fs_msg(sbi->sb, KERN_ERR, 1853 "Cannot turn on quota_ino: %d", err); 1854 return 0; 1855 } 1856 return 1; 1857 } 1858 1859 for (i = 0; i < MAXQUOTAS; i++) { 1860 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1861 err = f2fs_quota_on_mount(sbi, i); 1862 if (!err) { 1863 enabled = 1; 1864 continue; 1865 } 1866 f2fs_msg(sbi->sb, KERN_ERR, 1867 "Cannot turn on quotas: %d on %d", err, i); 1868 } 1869 } 1870 return enabled; 1871 } 1872 1873 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 1874 unsigned int flags) 1875 { 1876 struct inode *qf_inode; 1877 unsigned long qf_inum; 1878 int err; 1879 1880 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 1881 1882 qf_inum = f2fs_qf_ino(sb, type); 1883 if (!qf_inum) 1884 return -EPERM; 1885 1886 qf_inode = f2fs_iget(sb, qf_inum); 1887 if (IS_ERR(qf_inode)) { 1888 f2fs_msg(sb, KERN_ERR, 1889 "Bad quota inode %u:%lu", type, qf_inum); 1890 return PTR_ERR(qf_inode); 1891 } 1892 1893 /* Don't account quota for quota files to avoid recursion */ 1894 qf_inode->i_flags |= S_NOQUOTA; 1895 err = dquot_enable(qf_inode, type, format_id, flags); 1896 iput(qf_inode); 1897 return err; 1898 } 1899 1900 static int f2fs_enable_quotas(struct super_block *sb) 1901 { 1902 int type, err = 0; 1903 unsigned long qf_inum; 1904 bool quota_mopt[MAXQUOTAS] = { 1905 test_opt(F2FS_SB(sb), USRQUOTA), 1906 test_opt(F2FS_SB(sb), GRPQUOTA), 1907 test_opt(F2FS_SB(sb), PRJQUOTA), 1908 }; 1909 1910 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 1911 f2fs_msg(sb, KERN_ERR, 1912 "quota file may be corrupted, skip loading it"); 1913 return 0; 1914 } 1915 1916 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 1917 1918 for (type = 0; type < MAXQUOTAS; type++) { 1919 qf_inum = f2fs_qf_ino(sb, type); 1920 if (qf_inum) { 1921 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 1922 DQUOT_USAGE_ENABLED | 1923 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 1924 if (err) { 1925 f2fs_msg(sb, KERN_ERR, 1926 "Failed to enable quota tracking " 1927 "(type=%d, err=%d). Please run " 1928 "fsck to fix.", type, err); 1929 for (type--; type >= 0; type--) 1930 dquot_quota_off(sb, type); 1931 set_sbi_flag(F2FS_SB(sb), 1932 SBI_QUOTA_NEED_REPAIR); 1933 return err; 1934 } 1935 } 1936 } 1937 return 0; 1938 } 1939 1940 int f2fs_quota_sync(struct super_block *sb, int type) 1941 { 1942 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1943 struct quota_info *dqopt = sb_dqopt(sb); 1944 int cnt; 1945 int ret; 1946 1947 ret = dquot_writeback_dquots(sb, type); 1948 if (ret) 1949 goto out; 1950 1951 /* 1952 * Now when everything is written we can discard the pagecache so 1953 * that userspace sees the changes. 1954 */ 1955 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 1956 struct address_space *mapping; 1957 1958 if (type != -1 && cnt != type) 1959 continue; 1960 if (!sb_has_quota_active(sb, cnt)) 1961 continue; 1962 1963 mapping = dqopt->files[cnt]->i_mapping; 1964 1965 ret = filemap_fdatawrite(mapping); 1966 if (ret) 1967 goto out; 1968 1969 /* if we are using journalled quota */ 1970 if (is_journalled_quota(sbi)) 1971 continue; 1972 1973 ret = filemap_fdatawait(mapping); 1974 if (ret) 1975 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1976 1977 inode_lock(dqopt->files[cnt]); 1978 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 1979 inode_unlock(dqopt->files[cnt]); 1980 } 1981 out: 1982 if (ret) 1983 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1984 return ret; 1985 } 1986 1987 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 1988 const struct path *path) 1989 { 1990 struct inode *inode; 1991 int err; 1992 1993 err = f2fs_quota_sync(sb, type); 1994 if (err) 1995 return err; 1996 1997 err = dquot_quota_on(sb, type, format_id, path); 1998 if (err) 1999 return err; 2000 2001 inode = d_inode(path->dentry); 2002 2003 inode_lock(inode); 2004 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2005 f2fs_set_inode_flags(inode); 2006 inode_unlock(inode); 2007 f2fs_mark_inode_dirty_sync(inode, false); 2008 2009 return 0; 2010 } 2011 2012 static int f2fs_quota_off(struct super_block *sb, int type) 2013 { 2014 struct inode *inode = sb_dqopt(sb)->files[type]; 2015 int err; 2016 2017 if (!inode || !igrab(inode)) 2018 return dquot_quota_off(sb, type); 2019 2020 err = f2fs_quota_sync(sb, type); 2021 if (err) 2022 goto out_put; 2023 2024 err = dquot_quota_off(sb, type); 2025 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2026 goto out_put; 2027 2028 inode_lock(inode); 2029 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2030 f2fs_set_inode_flags(inode); 2031 inode_unlock(inode); 2032 f2fs_mark_inode_dirty_sync(inode, false); 2033 out_put: 2034 iput(inode); 2035 return err; 2036 } 2037 2038 void f2fs_quota_off_umount(struct super_block *sb) 2039 { 2040 int type; 2041 int err; 2042 2043 for (type = 0; type < MAXQUOTAS; type++) { 2044 err = f2fs_quota_off(sb, type); 2045 if (err) { 2046 int ret = dquot_quota_off(sb, type); 2047 2048 f2fs_msg(sb, KERN_ERR, 2049 "Fail to turn off disk quota " 2050 "(type: %d, err: %d, ret:%d), Please " 2051 "run fsck to fix it.", type, err, ret); 2052 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2053 } 2054 } 2055 /* 2056 * In case of checkpoint=disable, we must flush quota blocks. 2057 * This can cause NULL exception for node_inode in end_io, since 2058 * put_super already dropped it. 2059 */ 2060 sync_filesystem(sb); 2061 } 2062 2063 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2064 { 2065 struct quota_info *dqopt = sb_dqopt(sb); 2066 int type; 2067 2068 for (type = 0; type < MAXQUOTAS; type++) { 2069 if (!dqopt->files[type]) 2070 continue; 2071 f2fs_inode_synced(dqopt->files[type]); 2072 } 2073 } 2074 2075 static int f2fs_dquot_commit(struct dquot *dquot) 2076 { 2077 int ret; 2078 2079 ret = dquot_commit(dquot); 2080 if (ret < 0) 2081 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR); 2082 return ret; 2083 } 2084 2085 static int f2fs_dquot_acquire(struct dquot *dquot) 2086 { 2087 int ret; 2088 2089 ret = dquot_acquire(dquot); 2090 if (ret < 0) 2091 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR); 2092 2093 return ret; 2094 } 2095 2096 static int f2fs_dquot_release(struct dquot *dquot) 2097 { 2098 int ret; 2099 2100 ret = dquot_release(dquot); 2101 if (ret < 0) 2102 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR); 2103 return ret; 2104 } 2105 2106 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2107 { 2108 struct super_block *sb = dquot->dq_sb; 2109 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2110 int ret; 2111 2112 ret = dquot_mark_dquot_dirty(dquot); 2113 2114 /* if we are using journalled quota */ 2115 if (is_journalled_quota(sbi)) 2116 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2117 