1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/statfs.h> 12 #include <linux/buffer_head.h> 13 #include <linux/backing-dev.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 27 #include "f2fs.h" 28 #include "node.h" 29 #include "segment.h" 30 #include "xattr.h" 31 #include "gc.h" 32 #include "trace.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/f2fs.h> 36 37 static struct kmem_cache *f2fs_inode_cachep; 38 39 #ifdef CONFIG_F2FS_FAULT_INJECTION 40 41 const char *f2fs_fault_name[FAULT_MAX] = { 42 [FAULT_KMALLOC] = "kmalloc", 43 [FAULT_KVMALLOC] = "kvmalloc", 44 [FAULT_PAGE_ALLOC] = "page alloc", 45 [FAULT_PAGE_GET] = "page get", 46 [FAULT_ALLOC_BIO] = "alloc bio", 47 [FAULT_ALLOC_NID] = "alloc nid", 48 [FAULT_ORPHAN] = "orphan", 49 [FAULT_BLOCK] = "no more block", 50 [FAULT_DIR_DEPTH] = "too big dir depth", 51 [FAULT_EVICT_INODE] = "evict_inode fail", 52 [FAULT_TRUNCATE] = "truncate fail", 53 [FAULT_READ_IO] = "read IO error", 54 [FAULT_CHECKPOINT] = "checkpoint error", 55 [FAULT_DISCARD] = "discard error", 56 [FAULT_WRITE_IO] = "write IO error", 57 }; 58 59 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 60 unsigned int type) 61 { 62 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 63 64 if (rate) { 65 atomic_set(&ffi->inject_ops, 0); 66 ffi->inject_rate = rate; 67 } 68 69 if (type) 70 ffi->inject_type = type; 71 72 if (!rate && !type) 73 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 74 } 75 #endif 76 77 /* f2fs-wide shrinker description */ 78 static struct shrinker f2fs_shrinker_info = { 79 .scan_objects = f2fs_shrink_scan, 80 .count_objects = f2fs_shrink_count, 81 .seeks = DEFAULT_SEEKS, 82 }; 83 84 enum { 85 Opt_gc_background, 86 Opt_disable_roll_forward, 87 Opt_norecovery, 88 Opt_discard, 89 Opt_nodiscard, 90 Opt_noheap, 91 Opt_heap, 92 Opt_user_xattr, 93 Opt_nouser_xattr, 94 Opt_acl, 95 Opt_noacl, 96 Opt_active_logs, 97 Opt_disable_ext_identify, 98 Opt_inline_xattr, 99 Opt_noinline_xattr, 100 Opt_inline_xattr_size, 101 Opt_inline_data, 102 Opt_inline_dentry, 103 Opt_noinline_dentry, 104 Opt_flush_merge, 105 Opt_noflush_merge, 106 Opt_nobarrier, 107 Opt_fastboot, 108 Opt_extent_cache, 109 Opt_noextent_cache, 110 Opt_noinline_data, 111 Opt_data_flush, 112 Opt_reserve_root, 113 Opt_resgid, 114 Opt_resuid, 115 Opt_mode, 116 Opt_io_size_bits, 117 Opt_fault_injection, 118 Opt_fault_type, 119 Opt_lazytime, 120 Opt_nolazytime, 121 Opt_quota, 122 Opt_noquota, 123 Opt_usrquota, 124 Opt_grpquota, 125 Opt_prjquota, 126 Opt_usrjquota, 127 Opt_grpjquota, 128 Opt_prjjquota, 129 Opt_offusrjquota, 130 Opt_offgrpjquota, 131 Opt_offprjjquota, 132 Opt_jqfmt_vfsold, 133 Opt_jqfmt_vfsv0, 134 Opt_jqfmt_vfsv1, 135 Opt_whint, 136 Opt_alloc, 137 Opt_fsync, 138 Opt_test_dummy_encryption, 139 Opt_checkpoint_disable, 140 Opt_checkpoint_disable_cap, 141 Opt_checkpoint_disable_cap_perc, 142 Opt_checkpoint_enable, 143 Opt_err, 144 }; 145 146 static match_table_t f2fs_tokens = { 147 {Opt_gc_background, "background_gc=%s"}, 148 {Opt_disable_roll_forward, "disable_roll_forward"}, 149 {Opt_norecovery, "norecovery"}, 150 {Opt_discard, "discard"}, 151 {Opt_nodiscard, "nodiscard"}, 152 {Opt_noheap, "no_heap"}, 153 {Opt_heap, "heap"}, 154 {Opt_user_xattr, "user_xattr"}, 155 {Opt_nouser_xattr, "nouser_xattr"}, 156 {Opt_acl, "acl"}, 157 {Opt_noacl, "noacl"}, 158 {Opt_active_logs, "active_logs=%u"}, 159 {Opt_disable_ext_identify, "disable_ext_identify"}, 160 {Opt_inline_xattr, "inline_xattr"}, 161 {Opt_noinline_xattr, "noinline_xattr"}, 162 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 163 {Opt_inline_data, "inline_data"}, 164 {Opt_inline_dentry, "inline_dentry"}, 165 {Opt_noinline_dentry, "noinline_dentry"}, 166 {Opt_flush_merge, "flush_merge"}, 167 {Opt_noflush_merge, "noflush_merge"}, 168 {Opt_nobarrier, "nobarrier"}, 169 {Opt_fastboot, "fastboot"}, 170 {Opt_extent_cache, "extent_cache"}, 