1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/statfs.h> 12 #include <linux/buffer_head.h> 13 #include <linux/backing-dev.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 #include <linux/unicode.h> 27 #include <linux/part_stat.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "gc.h" 34 #include "trace.h" 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/f2fs.h> 38 39 static struct kmem_cache *f2fs_inode_cachep; 40 41 #ifdef CONFIG_F2FS_FAULT_INJECTION 42 43 const char *f2fs_fault_name[FAULT_MAX] = { 44 [FAULT_KMALLOC] = "kmalloc", 45 [FAULT_KVMALLOC] = "kvmalloc", 46 [FAULT_PAGE_ALLOC] = "page alloc", 47 [FAULT_PAGE_GET] = "page get", 48 [FAULT_ALLOC_BIO] = "alloc bio", 49 [FAULT_ALLOC_NID] = "alloc nid", 50 [FAULT_ORPHAN] = "orphan", 51 [FAULT_BLOCK] = "no more block", 52 [FAULT_DIR_DEPTH] = "too big dir depth", 53 [FAULT_EVICT_INODE] = "evict_inode fail", 54 [FAULT_TRUNCATE] = "truncate fail", 55 [FAULT_READ_IO] = "read IO error", 56 [FAULT_CHECKPOINT] = "checkpoint error", 57 [FAULT_DISCARD] = "discard error", 58 [FAULT_WRITE_IO] = "write IO error", 59 }; 60 61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 62 unsigned int type) 63 { 64 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 65 66 if (rate) { 67 atomic_set(&ffi->inject_ops, 0); 68 ffi->inject_rate = rate; 69 } 70 71 if (type) 72 ffi->inject_type = type; 73 74 if (!rate && !type) 75 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 76 } 77 #endif 78 79 /* f2fs-wide shrinker description */ 80 static struct shrinker f2fs_shrinker_info = { 81 .scan_objects = f2fs_shrink_scan, 82 .count_objects = f2fs_shrink_count, 83 .seeks = DEFAULT_SEEKS, 84 }; 85 86 enum { 87 Opt_gc_background, 88 Opt_disable_roll_forward, 89 Opt_norecovery, 90 Opt_discard, 91 Opt_nodiscard, 92 Opt_noheap, 93 Opt_heap, 94 Opt_user_xattr, 95 Opt_nouser_xattr, 96 Opt_acl, 97 Opt_noacl, 98 Opt_active_logs, 99 Opt_disable_ext_identify, 100 Opt_inline_xattr, 101 Opt_noinline_xattr, 102 Opt_inline_xattr_size, 103 Opt_inline_data, 104 Opt_inline_dentry, 105 Opt_noinline_dentry, 106 Opt_flush_merge, 107 Opt_noflush_merge, 108 Opt_nobarrier, 109 Opt_fastboot, 110 Opt_extent_cache, 111 Opt_noextent_cache, 112 Opt_noinline_data, 113 Opt_data_flush, 114 Opt_reserve_root, 115 Opt_resgid, 116 Opt_resuid, 117 Opt_mode, 118 Opt_io_size_bits, 119 Opt_fault_injection, 120 Opt_fault_type, 121 Opt_lazytime, 122 Opt_nolazytime, 123 Opt_quota, 124 Opt_noquota, 125 Opt_usrquota, 126 Opt_grpquota, 127 Opt_prjquota, 128 Opt_usrjquota, 129 Opt_grpjquota, 130 Opt_prjjquota, 131 Opt_offusrjquota, 132 Opt_offgrpjquota, 133 Opt_offprjjquota, 134 Opt_jqfmt_vfsold, 135 Opt_jqfmt_vfsv0, 136 Opt_jqfmt_vfsv1, 137 Opt_whint, 138 Opt_alloc, 139 Opt_fsync, 140 Opt_test_dummy_encryption, 141 Opt_checkpoint_disable, 142 Opt_checkpoint_disable_cap, 143 Opt_checkpoint_disable_cap_perc, 144 Opt_checkpoint_enable, 145 Opt_compress_algorithm, 146 Opt_compress_log_size, 147 Opt_compress_extension, 148 Opt_err, 149 }; 150 151 static match_table_t f2fs_tokens = { 152 {Opt_gc_background, "background_gc=%s"}, 153 {Opt_disable_roll_forward, "disable_roll_forward"}, 154 {Opt_norecovery, "norecovery"}, 155 {Opt_discard, "discard"}, 156 {Opt_nodiscard, "nodiscard"}, 157 {Opt_noheap, "no_heap"}, 158 {Opt_heap, "heap"}, 159 {Opt_user_xattr, "user_xattr"}, 160 {Opt_nouser_xattr, "nouser_xattr"}, 161 {Opt_acl, "acl"}, 162 {Opt_noacl, "noacl"}, 163 {Opt_active_logs, "active_logs=%u"}, 164 {Opt_disable_ext_identify, "disable_ext_identify"}, 165 {Opt_inline_xattr, "inline_xattr"}, 166 {Opt_noinline_xattr, "noinline_xattr"}, 167 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 168 {Opt_inline_data, "inline_data"}, 169 {Opt_inline_dentry, "inline_dentry"}, 170 {Opt_noinline_dentry, "noinline_dentry"}, 171 {Opt_flush_merge, "flush_merge"}, 172 {Opt_noflush_merge, "noflush_merge"}, 173 {Opt_nobarrier, "nobarrier"}, 174 {Opt_fastboot, "fastboot"}, 175 {Opt_extent_cache, "extent_cache"}, 176 {Opt_noextent_cache, "noextent_cache"}, 177 {Opt_noinline_data, "noinline_data"}, 178 {Opt_data_flush, "data_flush"}, 179 {Opt_reserve_root, "reserve_root=%u"}, 180 {Opt_resgid, "resgid=%u"}, 181 {Opt_resuid, "resuid=%u"}, 182 {Opt_mode, "mode=%s"}, 183 {Opt_io_size_bits, "io_bits=%u"}, 184 {Opt_fault_injection, "fault_injection=%u"}, 185 {Opt_fault_type, "fault_type=%u"}, 186 {Opt_lazytime, "lazytime"}, 187 {Opt_nolazytime, "nolazytime"}, 188 {Opt_quota, "quota"}, 189 {Opt_noquota, "noquota"}, 190 {Opt_usrquota, "usrquota"}, 191 {Opt_grpquota, "grpquota"}, 192 {Opt_prjquota, "prjquota"}, 193 {Opt_usrjquota, "usrjquota=%s"}, 194 {Opt_grpjquota, "grpjquota=%s"}, 195 {Opt_prjjquota, "prjjquota=%s"}, 196 {Opt_offusrjquota, "usrjquota="}, 197 {Opt_offgrpjquota, "grpjquota="}, 198 {Opt_offprjjquota, "prjjquota="}, 199 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 200 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 201 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 202 {Opt_whint, "whint_mode=%s"}, 203 {Opt_alloc, "alloc_mode=%s"}, 204 {Opt_fsync, "fsync_mode=%s"}, 205 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 206 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 207 {Opt_checkpoint_disable, "checkpoint=disable"}, 208 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 209 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 210 {Opt_checkpoint_enable, "checkpoint=enable"}, 211 {Opt_compress_algorithm, "compress_algorithm=%s"}, 212 {Opt_compress_log_size, "compress_log_size=%u"}, 213 {Opt_compress_extension, "compress_extension=%s"}, 214 {Opt_err, NULL}, 215 }; 216 217 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 218 { 219 struct va_format vaf; 220 va_list args; 221 int level; 222 223 va_start(args, fmt); 224 225 level = printk_get_level(fmt); 226 vaf.fmt = printk_skip_level(fmt); 227 vaf.va = &args; 228 printk("%c%cF2FS-fs (%s): %pV\n", 229 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 230 231 va_end(args); 232 } 233 234 #ifdef CONFIG_UNICODE 235 static const struct f2fs_sb_encodings { 236 __u16 magic; 237 char *name; 238 char *version; 239 } f2fs_sb_encoding_map[] = { 240 {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"}, 241 }; 242 243 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb, 244 const struct f2fs_sb_encodings **encoding, 245 __u16 *flags) 246 { 247 __u16 magic = le16_to_cpu(sb->s_encoding); 248 int i; 249 250 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 251 if (magic == f2fs_sb_encoding_map[i].magic) 252 break; 253 254 if (i >= ARRAY_SIZE(f2fs_sb_encoding_map)) 255 return -EINVAL; 256 257 *encoding = &f2fs_sb_encoding_map[i]; 258 *flags = le16_to_cpu(sb->s_encoding_flags); 259 260 return 0; 261 } 262 #endif 263 264 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 265 { 266 block_t limit = min((sbi->user_block_count << 1) / 1000, 267 sbi->user_block_count - sbi->reserved_blocks); 268 269 /* limit is 0.2% */ 270 if (test_opt(sbi, RESERVE_ROOT) && 271 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 272 F2FS_OPTION(sbi).root_reserved_blocks = limit; 273 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 274 F2FS_OPTION(sbi).root_reserved_blocks); 275 } 276 if (!test_opt(sbi, RESERVE_ROOT) && 277 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 278 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 279 !gid_eq(F2FS_OPTION(sbi).s_resgid, 280 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 281 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 282 from_kuid_munged(&init_user_ns, 283 F2FS_OPTION(sbi).s_resuid), 284 from_kgid_munged(&init_user_ns, 285 F2FS_OPTION(sbi).s_resgid)); 286 } 287 288 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 289 { 290 if (!F2FS_OPTION(sbi).unusable_cap_perc) 291 return; 292 293 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 294 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 295 else 296 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 297 F2FS_OPTION(sbi).unusable_cap_perc; 298 299 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 300 F2FS_OPTION(sbi).unusable_cap, 301 F2FS_OPTION(sbi).unusable_cap_perc); 302 } 303 304 static void init_once(void *foo) 305 { 306 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 307 308 inode_init_once(&fi->vfs_inode); 309 } 310 311 #ifdef CONFIG_QUOTA 312 static const char * const quotatypes[] = INITQFNAMES; 313 #define QTYPE2NAME(t) (quotatypes[t]) 314 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 315 substring_t *args) 316 { 317 struct f2fs_sb_info *sbi = F2FS_SB(sb); 318 char *qname; 319 int ret = -EINVAL; 320 321 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 322 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 323 return -EINVAL; 324 } 325 if (f2fs_sb_has_quota_ino(sbi)) { 326 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 327 return 0; 328 } 329 330 qname = match_strdup(args); 331 if (!qname) { 332 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 333 return -ENOMEM; 334 } 335 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 336 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 337 ret = 0; 338 else 339 f2fs_err(sbi, "%s quota file already specified", 340 QTYPE2NAME(qtype)); 341 goto errout; 342 } 343 if (strchr(qname, '/')) { 344 f2fs_err(sbi, "quotafile must be on filesystem root"); 345 goto errout; 346 } 347 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 348 set_opt(sbi, QUOTA); 349 return 0; 350 errout: 351 kvfree(qname); 352 return ret; 353 } 354 355 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 356 { 357 struct f2fs_sb_info *sbi = F2FS_SB(sb); 358 359 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 360 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 361 return -EINVAL; 362 } 363 kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 364 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 365 return 0; 366 } 367 368 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 369 { 370 /* 371 * We do the test below only for project quotas. 'usrquota' and 372 * 'grpquota' mount options are allowed even without quota feature 373 * to support legacy quotas in quota files. 374 */ 375 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 376 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 377 return -1; 378 } 379 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 380 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 381 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 382 if (test_opt(sbi, USRQUOTA) && 383 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 384 clear_opt(sbi, USRQUOTA); 385 386 if (test_opt(sbi, GRPQUOTA) && 387 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 388 clear_opt(sbi, GRPQUOTA); 389 390 if (test_opt(sbi, PRJQUOTA) && 391 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 392 clear_opt(sbi, PRJQUOTA); 393 394 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 395 test_opt(sbi, PRJQUOTA)) { 396 f2fs_err(sbi, "old and new quota format mixing"); 397 return -1; 398 } 399 400 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 401 f2fs_err(sbi, "journaled quota format not specified"); 402 return -1; 403 } 404 } 405 406 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 407 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 408 F2FS_OPTION(sbi).s_jquota_fmt = 0; 409 } 410 return 0; 411 } 412 #endif 413 414 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 415 const char *opt, 416 const substring_t *arg, 417 bool is_remount) 418 { 419 struct f2fs_sb_info *sbi = F2FS_SB(sb); 420 #ifdef CONFIG_FS_ENCRYPTION 421 int err; 422 423 if (!f2fs_sb_has_encrypt(sbi)) { 424 f2fs_err(sbi, "Encrypt feature is off"); 425 return -EINVAL; 426 } 427 428 /* 429 * This mount option is just for testing, and it's not worthwhile to 430 * implement the extra complexity (e.g. RCU protection) that would be 431 * needed to allow it to be set or changed during remount. We do allow 432 * it to be specified during remount, but only if there is no change. 433 */ 434 if (is_remount && !F2FS_OPTION(sbi).dummy_enc_ctx.ctx) { 435 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 436 return -EINVAL; 437 } 438 err = fscrypt_set_test_dummy_encryption( 439 sb, arg, &F2FS_OPTION(sbi).dummy_enc_ctx); 440 if (err) { 441 if (err == -EEXIST) 442 f2fs_warn(sbi, 443 "Can't change test_dummy_encryption on remount"); 444 else if (err == -EINVAL) 445 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 446 opt); 447 else 448 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 449 opt, err); 450 return -EINVAL; 451 } 452 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 453 #else 454 f2fs_warn(sbi, "Test dummy encryption mount option ignored"); 455 #endif 456 return 0; 457 } 458 459 static int parse_options(struct super_block *sb, char *options, bool is_remount) 460 { 461 struct f2fs_sb_info *sbi = F2FS_SB(sb); 462 substring_t args[MAX_OPT_ARGS]; 463 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 464 char *p, *name; 465 int arg = 0, ext_cnt; 466 kuid_t uid; 467 kgid_t gid; 468 int ret; 469 470 if (!options) 471 return 0; 472 473 while ((p = strsep(&options, ",")) != NULL) { 474 int token; 475 if (!*p) 476 continue; 477 /* 478 * Initialize args struct so we know whether arg was 479 * found; some options take optional arguments. 