2118 return ret; 2119 } 2120 2121 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2122 { 2123 int ret; 2124 2125 ret = dquot_commit_info(sb, type); 2126 if (ret < 0) 2127 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2128 return ret; 2129 } 2130 2131 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2132 { 2133 *projid = F2FS_I(inode)->i_projid; 2134 return 0; 2135 } 2136 2137 static const struct dquot_operations f2fs_quota_operations = { 2138 .get_reserved_space = f2fs_get_reserved_space, 2139 .write_dquot = f2fs_dquot_commit, 2140 .acquire_dquot = f2fs_dquot_acquire, 2141 .release_dquot = f2fs_dquot_release, 2142 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2143 .write_info = f2fs_dquot_commit_info, 2144 .alloc_dquot = dquot_alloc, 2145 .destroy_dquot = dquot_destroy, 2146 .get_projid = f2fs_get_projid, 2147 .get_next_id = dquot_get_next_id, 2148 }; 2149 2150 static const struct quotactl_ops f2fs_quotactl_ops = { 2151 .quota_on = f2fs_quota_on, 2152 .quota_off = f2fs_quota_off, 2153 .quota_sync = f2fs_quota_sync, 2154 .get_state = dquot_get_state, 2155 .set_info = dquot_set_dqinfo, 2156 .get_dqblk = dquot_get_dqblk, 2157 .set_dqblk = dquot_set_dqblk, 2158 .get_nextdqblk = dquot_get_next_dqblk, 2159 }; 2160 #else 2161 int f2fs_quota_sync(struct super_block *sb, int type) 2162 { 2163 return 0; 2164 } 2165 2166 void f2fs_quota_off_umount(struct super_block *sb) 2167 { 2168 } 2169 #endif 2170 2171 static const struct super_operations f2fs_sops = { 2172 .alloc_inode = f2fs_alloc_inode, 2173 .free_inode = f2fs_free_inode, 2174 .drop_inode = f2fs_drop_inode, 2175 .write_inode = f2fs_write_inode, 2176 .dirty_inode = f2fs_dirty_inode, 2177 .show_options = f2fs_show_options, 2178 #ifdef CONFIG_QUOTA 2179 .quota_read = f2fs_quota_read, 2180 .quota_write = f2fs_quota_write, 2181 .get_dquots = f2fs_get_dquots, 2182 #endif 2183 .evict_inode = f2fs_evict_inode, 2184 .put_super = f2fs_put_super, 2185 .sync_fs = f2fs_sync_fs, 2186 .freeze_fs = f2fs_freeze, 2187 .unfreeze_fs = f2fs_unfreeze, 2188 .statfs = f2fs_statfs, 2189 .remount_fs = f2fs_remount, 2190 }; 2191 2192 #ifdef CONFIG_FS_ENCRYPTION 2193 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2194 { 2195 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2196 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2197 ctx, len, NULL); 2198 } 2199 2200 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2201 void *fs_data) 2202 { 2203 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2204 2205 /* 2206 * Encrypting the root directory is not allowed because fsck 2207 * expects lost+found directory to exist and remain unencrypted 2208 * if LOST_FOUND feature is enabled. 2209 * 2210 */ 2211 if (f2fs_sb_has_lost_found(sbi) && 2212 inode->i_ino == F2FS_ROOT_INO(sbi)) 2213 return -EPERM; 2214 2215 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2216 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2217 ctx, len, fs_data, XATTR_CREATE); 2218 } 2219 2220 static bool f2fs_dummy_context(struct inode *inode) 2221 { 2222 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode)); 2223 } 2224 2225 static const struct fscrypt_operations f2fs_cryptops = { 2226 .key_prefix = "f2fs:", 2227 .get_context = f2fs_get_context, 2228 .set_context = f2fs_set_context, 2229 .dummy_context = f2fs_dummy_context, 2230 .empty_dir = f2fs_empty_dir, 2231 .max_namelen = F2FS_NAME_LEN, 2232 }; 2233 #endif 2234 2235 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 2236 u64 ino, u32 generation) 2237 { 2238 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2239 struct inode *inode; 2240 2241 if (f2fs_check_nid_range(sbi, ino)) 2242 return ERR_PTR(-ESTALE); 2243 2244 /* 2245 * f2fs_iget isn't quite right if the inode is currently unallocated! 2246 * However f2fs_iget currently does appropriate checks to handle stale 2247 * inodes so everything is OK. 2248 */ 2249 inode = f2fs_iget(sb, ino); 2250 if (IS_ERR(inode)) 2251 return ERR_CAST(inode); 2252 if (unlikely(generation && inode->i_generation != generation)) { 2253 /* we didn't find the right inode.. */ 2254 iput(inode); 2255 return ERR_PTR(-ESTALE); 2256 } 2257 return inode; 2258 } 2259 2260 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2261 int fh_len, int fh_type) 2262 { 2263 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 2264 f2fs_nfs_get_inode); 2265 } 2266 2267 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 2268 int fh_len, int fh_type) 2269 { 2270 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 2271 f2fs_nfs_get_inode); 2272 } 2273 2274 static const struct export_operations f2fs_export_ops = { 2275 .fh_to_dentry = f2fs_fh_to_dentry, 2276 .fh_to_parent = f2fs_fh_to_parent, 2277 .get_parent = f2fs_get_parent, 2278 }; 2279 2280 static loff_t max_file_blocks(void) 2281 { 2282 loff_t result = 0; 2283 loff_t leaf_count = DEF_ADDRS_PER_BLOCK; 2284 2285 /* 2286 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2287 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2288 * space in inode.i_addr, it will be more safe to reassign 2289 * result as zero. 2290 */ 2291 2292 /* two direct node blocks */ 2293 result += (leaf_count * 2); 2294 2295 /* two indirect node blocks */ 2296 leaf_count *= NIDS_PER_BLOCK; 2297 result += (leaf_count * 2); 2298 2299 /* one double indirect node block */ 2300 leaf_count *= NIDS_PER_BLOCK; 2301 result += leaf_count; 2302 2303 return result; 2304 } 2305 2306 static int __f2fs_commit_super(struct buffer_head *bh, 2307 struct f2fs_super_block *super) 2308 { 2309 lock_buffer(bh); 2310 if (super) 2311 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2312 set_buffer_dirty(bh); 2313 unlock_buffer(bh); 2314 2315 /* it's rare case, we can do fua all the time */ 2316 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2317 } 2318 2319 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2320 struct buffer_head *bh) 2321 { 2322 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2323 (bh->b_data + F2FS_SUPER_OFFSET); 2324 struct super_block *sb = sbi->sb; 2325 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2326 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2327 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2328 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2329 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2330 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2331 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2332 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2333 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2334 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2335 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2336 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2337 