171 {Opt_noextent_cache, "noextent_cache"}, 172 {Opt_noinline_data, "noinline_data"}, 173 {Opt_data_flush, "data_flush"}, 174 {Opt_reserve_root, "reserve_root=%u"}, 175 {Opt_resgid, "resgid=%u"}, 176 {Opt_resuid, "resuid=%u"}, 177 {Opt_mode, "mode=%s"}, 178 {Opt_io_size_bits, "io_bits=%u"}, 179 {Opt_fault_injection, "fault_injection=%u"}, 180 {Opt_fault_type, "fault_type=%u"}, 181 {Opt_lazytime, "lazytime"}, 182 {Opt_nolazytime, "nolazytime"}, 183 {Opt_quota, "quota"}, 184 {Opt_noquota, "noquota"}, 185 {Opt_usrquota, "usrquota"}, 186 {Opt_grpquota, "grpquota"}, 187 {Opt_prjquota, "prjquota"}, 188 {Opt_usrjquota, "usrjquota=%s"}, 189 {Opt_grpjquota, "grpjquota=%s"}, 190 {Opt_prjjquota, "prjjquota=%s"}, 191 {Opt_offusrjquota, "usrjquota="}, 192 {Opt_offgrpjquota, "grpjquota="}, 193 {Opt_offprjjquota, "prjjquota="}, 194 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 195 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 196 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 197 {Opt_whint, "whint_mode=%s"}, 198 {Opt_alloc, "alloc_mode=%s"}, 199 {Opt_fsync, "fsync_mode=%s"}, 200 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 201 {Opt_checkpoint_disable, "checkpoint=disable"}, 202 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 203 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 204 {Opt_checkpoint_enable, "checkpoint=enable"}, 205 {Opt_err, NULL}, 206 }; 207 208 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 209 { 210 struct va_format vaf; 211 va_list args; 212 int level; 213 214 va_start(args, fmt); 215 216 level = printk_get_level(fmt); 217 vaf.fmt = printk_skip_level(fmt); 218 vaf.va = &args; 219 printk("%c%cF2FS-fs (%s): %pV\n", 220 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 221 222 va_end(args); 223 } 224 225 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 226 { 227 block_t limit = min((sbi->user_block_count << 1) / 1000, 228 sbi->user_block_count - sbi->reserved_blocks); 229 230 /* limit is 0.2% */ 231 if (test_opt(sbi, RESERVE_ROOT) && 232 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 233 F2FS_OPTION(sbi).root_reserved_blocks = limit; 234 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 235 F2FS_OPTION(sbi).root_reserved_blocks); 236 } 237 if (!test_opt(sbi, RESERVE_ROOT) && 238 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 239 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 240 !gid_eq(F2FS_OPTION(sbi).s_resgid, 241 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 242 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 243 from_kuid_munged(&init_user_ns, 244 F2FS_OPTION(sbi).s_resuid), 245 from_kgid_munged(&init_user_ns, 246 F2FS_OPTION(sbi).s_resgid)); 247 } 248 249 static void init_once(void *foo) 250 { 251 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 252 253 inode_init_once(&fi->vfs_inode); 254 } 255 256 #ifdef CONFIG_QUOTA 257 static const char * const quotatypes[] = INITQFNAMES; 258 #define QTYPE2NAME(t) (quotatypes[t]) 259 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 260 substring_t *args) 261 { 262 struct f2fs_sb_info *sbi = F2FS_SB(sb); 263 char *qname; 264 int ret = -EINVAL; 265 266 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 267 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 268 return -EINVAL; 269 } 270 if (f2fs_sb_has_quota_ino(sbi)) { 271 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 272 return 0; 273 } 274 275 qname = match_strdup(args); 276 if (!qname) { 277 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 278 return -ENOMEM; 279 } 280 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 281 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 282 ret = 0; 283 else 284 f2fs_err(sbi, "%s quota file already specified", 285 QTYPE2NAME(qtype)); 286 goto errout; 287 } 288 if (strchr(qname, '/')) { 289 f2fs_err(sbi, "quotafile must be on filesystem