480 */ 481 args[0].to = args[0].from = NULL; 482 token = match_token(p, f2fs_tokens, args); 483 484 switch (token) { 485 case Opt_gc_background: 486 name = match_strdup(&args[0]); 487 488 if (!name) 489 return -ENOMEM; 490 if (!strcmp(name, "on")) { 491 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 492 } else if (!strcmp(name, "off")) { 493 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 494 } else if (!strcmp(name, "sync")) { 495 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 496 } else { 497 kvfree(name); 498 return -EINVAL; 499 } 500 kvfree(name); 501 break; 502 case Opt_disable_roll_forward: 503 set_opt(sbi, DISABLE_ROLL_FORWARD); 504 break; 505 case Opt_norecovery: 506 /* this option mounts f2fs with ro */ 507 set_opt(sbi, NORECOVERY); 508 if (!f2fs_readonly(sb)) 509 return -EINVAL; 510 break; 511 case Opt_discard: 512 set_opt(sbi, DISCARD); 513 break; 514 case Opt_nodiscard: 515 if (f2fs_sb_has_blkzoned(sbi)) { 516 f2fs_warn(sbi, "discard is required for zoned block devices"); 517 return -EINVAL; 518 } 519 clear_opt(sbi, DISCARD); 520 break; 521 case Opt_noheap: 522 set_opt(sbi, NOHEAP); 523 break; 524 case Opt_heap: 525 clear_opt(sbi, NOHEAP); 526 break; 527 #ifdef CONFIG_F2FS_FS_XATTR 528 case Opt_user_xattr: 529 set_opt(sbi, XATTR_USER); 530 break; 531 case Opt_nouser_xattr: 532 clear_opt(sbi, XATTR_USER); 533 break; 534 case Opt_inline_xattr: 535 set_opt(sbi, INLINE_XATTR); 536 break; 537 case Opt_noinline_xattr: 538 clear_opt(sbi, INLINE_XATTR); 539 break; 540 case Opt_inline_xattr_size: 541 if (args->from && match_int(args, &arg)) 542 return -EINVAL; 543 set_opt(sbi, INLINE_XATTR_SIZE); 544 F2FS_OPTION(sbi).inline_xattr_size = arg; 545 break; 546 #else 547 case Opt_user_xattr: 548 f2fs_info(sbi, "user_xattr options not supported"); 549 break; 550 case Opt_nouser_xattr: 551 f2fs_info(sbi, "nouser_xattr options not supported"); 552 break; 553 case Opt_inline_xattr: 554 f2fs_info(sbi, "inline_xattr options not supported"); 555 break; 556 case Opt_noinline_xattr: 557 f2fs_info(sbi, "noinline_xattr options not supported"); 558 break; 559 #endif 560 #ifdef CONFIG_F2FS_FS_POSIX_ACL 561 case Opt_acl: 562 set_opt(sbi, POSIX_ACL); 563 break; 564 case Opt_noacl: 565 clear_opt(sbi, POSIX_ACL); 566 break; 567 #else 568 case Opt_acl: 569 f2fs_info(sbi, "acl options not supported"); 570 break; 571 case Opt_noacl: 572 f2fs_info(sbi, "noacl options not supported"); 573 break; 574 #endif 575 case Opt_active_logs: 576 if (args->from && match_int(args, &arg)) 577 return -EINVAL; 578 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 579 return -EINVAL; 580 F2FS_OPTION(sbi).active_logs = arg; 581 break; 582 case Opt_disable_ext_identify: 583 set_opt(sbi, DISABLE_EXT_IDENTIFY); 584 break; 585 case Opt_inline_data: 586 set_opt(sbi, INLINE_DATA); 587 break; 588 case Opt_inline_dentry: 589 set_opt(sbi, INLINE_DENTRY); 590 break; 591 case Opt_noinline_dentry: 592 clear_opt(sbi, INLINE_DENTRY); 593 break; 594 case Opt_flush_merge: 595 set_opt(sbi, FLUSH_MERGE); 596 break; 597 case Opt_noflush_merge: 598 clear_opt(sbi, FLUSH_MERGE); 599 break; 600 case Opt_nobarrier: 601 set_opt(sbi, NOBARRIER); 602 break; 603 case Opt_fastboot: 604 set_opt(sbi, FASTBOOT); 605 break; 606 case Opt_extent_cache: 607 set_opt(sbi, EXTENT_CACHE); 608 break; 609 case Opt_noextent_cache: 610 clear_opt(sbi, EXTENT_CACHE); 611 break; 612 case Opt_noinline_data: 613 clear_opt(sbi, INLINE_DATA); 614 break; 615 case Opt_data_flush: 616 set_opt(sbi, DATA_FLUSH); 617 break; 618 case Opt_reserve_root: 619 if (args->from && match_int(args, &arg)) 620 return -EINVAL; 621 if (test_opt(sbi, RESERVE_ROOT)) { 622 f2fs_info(sbi, "Preserve previous reserve_root=%u", 623 F2FS_OPTION(sbi).root_reserved_blocks); 624 } else { 625 F2FS_OPTION(sbi).root_reserved_blocks = arg; 626 set_opt(sbi, RESERVE_ROOT); 627 } 628 break; 629 case Opt_resuid: 630 if (args->from && match_int(args, &arg)) 631 return -EINVAL; 632 uid = make_kuid(current_user_ns(), arg); 633 if (!uid_valid(uid)) { 634 f2fs_err(sbi, "Invalid uid value %d", arg); 635 return -EINVAL; 636 } 637 F2FS_OPTION(sbi).s_resuid = uid; 638 break; 639 case Opt_resgid: 640 if (args->from && match_int(args, &arg)) 641 return -EINVAL; 642 gid = make_kgid(current_user_ns(), arg); 643 if (!gid_valid(gid)) { 644 f2fs_err(sbi, "Invalid gid value %d", arg); 645 return -EINVAL; 646 } 647 F2FS_OPTION(sbi).s_resgid = gid; 648 break; 649 case Opt_mode: 650 name = match_strdup(&args[0]); 651 652 if (!name) 653 return -ENOMEM; 654 if (!strcmp(name, "adaptive")) { 655 if (f2fs_sb_has_blkzoned(sbi)) { 656 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 657 kvfree(name); 658 return -EINVAL; 659 } 660 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 661 } else if (!strcmp(name, "lfs")) { 662 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 663 } else { 664 kvfree(name); 665 return -EINVAL; 666 } 667 kvfree(name); 668 break; 669 case Opt_io_size_bits: 670 if (args->from && match_int(args, &arg)) 671 return -EINVAL; 672 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) { 673 f2fs_warn(sbi, "Not support %d, larger than %d", 674 1 << arg, BIO_MAX_PAGES); 675 return -EINVAL; 676 } 677 F2FS_OPTION(sbi).write_io_size_bits = arg; 678 break; 679 #ifdef CONFIG_F2FS_FAULT_INJECTION 680 case Opt_fault_injection: 681 if (args->from && match_int(args, &arg)) 682 return -EINVAL; 683 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 684 set_opt(sbi, FAULT_INJECTION); 685 break; 686 687 case Opt_fault_type: 688 if (args->from && match_int(args, &arg)) 689 return -EINVAL; 690 f2fs_build_fault_attr(sbi, 0, arg); 691 set_opt(sbi, FAULT_INJECTION); 692 break; 693 #else 694 case Opt_fault_injection: 695 f2fs_info(sbi, "fault_injection options not supported"); 696 break; 697 698 case Opt_fault_type: 699 f2fs_info(sbi, "fault_type options not supported"); 700 break; 701 #endif 702 case Opt_lazytime: 703 sb->s_flags |= SB_LAZYTIME; 704 break; 705 case Opt_nolazytime: 706 sb->s_flags &= ~SB_LAZYTIME; 707 break; 708 #ifdef CONFIG_QUOTA 709 case Opt_quota: 710 case Opt_usrquota: 711 set_opt(sbi, USRQUOTA); 712 break; 713 case Opt_grpquota: 714 set_opt(sbi, GRPQUOTA); 715 break; 716 case Opt_prjquota: 717 set_opt(sbi, PRJQUOTA); 718 break; 719 case Opt_usrjquota: 720 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 721 if (ret) 722 return ret; 723 break; 724 case Opt_grpjquota: 725 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 726 if (ret) 727 return ret; 728 break; 729 case Opt_prjjquota: 730 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 731 if (ret) 732 return ret; 733 break; 734 case Opt_offusrjquota: 735 ret = f2fs_clear_qf_name(sb, USRQUOTA); 736 if (ret) 737 return ret; 738 break; 739 case Opt_offgrpjquota: 740 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 741 if (ret) 742 return ret; 743 break; 744 case Opt_offprjjquota: 745 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 746 if (ret) 747 return ret; 748 break; 749 case Opt_jqfmt_vfsold: 750 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 751 break; 752 case Opt_jqfmt_vfsv0: 753 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 754 break; 755 case Opt_jqfmt_vfsv1: 756 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 757 break; 758 case Opt_noquota: 759 clear_opt(sbi, QUOTA); 760 clear_opt(sbi, USRQUOTA); 761 clear_opt(sbi, GRPQUOTA); 762 clear_opt(sbi, PRJQUOTA); 763 break; 764 #else 765 case Opt_quota: 766 case Opt_usrquota: 767 case Opt_grpquota: 768 case Opt_prjquota: 769 case Opt_usrjquota: 770 case Opt_grpjquota: 771 case Opt_prjjquota: 772 case Opt_offusrjquota: 773 case Opt_offgrpjquota: 774 case Opt_offprjjquota: 775 case Opt_jqfmt_vfsold: 776 case Opt_jqfmt_vfsv0: 777 case Opt_jqfmt_vfsv1: 778 case Opt_noquota: 779 f2fs_info(sbi, "quota operations not supported"); 780 break; 781 #endif 782 case Opt_whint: 783 name = match_strdup(&args[0]); 784 if (!name) 785 return -ENOMEM; 786 if (!strcmp(name, "user-based")) { 787 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 788 } else if (!strcmp(name, "off")) { 789 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 790 } else if (!strcmp(name, "fs-based")) { 791 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 792 } else { 793 kvfree(name); 794 return -EINVAL; 795 } 796 kvfree(name); 797 break; 798 case Opt_alloc: 799 name = match_strdup(&args[0]); 800 if (!name) 801 return -ENOMEM; 802 803 if (!strcmp(name, "default")) { 804 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 805 } else if (!strcmp(name, "reuse")) { 806 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 807 } else { 808 kvfree(name); 809 return -EINVAL; 810 } 811 kvfree(name); 812 break; 813 case Opt_fsync: 814 name = match_strdup(&args[0]); 815 if (!name) 816 return -ENOMEM; 817 if (!strcmp(name, "posix")) { 818 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 819 } else if (!strcmp(name, "strict")) { 820 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 821 } else if (!strcmp(name, "nobarrier")) { 822 F2FS_OPTION(sbi).fsync_mode = 823 FSYNC_MODE_NOBARRIER; 824 } else { 825 kvfree(name); 826 return -EINVAL; 827 } 828 kvfree(name); 829 break; 830 case Opt_test_dummy_encryption: 831 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 832 is_remount); 833 if (ret) 834 return ret; 835 break; 836 case Opt_checkpoint_disable_cap_perc: 837 if (args->from && match_int(args, &arg)) 838 return -EINVAL; 839 if (arg < 0 || arg > 100) 840 return -EINVAL; 841 F2FS_OPTION(sbi).unusable_cap_perc = arg; 842 set_opt(sbi, DISABLE_CHECKPOINT); 843 break; 844 case Opt_checkpoint_disable_cap: 845 if (args->from && match_int(args, &arg)) 846 return -EINVAL; 847 F2FS_OPTION(sbi).unusable_cap = arg; 848 set_opt(sbi, DISABLE_CHECKPOINT); 849 break; 850 case Opt_checkpoint_disable: 851 set_opt(sbi, DISABLE_CHECKPOINT); 852 break; 853 case Opt_checkpoint_enable: 854 clear_opt(sbi, DISABLE_CHECKPOINT); 855 break; 856 case Opt_compress_algorithm: 857 if (!f2fs_sb_has_compression(sbi)) { 858 f2fs_err(sbi, "Compression feature if off"); 859 return -EINVAL; 860 } 861 name = match_strdup(&args[0]); 862 if (!name) 863 return -ENOMEM; 864 if (!strcmp(name, "lzo")) { 865 F2FS_OPTION(sbi).compress_algorithm = 866 COMPRESS_LZO; 867 } else if (!strcmp(name, "lz4")) { 868 F2FS_OPTION(sbi).compress_algorithm = 869 COMPRESS_LZ4; 870 } else if (!strcmp(name, "zstd")) { 871 F2FS_OPTION(sbi).compress_algorithm = 872 COMPRESS_ZSTD; 873 } else if (!strcmp(name, "lzo-rle")) { 874 F2FS_OPTION(sbi).compress_algorithm = 875 COMPRESS_LZORLE; 876 } else { 877 kfree(name); 878 return -EINVAL; 879 } 880 kfree(name); 881 break; 882 case Opt_compress_log_size: 883 if (!f2fs_sb_has_compression(sbi)) { 884 f2fs_err(sbi, "Compression feature is off"); 885 return -EINVAL; 886 } 887 if (args->from && match_int(args, &arg)) 888 return -EINVAL; 889 if (arg < MIN_COMPRESS_LOG_SIZE || 890 arg > MAX_COMPRESS_LOG_SIZE) { 891 f2fs_err(sbi, 892 "Compress cluster log size is out of range"); 893 return -EINVAL; 894 } 895 F2FS_OPTION(sbi).compress_log_size = arg; 896 break; 897 case Opt_compress_extension: 898 if (!f2fs_sb_has_compression(sbi)) { 899 f2fs_err(sbi, "Compression feature is off"); 900 return -EINVAL; 901 } 902 name = match_strdup(&args[0]); 903 if (!name) 904 return -ENOMEM; 905 906 ext = F2FS_OPTION(sbi).extensions; 907 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 908 909 if (strlen(name) >= F2FS_EXTENSION_LEN || 910 ext_cnt >= COMPRESS_EXT_NUM) { 911 f2fs_err(sbi, 912 "invalid extension length/number"); 913 kfree(name); 914 return -EINVAL; 915 } 916 917 strcpy(ext[ext_cnt], name); 918 F2FS_OPTION(sbi).compress_ext_cnt++; 919 kfree(name); 920 break; 921 default: 922 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 923 p); 924 return -EINVAL; 925 } 926 } 927 #ifdef CONFIG_QUOTA 928 if (f2fs_check_quota_options(sbi)) 929 return -EINVAL; 930 #else 931 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 932 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 933 return -EINVAL; 934 } 935 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 936 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 937 return -EINVAL; 938 } 939 #endif 940 #ifndef CONFIG_UNICODE 941 if (f2fs_sb_has_casefold(sbi)) { 942 f2fs_err(sbi, 943 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 944 return -EINVAL; 945 } 946 #endif 947 948 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) { 949 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO", 950 F2FS_IO_SIZE_KB(sbi)); 951 return -EINVAL; 952 } 953 954 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 955 int min_size, max_size; 956 957 if (!f2fs_sb_has_extra_attr(sbi) || 958 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 959 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 960 return -EINVAL; 961 } 962 if (!test_opt(sbi, INLINE_XATTR)) { 963 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 964 return -EINVAL; 965 } 966 967 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 968 max_size = MAX_INLINE_XATTR_SIZE; 969 970 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 971 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 972 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 973 min_size, max_size); 974 return -EINVAL; 975 } 976 } 977 978 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) { 979 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n"); 980 return -EINVAL; 981 } 982 983 /* Not pass down write hints if the number of active logs is lesser 984 * than NR_CURSEG_TYPE. 985 */ 986 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 987 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 988 return 0; 989 } 990 991 static struct inode *f2fs_alloc_inode(struct super_block *sb) 992 { 993 struct f2fs_inode_info *fi; 994 995 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 996 if (!fi) 997 return NULL; 998 999 init_once((void *) fi); 1000 1001 /* Initialize f2fs-specific inode info */ 1002 atomic_set(&fi->dirty_pages, 0); 1003 init_rwsem(&fi->i_sem); 1004 spin_lock_init(&fi->i_size_lock); 1005 INIT_LIST_HEAD(&fi->dirty_list); 1006 INIT_LIST_HEAD(&fi->gdirty_list); 1007 INIT_LIST_HEAD(&fi->inmem_ilist); 1008 INIT_LIST_HEAD(&fi->inmem_pages); 1009 mutex_init(&fi->inmem_lock); 1010 init_rwsem(&fi->i_gc_rwsem[READ]); 1011 init_rwsem(&fi->i_gc_rwsem[WRITE]); 1012 init_rwsem(&fi->i_mmap_sem); 1013 init_rwsem(&fi->i_xattr_sem); 1014 1015 /* Will be used by directory only */ 1016 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1017 1018 return &fi->vfs_inode; 1019 } 1020 1021 static int f2fs_drop_inode(struct inode *inode) 1022 { 1023 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1024 int ret; 1025 1026 /* 1027 * during filesystem shutdown, if checkpoint is disabled, 1028 * drop useless meta/node dirty pages. 1029 */ 1030 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1031 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1032 inode->i_ino == F2FS_META_INO(sbi)) { 1033 trace_f2fs_drop_inode(inode, 1); 1034 return 1; 1035 } 1036 } 1037 1038 /* 1039 * This is to avoid a deadlock condition like below. 