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2338 u64 main_end_blkaddr = main_blkaddr + 2339 (segment_count_main << log_blocks_per_seg); 2340 u64 seg_end_blkaddr = segment0_blkaddr + 2341 (segment_count << log_blocks_per_seg); 2342 2343 if (segment0_blkaddr != cp_blkaddr) { 2344 f2fs_msg(sb, KERN_INFO, 2345 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2346 segment0_blkaddr, cp_blkaddr); 2347 return true; 2348 } 2349 2350 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2351 sit_blkaddr) { 2352 f2fs_msg(sb, KERN_INFO, 2353 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2354 cp_blkaddr, sit_blkaddr, 2355 segment_count_ckpt << log_blocks_per_seg); 2356 return true; 2357 } 2358 2359 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2360 nat_blkaddr) { 2361 f2fs_msg(sb, KERN_INFO, 2362 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2363 sit_blkaddr, nat_blkaddr, 2364 segment_count_sit << log_blocks_per_seg); 2365 return true; 2366 } 2367 2368 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2369 ssa_blkaddr) { 2370 f2fs_msg(sb, KERN_INFO, 2371 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2372 nat_blkaddr, ssa_blkaddr, 2373 segment_count_nat << log_blocks_per_seg); 2374 return true; 2375 } 2376 2377 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2378 main_blkaddr) { 2379 f2fs_msg(sb, KERN_INFO, 2380 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2381 ssa_blkaddr, main_blkaddr, 2382 segment_count_ssa << log_blocks_per_seg); 2383 return true; 2384 } 2385 2386 if (main_end_blkaddr > seg_end_blkaddr) { 2387 f2fs_msg(sb, KERN_INFO, 2388 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 2389 main_blkaddr, 2390 segment0_blkaddr + 2391 (segment_count << log_blocks_per_seg), 2392 segment_count_main << log_blocks_per_seg); 2393 return true; 2394 } else if (main_end_blkaddr < seg_end_blkaddr) { 2395 int err = 0; 2396 char *res; 2397 2398 /* fix in-memory information all the time */ 2399 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2400 segment0_blkaddr) >> log_blocks_per_seg); 2401 2402 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2403 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2404 res = "internally"; 2405 } else { 2406 err = __f2fs_commit_super(bh, NULL); 2407 res = err ? "failed" : "done"; 2408 } 2409 f2fs_msg(sb, KERN_INFO, 2410 "Fix alignment : %s, start(%u) end(%u) block(%u)", 2411 res, main_blkaddr, 2412 segment0_blkaddr + 2413 (segment_count << log_blocks_per_seg), 2414 segment_count_main << log_blocks_per_seg); 2415 if (err) 2416 return true; 2417 } 2418 return false; 2419 } 2420 2421 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2422 struct buffer_head *bh) 2423 { 2424 block_t segment_count, segs_per_sec, secs_per_zone; 2425 block_t total_sections, blocks_per_seg; 2426 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2427 (bh->b_data + F2FS_SUPER_OFFSET); 2428 struct super_block *sb = sbi->sb; 2429 unsigned int blocksize; 2430 size_t crc_offset = 0; 2431 __u32 crc = 0; 2432 2433 /* Check checksum_offset and crc in superblock */ 2434 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 2435 crc_offset = le32_to_cpu(raw_super->checksum_offset); 2436 if (crc_offset != 2437 offsetof(struct f2fs_super_block, crc)) { 2438 f2fs_msg(sb, KERN_INFO, 2439 "Invalid SB checksum offset: %zu", 2440 crc_offset); 2441 return 1; 2442 } 2443 crc = le32_to_cpu(raw_super->crc); 2444 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 2445 f2fs_msg(sb, KERN_INFO, 2446 "Invalid SB checksum value: %u", crc); 2447 return 1; 2448 } 2449 } 2450 2451 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 2452 f2fs_msg(sb, KERN_INFO, 2453 "Magic Mismatch, valid(0x%x) - read(0x%x)", 2454 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2455 return 1; 2456 } 2457 2458 /* Currently, support only 4KB page cache size */ 2459 if (F2FS_BLKSIZE != PAGE_SIZE) { 2460 f2fs_msg(sb, KERN_INFO, 2461 "Invalid page_cache_size (%lu), supports only 4KB", 2462 PAGE_SIZE); 2463 return 1; 2464 } 2465 2466 /* Currently, support only 4KB block size */ 2467 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 2468 if (blocksize != F2FS_BLKSIZE) { 2469 f2fs_msg(sb, KERN_INFO, 2470 "Invalid blocksize (%u), supports only 4KB", 2471 blocksize); 2472 return 1; 2473 } 2474 2475 /* check log blocks per segment */ 2476 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2477 f2fs_msg(sb, KERN_INFO, 2478 "Invalid log blocks per segment (%u)", 2479 le32_to_cpu(raw_super->log_blocks_per_seg)); 2480 return 1; 2481 } 2482 2483 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2484 if (le32_to_cpu(raw_super->log_sectorsize) > 2485 F2FS_MAX_LOG_SECTOR_SIZE || 2486 le32_to_cpu(raw_super->log_sectorsize) < 2487 F2FS_MIN_LOG_SECTOR_SIZE) { 2488 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 2489 le32_to_cpu(raw_super->log_sectorsize)); 2490 return 1; 2491 } 2492 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2493 le32_to_cpu(raw_super->log_sectorsize) != 2494 F2FS_MAX_LOG_SECTOR_SIZE) { 2495 f2fs_msg(sb, KERN_INFO, 2496 "Invalid log sectors per block(%u) log sectorsize(%u)", 2497 le32_to_cpu(raw_super->log_sectors_per_block), 2498 le32_to_cpu(raw_super->log_sectorsize)); 2499 return 1; 2500 } 2501 2502 segment_count = le32_to_cpu(raw_super->segment_count); 2503 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2504 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2505 total_sections = le32_to_cpu(raw_super->section_count); 2506 2507 /* blocks_per_seg should be 512, given the above check */ 2508 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 2509 2510 if (segment_count > F2FS_MAX_SEGMENT || 2511 segment_count < F2FS_MIN_SEGMENTS) { 2512 f2fs_msg(sb, KERN_INFO, 2513 "Invalid segment count (%u)", 2514 segment_count); 2515 return 1; 2516 } 2517 2518 if (total_sections > segment_count || 2519 total_sections < F2FS_MIN_SEGMENTS || 2520 segs_per_sec > segment_count || !segs_per_sec) { 2521 f2fs_msg(sb, KERN_INFO, 2522 "Invalid segment/section count (%u, %u x %u)", 2523 segment_count, total_sections, segs_per_sec); 2524 return 1; 2525 } 2526 2527 if ((segment_count / segs_per_sec) < total_sections) { 2528 f2fs_msg(sb, KERN_INFO, 2529 "Small segment_count (%u < %u * %u)", 2530 segment_count, segs_per_sec, total_sections); 2531 return 1; 2532 } 2533 2534 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 2535 f2fs_msg(sb, KERN_INFO, 2536 "Wrong segment_count / block_count (%u > %llu)", 2537 segment_count, le64_to_cpu(raw_super->block_count)); 2538 return 1; 2539 } 2540 2541 if (secs_per_zone > total_sections || !secs_per_zone) { 2542 f2fs_msg(sb, KERN_INFO, 2543 "Wrong secs_per_zone / total_sections (%u, %u)", 2544 secs_per_zone, total_sections); 2545 return 1; 2546 } 2547 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 2548 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 2549 (le32_to_cpu(raw_super->extension_count) + 2550 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 2551 f2fs_msg(sb, KERN_INFO, 2552 "Corrupted extension count (%u + %u > %u)", 2553 le32_to_cpu(raw_super->extension_count), 2554 raw_super->hot_ext_count, 2555 F2FS_MAX_EXTENSION); 2556 return 1; 2557 } 2558 2559 if (le32_to_cpu(raw_super->cp_payload) > 2560 (blocks_per_seg - F2FS_CP_PACKS)) { 2561 f2fs_msg(sb, KERN_INFO, 2562 "Insane cp_payload (%u > %u)", 2563 le32_to_cpu(raw_super->cp_payload), 2564 blocks_per_seg - F2FS_CP_PACKS); 2565 return 1; 2566 } 2567 2568 /* check reserved ino info */ 2569 if (le32_to_cpu(raw_super->node_ino) != 1 || 2570 le32_to_cpu(raw_super->meta_ino) != 2 || 2571 le32_to_cpu(raw_super->root_ino) != 3) { 2572 f2fs_msg(sb, KERN_INFO, 2573 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 2574 le32_to_cpu(raw_super->node_ino), 2575 le32_to_cpu(raw_super->meta_ino), 2576 le32_to_cpu(raw_super->root_ino)); 2577 return 1; 2578 } 2579 2580 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 2581 if (sanity_check_area_boundary(sbi, bh)) 2582 return 1; 2583 2584 return 0; 2585 } 2586 2587 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 2588 { 2589 unsigned int total, fsmeta; 2590 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2591 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2592 unsigned int ovp_segments, reserved_segments; 2593 unsigned int main_segs, blocks_per_seg; 2594 unsigned int sit_segs, nat_segs; 2595 unsigned int sit_bitmap_size, nat_bitmap_size; 2596 unsigned int log_blocks_per_seg; 2597 unsigned int segment_count_main; 2598 unsigned int cp_pack_start_sum, cp_payload; 2599 block_t user_block_count, valid_user_blocks; 2600 block_t avail_node_count, valid_node_count; 2601 int i, j; 2602 2603 total = le32_to_cpu(raw_super->segment_count); 2604 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 2605 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 2606 fsmeta += sit_segs; 2607 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 2608 fsmeta += nat_segs; 2609 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 2610 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 2611 2612 if (unlikely(fsmeta >= total)) 2613 return 1; 2614 2615 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2616 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2617 2618 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 2619 ovp_segments == 0 || reserved_segments == 0)) { 2620 f2fs_msg(sbi->sb, KERN_ERR, 2621 "Wrong layout: check mkfs.f2fs version"); 2622 return 1; 2623 } 2624 2625 user_block_count = le64_to_cpu(ckpt->user_block_count); 2626 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2627 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2628 if (!user_block_count || user_block_count >= 2629 segment_count_main << log_blocks_per_seg) { 2630 f2fs_msg(sbi->sb, KERN_ERR, 2631 "Wrong user_block_count: %u", user_block_count); 2632 return 1; 2633 } 2634 2635 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 2636 if (valid_user_blocks > user_block_count) { 2637 f2fs_msg(sbi->sb, KERN_ERR, 2638 "Wrong valid_user_blocks: %u, user_block_count: %u", 2639 valid_user_blocks, user_block_count); 2640 return 1; 2641 } 2642 2643 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 2644 avail_node_count = sbi->total_node_count - sbi->nquota_files - 2645 F2FS_RESERVED_NODE_NUM; 2646 if (valid_node_count > avail_node_count) { 2647 f2fs_msg(sbi->sb, KERN_ERR, 2648 "Wrong valid_node_count: %u, avail_node_count: %u", 2649 valid_node_count, avail_node_count); 2650 return 1; 2651 } 2652 2653 main_segs = le32_to_cpu(raw_super->segment_count_main); 2654 blocks_per_seg = sbi->blocks_per_seg; 2655 2656 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2657 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 2658 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 2659 return 1; 2660 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 2661 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2662 le32_to_cpu(ckpt->cur_node_segno[j])) { 2663 f2fs_msg(sbi->sb, KERN_ERR, 2664 "Node segment (%u, %u) has the same " 2665 "segno: %u", i, j, 2666 le32_to_cpu(ckpt->cur_node_segno[i])); 2667 return 1; 2668 } 2669 } 2670 } 2671 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 2672 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 2673 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 2674 return 1; 2675 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 2676 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 2677 le32_to_cpu(ckpt->cur_data_segno[j])) { 2678 f2fs_msg(sbi->sb, KERN_ERR, 2679 "Data segment (%u, %u) has the same " 2680 "segno: %u", i, j, 2681 le32_to_cpu(ckpt->cur_data_segno[i])); 2682 return 1; 2683 } 2684 } 2685 } 2686 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2687 for (j = i; j < NR_CURSEG_DATA_TYPE; j++) { 2688 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2689 le32_to_cpu(ckpt->cur_data_segno[j])) { 2690 f2fs_msg(sbi->sb, KERN_ERR, 2691 "Data segment (%u) and Data segment (%u)" 2692 " has the same segno: %u", i, j, 2693 le32_to_cpu(ckpt->cur_node_segno[i])); 2694 return 1; 2695 } 2696 } 2697 } 2698 2699 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2700 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2701 2702 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 2703 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 2704 f2fs_msg(sbi->sb, KERN_ERR, 2705 "Wrong bitmap size: sit: %u, nat:%u", 2706 sit_bitmap_size, nat_bitmap_size); 2707 return 1; 2708 } 2709 2710 cp_pack_start_sum = __start_sum_addr(sbi); 2711 cp_payload = __cp_payload(sbi); 2712 if (cp_pack_start_sum < cp_payload + 1 || 2713 cp_pack_start_sum > blocks_per_seg - 1 - 2714 NR_CURSEG_TYPE) { 2715 f2fs_msg(sbi->sb, KERN_ERR, 2716 "Wrong cp_pack_start_sum: %u", 2717 cp_pack_start_sum); 2718 return 1; 2719 } 2720 2721 if (unlikely(f2fs_cp_error(sbi))) { 2722 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 2723 return 1; 2724 } 2725 return 0; 2726 } 2727 2728 static void init_sb_info(struct f2fs_sb_info *sbi) 2729 { 2730 struct f2fs_super_block *raw_super = sbi->raw_super; 2731 int i; 2732 2733 sbi->log_sectors_per_block = 2734 le32_to_cpu(raw_super->log_sectors_per_block); 2735 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 2736 sbi->blocksize = 1 << sbi->log_blocksize; 2737 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2738 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 2739 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2740 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2741 