1040 * writeback_single_inode(inode) 1041 * - f2fs_write_data_page 1042 * - f2fs_gc -> iput -> evict 1043 * - inode_wait_for_writeback(inode) 1044 */ 1045 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1046 if (!inode->i_nlink && !is_bad_inode(inode)) { 1047 /* to avoid evict_inode call simultaneously */ 1048 atomic_inc(&inode->i_count); 1049 spin_unlock(&inode->i_lock); 1050 1051 /* some remained atomic pages should discarded */ 1052 if (f2fs_is_atomic_file(inode)) 1053 f2fs_drop_inmem_pages(inode); 1054 1055 /* should remain fi->extent_tree for writepage */ 1056 f2fs_destroy_extent_node(inode); 1057 1058 sb_start_intwrite(inode->i_sb); 1059 f2fs_i_size_write(inode, 0); 1060 1061 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1062 inode, NULL, 0, DATA); 1063 truncate_inode_pages_final(inode->i_mapping); 1064 1065 if (F2FS_HAS_BLOCKS(inode)) 1066 f2fs_truncate(inode); 1067 1068 sb_end_intwrite(inode->i_sb); 1069 1070 spin_lock(&inode->i_lock); 1071 atomic_dec(&inode->i_count); 1072 } 1073 trace_f2fs_drop_inode(inode, 0); 1074 return 0; 1075 } 1076 ret = generic_drop_inode(inode); 1077 if (!ret) 1078 ret = fscrypt_drop_inode(inode); 1079 trace_f2fs_drop_inode(inode, ret); 1080 return ret; 1081 } 1082 1083 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1084 { 1085 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1086 int ret = 0; 1087 1088 spin_lock(&sbi->inode_lock[DIRTY_META]); 1089 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1090 ret = 1; 1091 } else { 1092 set_inode_flag(inode, FI_DIRTY_INODE); 1093 stat_inc_dirty_inode(sbi, DIRTY_META); 1094 } 1095 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1096 list_add_tail(&F2FS_I(inode)->gdirty_list, 1097 &sbi->inode_list[DIRTY_META]); 1098 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1099 } 1100 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1101 return ret; 1102 } 1103 1104 void f2fs_inode_synced(struct inode *inode) 1105 { 1106 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1107 1108 spin_lock(&sbi->inode_lock[DIRTY_META]); 1109 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1110 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1111 return; 1112 } 1113 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1114 list_del_init(&F2FS_I(inode)->gdirty_list); 1115 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1116 } 1117 clear_inode_flag(inode, FI_DIRTY_INODE); 1118 clear_inode_flag(inode, FI_AUTO_RECOVER); 1119 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1120 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1121 } 1122 1123 /* 1124 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1125 * 1126 * We should call set_dirty_inode to write the dirty inode through write_inode. 1127 */ 1128 static void f2fs_dirty_inode(struct inode *inode, int flags) 1129 { 1130 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1131 1132 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1133 inode->i_ino == F2FS_META_INO(sbi)) 1134 return; 1135 1136 if (flags == I_DIRTY_TIME) 1137 return; 1138 1139 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1140 clear_inode_flag(inode, FI_AUTO_RECOVER); 1141 1142 f2fs_inode_dirtied(inode, false); 1143 } 1144 1145 static void f2fs_free_inode(struct inode *inode) 1146 { 1147 fscrypt_free_inode(inode); 1148 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1149 } 1150 1151 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1152 { 1153 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1154 percpu_counter_destroy(&sbi->total_valid_inode_count); 1155 } 1156 1157 static void destroy_device_list(struct f2fs_sb_info *sbi) 1158 { 1159 int i; 1160 1161 for (i = 0; i < sbi->s_ndevs; i++) { 1162 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1163 #ifdef CONFIG_BLK_DEV_ZONED 1164 kvfree(FDEV(i).blkz_seq); 1165 #endif 1166 } 1167 kvfree(sbi->devs); 1168 } 1169 1170 static void f2fs_put_super(struct super_block *sb) 1171 { 1172 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1173 int i; 1174 bool dropped; 1175 1176 f2fs_quota_off_umount(sb); 1177 1178 /* prevent remaining shrinker jobs */ 1179 mutex_lock(&sbi->umount_mutex); 1180 1181 /* 1182 * We don't need to do checkpoint when superblock is clean. 1183 * But, the previous checkpoint was not done by umount, it needs to do 1184 * clean checkpoint again. 1185 */ 1186 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1187 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1188 struct cp_control cpc = { 1189 .reason = CP_UMOUNT, 1190 }; 1191 f2fs_write_checkpoint(sbi, &cpc); 1192 } 1193 1194 /* be sure to wait for any on-going discard commands */ 1195 dropped = f2fs_issue_discard_timeout(sbi); 1196 1197 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1198 !sbi->discard_blks && !dropped) { 1199 struct cp_control cpc = { 1200 .reason = CP_UMOUNT | CP_TRIMMED, 1201 }; 1202 f2fs_write_checkpoint(sbi, &cpc); 1203 } 1204 1205 /* 1206 * normally superblock is clean, so we need to release this. 1207 * In addition, EIO will skip do checkpoint, we need this as well. 1208 */ 1209 f2fs_release_ino_entry(sbi, true); 1210 1211 f2fs_leave_shrinker(sbi); 1212 mutex_unlock(&sbi->umount_mutex); 1213 1214 /* our cp_error case, we can wait for any writeback page */ 1215 f2fs_flush_merged_writes(sbi); 1216 1217 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1218 1219 f2fs_bug_on(sbi, sbi->fsync_node_num); 1220 1221 iput(sbi->node_inode); 1222 sbi->node_inode = NULL; 1223 1224 iput(sbi->meta_inode); 1225 sbi->meta_inode = NULL; 1226 1227 /* 1228 * iput() can update stat information, if f2fs_write_checkpoint() 1229 * above failed with error. 1230 */ 1231 f2fs_destroy_stats(sbi); 1232 1233 /* destroy f2fs internal modules */ 1234 f2fs_destroy_node_manager(sbi); 1235 f2fs_destroy_segment_manager(sbi); 1236 1237 f2fs_destroy_post_read_wq(sbi); 1238 1239 kvfree(sbi->ckpt); 1240 1241 f2fs_unregister_sysfs(sbi); 1242 1243 sb->s_fs_info = NULL; 1244 if (sbi->s_chksum_driver) 1245 crypto_free_shash(sbi->s_chksum_driver); 1246 kvfree(sbi->raw_super); 1247 1248 destroy_device_list(sbi); 1249 f2fs_destroy_xattr_caches(sbi); 1250 mempool_destroy(sbi->write_io_dummy); 1251 #ifdef CONFIG_QUOTA 1252 for (i = 0; i < MAXQUOTAS; i++) 1253 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1254 #endif 1255 fscrypt_free_dummy_context(&F2FS_OPTION(sbi).dummy_enc_ctx); 1256 destroy_percpu_info(sbi); 1257 for (i = 0; i < NR_PAGE_TYPE; i++) 1258 kvfree(sbi->write_io[i]); 1259 #ifdef CONFIG_UNICODE 1260 utf8_unload(sbi->s_encoding); 1261 #endif 1262 kvfree(sbi); 1263 } 1264 1265 int f2fs_sync_fs(struct super_block *sb, int sync) 1266 { 1267 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1268 int err = 0; 1269 1270 if (unlikely(f2fs_cp_error(sbi))) 1271 return 0; 1272 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1273 return 0; 1274 1275 trace_f2fs_sync_fs(sb, sync); 1276 1277 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1278 return -EAGAIN; 1279 1280 if (sync) { 1281 struct cp_control cpc; 1282 1283 cpc.reason = __get_cp_reason(sbi); 1284 1285 down_write(&sbi->gc_lock); 1286 err = f2fs_write_checkpoint(sbi, &cpc); 1287 up_write(&sbi->gc_lock); 1288 } 1289 f2fs_trace_ios(NULL, 1); 1290 1291 return err; 1292 } 1293 1294 static int f2fs_freeze(struct super_block *sb) 1295 { 1296 if (f2fs_readonly(sb)) 1297 return 0; 1298 1299 /* IO error happened before */ 1300 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1301 return -EIO; 1302 1303 /* must be clean, since sync_filesystem() was already called */ 1304 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1305 return -EINVAL; 1306 return 0; 1307 } 1308 1309 static int f2fs_unfreeze(struct super_block *sb) 1310 { 1311 return 0; 1312 } 1313 1314 #ifdef CONFIG_QUOTA 1315 static int f2fs_statfs_project(struct super_block *sb, 1316 kprojid_t projid, struct kstatfs *buf) 1317 { 1318 struct kqid qid; 1319 struct dquot *dquot; 1320 u64 limit; 1321 u64 curblock; 1322 1323 qid = make_kqid_projid(projid); 1324 dquot = dqget(sb, qid); 1325 if (IS_ERR(dquot)) 1326 return PTR_ERR(dquot); 1327 spin_lock(&dquot->dq_dqb_lock); 1328 1329 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1330 dquot->dq_dqb.dqb_bhardlimit); 1331 if (limit) 1332 limit >>= sb->s_blocksize_bits; 1333 1334 if (limit && buf->f_blocks > limit) { 1335 curblock = (dquot->dq_dqb.dqb_curspace + 1336 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1337 buf->f_blocks = limit; 1338 buf->f_bfree = buf->f_bavail = 1339 (buf->f_blocks > curblock) ? 1340 (buf->f_blocks - curblock) : 0; 1341 } 1342 1343 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1344 dquot->dq_dqb.dqb_ihardlimit); 1345 1346 if (limit && buf->f_files > limit) { 1347 buf->f_files = limit; 1348 buf->f_ffree = 1349 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1350 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1351 } 1352 1353 spin_unlock(&dquot->dq_dqb_lock); 1354 dqput(dquot); 1355 return 0; 1356 } 1357 #endif 1358 1359 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1360 { 1361 struct super_block *sb = dentry->d_sb; 1362 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1363 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1364 block_t total_count, user_block_count, start_count; 1365 u64 avail_node_count; 1366 1367 total_count = le64_to_cpu(sbi->raw_super->block_count); 1368 user_block_count = sbi->user_block_count; 1369 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1370 buf->f_type = F2FS_SUPER_MAGIC; 1371 buf->f_bsize = sbi->blocksize; 1372 1373 buf->f_blocks = total_count - start_count; 1374 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1375 sbi->current_reserved_blocks; 1376 1377 spin_lock(&sbi->stat_lock); 1378 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1379 buf->f_bfree = 0; 1380 else 1381 buf->f_bfree -= sbi->unusable_block_count; 1382 spin_unlock(&sbi->stat_lock); 1383 1384 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1385 buf->f_bavail = buf->f_bfree - 1386 F2FS_OPTION(sbi).root_reserved_blocks; 1387 else 1388 buf->f_bavail = 0; 1389 1390 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1391 1392 if (avail_node_count > user_block_count) { 1393 buf->f_files = user_block_count; 1394 buf->f_ffree = buf->f_bavail; 1395 } else { 1396 buf->f_files = avail_node_count; 1397 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1398 buf->f_bavail); 1399 } 1400 1401 buf->f_namelen = F2FS_NAME_LEN; 1402 buf->f_fsid.val[0] = (u32)id; 1403 buf->f_fsid.val[1] = (u32)(id >> 32); 1404 1405 #ifdef CONFIG_QUOTA 1406 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1407 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1408 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1409 } 1410 #endif 1411 return 0; 1412 } 1413 1414 static inline void f2fs_show_quota_options(struct seq_file *seq, 1415 struct super_block *sb) 1416 { 1417 #ifdef CONFIG_QUOTA 1418 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1419 1420 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1421 char *fmtname = ""; 1422 1423 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1424 case QFMT_VFS_OLD: 1425 fmtname = "vfsold"; 1426 break; 1427 case QFMT_VFS_V0: 1428 fmtname = "vfsv0"; 1429 break; 1430 case QFMT_VFS_V1: 1431 fmtname = "vfsv1"; 1432 break; 1433 } 1434 seq_printf(seq, ",jqfmt=%s", fmtname); 1435 } 1436 1437 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1438 seq_show_option(seq, "usrjquota", 1439 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1440 1441 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1442 seq_show_option(seq, "grpjquota", 1443 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1444 1445 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1446 seq_show_option(seq, "prjjquota", 1447 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1448 #endif 1449 } 1450 1451 static inline void f2fs_show_compress_options(struct seq_file *seq, 1452 struct super_block *sb) 1453 { 1454 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1455 char *algtype = ""; 1456 int i; 1457 1458 if (!f2fs_sb_has_compression(sbi)) 1459 return; 1460 1461 switch (F2FS_OPTION(sbi).compress_algorithm) { 1462 case COMPRESS_LZO: 1463 algtype = "lzo"; 1464 break; 1465 case COMPRESS_LZ4: 1466 algtype = "lz4"; 1467 break; 1468 case COMPRESS_ZSTD: 1469 algtype = "zstd"; 1470 break; 1471 case COMPRESS_LZORLE: 1472 algtype = "lzo-rle"; 1473 break; 1474 } 1475 seq_printf(seq, ",compress_algorithm=%s", algtype); 1476 1477 seq_printf(seq, ",compress_log_size=%u", 1478 F2FS_OPTION(sbi).compress_log_size); 1479 1480 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1481 seq_printf(seq, ",compress_extension=%s", 1482 F2FS_OPTION(sbi).extensions[i]); 1483 } 1484 } 1485 1486 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1487 { 1488 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1489 1490 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1491 seq_printf(seq, ",background_gc=%s", "sync"); 1492 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1493 seq_printf(seq, ",background_gc=%s", "on"); 1494 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1495 seq_printf(seq, ",background_gc=%s", "off"); 1496 1497 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1498 seq_puts(seq, ",disable_roll_forward"); 1499 if (test_opt(sbi, NORECOVERY)) 1500 seq_puts(seq, ",norecovery"); 1501 if (test_opt(sbi, DISCARD)) 1502 seq_puts(seq, ",discard"); 1503 else 1504 seq_puts(seq, ",nodiscard"); 1505 if (test_opt(sbi, NOHEAP)) 1506 seq_puts(seq, ",no_heap"); 1507 else 1508 seq_puts(seq, ",heap"); 1509 #ifdef CONFIG_F2FS_FS_XATTR 1510 if (test_opt(sbi, XATTR_USER)) 1511 seq_puts(seq, ",user_xattr"); 1512 else 1513 seq_puts(seq, ",nouser_xattr"); 1514 if (test_opt(sbi, INLINE_XATTR)) 1515 seq_puts(seq, ",inline_xattr"); 1516 else 1517 seq_puts(seq, ",noinline_xattr"); 1518 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1519 seq_printf(seq, ",inline_xattr_size=%u", 1520 F2FS_OPTION(sbi).inline_xattr_size); 1521 #endif 1522 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1523 if (test_opt(sbi, POSIX_ACL)) 1524 seq_puts(seq, ",acl"); 1525 else 1526 seq_puts(seq, ",noacl"); 1527 #endif 1528 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1529 seq_puts(seq, ",disable_ext_identify"); 1530 if (test_opt(sbi, INLINE_DATA)) 1531 seq_puts(seq, ",inline_data"); 1532 else 1533 seq_puts(seq, ",noinline_data"); 1534 if (test_opt(sbi, INLINE_DENTRY)) 1535 seq_puts(seq, ",inline_dentry"); 1536 else 1537 seq_puts(seq, ",noinline_dentry"); 1538 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1539 seq_puts(seq, ",flush_merge"); 1540 if (test_opt(sbi, NOBARRIER)) 1541 seq_puts(seq, ",nobarrier"); 1542 if (test_opt(sbi, FASTBOOT)) 1543 seq_puts(seq, ",fastboot"); 1544 if (test_opt(sbi, EXTENT_CACHE)) 1545 seq_puts(seq, ",extent_cache"); 1546 else 1547 seq_puts(seq, ",noextent_cache"); 1548 if (test_opt(sbi, DATA_FLUSH)) 1549 seq_puts(seq, ",data_flush"); 1550 1551 seq_puts(seq, ",mode="); 1552 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 1553 seq_puts(seq, "adaptive"); 1554 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 1555 seq_puts(seq, "lfs"); 1556 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1557 if (test_opt(sbi, RESERVE_ROOT)) 1558 