sbi->total_sections = le32_to_cpu(raw_super->section_count); 2742 sbi->total_node_count = 2743 (le32_to_cpu(raw_super->segment_count_nat) / 2) 2744 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 2745 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 2746 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 2747 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 2748 sbi->cur_victim_sec = NULL_SECNO; 2749 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 2750 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 2751 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 2752 sbi->migration_granularity = sbi->segs_per_sec; 2753 2754 sbi->dir_level = DEF_DIR_LEVEL; 2755 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 2756 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 2757 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 2758 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 2759 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 2760 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 2761 DEF_UMOUNT_DISCARD_TIMEOUT; 2762 clear_sbi_flag(sbi, SBI_NEED_FSCK); 2763 2764 for (i = 0; i < NR_COUNT_TYPE; i++) 2765 atomic_set(&sbi->nr_pages[i], 0); 2766 2767 for (i = 0; i < META; i++) 2768 atomic_set(&sbi->wb_sync_req[i], 0); 2769 2770 INIT_LIST_HEAD(&sbi->s_list); 2771 mutex_init(&sbi->umount_mutex); 2772 init_rwsem(&sbi->io_order_lock); 2773 spin_lock_init(&sbi->cp_lock); 2774 2775 sbi->dirty_device = 0; 2776 spin_lock_init(&sbi->dev_lock); 2777 2778 init_rwsem(&sbi->sb_lock); 2779 } 2780 2781 static int init_percpu_info(struct f2fs_sb_info *sbi) 2782 { 2783 int err; 2784 2785 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 2786 if (err) 2787 return err; 2788 2789 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 2790 GFP_KERNEL); 2791 if (err) 2792 percpu_counter_destroy(&sbi->alloc_valid_block_count); 2793 2794 return err; 2795 } 2796 2797 #ifdef CONFIG_BLK_DEV_ZONED 2798 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 2799 { 2800 struct block_device *bdev = FDEV(devi).bdev; 2801 sector_t nr_sectors = bdev->bd_part->nr_sects; 2802 sector_t sector = 0; 2803 struct blk_zone *zones; 2804 unsigned int i, nr_zones; 2805 unsigned int n = 0; 2806 int err = -EIO; 2807 2808 if (!f2fs_sb_has_blkzoned(sbi)) 2809 return 0; 2810 2811 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 2812 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 2813 return -EINVAL; 2814 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 2815 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 2816 __ilog2_u32(sbi->blocks_per_blkz)) 2817 return -EINVAL; 2818 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 2819 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 2820 sbi->log_blocks_per_blkz; 2821 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 2822 FDEV(devi).nr_blkz++; 2823 2824 FDEV(devi).blkz_seq = f2fs_kzalloc(sbi, 2825 BITS_TO_LONGS(FDEV(devi).nr_blkz) 2826 * sizeof(unsigned long), 2827 GFP_KERNEL); 2828 if (!FDEV(devi).blkz_seq) 2829 return -ENOMEM; 2830 2831 #define F2FS_REPORT_NR_ZONES 4096 2832 2833 zones = f2fs_kzalloc(sbi, 2834 array_size(F2FS_REPORT_NR_ZONES, 2835 sizeof(struct blk_zone)), 2836 GFP_KERNEL); 2837 if (!zones) 2838 return -ENOMEM; 2839 2840 /* Get block zones type */ 2841 while (zones && sector < nr_sectors) { 2842 2843 nr_zones = F2FS_REPORT_NR_ZONES; 2844 err = blkdev_report_zones(bdev, sector, 2845 zones, &nr_zones, 2846 GFP_KERNEL); 2847 if (err) 2848 break; 2849 if (!nr_zones) { 2850 err = -EIO; 2851 break; 2852 } 2853 2854 for (i = 0; i < nr_zones; i++) { 2855 if (zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL) 2856 set_bit(n, FDEV(devi).blkz_seq); 2857 sector += zones[i].len; 2858 n++; 2859 } 2860 } 2861 2862 kvfree(zones); 2863 2864 return err; 2865 } 2866 #endif 2867 2868 /* 2869 * Read f2fs raw super block. 2870 * Because we have two copies of super block, so read both of them 2871 * to get the first valid one. If any one of them is broken, we pass 2872 * them recovery flag back to the caller. 2873 */ 2874 static int read_raw_super_block(struct f2fs_sb_info *sbi, 2875 struct f2fs_super_block **raw_super, 2876 int *valid_super_block, int *recovery) 2877 { 2878 struct super_block *sb = sbi->sb; 2879 int block; 2880 struct buffer_head *bh; 2881 struct f2fs_super_block *super; 2882 int err = 0; 2883 2884 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 2885 if (!super) 2886 return -ENOMEM; 2887 2888 for (block = 0; block < 2; block++) { 2889 bh = sb_bread(sb, block); 2890 if (!bh) { 2891 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 2892 block + 1); 2893 err = -EIO; 2894 continue; 2895 } 2896 2897 /* sanity checking of raw super */ 2898 if (sanity_check_raw_super(sbi, bh)) { 2899 f2fs_msg(sb, KERN_ERR, 2900 "Can't find valid F2FS filesystem in %dth superblock", 2901 block + 1); 2902 err = -EINVAL; 2903 brelse(bh); 2904 continue; 2905 } 2906 2907 if (!*raw_super) { 2908 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 2909 sizeof(*super)); 2910 *valid_super_block = block; 2911 *raw_super = super; 2912 } 2913 brelse(bh); 2914 } 2915 2916 /* Fail to read any one of the superblocks*/ 2917 if (err < 0) 2918 *recovery = 1; 2919 2920 /* No valid superblock */ 2921 if (!*raw_super) 2922 kvfree(super); 2923 else 2924 err = 0; 2925 2926 return err; 2927 } 2928 2929 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 2930 { 2931 struct buffer_head *bh; 2932 __u32 crc = 0; 2933 int err; 2934 2935 if ((recover && f2fs_readonly(sbi->sb)) || 2936 bdev_read_only(sbi->sb->s_bdev)) { 2937 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2938 return -EROFS; 2939 } 2940 2941 /* we should update superblock crc here */ 2942 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 2943 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 2944 offsetof(struct f2fs_super_block, crc)); 2945 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 2946 } 2947 2948 /* write back-up superblock first */ 2949 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 2950 if (!bh) 2951 return -EIO; 2952 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2953 brelse(bh); 2954 2955 /* if we are in recovery path, skip writing valid superblock */ 2956 if (recover || err) 2957 return err; 2958 2959 /* write current valid superblock */ 2960 bh = sb_bread(sbi->sb, sbi->valid_super_block); 2961 if (!bh) 2962 return -EIO; 2963 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2964 brelse(bh); 2965 return err; 2966 } 2967 2968 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 2969 { 2970 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2971 unsigned int max_devices = MAX_DEVICES; 2972 int i; 2973 2974 /* Initialize single device information */ 2975 if (!RDEV(0).path[0]) { 2976 if (!bdev_is_zoned(sbi->sb->s_bdev)) 2977 return 0; 2978 max_devices = 1; 2979 } 2980 2981 /* 2982 * Initialize multiple devices information, or single 2983 * zoned block device information. 