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1559 F2FS_OPTION(sbi).root_reserved_blocks, 1560 from_kuid_munged(&init_user_ns, 1561 F2FS_OPTION(sbi).s_resuid), 1562 from_kgid_munged(&init_user_ns, 1563 F2FS_OPTION(sbi).s_resgid)); 1564 if (F2FS_IO_SIZE_BITS(sbi)) 1565 seq_printf(seq, ",io_bits=%u", 1566 F2FS_OPTION(sbi).write_io_size_bits); 1567 #ifdef CONFIG_F2FS_FAULT_INJECTION 1568 if (test_opt(sbi, FAULT_INJECTION)) { 1569 seq_printf(seq, ",fault_injection=%u", 1570 F2FS_OPTION(sbi).fault_info.inject_rate); 1571 seq_printf(seq, ",fault_type=%u", 1572 F2FS_OPTION(sbi).fault_info.inject_type); 1573 } 1574 #endif 1575 #ifdef CONFIG_QUOTA 1576 if (test_opt(sbi, QUOTA)) 1577 seq_puts(seq, ",quota"); 1578 if (test_opt(sbi, USRQUOTA)) 1579 seq_puts(seq, ",usrquota"); 1580 if (test_opt(sbi, GRPQUOTA)) 1581 seq_puts(seq, ",grpquota"); 1582 if (test_opt(sbi, PRJQUOTA)) 1583 seq_puts(seq, ",prjquota"); 1584 #endif 1585 f2fs_show_quota_options(seq, sbi->sb); 1586 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1587 seq_printf(seq, ",whint_mode=%s", "user-based"); 1588 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1589 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1590 1591 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 1592 1593 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1594 seq_printf(seq, ",alloc_mode=%s", "default"); 1595 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1596 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1597 1598 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1599 seq_printf(seq, ",checkpoint=disable:%u", 1600 F2FS_OPTION(sbi).unusable_cap); 1601 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1602 seq_printf(seq, ",fsync_mode=%s", "posix"); 1603 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1604 seq_printf(seq, ",fsync_mode=%s", "strict"); 1605 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1606 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1607 1608 f2fs_show_compress_options(seq, sbi->sb); 1609 return 0; 1610 } 1611 1612 static void default_options(struct f2fs_sb_info *sbi) 1613 { 1614 /* init some FS parameters */ 1615 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE; 1616 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1617 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1618 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1619 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1620 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1621 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1622 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 1623 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 1624 F2FS_OPTION(sbi).compress_ext_cnt = 0; 1625 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 1626 1627 set_opt(sbi, INLINE_XATTR); 1628 set_opt(sbi, INLINE_DATA); 1629 set_opt(sbi, INLINE_DENTRY); 1630 set_opt(sbi, EXTENT_CACHE); 1631 set_opt(sbi, NOHEAP); 1632 clear_opt(sbi, DISABLE_CHECKPOINT); 1633 F2FS_OPTION(sbi).unusable_cap = 0; 1634 sbi->sb->s_flags |= SB_LAZYTIME; 1635 set_opt(sbi, FLUSH_MERGE); 1636 set_opt(sbi, DISCARD); 1637 if (f2fs_sb_has_blkzoned(sbi)) 1638 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 1639 else 1640 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 1641 1642 #ifdef CONFIG_F2FS_FS_XATTR 1643 set_opt(sbi, XATTR_USER); 1644 #endif 1645 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1646 set_opt(sbi, POSIX_ACL); 1647 #endif 1648 1649 f2fs_build_fault_attr(sbi, 0, 0); 1650 } 1651 1652 #ifdef CONFIG_QUOTA 1653 static int f2fs_enable_quotas(struct super_block *sb); 1654 #endif 1655 1656 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 1657 { 1658 unsigned int s_flags = sbi->sb->s_flags; 1659 struct cp_control cpc; 1660 int err = 0; 1661 int ret; 1662 block_t unusable; 1663 1664 if (s_flags & SB_RDONLY) { 1665 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 1666 return -EINVAL; 1667 } 1668 sbi->sb->s_flags |= SB_ACTIVE; 1669 1670 f2fs_update_time(sbi, DISABLE_TIME); 1671 1672 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 1673 down_write(&sbi->gc_lock); 1674 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1675 if (err == -ENODATA) { 1676 err = 0; 1677 break; 1678 } 1679 if (err && err != -EAGAIN) 1680 break; 1681 } 1682 1683 ret = sync_filesystem(sbi->sb); 1684 if (ret || err) { 1685 err = ret ? ret: err; 1686 goto restore_flag; 1687 } 1688 1689 unusable = f2fs_get_unusable_blocks(sbi); 1690 if (f2fs_disable_cp_again(sbi, unusable)) { 1691 err = -EAGAIN; 1692 goto restore_flag; 1693 } 1694 1695 down_write(&sbi->gc_lock); 1696 cpc.reason = CP_PAUSE; 1697 set_sbi_flag(sbi, SBI_CP_DISABLED); 1698 err = f2fs_write_checkpoint(sbi, &cpc); 1699 if (err) 1700 goto out_unlock; 1701 1702 spin_lock(&sbi->stat_lock); 1703 sbi->unusable_block_count = unusable; 1704 spin_unlock(&sbi->stat_lock); 1705 1706 out_unlock: 1707 up_write(&sbi->gc_lock); 1708 restore_flag: 1709 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 1710 return err; 1711 } 1712 1713 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 1714 { 1715 down_write(&sbi->gc_lock); 1716 f2fs_dirty_to_prefree(sbi); 1717 1718 clear_sbi_flag(sbi, SBI_CP_DISABLED); 1719 set_sbi_flag(sbi, SBI_IS_DIRTY); 1720 up_write(&sbi->gc_lock); 1721 1722 f2fs_sync_fs(sbi->sb, 1); 1723 } 1724 1725 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1726 { 1727 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1728 struct f2fs_mount_info org_mount_opt; 1729 unsigned long old_sb_flags; 1730 int err; 1731 bool need_restart_gc = false; 1732 bool need_stop_gc = false; 1733 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1734 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); 1735 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 1736 bool checkpoint_changed; 1737 #ifdef CONFIG_QUOTA 1738 int i, j; 1739 #endif 1740 1741 /* 1742 * Save the old mount options in case we 1743 * need to restore them. 1744 */ 1745 org_mount_opt = sbi->mount_opt; 1746 old_sb_flags = sb->s_flags; 1747 1748 #ifdef CONFIG_QUOTA 1749 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1750 for (i = 0; i < MAXQUOTAS; i++) { 1751 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1752 org_mount_opt.s_qf_names[i] = 1753 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1754 GFP_KERNEL); 1755 if (!org_mount_opt.s_qf_names[i]) { 1756 for (j = 0; j < i; j++) 1757 kvfree(org_mount_opt.s_qf_names[j]); 1758 return -ENOMEM; 1759 } 1760 } else { 1761 org_mount_opt.s_qf_names[i] = NULL; 1762 } 1763 } 1764 #endif 1765 1766 /* recover superblocks we couldn't write due to previous RO mount */ 1767 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1768 err = f2fs_commit_super(sbi, false); 1769 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 1770 err); 1771 if (!err) 1772 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1773 } 1774 1775 default_options(sbi); 1776 1777 /* parse mount options */ 1778 err = parse_options(sb, data, true); 1779 if (err) 1780 goto restore_opts; 1781 checkpoint_changed = 1782 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); 1783 1784 /* 1785 * Previous and new state of filesystem is RO, 1786 * so skip checking GC and FLUSH_MERGE conditions. 1787 */ 1788 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1789 goto skip; 1790 1791 #ifdef CONFIG_QUOTA 1792 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1793 err = dquot_suspend(sb, -1); 1794 if (err < 0) 1795 goto restore_opts; 1796 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 1797 /* dquot_resume needs RW */ 1798 sb->s_flags &= ~SB_RDONLY; 1799 if (sb_any_quota_suspended(sb)) { 1800 dquot_resume(sb, -1); 1801 } else if (f2fs_sb_has_quota_ino(sbi)) { 1802 err = f2fs_enable_quotas(sb); 1803 if (err) 1804 goto restore_opts; 1805 } 1806 } 1807 #endif 1808 /* disallow enable/disable extent_cache dynamically */ 1809 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1810 err = -EINVAL; 1811 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 1812 goto restore_opts; 1813 } 1814 1815 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 1816 err = -EINVAL; 1817 f2fs_warn(sbi, "switch io_bits option is not allowed"); 1818 goto restore_opts; 1819 } 1820 1821 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 1822 err = -EINVAL; 1823 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 1824 goto restore_opts; 1825 } 1826 1827 /* 1828 * We stop the GC thread if FS is mounted as RO 1829 * or if background_gc = off is passed in mount 1830 * option. Also sync the filesystem. 1831 */ 1832 if ((*flags & SB_RDONLY) || 1833 F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) { 1834 if (sbi->gc_thread) { 1835 f2fs_stop_gc_thread(sbi); 1836 need_restart_gc = true; 1837 } 1838 } else if (!sbi->gc_thread) { 1839 err = f2fs_start_gc_thread(sbi); 1840 if (err) 1841 goto restore_opts; 1842 need_stop_gc = true; 1843 } 1844 1845 if (*flags & SB_RDONLY || 1846 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 1847 writeback_inodes_sb(sb, WB_REASON_SYNC); 1848 sync_inodes_sb(sb); 1849 1850 set_sbi_flag(sbi, SBI_IS_DIRTY); 1851 set_sbi_flag(sbi, SBI_IS_CLOSE); 1852 f2fs_sync_fs(sb, 1); 1853 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1854 } 1855 1856 if (checkpoint_changed) { 1857 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 1858 err = f2fs_disable_checkpoint(sbi); 1859 if (err) 1860 goto restore_gc; 1861 } else { 1862 f2fs_enable_checkpoint(sbi); 1863 } 1864 } 1865 1866 /* 1867 * We stop issue flush thread if FS is mounted as RO 1868 * or if flush_merge is not passed in mount option. 1869 */ 1870 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1871 clear_opt(sbi, FLUSH_MERGE); 1872 f2fs_destroy_flush_cmd_control(sbi, false); 1873 } else { 1874 err = f2fs_create_flush_cmd_control(sbi); 1875 if (err) 1876 goto restore_gc; 1877 } 1878 skip: 1879 #ifdef CONFIG_QUOTA 1880 /* Release old quota file names */ 1881 for (i = 0; i < MAXQUOTAS; i++) 1882 kvfree(org_mount_opt.s_qf_names[i]); 1883 #endif 1884 /* Update the POSIXACL Flag */ 1885 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 1886 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 1887 1888 limit_reserve_root(sbi); 1889 adjust_unusable_cap_perc(sbi); 1890 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 1891 return 0; 1892 restore_gc: 1893 if (need_restart_gc) { 1894 if (f2fs_start_gc_thread(sbi)) 1895 f2fs_warn(sbi, "background gc thread has stopped"); 1896 } else if (need_stop_gc) { 1897 f2fs_stop_gc_thread(sbi); 1898 } 1899 restore_opts: 1900 #ifdef CONFIG_QUOTA 1901 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 1902 for (i = 0; i < MAXQUOTAS; i++) { 1903 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1904 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 1905 } 1906 #endif 1907 sbi->mount_opt = org_mount_opt; 1908 sb->s_flags = old_sb_flags; 1909 return err; 1910 } 1911 1912 #ifdef CONFIG_QUOTA 1913 /* Read data from quotafile */ 1914 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 1915 size_t len, loff_t off) 1916 { 1917 struct inode *inode = sb_dqopt(sb)->files[type]; 1918 struct address_space *mapping = inode->i_mapping; 1919 block_t blkidx = F2FS_BYTES_TO_BLK(off); 1920 int offset = off & (sb->s_blocksize - 1); 1921 int tocopy; 1922 size_t toread; 1923 loff_t i_size = i_size_read(inode); 1924 struct page *page; 1925 char *kaddr; 1926 1927 if (off > i_size) 1928 return 0; 1929 1930 if (off + len > i_size) 1931 len = i_size - off; 1932 toread = len; 1933 while (toread > 0) { 1934 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 1935 repeat: 1936 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 1937 if (IS_ERR(page)) { 1938 if (PTR_ERR(page) == -ENOMEM) { 1939 congestion_wait(BLK_RW_ASYNC, 1940 DEFAULT_IO_TIMEOUT); 1941 goto repeat; 1942 } 1943 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1944 return PTR_ERR(page); 1945 } 1946 1947 lock_page(page); 1948 1949 if (unlikely(page->mapping != mapping)) { 1950 f2fs_put_page(page, 1); 1951 goto repeat; 1952 } 1953 if (unlikely(!PageUptodate(page))) { 1954 f2fs_put_page(page, 1); 1955 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1956 return -EIO; 1957 } 1958 1959 kaddr = kmap_atomic(page); 1960 memcpy(data, kaddr + offset, tocopy); 1961 kunmap_atomic(kaddr); 1962 f2fs_put_page(page, 1); 1963 1964 offset = 0; 1965 toread -= tocopy; 1966 data += tocopy; 1967 blkidx++; 1968 } 1969 return len; 1970 } 1971 1972 /* Write to quotafile */ 1973 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 1974 const char *data, size_t len, loff_t off) 1975 { 1976 struct inode *inode = sb_dqopt(sb)->files[type]; 1977 struct address_space *mapping = inode->i_mapping; 1978 const struct address_space_operations *a_ops = mapping->a_ops; 1979 int offset = off & (sb->s_blocksize - 1); 1980 size_t towrite = len; 1981 struct page *page; 1982 void *fsdata = NULL; 1983 char *kaddr; 1984 int err = 0; 1985 int tocopy; 1986 1987 while (towrite > 0) { 1988 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 1989 towrite); 1990 retry: 1991 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 1992 &page, &fsdata); 1993 if (unlikely(err)) { 1994 if (err == -ENOMEM) { 1995 congestion_wait(BLK_RW_ASYNC, 1996 DEFAULT_IO_TIMEOUT); 1997 goto retry; 1998 } 1999 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2000 break; 2001 } 2002 2003 kaddr = kmap_atomic(page); 2004 memcpy(kaddr + offset, data, tocopy); 2005 kunmap_atomic(kaddr); 2006 flush_dcache_page(page); 2007 2008 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2009 page, fsdata); 2010 offset = 0; 2011 towrite -= tocopy; 2012 off += tocopy; 2013 data += tocopy; 2014 cond_resched(); 2015 } 2016 2017 if (len == towrite) 2018 return err; 2019 inode->i_mtime = inode->i_ctime = current_time(inode); 2020 f2fs_mark_inode_dirty_sync(inode, false); 2021 return len - towrite; 2022 } 2023 2024 static struct dquot **f2fs_get_dquots(struct inode *inode) 2025 { 2026 return F2FS_I(inode)->i_dquot; 2027 } 2028 2029 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2030 { 2031 return &F2FS_I(inode)->i_reserved_quota; 2032 } 2033 2034 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2035 { 2036 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2037 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2038 return 0; 2039 } 2040 2041 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2042 F2FS_OPTION(sbi).s_jquota_fmt, type); 2043 } 2044 2045 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2046 { 2047 int enabled = 0; 2048 int i, err; 2049 2050 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2051 