2984 */ 2985 sbi->devs = f2fs_kzalloc(sbi, 2986 array_size(max_devices, 2987 sizeof(struct f2fs_dev_info)), 2988 GFP_KERNEL); 2989 if (!sbi->devs) 2990 return -ENOMEM; 2991 2992 for (i = 0; i < max_devices; i++) { 2993 2994 if (i > 0 && !RDEV(i).path[0]) 2995 break; 2996 2997 if (max_devices == 1) { 2998 /* Single zoned block device mount */ 2999 FDEV(0).bdev = 3000 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 3001 sbi->sb->s_mode, sbi->sb->s_type); 3002 } else { 3003 /* Multi-device mount */ 3004 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 3005 FDEV(i).total_segments = 3006 le32_to_cpu(RDEV(i).total_segments); 3007 if (i == 0) { 3008 FDEV(i).start_blk = 0; 3009 FDEV(i).end_blk = FDEV(i).start_blk + 3010 (FDEV(i).total_segments << 3011 sbi->log_blocks_per_seg) - 1 + 3012 le32_to_cpu(raw_super->segment0_blkaddr); 3013 } else { 3014 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 3015 FDEV(i).end_blk = FDEV(i).start_blk + 3016 (FDEV(i).total_segments << 3017 sbi->log_blocks_per_seg) - 1; 3018 } 3019 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 3020 sbi->sb->s_mode, sbi->sb->s_type); 3021 } 3022 if (IS_ERR(FDEV(i).bdev)) 3023 return PTR_ERR(FDEV(i).bdev); 3024 3025 /* to release errored devices */ 3026 sbi->s_ndevs = i + 1; 3027 3028 #ifdef CONFIG_BLK_DEV_ZONED 3029 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3030 !f2fs_sb_has_blkzoned(sbi)) { 3031 f2fs_msg(sbi->sb, KERN_ERR, 3032 "Zoned block device feature not enabled\n"); 3033 return -EINVAL; 3034 } 3035 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3036 if (init_blkz_info(sbi, i)) { 3037 f2fs_msg(sbi->sb, KERN_ERR, 3038 "Failed to initialize F2FS blkzone information"); 3039 return -EINVAL; 3040 } 3041 if (max_devices == 1) 3042 break; 3043 f2fs_msg(sbi->sb, KERN_INFO, 3044 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3045 i, FDEV(i).path, 3046 FDEV(i).total_segments, 3047 FDEV(i).start_blk, FDEV(i).end_blk, 3048 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3049 "Host-aware" : "Host-managed"); 3050 continue; 3051 } 3052 #endif 3053 f2fs_msg(sbi->sb, KERN_INFO, 3054 "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3055 i, FDEV(i).path, 3056 FDEV(i).total_segments, 3057 FDEV(i).start_blk, FDEV(i).end_blk); 3058 } 3059 f2fs_msg(sbi->sb, KERN_INFO, 3060 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3061 return 0; 3062 } 3063 3064 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3065 { 3066 struct f2fs_sm_info *sm_i = SM_I(sbi); 3067 3068 /* adjust parameters according to the volume size */ 3069 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3070 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3071 sm_i->dcc_info->discard_granularity = 1; 3072 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3073 } 3074 3075 sbi->readdir_ra = 1; 3076 } 3077 3078 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3079 { 3080 struct f2fs_sb_info *sbi; 3081 struct f2fs_super_block *raw_super; 3082 struct inode *root; 3083 int err; 3084 bool skip_recovery = false, need_fsck = false; 3085 char *options = NULL; 3086 int recovery, i, valid_super_block; 3087 struct curseg_info *seg_i; 3088 int retry_cnt = 1; 3089 3090 try_onemore: 3091 err = -EINVAL; 3092 raw_super = NULL; 3093 valid_super_block = -1; 3094 recovery = 0; 3095 3096 /* allocate memory for f2fs-specific super block info */ 3097 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3098 if (!sbi) 3099 return -ENOMEM; 3100 3101 sbi->sb = sb; 3102 3103 /* Load the checksum driver */ 3104 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3105 if (IS_ERR(sbi->s_chksum_driver)) { 3106 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 3107 err = PTR_ERR(sbi->s_chksum_driver); 3108 sbi->s_chksum_driver = NULL; 3109 goto free_sbi; 3110 } 3111 3112 /* set a block size */ 3113 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3114 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 3115 goto free_sbi; 3116 } 3117 3118 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3119 &recovery); 3120 if (err) 3121 goto free_sbi; 3122 3123 sb->s_fs_info = sbi; 3124 sbi->raw_super = raw_super; 3125 3126 /* precompute checksum seed for metadata */ 3127 if (f2fs_sb_has_inode_chksum(sbi)) 3128 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3129 sizeof(raw_super->uuid)); 3130 3131 /* 3132 * The BLKZONED feature indicates that the drive was formatted with 3133 * zone alignment optimization. This is optional for host-aware 3134 * devices, but mandatory for host-managed zoned block devices. 3135 */ 3136 #ifndef CONFIG_BLK_DEV_ZONED 3137 if (f2fs_sb_has_blkzoned(sbi)) { 3138 f2fs_msg(sb, KERN_ERR, 3139 "Zoned block device support is not enabled"); 3140 err = -EOPNOTSUPP; 3141 goto free_sb_buf; 3142 } 3143 #endif 3144 default_options(sbi); 3145 /* parse mount options */ 3146 options = kstrdup((const char *)data, GFP_KERNEL); 3147 if (data && !options) { 3148 err = -ENOMEM; 3149 goto free_sb_buf; 3150 } 3151 3152 err = parse_options(sb, options); 3153 if (err) 3154 goto free_options; 3155 3156 sbi->max_file_blocks = max_file_blocks(); 3157 sb->s_maxbytes = sbi->max_file_blocks << 3158 le32_to_cpu(raw_super->log_blocksize); 3159 sb->s_max_links = F2FS_LINK_MAX; 3160 3161 #ifdef CONFIG_QUOTA 3162 sb->dq_op = &f2fs_quota_operations; 3163 if (f2fs_sb_has_quota_ino(sbi)) 3164 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3165 else 3166 sb->s_qcop = &f2fs_quotactl_ops; 3167 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3168 3169 if (f2fs_sb_has_quota_ino(sbi)) { 3170 for (i = 0; i < MAXQUOTAS; i++) { 3171 if (f2fs_qf_ino(sbi->sb, i)) 3172 sbi->nquota_files++; 3173 } 3174 } 3175 #endif 3176 3177 sb->s_op = &f2fs_sops; 3178 #ifdef CONFIG_FS_ENCRYPTION 3179 sb->s_cop = &f2fs_cryptops; 3180 #endif 3181 sb->s_xattr = f2fs_xattr_handlers; 3182 sb->s_export_op = &f2fs_export_ops; 3183 sb->s_magic = F2FS_SUPER_MAGIC; 3184 sb->s_time_gran = 1; 3185 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3186 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3187 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 3188 sb->s_iflags |= SB_I_CGROUPWB; 3189 3190 /* init f2fs-specific super block info */ 3191 sbi->valid_super_block = valid_super_block; 3192 mutex_init(&sbi->gc_mutex); 3193 mutex_init(&sbi->writepages); 3194 mutex_init(&sbi->cp_mutex); 3195 init_rwsem(&sbi->node_write); 3196 init_rwsem(&sbi->node_change); 3197 3198 /* disallow all the data/node/meta page writes */ 3199 set_sbi_flag(sbi, SBI_POR_DOING); 3200 spin_lock_init(&sbi->stat_lock); 3201 3202 /* init iostat info */ 3203 spin_lock_init(&sbi->iostat_lock); 3204 sbi->iostat_enable = false; 3205 3206 for (i = 0; i < NR_PAGE_TYPE; i++) { 3207 int n = (i == META) ? 1: NR_TEMP_TYPE; 3208 int j; 3209 3210 sbi->write_io[i] = 3211 f2fs_kmalloc(sbi, 3212 array_size(n, 3213 sizeof(struct f2fs_bio_info)), 3214 GFP_KERNEL); 3215 if (!sbi->write_io[i]) { 3216 err = -ENOMEM; 3217 goto free_bio_info; 3218 } 3219 3220 for (j = HOT; j < n; j++) { 3221 init_rwsem(&sbi->write_io[i][j].io_rwsem); 3222 sbi->write_io[i][j].sbi = sbi; 3223 sbi->write_io[i][j].bio = NULL; 3224 spin_lock_init(&sbi->write_io[i][j].io_lock); 3225 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 3226 } 3227 } 3228 3229 init_rwsem(&sbi->cp_rwsem); 3230 init_waitqueue_head(&sbi->cp_wait); 3231 init_sb_info(sbi); 3232 3233 err = init_percpu_info(sbi); 3234 if (err) 3235 goto free_bio_info; 3236 3237 if (F2FS_IO_SIZE(sbi) > 1) { 3238 sbi->write_io_dummy = 3239 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 3240 if (!sbi->write_io_dummy) { 3241 err = -ENOMEM; 3242 goto free_percpu; 3243 } 3244 } 3245 3246 /* get an inode for meta space */ 3247 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 3248 if (IS_ERR(sbi->meta_inode)) { 3249 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 3250 err = PTR_ERR(sbi->meta_inode); 3251 goto free_io_dummy; 3252 } 3253 3254 err = f2fs_get_valid_checkpoint(sbi); 3255 if (err) { 3256 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 3257 goto free_meta_inode; 3258 } 3259 3260 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 3261 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3262 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 3263 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3264 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 3265 } 3266 3267 /* Initialize device list */ 3268 err = f2fs_scan_devices(sbi); 3269 if (err) { 3270 f2fs_msg(sb, KERN_ERR, "Failed to find devices"); 3271 goto free_devices; 3272 } 3273 3274 sbi->total_valid_node_count = 3275 le32_to_cpu(sbi->ckpt->valid_node_count); 3276 percpu_counter_set(&sbi->total_valid_inode_count, 3277 le32_to_cpu(sbi->ckpt->valid_inode_count)); 3278 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 3279 sbi->total_valid_block_count = 3280 le64_to_cpu(sbi->ckpt->valid_block_count); 3281 sbi->last_valid_block_count = sbi->total_valid_block_count; 3282 sbi->reserved_blocks = 0; 3283 sbi->current_reserved_blocks = 0; 3284 limit_reserve_root(sbi); 3285 3286 for (i = 0; i < NR_INODE_TYPE; i++) { 3287 INIT_LIST_HEAD(&sbi->inode_list[i]); 3288 spin_lock_init(&sbi->inode_lock[i]); 3289 } 3290 3291 f2fs_init_extent_cache_info(sbi); 3292 3293 f2fs_init_ino_entry_info(sbi); 3294 3295 f2fs_init_fsync_node_info(sbi); 3296 3297 /* setup f2fs internal modules */ 3298 err = f2fs_build_segment_manager(sbi); 3299 if (err) { 3300 f2fs_msg(sb, KERN_ERR, 3301 "Failed to initialize F2FS segment manager"); 3302 goto free_sm; 3303 } 3304 err = f2fs_build_node_manager(sbi); 3305 if (err) { 3306 f2fs_msg(sb, KERN_ERR, 3307 "Failed to initialize F2FS node manager"); 3308 goto free_nm; 3309 } 3310 3311 /* For write statistics */ 3312 if (sb->s_bdev->bd_part) 3313 sbi->sectors_written_start = 3314 (u64)part_stat_read(sb->s_bdev->bd_part, 3315 sectors[STAT_WRITE]); 3316 3317 /* Read accumulated write IO statistics if exists */ 3318 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 3319 if (__exist_node_summaries(sbi)) 3320 sbi->kbytes_written = 3321 le64_to_cpu(seg_i->journal->info.kbytes_written); 3322 3323 f2fs_build_gc_manager(sbi); 3324 3325 err = f2fs_build_stats(sbi); 3326 if (err) 3327 goto free_nm; 3328 3329 /* get an inode for node space */ 3330 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 3331 if (IS_ERR(sbi->node_inode)) { 3332 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 3333 err = PTR_ERR(sbi->node_inode); 3334 goto free_stats; 3335 } 3336 3337 /* read root inode and dentry */ 3338 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 3339 if (IS_ERR(root)) { 3340 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 3341 err = PTR_ERR(root); 3342 goto free_node_inode; 3343 } 3344 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 3345 !root->i_size || !root->i_nlink) { 3346 iput(root); 3347 err = -EINVAL; 3348 goto free_node_inode; 3349 } 3350 3351 sb->s_root = d_make_root(root); /* allocate root dentry */ 3352 if (!sb->s_root) { 3353 err = -ENOMEM; 3354 goto free_node_inode; 3355 } 3356 3357 err = f2fs_register_sysfs(sbi); 3358 if (err) 3359 goto free_root_inode; 3360 3361 #ifdef CONFIG_QUOTA 3362 /* Enable quota usage during mount */ 3363 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 3364 err = f2fs_enable_quotas(sb); 3365 if (err) 3366 f2fs_msg(sb, KERN_ERR, 3367 "Cannot turn on quotas: error %d", err); 3368 } 3369 #endif 3370 /* if there are nt orphan nodes free them */ 3371 err = f2fs_recover_orphan_inodes(sbi); 3372 if (err) 3373 goto free_meta; 3374 3375 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 3376 goto reset_checkpoint; 3377 3378 /* recover fsynced data */ 3379 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 3380 /* 3381 * mount should be failed, when device has readonly mode, and 3382 * previous checkpoint was not done by clean system shutdown. 3383 */ 3384 if (f2fs_hw_is_readonly(sbi)) { 3385 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3386 err = -EROFS; 3387 f2fs_msg(sb, KERN_ERR, 3388 "Need to recover fsync data, but " 3389 "write access unavailable"); 3390 goto free_meta; 3391 } 3392 f2fs_msg(sbi->sb, KERN_INFO, "write access " 3393 "unavailable, skipping recovery"); 3394 goto reset_checkpoint; 3395 } 3396 3397 if (need_fsck) 3398 set_sbi_flag(sbi, SBI_NEED_FSCK); 3399 3400 if (skip_recovery) 3401 goto reset_checkpoint; 3402 3403 err = f2fs_recover_fsync_data(sbi, false); 3404 if (err < 0) { 3405 if (err != -ENOMEM) 3406 skip_recovery = true; 3407 need_fsck = true; 3408 f2fs_msg(sb, KERN_ERR, 3409 "Cannot recover all fsync data errno=%d", err); 3410 goto free_meta; 3411 } 3412 } else { 3413 err = f2fs_recover_fsync_data(sbi, true); 3414 3415 if (!f2fs_readonly(sb) && err > 0) { 3416 err = -EINVAL; 3417 f2fs_msg(sb, KERN_ERR, 3418 "Need to recover fsync data"); 3419 goto free_meta; 3420 } 3421 } 3422 reset_checkpoint: 3423 /* f2fs_recover_fsync_data() cleared this already */ 3424 clear_sbi_flag(sbi, SBI_POR_DOING); 3425 3426 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 3427 err = f2fs_disable_checkpoint(sbi); 3428 if (err) 3429 goto sync_free_meta; 3430 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 3431 f2fs_enable_checkpoint(sbi); 3432 } 3433 3434 /* 3435 * If filesystem is not mounted as read-only then 3436 * do start the gc_thread. 