err = f2fs_enable_quotas(sbi->sb); 2052 if (err) { 2053 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2054 return 0; 2055 } 2056 return 1; 2057 } 2058 2059 for (i = 0; i < MAXQUOTAS; i++) { 2060 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2061 err = f2fs_quota_on_mount(sbi, i); 2062 if (!err) { 2063 enabled = 1; 2064 continue; 2065 } 2066 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2067 err, i); 2068 } 2069 } 2070 return enabled; 2071 } 2072 2073 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2074 unsigned int flags) 2075 { 2076 struct inode *qf_inode; 2077 unsigned long qf_inum; 2078 int err; 2079 2080 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2081 2082 qf_inum = f2fs_qf_ino(sb, type); 2083 if (!qf_inum) 2084 return -EPERM; 2085 2086 qf_inode = f2fs_iget(sb, qf_inum); 2087 if (IS_ERR(qf_inode)) { 2088 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2089 return PTR_ERR(qf_inode); 2090 } 2091 2092 /* Don't account quota for quota files to avoid recursion */ 2093 qf_inode->i_flags |= S_NOQUOTA; 2094 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2095 iput(qf_inode); 2096 return err; 2097 } 2098 2099 static int f2fs_enable_quotas(struct super_block *sb) 2100 { 2101 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2102 int type, err = 0; 2103 unsigned long qf_inum; 2104 bool quota_mopt[MAXQUOTAS] = { 2105 test_opt(sbi, USRQUOTA), 2106 test_opt(sbi, GRPQUOTA), 2107 test_opt(sbi, PRJQUOTA), 2108 }; 2109 2110 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2111 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2112 return 0; 2113 } 2114 2115 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2116 2117 for (type = 0; type < MAXQUOTAS; type++) { 2118 qf_inum = f2fs_qf_ino(sb, type); 2119 if (qf_inum) { 2120 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2121 DQUOT_USAGE_ENABLED | 2122 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2123 if (err) { 2124 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2125 type, err); 2126 for (type--; type >= 0; type--) 2127 dquot_quota_off(sb, type); 2128 set_sbi_flag(F2FS_SB(sb), 2129 SBI_QUOTA_NEED_REPAIR); 2130 return err; 2131 } 2132 } 2133 } 2134 return 0; 2135 } 2136 2137 int f2fs_quota_sync(struct super_block *sb, int type) 2138 { 2139 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2140 struct quota_info *dqopt = sb_dqopt(sb); 2141 int cnt; 2142 int ret; 2143 2144 /* 2145 * do_quotactl 2146 * f2fs_quota_sync 2147 * down_read(quota_sem) 2148 * dquot_writeback_dquots() 2149 * f2fs_dquot_commit 2150 * block_operation 2151 * down_read(quota_sem) 2152 */ 2153 f2fs_lock_op(sbi); 2154 2155 down_read(&sbi->quota_sem); 2156 ret = dquot_writeback_dquots(sb, type); 2157 if (ret) 2158 goto out; 2159 2160 /* 2161 * Now when everything is written we can discard the pagecache so 2162 * that userspace sees the changes. 2163 */ 2164 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2165 struct address_space *mapping; 2166 2167 if (type != -1 && cnt != type) 2168 continue; 2169 if (!sb_has_quota_active(sb, cnt)) 2170 continue; 2171 2172 mapping = dqopt->files[cnt]->i_mapping; 2173 2174 ret = filemap_fdatawrite(mapping); 2175 if (ret) 2176 goto out; 2177 2178 /* if we are using journalled quota */ 2179 if (is_journalled_quota(sbi)) 2180 continue; 2181 2182 ret = filemap_fdatawait(mapping); 2183 if (ret) 2184 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2185 2186 inode_lock(dqopt->files[cnt]); 2187 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 2188 inode_unlock(dqopt->files[cnt]); 2189 } 2190 out: 2191 if (ret) 2192 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2193 up_read(&sbi->quota_sem); 2194 f2fs_unlock_op(sbi); 2195 return ret; 2196 } 2197 2198 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2199 const struct path *path) 2200 { 2201 struct inode *inode; 2202 int err; 2203 2204 /* if quota sysfile exists, deny enabling quota with specific file */ 2205 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2206 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2207 return -EBUSY; 2208 } 2209 2210 err = f2fs_quota_sync(sb, type); 2211 if (err) 2212 return err; 2213 2214 err = dquot_quota_on(sb, type, format_id, path); 2215 if (err) 2216 return err; 2217 2218 inode = d_inode(path->dentry); 2219 2220 inode_lock(inode); 2221 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2222 f2fs_set_inode_flags(inode); 2223 inode_unlock(inode); 2224 f2fs_mark_inode_dirty_sync(inode, false); 2225 2226 return 0; 2227 } 2228 2229 static int __f2fs_quota_off(struct super_block *sb, int type) 2230 { 2231 struct inode *inode = sb_dqopt(sb)->files[type]; 2232 int err; 2233 2234 if (!inode || !igrab(inode)) 2235 return dquot_quota_off(sb, type); 2236 2237 err = f2fs_quota_sync(sb, type); 2238 if (err) 2239 goto out_put; 2240 2241 err = dquot_quota_off(sb, type); 2242 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2243 goto out_put; 2244 2245 inode_lock(inode); 2246 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2247 f2fs_set_inode_flags(inode); 2248 inode_unlock(inode); 2249 f2fs_mark_inode_dirty_sync(inode, false); 2250 out_put: 2251 iput(inode); 2252 return err; 2253 } 2254 2255 static int f2fs_quota_off(struct super_block *sb, int type) 2256 { 2257 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2258 int err; 2259 2260 err = __f2fs_quota_off(sb, type); 2261 2262 /* 2263 * quotactl can shutdown journalled quota, result in inconsistence 2264 * between quota record and fs data by following updates, tag the 2265 * flag to let fsck be aware of it. 2266 */ 2267 if (is_journalled_quota(sbi)) 2268 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2269 return err; 2270 } 2271 2272 void f2fs_quota_off_umount(struct super_block *sb) 2273 { 2274 int type; 2275 int err; 2276 2277 for (type = 0; type < MAXQUOTAS; type++) { 2278 err = __f2fs_quota_off(sb, type); 2279 if (err) { 2280 int ret = dquot_quota_off(sb, type); 2281 2282 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 2283 type, err, ret); 2284 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2285 } 2286 } 2287 /* 2288 * In case of checkpoint=disable, we must flush quota blocks. 2289 * This can cause NULL exception for node_inode in end_io, since 2290 * put_super already dropped it. 2291 */ 2292 sync_filesystem(sb); 2293 } 2294 2295 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2296 { 2297 struct quota_info *dqopt = sb_dqopt(sb); 2298 int type; 2299 2300 for (type = 0; type < MAXQUOTAS; type++) { 2301 if (!dqopt->files[type]) 2302 continue; 2303 f2fs_inode_synced(dqopt->files[type]); 2304 } 2305 } 2306 2307 static int f2fs_dquot_commit(struct dquot *dquot) 2308 { 2309 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2310 int ret; 2311 2312 down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 2313 ret = dquot_commit(dquot); 2314 if (ret < 0) 2315 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2316 up_read(&sbi->quota_sem); 2317 return ret; 2318 } 2319 2320 static int f2fs_dquot_acquire(struct dquot *dquot) 2321 { 2322 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2323 int ret; 2324 2325 down_read(&sbi->quota_sem); 2326 ret = dquot_acquire(dquot); 2327 if (ret < 0) 2328 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2329 up_read(&sbi->quota_sem); 2330 return ret; 2331 } 2332 2333 static int f2fs_dquot_release(struct dquot *dquot) 2334 { 2335 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2336 int ret = dquot_release(dquot); 2337 2338 if (ret < 0) 2339 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2340 return ret; 2341 } 2342 2343 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2344 { 2345 struct super_block *sb = dquot->dq_sb; 2346 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2347 int ret = dquot_mark_dquot_dirty(dquot); 2348 2349 /* if we are using journalled quota */ 2350 if (is_journalled_quota(sbi)) 2351 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2352 2353 return ret; 2354 } 2355 2356 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2357 { 2358 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2359 int ret = dquot_commit_info(sb, type); 2360 2361 if (ret < 0) 2362 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2363 return ret; 2364 } 2365 2366 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2367 { 2368 *projid = F2FS_I(inode)->i_projid; 2369 return 0; 2370 } 2371 2372 static const struct dquot_operations f2fs_quota_operations = { 2373 .get_reserved_space = f2fs_get_reserved_space, 2374 .write_dquot = f2fs_dquot_commit, 2375 .acquire_dquot = f2fs_dquot_acquire, 2376 .release_dquot = f2fs_dquot_release, 2377 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2378 .write_info = f2fs_dquot_commit_info, 2379 .alloc_dquot = dquot_alloc, 2380 .destroy_dquot = dquot_destroy, 2381 .get_projid = f2fs_get_projid, 2382 .get_next_id = dquot_get_next_id, 2383 }; 2384 2385 static const struct quotactl_ops f2fs_quotactl_ops = { 2386 .quota_on = f2fs_quota_on, 2387 .quota_off = f2fs_quota_off, 2388 .quota_sync = f2fs_quota_sync, 2389 .get_state = dquot_get_state, 2390 .set_info = dquot_set_dqinfo, 2391 .get_dqblk = dquot_get_dqblk, 2392 .set_dqblk = dquot_set_dqblk, 2393 .get_nextdqblk = dquot_get_next_dqblk, 2394 }; 2395 #else 2396 int f2fs_quota_sync(struct super_block *sb, int type) 2397 { 2398 return 0; 2399 } 2400 2401 void f2fs_quota_off_umount(struct super_block *sb) 2402 { 2403 } 2404 #endif 2405 2406 static const struct super_operations f2fs_sops = { 2407 .alloc_inode = f2fs_alloc_inode, 2408 .free_inode = f2fs_free_inode, 2409 .drop_inode = f2fs_drop_inode, 2410 .write_inode = f2fs_write_inode, 2411 .dirty_inode = f2fs_dirty_inode, 2412 .show_options = f2fs_show_options, 2413 #ifdef CONFIG_QUOTA 2414 .quota_read = f2fs_quota_read, 2415 .quota_write = f2fs_quota_write, 2416 .get_dquots = f2fs_get_dquots, 2417 #endif 2418 .evict_inode = f2fs_evict_inode, 2419 .put_super = f2fs_put_super, 2420 .sync_fs = f2fs_sync_fs, 2421 .freeze_fs = f2fs_freeze, 2422 .unfreeze_fs = f2fs_unfreeze, 2423 .statfs = f2fs_statfs, 2424 .remount_fs = f2fs_remount, 2425 }; 2426 2427 #ifdef CONFIG_FS_ENCRYPTION 2428 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2429 { 2430 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2431 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2432 ctx, len, NULL); 2433 } 2434 2435 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2436 void *fs_data) 2437 { 2438 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2439 2440 /* 2441 * Encrypting the root directory is not allowed because fsck 2442 * expects lost+found directory to exist and remain unencrypted 2443 * if LOST_FOUND feature is enabled. 2444 * 2445 */ 2446 if (f2fs_sb_has_lost_found(sbi) && 2447 inode->i_ino == F2FS_ROOT_INO(sbi)) 2448 return -EPERM; 2449 2450 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2451 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2452 ctx, len, fs_data, XATTR_CREATE); 2453 } 2454 2455 static const union fscrypt_context * 2456 f2fs_get_dummy_context(struct super_block *sb) 2457 { 2458 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_ctx.ctx; 2459 } 2460 2461 static bool f2fs_has_stable_inodes(struct super_block *sb) 2462 { 2463 return true; 2464 } 2465 2466 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 2467 int *ino_bits_ret, int *lblk_bits_ret) 2468 { 2469 *ino_bits_ret = 8 * sizeof(nid_t); 2470 *lblk_bits_ret = 8 * sizeof(block_t); 2471 } 2472 2473 static const struct fscrypt_operations f2fs_cryptops = { 2474 .key_prefix = "f2fs:", 2475 .get_context = f2fs_get_context, 2476 .set_context = f2fs_set_context, 2477 .get_dummy_context = f2fs_get_dummy_context, 2478 .empty_dir = f2fs_empty_dir, 2479 .max_namelen = F2FS_NAME_LEN, 2480 .has_stable_inodes = f2fs_has_stable_inodes, 2481 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 2482 }; 2483 #endif 2484 2485 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 2486 u64 ino, u32 generation) 2487 { 2488 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2489 struct inode *inode; 2490 2491 if (f2fs_check_nid_range(sbi, ino)) 2492 return ERR_PTR(-ESTALE); 2493 2494 /* 2495 * f2fs_iget isn't quite right if the inode is currently unallocated! 2496 * However f2fs_iget currently does appropriate checks to handle stale 2497 * inodes so everything is OK. 2498 */ 2499 inode = f2fs_iget(sb, ino); 2500 if (IS_ERR(inode)) 2501 return ERR_CAST(inode); 2502 if (unlikely(generation && inode->i_generation != generation)) { 2503 /* we didn't find the right inode.. */ 2504 iput(inode); 2505 return ERR_PTR(-ESTALE); 2506 } 2507 return inode; 2508 } 2509 2510 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2511 int fh_len, int fh_type) 2512 { 2513 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 2514 f2fs_nfs_get_inode); 2515 } 2516 2517 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 2518 int fh_len, int fh_type) 2519 { 2520 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 2521 f2fs_nfs_get_inode); 2522 } 2523 2524 static const struct export_operations f2fs_export_ops = { 2525 .fh_to_dentry = f2fs_fh_to_dentry, 2526 .fh_to_parent = f2fs_fh_to_parent, 2527 .get_parent = f2fs_get_parent, 2528 }; 2529 2530 static loff_t max_file_blocks(void) 2531 { 2532 loff_t result = 0; 2533 loff_t leaf_count = DEF_ADDRS_PER_BLOCK; 2534 2535 /* 2536 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2537 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2538 * space in inode.i_addr, it will be more safe to reassign 2539 * result as zero. 2540 */ 2541 2542 /* two direct node blocks */ 2543 result += (leaf_count * 2); 2544 2545 /* two indirect node blocks */ 2546 leaf_count *= NIDS_PER_BLOCK; 2547 result += (leaf_count * 2); 2548 2549 /* one double indirect node block */ 2550 leaf_count *= NIDS_PER_BLOCK; 2551 result += leaf_count; 2552 2553 return result; 2554 } 2555 2556 static int __f2fs_commit_super(struct buffer_head *bh, 2557 struct f2fs_super_block *super) 2558 { 2559 lock_buffer(bh); 2560 if (super) 2561 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2562 set_buffer_dirty(bh); 2563 unlock_buffer(bh); 2564 2565 /* it's rare case, we can do fua all the time */ 2566 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2567 } 2568 2569 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2570 struct buffer_head *bh) 2571 { 2572 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2573 (bh->b_data + F2FS_SUPER_OFFSET); 2574 struct super_block *sb = sbi->sb; 2575 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2576 