3437 */ 3438 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 3439 /* After POR, we can run background GC thread.*/ 3440 err = f2fs_start_gc_thread(sbi); 3441 if (err) 3442 goto sync_free_meta; 3443 } 3444 kvfree(options); 3445 3446 /* recover broken superblock */ 3447 if (recovery) { 3448 err = f2fs_commit_super(sbi, true); 3449 f2fs_msg(sb, KERN_INFO, 3450 "Try to recover %dth superblock, ret: %d", 3451 sbi->valid_super_block ? 1 : 2, err); 3452 } 3453 3454 f2fs_join_shrinker(sbi); 3455 3456 f2fs_tuning_parameters(sbi); 3457 3458 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx", 3459 cur_cp_version(F2FS_CKPT(sbi))); 3460 f2fs_update_time(sbi, CP_TIME); 3461 f2fs_update_time(sbi, REQ_TIME); 3462 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3463 return 0; 3464 3465 sync_free_meta: 3466 /* safe to flush all the data */ 3467 sync_filesystem(sbi->sb); 3468 retry_cnt = 0; 3469 3470 free_meta: 3471 #ifdef CONFIG_QUOTA 3472 f2fs_truncate_quota_inode_pages(sb); 3473 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 3474 f2fs_quota_off_umount(sbi->sb); 3475 #endif 3476 /* 3477 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 3478 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 3479 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 3480 * falls into an infinite loop in f2fs_sync_meta_pages(). 3481 */ 3482 truncate_inode_pages_final(META_MAPPING(sbi)); 3483 /* evict some inodes being cached by GC */ 3484 evict_inodes(sb); 3485 f2fs_unregister_sysfs(sbi); 3486 free_root_inode: 3487 dput(sb->s_root); 3488 sb->s_root = NULL; 3489 free_node_inode: 3490 f2fs_release_ino_entry(sbi, true); 3491 truncate_inode_pages_final(NODE_MAPPING(sbi)); 3492 iput(sbi->node_inode); 3493 sbi->node_inode = NULL; 3494 free_stats: 3495 f2fs_destroy_stats(sbi); 3496 free_nm: 3497 f2fs_destroy_node_manager(sbi); 3498 free_sm: 3499 f2fs_destroy_segment_manager(sbi); 3500 free_devices: 3501 destroy_device_list(sbi); 3502 kvfree(sbi->ckpt); 3503 free_meta_inode: 3504 make_bad_inode(sbi->meta_inode); 3505 iput(sbi->meta_inode); 3506 sbi->meta_inode = NULL; 3507 free_io_dummy: 3508 mempool_destroy(sbi->write_io_dummy); 3509 free_percpu: 3510 destroy_percpu_info(sbi); 3511 free_bio_info: 3512 for (i = 0; i < NR_PAGE_TYPE; i++) 3513 kvfree(sbi->write_io[i]); 3514 free_options: 3515 #ifdef CONFIG_QUOTA 3516 for (i = 0; i < MAXQUOTAS; i++) 3517 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 3518 #endif 3519 kvfree(options); 3520 free_sb_buf: 3521 kvfree(raw_super); 3522 free_sbi: 3523 if (sbi->s_chksum_driver) 3524 crypto_free_shash(sbi->s_chksum_driver); 3525 kvfree(sbi); 3526 3527 /* give only one another chance */ 3528 if (retry_cnt > 0 && skip_recovery) { 3529 retry_cnt--; 3530 shrink_dcache_sb(sb); 3531 goto try_onemore; 3532 } 3533 return err; 3534 } 3535 3536 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 3537 const char *dev_name, void *data) 3538 { 3539 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 3540 } 3541 3542 static void kill_f2fs_super(struct super_block *sb) 3543 { 3544 if (sb->s_root) { 3545 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3546 3547 set_sbi_flag(sbi, SBI_IS_CLOSE); 3548 f2fs_stop_gc_thread(sbi); 3549 f2fs_stop_discard_thread(sbi); 3550 3551 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 3552 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3553 struct cp_control cpc = { 3554 .reason = CP_UMOUNT, 3555 }; 3556 f2fs_write_checkpoint(sbi, &cpc); 3557 } 3558 3559 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 3560 sb->s_flags &= ~SB_RDONLY; 3561 } 3562 kill_block_super(sb); 3563 } 3564 3565 static struct file_system_type f2fs_fs_type = { 3566 .owner = THIS_MODULE, 3567 .name = "f2fs", 3568 .mount = f2fs_mount, 3569 .kill_sb = kill_f2fs_super, 3570 .fs_flags = FS_REQUIRES_DEV, 3571 }; 3572 MODULE_ALIAS_FS("f2fs"); 3573 3574 static int __init init_inodecache(void) 3575 { 3576 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 3577 sizeof(struct f2fs_inode_info), 0, 3578 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 3579 if (!f2fs_inode_cachep) 3580 return -ENOMEM; 3581 return 0; 3582 } 3583 3584 static void destroy_inodecache(void) 3585 { 3586 /* 3587 * Make sure all delayed rcu free inodes are flushed before we 3588 * destroy cache. 3589 */ 3590 rcu_barrier(); 3591 kmem_cache_destroy(f2fs_inode_cachep); 3592 } 3593 3594 static int __init init_f2fs_fs(void) 3595 { 3596 int err; 3597 3598 if (PAGE_SIZE != F2FS_BLKSIZE) { 3599 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 3600 PAGE_SIZE, F2FS_BLKSIZE); 3601 return -EINVAL; 3602 } 3603 3604 f2fs_build_trace_ios(); 3605 3606 err = init_inodecache(); 3607 if (err) 3608 goto fail; 3609 err = f2fs_create_node_manager_caches(); 3610 if (err) 3611 goto free_inodecache; 3612 err = f2fs_create_segment_manager_caches(); 3613 if (err) 3614 goto free_node_manager_caches; 3615 err = f2fs_create_checkpoint_caches(); 3616 if (err) 3617 goto free_segment_manager_caches; 3618 err = f2fs_create_extent_cache(); 3619 if (err) 3620 goto free_checkpoint_caches; 3621 err = f2fs_init_sysfs(); 3622 if (err) 3623 goto free_extent_cache; 3624 err = register_shrinker(&f2fs_shrinker_info); 3625 if (err) 3626 goto free_sysfs; 3627 err = register_filesystem(&f2fs_fs_type); 3628 if (err) 3629 goto free_shrinker; 3630 f2fs_create_root_stats(); 3631 err = f2fs_init_post_read_processing(); 3632 if (err) 3633 goto free_root_stats; 3634 return 0; 3635 3636 free_root_stats: 3637 f2fs_destroy_root_stats(); 3638 unregister_filesystem(&f2fs_fs_type); 3639 free_shrinker: 3640 unregister_shrinker(&f2fs_shrinker_info); 3641 free_sysfs: 3642 f2fs_exit_sysfs(); 3643 free_extent_cache: 3644 f2fs_destroy_extent_cache(); 3645 free_checkpoint_caches: 3646 f2fs_destroy_checkpoint_caches(); 3647 free_segment_manager_caches: 3648 f2fs_destroy_segment_manager_caches(); 3649 free_node_manager_caches: 3650 f2fs_destroy_node_manager_caches(); 3651 free_inodecache: 3652 destroy_inodecache(); 3653 fail: 3654 return err; 3655 } 3656 3657 static void __exit exit_f2fs_fs(void) 3658 { 3659 f2fs_destroy_post_read_processing(); 3660 f2fs_destroy_root_stats(); 3661 unregister_filesystem(&f2fs_fs_type); 3662 unregister_shrinker(&f2fs_shrinker_info); 3663 f2fs_exit_sysfs(); 3664 f2fs_destroy_extent_cache(); 3665 f2fs_destroy_checkpoint_caches(); 3666 f2fs_destroy_segment_manager_caches(); 3667 f2fs_destroy_node_manager_caches(); 3668 destroy_inodecache(); 3669 f2fs_destroy_trace_ios(); 3670 } 3671 3672 module_init(init_f2fs_fs) 3673 module_exit(exit_f2fs_fs) 3674 3675 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 3676 MODULE_DESCRIPTION("Flash Friendly File System"); 3677 MODULE_LICENSE("GPL"); 3678 3679