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2577 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2578 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2579 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2580 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2581 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2582 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2583 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2584 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2585 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2586 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2587 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2588 u64 main_end_blkaddr = main_blkaddr + 2589 (segment_count_main << log_blocks_per_seg); 2590 u64 seg_end_blkaddr = segment0_blkaddr + 2591 (segment_count << log_blocks_per_seg); 2592 2593 if (segment0_blkaddr != cp_blkaddr) { 2594 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2595 segment0_blkaddr, cp_blkaddr); 2596 return true; 2597 } 2598 2599 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2600 sit_blkaddr) { 2601 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2602 cp_blkaddr, sit_blkaddr, 2603 segment_count_ckpt << log_blocks_per_seg); 2604 return true; 2605 } 2606 2607 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2608 nat_blkaddr) { 2609 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2610 sit_blkaddr, nat_blkaddr, 2611 segment_count_sit << log_blocks_per_seg); 2612 return true; 2613 } 2614 2615 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2616 ssa_blkaddr) { 2617 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2618 nat_blkaddr, ssa_blkaddr, 2619 segment_count_nat << log_blocks_per_seg); 2620 return true; 2621 } 2622 2623 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2624 main_blkaddr) { 2625 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2626 ssa_blkaddr, main_blkaddr, 2627 segment_count_ssa << log_blocks_per_seg); 2628 return true; 2629 } 2630 2631 if (main_end_blkaddr > seg_end_blkaddr) { 2632 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 2633 main_blkaddr, 2634 segment0_blkaddr + 2635 (segment_count << log_blocks_per_seg), 2636 segment_count_main << log_blocks_per_seg); 2637 return true; 2638 } else if (main_end_blkaddr < seg_end_blkaddr) { 2639 int err = 0; 2640 char *res; 2641 2642 /* fix in-memory information all the time */ 2643 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2644 segment0_blkaddr) >> log_blocks_per_seg); 2645 2646 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2647 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2648 res = "internally"; 2649 } else { 2650 err = __f2fs_commit_super(bh, NULL); 2651 res = err ? "failed" : "done"; 2652 } 2653 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)", 2654 res, main_blkaddr, 2655 segment0_blkaddr + 2656 (segment_count << log_blocks_per_seg), 2657 segment_count_main << log_blocks_per_seg); 2658 if (err) 2659 return true; 2660 } 2661 return false; 2662 } 2663 2664 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2665 struct buffer_head *bh) 2666 { 2667 block_t segment_count, segs_per_sec, secs_per_zone; 2668 block_t total_sections, blocks_per_seg; 2669 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2670 (bh->b_data + F2FS_SUPER_OFFSET); 2671 unsigned int blocksize; 2672 size_t crc_offset = 0; 2673 __u32 crc = 0; 2674 2675 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 2676 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 2677 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2678 return -EINVAL; 2679 } 2680 2681 /* Check checksum_offset and crc in superblock */ 2682 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 2683 crc_offset = le32_to_cpu(raw_super->checksum_offset); 2684 if (crc_offset != 2685 offsetof(struct f2fs_super_block, crc)) { 2686 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 2687 crc_offset); 2688 return -EFSCORRUPTED; 2689 } 2690 crc = le32_to_cpu(raw_super->crc); 2691 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 2692 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 2693 return -EFSCORRUPTED; 2694 } 2695 } 2696 2697 /* Currently, support only 4KB page cache size */ 2698 if (F2FS_BLKSIZE != PAGE_SIZE) { 2699 f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB", 2700 PAGE_SIZE); 2701 return -EFSCORRUPTED; 2702 } 2703 2704 /* Currently, support only 4KB block size */ 2705 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 2706 if (blocksize != F2FS_BLKSIZE) { 2707 f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB", 2708 blocksize); 2709 return -EFSCORRUPTED; 2710 } 2711 2712 /* check log blocks per segment */ 2713 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2714 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 2715 le32_to_cpu(raw_super->log_blocks_per_seg)); 2716 return -EFSCORRUPTED; 2717 } 2718 2719 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2720 if (le32_to_cpu(raw_super->log_sectorsize) > 2721 F2FS_MAX_LOG_SECTOR_SIZE || 2722 le32_to_cpu(raw_super->log_sectorsize) < 2723 F2FS_MIN_LOG_SECTOR_SIZE) { 2724 f2fs_info(sbi, "Invalid log sectorsize (%u)", 2725 le32_to_cpu(raw_super->log_sectorsize)); 2726 return -EFSCORRUPTED; 2727 } 2728 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2729 le32_to_cpu(raw_super->log_sectorsize) != 2730 F2FS_MAX_LOG_SECTOR_SIZE) { 2731 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 2732 le32_to_cpu(raw_super->log_sectors_per_block), 2733 le32_to_cpu(raw_super->log_sectorsize)); 2734 return -EFSCORRUPTED; 2735 } 2736 2737 segment_count = le32_to_cpu(raw_super->segment_count); 2738 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2739 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2740 total_sections = le32_to_cpu(raw_super->section_count); 2741 2742 /* blocks_per_seg should be 512, given the above check */ 2743 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 2744 2745 if (segment_count > F2FS_MAX_SEGMENT || 2746 segment_count < F2FS_MIN_SEGMENTS) { 2747 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 2748 return -EFSCORRUPTED; 2749 } 2750 2751 if (total_sections > segment_count || 2752 total_sections < F2FS_MIN_SEGMENTS || 2753 segs_per_sec > segment_count || !segs_per_sec) { 2754 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 2755 segment_count, total_sections, segs_per_sec); 2756 return -EFSCORRUPTED; 2757 } 2758 2759 if ((segment_count / segs_per_sec) < total_sections) { 2760 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 2761 segment_count, segs_per_sec, total_sections); 2762 return -EFSCORRUPTED; 2763 } 2764 2765 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 2766 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 2767 segment_count, le64_to_cpu(raw_super->block_count)); 2768 return -EFSCORRUPTED; 2769 } 2770 2771 if (RDEV(0).path[0]) { 2772 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 2773 int i = 1; 2774 2775 while (i < MAX_DEVICES && RDEV(i).path[0]) { 2776 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 2777 i++; 2778 } 2779 if (segment_count != dev_seg_count) { 2780 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 2781 segment_count, dev_seg_count); 2782 return -EFSCORRUPTED; 2783 } 2784 } 2785 2786 if (secs_per_zone > total_sections || !secs_per_zone) { 2787 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 2788 secs_per_zone, total_sections); 2789 return -EFSCORRUPTED; 2790 } 2791 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 2792 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 2793 (le32_to_cpu(raw_super->extension_count) + 2794 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 2795 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 2796 le32_to_cpu(raw_super->extension_count), 2797 raw_super->hot_ext_count, 2798 F2FS_MAX_EXTENSION); 2799 return -EFSCORRUPTED; 2800 } 2801 2802 if (le32_to_cpu(raw_super->cp_payload) > 2803 (blocks_per_seg - F2FS_CP_PACKS)) { 2804 f2fs_info(sbi, "Insane cp_payload (%u > %u)", 2805 le32_to_cpu(raw_super->cp_payload), 2806 blocks_per_seg - F2FS_CP_PACKS); 2807 return -EFSCORRUPTED; 2808 } 2809 2810 /* check reserved ino info */ 2811 if (le32_to_cpu(raw_super->node_ino) != 1 || 2812 le32_to_cpu(raw_super->meta_ino) != 2 || 2813 le32_to_cpu(raw_super->root_ino) != 3) { 2814 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 2815 le32_to_cpu(raw_super->node_ino), 2816 le32_to_cpu(raw_super->meta_ino), 2817 le32_to_cpu(raw_super->root_ino)); 2818 return -EFSCORRUPTED; 2819 } 2820 2821 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 2822 if (sanity_check_area_boundary(sbi, bh)) 2823 return -EFSCORRUPTED; 2824 2825 return 0; 2826 } 2827 2828 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 2829 { 2830 unsigned int total, fsmeta; 2831 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2832 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2833 unsigned int ovp_segments, reserved_segments; 2834 unsigned int main_segs, blocks_per_seg; 2835 unsigned int sit_segs, nat_segs; 2836 unsigned int sit_bitmap_size, nat_bitmap_size; 2837 unsigned int log_blocks_per_seg; 2838 unsigned int segment_count_main; 2839 unsigned int cp_pack_start_sum, cp_payload; 2840 block_t user_block_count, valid_user_blocks; 2841 block_t avail_node_count, valid_node_count; 2842 int i, j; 2843 2844 total = le32_to_cpu(raw_super->segment_count); 2845 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 2846 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 2847 fsmeta += sit_segs; 2848 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 2849 fsmeta += nat_segs; 2850 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 2851 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 2852 2853 if (unlikely(fsmeta >= total)) 2854 return 1; 2855 2856 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2857 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2858 2859 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 2860 ovp_segments == 0 || reserved_segments == 0)) { 2861 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 2862 return 1; 2863 } 2864 2865 user_block_count = le64_to_cpu(ckpt->user_block_count); 2866 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2867 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2868 if (!user_block_count || user_block_count >= 2869 segment_count_main << log_blocks_per_seg) { 2870 f2fs_err(sbi, "Wrong user_block_count: %u", 2871 user_block_count); 2872 return 1; 2873 } 2874 2875 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 2876 if (valid_user_blocks > user_block_count) { 2877 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 2878 valid_user_blocks, user_block_count); 2879 return 1; 2880 } 2881 2882 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 2883 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 2884 if (valid_node_count > avail_node_count) { 2885 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 2886 valid_node_count, avail_node_count); 2887 return 1; 2888 } 2889 2890 main_segs = le32_to_cpu(raw_super->segment_count_main); 2891 blocks_per_seg = sbi->blocks_per_seg; 2892 2893 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2894 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 2895 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 2896 return 1; 2897 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 2898 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2899 le32_to_cpu(ckpt->cur_node_segno[j])) { 2900 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 2901 i, j, 2902 le32_to_cpu(ckpt->cur_node_segno[i])); 2903 return 1; 2904 } 2905 } 2906 } 2907 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 2908 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 2909 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 2910 return 1; 2911 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 2912 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 2913 le32_to_cpu(ckpt->cur_data_segno[j])) { 2914 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 2915 i, j, 2916 le32_to_cpu(ckpt->cur_data_segno[i])); 2917 return 1; 2918 } 2919 } 2920 } 2921 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2922 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 2923 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2924 le32_to_cpu(ckpt->cur_data_segno[j])) { 2925 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 2926 i, j, 2927 le32_to_cpu(ckpt->cur_node_segno[i])); 2928 return 1; 2929 } 2930 } 2931 } 2932 2933 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2934 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2935 2936 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 2937 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 2938 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 2939 sit_bitmap_size, nat_bitmap_size); 2940 return 1; 2941 } 2942 2943 cp_pack_start_sum = __start_sum_addr(sbi); 2944 cp_payload = __cp_payload(sbi); 2945 if (cp_pack_start_sum < cp_payload + 1 || 2946 cp_pack_start_sum > blocks_per_seg - 1 - 2947 NR_CURSEG_TYPE) { 2948 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 2949 cp_pack_start_sum); 2950 return 1; 2951 } 2952 2953 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 2954 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 2955 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 2956 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 2957 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 2958 le32_to_cpu(ckpt->checksum_offset)); 2959 return 1; 2960 } 2961 2962 if (unlikely(f2fs_cp_error(sbi))) { 2963 f2fs_err(sbi, "A bug case: need to run fsck"); 2964 return 1; 2965 } 2966 return 0; 2967 } 2968 2969 static void init_sb_info(struct f2fs_sb_info *sbi) 2970 { 2971 struct f2fs_super_block *raw_super = sbi->raw_super; 2972 int i; 2973 2974 sbi->log_sectors_per_block = 2975 le32_to_cpu(raw_super->log_sectors_per_block); 2976 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 2977 sbi->blocksize = 1 << sbi->log_blocksize; 2978 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2979 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 2980 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2981 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2982 sbi->total_sections = le32_to_cpu(raw_super->section_count); 2983 sbi->total_node_count = 2984 (le32_to_cpu(raw_super->segment_count_nat) / 2) 2985 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 2986 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 2987 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 2988 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 2989 sbi->cur_victim_sec = NULL_SECNO; 2990 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 2991 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 2992 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 2993 sbi->migration_granularity = sbi->segs_per_sec; 2994 2995 sbi->dir_level = DEF_DIR_LEVEL; 2996 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 2997 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 2998 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 2999 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3000 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3001 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3002 DEF_UMOUNT_DISCARD_TIMEOUT; 3003 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3004 3005 for (i = 0; i < NR_COUNT_TYPE; i++) 3006 atomic_set(&sbi->nr_pages[i], 0); 3007 3008 for (i = 0; i < META; i++) 3009 atomic_set(&sbi->wb_sync_req[i], 0); 3010 3011 INIT_LIST_HEAD(&sbi->s_list); 3012 mutex_init(&sbi->umount_mutex); 3013 init_rwsem(&sbi->io_order_lock); 3014 spin_lock_init(&sbi->cp_lock); 3015 3016 sbi->dirty_device = 0; 3017 spin_lock_init(&sbi->dev_lock); 3018 3019 init_rwsem(&sbi->sb_lock); 3020 init_rwsem(&sbi->pin_sem); 3021 } 3022 3023 static int init_percpu_info(struct f2fs_sb_info *sbi) 3024 { 3025 int err; 3026 3027 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3028 if (err) 3029 return err; 3030 3031 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3032 GFP_KERNEL); 3033 if (err) 3034 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3035 3036 return err; 3037 } 3038 3039 #ifdef CONFIG_BLK_DEV_ZONED 3040 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3041 void *data) 3042 { 3043 struct f2fs_dev_info *dev = data; 3044 3045 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) 3046 set_bit(idx, dev->blkz_seq); 3047 return 0; 3048 } 3049 3050 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3051 { 3052 struct block_device *bdev = FDEV(devi).bdev; 3053 sector_t nr_sectors = bdev->bd_part->nr_sects; 3054 int ret; 3055 3056 if (!f2fs_sb_has_blkzoned(sbi)) 3057 return 0; 3058 3059 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3060 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 3061 return -EINVAL; 3062 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 3063 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 3064 __ilog2_u32(sbi->blocks_per_blkz)) 3065 return -EINVAL; 3066 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 3067 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 3068 sbi->log_blocks_per_blkz; 3069 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 3070 FDEV(devi).nr_blkz++; 3071 3072 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3073 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3074 * sizeof(unsigned long), 3075 GFP_KERNEL); 3076 if (!FDEV(devi).blkz_seq) 3077 return -ENOMEM; 3078 3079 /* Get block zones type */ 3080 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3081 &FDEV(devi)); 3082 if (ret < 0) 3083 return ret; 3084 3085 return 0; 3086 } 3087 #endif 3088 3089 /* 3090 * Read f2fs raw super block. 3091 * Because we have two copies of super block, so read both of them 3092 * to get the first valid one. If any one of them is broken, we pass 3093 * them recovery flag back to the caller. 3094 */ 3095 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3096 struct f2fs_super_block **raw_super, 3097 int *valid_super_block, int *recovery) 3098 { 3099 struct super_block *sb = sbi->sb; 3100 int block; 3101 struct buffer_head *bh; 3102 struct f2fs_super_block *super; 3103 int err = 0; 3104 3105 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3106 if (!super) 3107 return -ENOMEM; 3108 3109 for (block = 0; block < 2; block++) { 3110 bh = sb_bread(sb, block); 3111 if (!bh) { 3112 f2fs_err(sbi, "Unable to read %dth superblock", 3113 block + 1); 3114 err = -EIO; 3115 *recovery = 1; 3116 continue; 3117 } 3118 3119 /* sanity checking of raw super */ 3120 err = sanity_check_raw_super(sbi, bh); 3121 if (err) { 3122 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3123 block + 1); 3124 brelse(bh); 3125 *recovery = 1; 3126 continue; 3127 } 3128 3129 if (!*raw_super) { 3130 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3131 sizeof(*super)); 3132 *valid_super_block = block; 3133 *raw_super = super; 3134 } 3135 brelse(bh); 3136 } 3137 3138 /* No valid superblock */ 3139 if (!*raw_super) 3140 kvfree(super); 3141 else 3142 err = 0; 3143 3144 return err; 3145 } 3146 3147 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3148 { 3149 struct buffer_head *bh; 3150 __u32 crc = 0; 3151 int err; 3152 3153 if ((recover && f2fs_readonly(sbi->sb)) || 3154 bdev_read_only(sbi->sb->s_bdev)) { 3155 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3156 return -EROFS; 3157 } 3158 3159 /* we should update superblock crc here */ 3160 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3161 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3162 offsetof(struct f2fs_super_block, crc)); 3163 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3164 } 3165 3166 /* write back-up superblock first */ 3167 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3168 if (!bh) 3169 return -EIO; 3170 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3171 brelse(bh); 3172 3173 /* if we are in recovery path, skip writing valid superblock */ 3174 if (recover || err) 3175 return err; 3176 3177 /* write current valid superblock */ 3178 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3179 if (!bh) 3180 return -EIO; 3181 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3182 brelse(bh); 3183 return err; 3184 } 3185 3186 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 3187 { 3188 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3189 unsigned int max_devices = MAX_DEVICES; 3190 int i; 3191 3192 /* Initialize single device information */ 3193 if (!RDEV(0).path[0]) { 3194 if (!bdev_is_zoned(sbi->sb->s_bdev)) 3195 return 0; 3196 max_devices = 1; 3197 } 3198 3199 /* 3200 * Initialize multiple devices information, or single 3201 * zoned block device information. 3202 */ 3203 sbi->devs = f2fs_kzalloc(sbi, 3204 array_size(max_devices, 3205 sizeof(struct f2fs_dev_info)), 3206 GFP_KERNEL); 3207 if (!sbi->devs) 3208 return -ENOMEM; 3209 3210 for (i = 0; i < max_devices; i++) { 3211 3212 if (i > 0 && !RDEV(i).path[0]) 3213 break; 3214 3215 if (max_devices == 1) { 3216 /* Single zoned block device mount */ 3217 FDEV(0).bdev = 3218 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 3219 sbi->sb->s_mode, sbi->sb->s_type); 3220 } else { 3221 /* Multi-device mount */ 3222 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 3223 FDEV(i).total_segments = 3224 le32_to_cpu(RDEV(i).total_segments); 3225 if (i == 0) { 3226 FDEV(i).start_blk = 0; 3227 FDEV(i).end_blk = FDEV(i).start_blk + 3228 (FDEV(i).total_segments << 3229 sbi->log_blocks_per_seg) - 1 + 3230 le32_to_cpu(raw_super->segment0_blkaddr); 3231 } else { 3232 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 3233 FDEV(i).end_blk = FDEV(i).start_blk + 3234 (FDEV(i).total_segments << 3235 sbi->log_blocks_per_seg) - 1; 3236 } 3237 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 3238 sbi->sb->s_mode, sbi->sb->s_type); 3239 } 3240 if (IS_ERR(FDEV(i).bdev)) 3241 return PTR_ERR(FDEV(i).bdev); 3242 3243 /* to release errored devices */ 3244 sbi->s_ndevs = i + 1; 3245 3246 #ifdef CONFIG_BLK_DEV_ZONED 3247 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3248 !f2fs_sb_has_blkzoned(sbi)) { 3249 f2fs_err(sbi, "Zoned block device feature not enabled\n"); 3250 return -EINVAL; 3251 } 3252 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3253 if (init_blkz_info(sbi, i)) { 3254 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 3255 return -EINVAL; 3256 } 3257 if (max_devices == 1) 3258 break; 3259 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3260 i, FDEV(i).path, 3261 FDEV(i).total_segments, 3262 FDEV(i).start_blk, FDEV(i).end_blk, 3263 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3264 "Host-aware" : "Host-managed"); 3265 continue; 3266 } 3267 #endif 3268 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3269 i, FDEV(i).path, 3270 FDEV(i).total_segments, 3271 FDEV(i).start_blk, FDEV(i).end_blk); 3272 } 3273 f2fs_info(sbi, 3274 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3275 return 0; 3276 } 3277 3278 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 3279 { 3280 #ifdef CONFIG_UNICODE 3281 if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) { 3282 const struct f2fs_sb_encodings *encoding_info; 3283 struct unicode_map *encoding; 3284 __u16 encoding_flags; 3285 3286 if (f2fs_sb_has_encrypt(sbi)) { 3287 f2fs_err(sbi, 3288 "Can't mount with encoding and encryption"); 3289 return -EINVAL; 3290 } 3291 3292 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info, 3293 &encoding_flags)) { 3294 f2fs_err(sbi, 3295 "Encoding requested by superblock is unknown"); 3296 return -EINVAL; 3297 } 3298 3299 encoding = utf8_load(encoding_info->version); 3300 if (IS_ERR(encoding)) { 3301 f2fs_err(sbi, 3302 "can't mount with superblock charset: %s-%s " 3303 "not supported by the kernel. flags: 0x%x.", 3304 encoding_info->name, encoding_info->version, 3305 encoding_flags); 3306 return PTR_ERR(encoding); 3307 } 3308 f2fs_info(sbi, "Using encoding defined by superblock: " 3309 "%s-%s with flags 0x%hx", encoding_info->name, 3310 encoding_info->version?:"\b", encoding_flags); 3311 3312 sbi->s_encoding = encoding; 3313 sbi->s_encoding_flags = encoding_flags; 3314 sbi->sb->s_d_op = &f2fs_dentry_ops; 3315 } 3316 #else 3317 if (f2fs_sb_has_casefold(sbi)) { 3318 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 3319 return -EINVAL; 3320 } 3321 #endif 3322 return 0; 3323 } 3324 3325 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3326 { 3327 struct f2fs_sm_info *sm_i = SM_I(sbi); 3328 3329 /* adjust parameters according to the volume size */ 3330 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3331 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3332 sm_i->dcc_info->discard_granularity = 1; 3333 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3334 } 3335 3336 sbi->readdir_ra = 1; 3337 } 3338 3339 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3340 { 3341 struct f2fs_sb_info *sbi; 3342 struct f2fs_super_block *raw_super; 3343 struct inode *root; 3344 int err; 3345 bool skip_recovery = false, need_fsck = false; 3346 char *options = NULL; 3347 int recovery, i, valid_super_block; 3348 struct curseg_info *seg_i; 3349 int retry_cnt = 1; 3350 3351 try_onemore: 3352 err = -EINVAL; 3353 raw_super = NULL; 3354 valid_super_block = -1; 3355 recovery = 0; 3356 3357 /* allocate memory for f2fs-specific super block info */ 3358 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3359 if (!sbi) 3360 return -ENOMEM; 3361 3362 sbi->sb = sb; 3363 3364 /* Load the checksum driver */ 3365 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3366 if (IS_ERR(sbi->s_chksum_driver)) { 3367 f2fs_err(sbi, "Cannot load crc32 driver."); 3368 err = PTR_ERR(sbi->s_chksum_driver); 3369 sbi->s_chksum_driver = NULL; 3370 goto free_sbi; 3371 } 3372 3373 /* set a block size */ 3374 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3375 f2fs_err(sbi, "unable to set blocksize"); 3376 goto free_sbi; 3377 } 3378 3379 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3380 &recovery); 3381 if (err) 3382 goto free_sbi; 3383 3384 sb->s_fs_info = sbi; 3385 sbi->raw_super = raw_super; 3386 3387 /* precompute checksum seed for metadata */ 3388 if (f2fs_sb_has_inode_chksum(sbi)) 3389 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3390 sizeof(raw_super->uuid)); 3391 3392 /* 3393 * The BLKZONED feature indicates that the drive was formatted with 3394 * zone alignment optimization. This is optional for host-aware 3395 * devices, but mandatory for host-managed zoned block devices. 3396 */ 3397 #ifndef CONFIG_BLK_DEV_ZONED 3398 if (f2fs_sb_has_blkzoned(sbi)) { 3399 f2fs_err(sbi, "Zoned block device support is not enabled"); 3400 err = -EOPNOTSUPP; 3401 goto free_sb_buf; 3402 } 3403 #endif 3404 default_options(sbi); 3405 /* parse mount options */ 3406 options = kstrdup((const char *)data, GFP_KERNEL); 3407 if (data && !options) { 3408 err = -ENOMEM; 3409 goto free_sb_buf; 3410 } 3411 3412 err = parse_options(sb, options, false); 3413 if (err) 3414 goto free_options; 3415 3416 sbi->max_file_blocks = max_file_blocks(); 3417 sb->s_maxbytes = sbi->max_file_blocks << 3418 le32_to_cpu(raw_super->log_blocksize); 3419 sb->s_max_links = F2FS_LINK_MAX; 3420 3421 err = f2fs_setup_casefold(sbi); 3422 if (err) 3423 goto free_options; 3424 3425 #ifdef CONFIG_QUOTA 3426 sb->dq_op = &f2fs_quota_operations; 3427 sb->s_qcop = &f2fs_quotactl_ops; 3428 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3429 3430 if (f2fs_sb_has_quota_ino(sbi)) { 3431 for (i = 0; i < MAXQUOTAS; i++) { 3432 if (f2fs_qf_ino(sbi->sb, i)) 3433 sbi->nquota_files++; 3434 } 3435 } 3436 #endif 3437 3438 sb->s_op = &f2fs_sops; 3439 #ifdef CONFIG_FS_ENCRYPTION 3440 sb->s_cop = &f2fs_cryptops; 3441 #endif 3442 #ifdef CONFIG_FS_VERITY 3443 sb->s_vop = &f2fs_verityops; 3444 #endif 3445 sb->s_xattr = f2fs_xattr_handlers; 3446 sb->s_export_op = &f2fs_export_ops; 3447 sb->s_magic = F2FS_SUPER_MAGIC; 3448 sb->s_time_gran = 1; 3449 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3450 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3451 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 3452 sb->s_iflags |= SB_I_CGROUPWB; 3453 3454 /* init f2fs-specific super block info */ 3455 sbi->valid_super_block = valid_super_block; 3456 init_rwsem(&sbi->gc_lock); 3457 mutex_init(&sbi->writepages); 3458 mutex_init(&sbi->cp_mutex); 3459 init_rwsem(&sbi->node_write); 3460 init_rwsem(&sbi->node_change); 3461 3462 /* disallow all the data/node/meta page writes */ 3463 set_sbi_flag(sbi, SBI_POR_DOING); 3464 spin_lock_init(&sbi->stat_lock); 3465 3466 /* init iostat info */ 3467 spin_lock_init(&sbi->iostat_lock); 3468 sbi->iostat_enable = false; 3469 sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS; 3470 3471 for (i = 0; i < NR_PAGE_TYPE; i++) { 3472 int n = (i == META) ? 1: NR_TEMP_TYPE; 3473 int j; 3474 3475 sbi->write_io[i] = 3476 f2fs_kmalloc(sbi, 3477 array_size(n, 3478 sizeof(struct f2fs_bio_info)), 3479 GFP_KERNEL); 3480 if (!sbi->write_io[i]) { 3481 err = -ENOMEM; 3482 goto free_bio_info; 3483 } 3484 3485 for (j = HOT; j < n; j++) { 3486 init_rwsem(&sbi->write_io[i][j].io_rwsem); 3487 sbi->write_io[i][j].sbi = sbi; 3488 sbi->write_io[i][j].bio = NULL; 3489 spin_lock_init(&sbi->write_io[i][j].io_lock); 3490 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 3491 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 3492 init_rwsem(&sbi->write_io[i][j].bio_list_lock); 3493 } 3494 } 3495 3496 init_rwsem(&sbi->cp_rwsem); 3497 init_rwsem(&sbi->quota_sem); 3498 init_waitqueue_head(&sbi->cp_wait); 3499 init_sb_info(sbi); 3500 3501 err = init_percpu_info(sbi); 3502 if (err) 3503 goto free_bio_info; 3504 3505 if (F2FS_IO_ALIGNED(sbi)) { 3506 sbi->write_io_dummy = 3507 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 3508 if (!sbi->write_io_dummy) { 3509 err = -ENOMEM; 3510 goto free_percpu; 3511 } 3512 } 3513 3514 /* init per sbi slab cache */ 3515 err = f2fs_init_xattr_caches(sbi); 3516 if (err) 3517 goto free_io_dummy; 3518 3519 /* get an inode for meta space */ 3520 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 3521 if (IS_ERR(sbi->meta_inode)) { 3522 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 3523 err = PTR_ERR(sbi->meta_inode); 3524 goto free_xattr_cache; 3525 } 3526 3527 err = f2fs_get_valid_checkpoint(sbi); 3528 if (err) { 3529 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 3530 goto free_meta_inode; 3531 } 3532 3533 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 3534 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3535 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 3536 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3537 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 3538 } 3539 3540 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 3541 set_sbi_flag(sbi, SBI_NEED_FSCK); 3542 3543 /* Initialize device list */ 3544 err = f2fs_scan_devices(sbi); 3545 if (err) { 3546 f2fs_err(sbi, "Failed to find devices"); 3547 goto free_devices; 3548 } 3549 3550 err = f2fs_init_post_read_wq(sbi); 3551 if (err) { 3552 f2fs_err(sbi, "Failed to initialize post read workqueue"); 3553 goto free_devices; 3554 } 3555 3556 sbi->total_valid_node_count = 3557 le32_to_cpu(sbi->ckpt->valid_node_count); 3558 percpu_counter_set(&sbi->total_valid_inode_count, 3559 le32_to_cpu(sbi->ckpt->valid_inode_count)); 3560 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 3561 sbi->total_valid_block_count = 3562 le64_to_cpu(sbi->ckpt->valid_block_count); 3563 sbi->last_valid_block_count = sbi->total_valid_block_count; 3564 sbi->reserved_blocks = 0; 3565 sbi->current_reserved_blocks = 0; 3566 limit_reserve_root(sbi); 3567 adjust_unusable_cap_perc(sbi); 3568 3569 for (i = 0; i < NR_INODE_TYPE; i++) { 3570 INIT_LIST_HEAD(&sbi->inode_list[i]); 3571 spin_lock_init(&sbi->inode_lock[i]); 3572 } 3573 mutex_init(&sbi->flush_lock); 3574 3575 f2fs_init_extent_cache_info(sbi); 3576 3577 f2fs_init_ino_entry_info(sbi); 3578 3579 f2fs_init_fsync_node_info(sbi); 3580 3581 /* setup f2fs internal modules */ 3582 err = f2fs_build_segment_manager(sbi); 3583 if (err) { 3584 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 3585 err); 3586 goto free_sm; 3587 } 3588 err = f2fs_build_node_manager(sbi); 3589 if (err) { 3590 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 3591 err); 3592 goto free_nm; 3593 } 3594 3595 /* For write statistics */ 3596 if (sb->s_bdev->bd_part) 3597 sbi->sectors_written_start = 3598 (u64)part_stat_read(sb->s_bdev->bd_part, 3599 sectors[STAT_WRITE]); 3600 3601 /* Read accumulated write IO statistics if exists */ 3602 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 3603 if (__exist_node_summaries(sbi)) 3604 sbi->kbytes_written = 3605 le64_to_cpu(seg_i->journal->info.kbytes_written); 3606 3607 f2fs_build_gc_manager(sbi); 3608 3609 err = f2fs_build_stats(sbi); 3610 if (err) 3611 goto free_nm; 3612 3613 /* get an inode for node space */ 3614 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 3615 if (IS_ERR(sbi->node_inode)) { 3616 f2fs_err(sbi, "Failed to read node inode"); 3617 err = PTR_ERR(sbi->node_inode); 3618 goto free_stats; 3619 } 3620 3621 /* read root inode and dentry */ 3622 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 3623 if (IS_ERR(root)) { 3624 f2fs_err(sbi, "Failed to read root inode"); 3625 err = PTR_ERR(root); 3626 goto free_node_inode; 3627 } 3628 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 3629 !root->i_size || !root->i_nlink) { 3630 iput(root); 3631 err = -EINVAL; 3632 goto free_node_inode; 3633 } 3634 3635 sb->s_root = d_make_root(root); /* allocate root dentry */ 3636 if (!sb->s_root) { 3637 err = -ENOMEM; 3638 goto free_node_inode; 3639 } 3640 3641 err = f2fs_register_sysfs(sbi); 3642 if (err) 3643 goto free_root_inode; 3644 3645 #ifdef CONFIG_QUOTA 3646 /* Enable quota usage during mount */ 3647 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 3648 err = f2fs_enable_quotas(sb); 3649 if (err) 3650 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 3651 } 3652 #endif 3653 /* if there are any orphan inodes, free them */ 3654 err = f2fs_recover_orphan_inodes(sbi); 3655 if (err) 3656 goto free_meta; 3657 3658 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 3659 goto reset_checkpoint; 3660 3661 /* recover fsynced data */ 3662 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 3663 !test_opt(sbi, NORECOVERY)) { 3664 /* 3665 * mount should be failed, when device has readonly mode, and 3666 * previous checkpoint was not done by clean system shutdown. 3667 */ 3668 if (f2fs_hw_is_readonly(sbi)) { 3669 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3670 err = -EROFS; 3671 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable"); 3672 goto free_meta; 3673 } 3674 f2fs_info(sbi, "write access unavailable, skipping recovery"); 3675 goto reset_checkpoint; 3676 } 3677 3678 if (need_fsck) 3679 set_sbi_flag(sbi, SBI_NEED_FSCK); 3680 3681 if (skip_recovery) 3682 goto reset_checkpoint; 3683 3684 err = f2fs_recover_fsync_data(sbi, false); 3685 if (err < 0) { 3686 if (err != -ENOMEM) 3687 skip_recovery = true; 3688 need_fsck = true; 3689 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 3690 err); 3691 goto free_meta; 3692 } 3693 } else { 3694 err = f2fs_recover_fsync_data(sbi, true); 3695 3696 if (!f2fs_readonly(sb) && err > 0) { 3697 err = -EINVAL; 3698 f2fs_err(sbi, "Need to recover fsync data"); 3699 goto free_meta; 3700 } 3701 } 3702 3703 /* 3704 * If the f2fs is not readonly and fsync data recovery succeeds, 3705 * check zoned block devices' write pointer consistency. 3706 */ 3707 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 3708 err = f2fs_check_write_pointer(sbi); 3709 if (err) 3710 goto free_meta; 3711 } 3712 3713 reset_checkpoint: 3714 /* f2fs_recover_fsync_data() cleared this already */ 3715 clear_sbi_flag(sbi, SBI_POR_DOING); 3716 3717 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 3718 err = f2fs_disable_checkpoint(sbi); 3719 if (err) 3720 goto sync_free_meta; 3721 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 3722 f2fs_enable_checkpoint(sbi); 3723 } 3724 3725 /* 3726 * If filesystem is not mounted as read-only then 3727 * do start the gc_thread. 3728 */ 3729 if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) { 3730 /* After POR, we can run background GC thread.*/ 3731 err = f2fs_start_gc_thread(sbi); 3732 if (err) 3733 goto sync_free_meta; 3734 } 3735 kvfree(options); 3736 3737 /* recover broken superblock */ 3738 if (recovery) { 3739 err = f2fs_commit_super(sbi, true); 3740 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 3741 sbi->valid_super_block ? 1 : 2, err); 3742 } 3743 3744 f2fs_join_shrinker(sbi); 3745 3746 f2fs_tuning_parameters(sbi); 3747 3748 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 3749 cur_cp_version(F2FS_CKPT(sbi))); 3750 f2fs_update_time(sbi, CP_TIME); 3751 f2fs_update_time(sbi, REQ_TIME); 3752 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3753 return 0; 3754 3755 sync_free_meta: 3756 /* safe to flush all the data */ 3757 sync_filesystem(sbi->sb); 3758 retry_cnt = 0; 3759 3760 free_meta: 3761 #ifdef CONFIG_QUOTA 3762 f2fs_truncate_quota_inode_pages(sb); 3763 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 3764 f2fs_quota_off_umount(sbi->sb); 3765 #endif 3766 /* 3767 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 3768 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 3769 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 3770 * falls into an infinite loop in f2fs_sync_meta_pages(). 3771 */ 3772 truncate_inode_pages_final(META_MAPPING(sbi)); 3773 /* evict some inodes being cached by GC */ 3774 evict_inodes(sb); 3775 f2fs_unregister_sysfs(sbi); 3776 free_root_inode: 3777 dput(sb->s_root); 3778 sb->s_root = NULL; 3779 free_node_inode: 3780 f2fs_release_ino_entry(sbi, true); 3781 truncate_inode_pages_final(NODE_MAPPING(sbi)); 3782 iput(sbi->node_inode); 3783 sbi->node_inode = NULL; 3784 free_stats: 3785 f2fs_destroy_stats(sbi); 3786 free_nm: 3787 f2fs_destroy_node_manager(sbi); 3788 free_sm: 3789 f2fs_destroy_segment_manager(sbi); 3790 f2fs_destroy_post_read_wq(sbi); 3791 free_devices: 3792 destroy_device_list(sbi); 3793 kvfree(sbi->ckpt); 3794 free_meta_inode: 3795 make_bad_inode(sbi->meta_inode); 3796 iput(sbi->meta_inode); 3797 sbi->meta_inode = NULL; 3798 free_xattr_cache: 3799 f2fs_destroy_xattr_caches(sbi); 3800 free_io_dummy: 3801 mempool_destroy(sbi->write_io_dummy); 3802 free_percpu: 3803 destroy_percpu_info(sbi); 3804 free_bio_info: 3805 for (i = 0; i < NR_PAGE_TYPE; i++) 3806 kvfree(sbi->write_io[i]); 3807 3808 #ifdef CONFIG_UNICODE 3809 utf8_unload(sbi->s_encoding); 3810 #endif 3811 free_options: 3812 #ifdef CONFIG_QUOTA 3813 for (i = 0; i < MAXQUOTAS; i++) 3814 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 3815 #endif 3816 fscrypt_free_dummy_context(&F2FS_OPTION(sbi).dummy_enc_ctx); 3817 kvfree(options); 3818 free_sb_buf: 3819 kvfree(raw_super); 3820 free_sbi: 3821 if (sbi->s_chksum_driver) 3822 crypto_free_shash(sbi->s_chksum_driver); 3823 kvfree(sbi); 3824 3825 /* give only one another chance */ 3826 if (retry_cnt > 0 && skip_recovery) { 3827 retry_cnt--; 3828 shrink_dcache_sb(sb); 3829 goto try_onemore; 3830 } 3831 return err; 3832 } 3833 3834 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 3835 const char *dev_name, void *data) 3836 { 3837 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 3838 } 3839 3840 static void kill_f2fs_super(struct super_block *sb) 3841 { 3842 if (sb->s_root) { 3843 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3844 3845 set_sbi_flag(sbi, SBI_IS_CLOSE); 3846 f2fs_stop_gc_thread(sbi); 3847 f2fs_stop_discard_thread(sbi); 3848 3849 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 3850 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3851 struct cp_control cpc = { 3852 .reason = CP_UMOUNT, 3853 }; 3854 f2fs_write_checkpoint(sbi, &cpc); 3855 } 3856 3857 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 3858 sb->s_flags &= ~SB_RDONLY; 3859 } 3860 kill_block_super(sb); 3861 } 3862 3863 static struct file_system_type f2fs_fs_type = { 3864 .owner = THIS_MODULE, 3865 .name = "f2fs", 3866 .mount = f2fs_mount, 3867 .kill_sb = kill_f2fs_super, 3868 .fs_flags = FS_REQUIRES_DEV, 3869 }; 3870 MODULE_ALIAS_FS("f2fs"); 3871 3872 static int __init init_inodecache(void) 3873 { 3874 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 3875 sizeof(struct f2fs_inode_info), 0, 3876 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 3877 if (!f2fs_inode_cachep) 3878 return -ENOMEM; 3879 return 0; 3880 } 3881 3882 static void destroy_inodecache(void) 3883 { 3884 /* 3885 * Make sure all delayed rcu free inodes are flushed before we 3886 * destroy cache. 3887 */ 3888 rcu_barrier(); 3889 kmem_cache_destroy(f2fs_inode_cachep); 3890 } 3891 3892 static int __init init_f2fs_fs(void) 3893 { 3894 int err; 3895 3896 if (PAGE_SIZE != F2FS_BLKSIZE) { 3897 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 3898 PAGE_SIZE, F2FS_BLKSIZE); 3899 return -EINVAL; 3900 } 3901 3902 f2fs_build_trace_ios(); 3903 3904 err = init_inodecache(); 3905 if (err) 3906 goto fail; 3907 err = f2fs_create_node_manager_caches(); 3908 if (err) 3909 goto free_inodecache; 3910 err = f2fs_create_segment_manager_caches(); 3911 if (err) 3912 goto free_node_manager_caches; 3913 err = f2fs_create_checkpoint_caches(); 3914 if (err) 3915 goto free_segment_manager_caches; 3916 err = f2fs_create_extent_cache(); 3917 if (err) 3918 goto free_checkpoint_caches; 3919 err = f2fs_init_sysfs(); 3920 if (err) 3921 goto free_extent_cache; 3922 err = register_shrinker(&f2fs_shrinker_info); 3923 if (err) 3924 goto free_sysfs; 3925 err = register_filesystem(&f2fs_fs_type); 3926 if (err) 3927 goto free_shrinker; 3928 f2fs_create_root_stats(); 3929 err = f2fs_init_post_read_processing(); 3930 if (err) 3931 goto free_root_stats; 3932 err = f2fs_init_bio_entry_cache(); 3933 if (err) 3934 goto free_post_read; 3935 err = f2fs_init_bioset(); 3936 if (err) 3937 goto free_bio_enrty_cache; 3938 err = f2fs_init_compress_mempool(); 3939 if (err) 3940 goto free_bioset; 3941 return 0; 3942 free_bioset: 3943 f2fs_destroy_bioset(); 3944 free_bio_enrty_cache: 3945 f2fs_destroy_bio_entry_cache(); 3946 free_post_read: 3947 f2fs_destroy_post_read_processing(); 3948 free_root_stats: 3949 f2fs_destroy_root_stats(); 3950 unregister_filesystem(&f2fs_fs_type); 3951 free_shrinker: 3952 unregister_shrinker(&f2fs_shrinker_info); 3953 free_sysfs: 3954 f2fs_exit_sysfs(); 3955 free_extent_cache: 3956 f2fs_destroy_extent_cache(); 3957 free_checkpoint_caches: 3958 f2fs_destroy_checkpoint_caches(); 3959 free_segment_manager_caches: 3960 f2fs_destroy_segment_manager_caches(); 3961 free_node_manager_caches: 3962 f2fs_destroy_node_manager_caches(); 3963 free_inodecache: 3964 destroy_inodecache(); 3965 fail: 3966 return err; 3967 } 3968 3969 static void __exit exit_f2fs_fs(void) 3970 { 3971 f2fs_destroy_compress_mempool(); 3972 f2fs_destroy_bioset(); 3973 f2fs_destroy_bio_entry_cache(); 3974 f2fs_destroy_post_read_processing(); 3975 f2fs_destroy_root_stats(); 3976 unregister_filesystem(&f2fs_fs_type); 3977 unregister_shrinker(&f2fs_shrinker_info); 3978 f2fs_exit_sysfs(); 3979 f2fs_destroy_extent_cache(); 3980 f2fs_destroy_checkpoint_caches(); 3981 f2fs_destroy_segment_manager_caches(); 3982 f2fs_destroy_node_manager_caches(); 3983 destroy_inodecache(); 3984 f2fs_destroy_trace_ios(); 3985 } 3986 3987 module_init(init_f2fs_fs) 3988 module_exit(exit_f2fs_fs) 3989 3990 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 3991 MODULE_DESCRIPTION("Flash Friendly File System"); 3992 MODULE_LICENSE("GPL"); 3993 3994