root"); 290 goto errout; 291 } 292 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 293 set_opt(sbi, QUOTA); 294 return 0; 295 errout: 296 kvfree(qname); 297 return ret; 298 } 299 300 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 301 { 302 struct f2fs_sb_info *sbi = F2FS_SB(sb); 303 304 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 305 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 306 return -EINVAL; 307 } 308 kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 309 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 310 return 0; 311 } 312 313 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 314 { 315 /* 316 * We do the test below only for project quotas. 'usrquota' and 317 * 'grpquota' mount options are allowed even without quota feature 318 * to support legacy quotas in quota files. 319 */ 320 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 321 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 322 return -1; 323 } 324 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 325 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 326 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 327 if (test_opt(sbi, USRQUOTA) && 328 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 329 clear_opt(sbi, USRQUOTA); 330 331 if (test_opt(sbi, GRPQUOTA) && 332 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 333 clear_opt(sbi, GRPQUOTA); 334 335 if (test_opt(sbi, PRJQUOTA) && 336 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 337 clear_opt(sbi, PRJQUOTA); 338 339 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 340 test_opt(sbi, PRJQUOTA)) { 341 f2fs_err(sbi, "old and new quota format mixing"); 342 return -1; 343 } 344 345 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 346 f2fs_err(sbi, "journaled quota format not specified"); 347 return -1; 348 } 349 } 350 351 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 352 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 353 F2FS_OPTION(sbi).s_jquota_fmt = 0; 354 } 355 return 0; 356 } 357 #endif 358 359 static int parse_options(struct super_block *sb, char *options) 360 { 361 struct f2fs_sb_info *sbi = F2FS_SB(sb); 362 substring_t args[MAX_OPT_ARGS]; 363 char *p, *name; 364 int arg = 0; 365 kuid_t uid; 366 kgid_t gid; 367 #ifdef CONFIG_QUOTA 368 int ret; 369 #endif 370 371 if (!options) 372 return 0; 373 374 while ((p = strsep(&options, ",")) != NULL) { 375 int token; 376 if (!*p) 377 continue; 378 /* 379 * Initialize args struct so we know whether arg was 380 * found; some options take optional arguments. 381 */ 382 args[0].to = args[0].from = NULL; 383 token = match_token(p, f2fs_tokens, args); 384 385 switch (token) { 386 case Opt_gc_background: 387 name = match_strdup(&args[0]); 388 389 if (!name) 390 return -ENOMEM; 391 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 392 set_opt(sbi, BG_GC); 393 clear_opt(sbi, FORCE_FG_GC); 394 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 395 clear_opt(sbi, BG_GC); 396 clear_opt(sbi, FORCE_FG_GC); 397 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 398 set_opt(sbi, BG_GC); 399 set_opt(sbi, FORCE_FG_GC); 400 } else { 401 kvfree(name); 402 return -EINVAL; 403 } 404 kvfree(name); 405 break; 406 case Opt_disable_roll_forward: 407 set_opt(sbi, DISABLE_ROLL_FORWARD); 408 break; 409 case Opt_norecovery: 410 /* this option mounts f2fs with ro */ 411 set_opt(sbi, DISABLE_ROLL_FORWARD); 412 if (!f2fs_readonly(sb)) 413 return -EINVAL; 414 break; 415 case Opt_discard: 416 set_opt(sbi, DISCARD); 417 break; 418 case Opt_nodiscard: 419 if (f2fs_sb_has_blkzoned(sbi)) { 420 f2fs_warn(sbi, "discard is required for zoned block devices"); 421 return -EINVAL; 422 } 423 clear_opt(sbi, DISCARD); 424 break; 425 case Opt_noheap: 426 set_opt(sbi, NOHEAP); 427 break; 428 case Opt_heap: 429 clear_opt(sbi, NOHEAP); 430 break; 431 #ifdef CONFIG_F2FS_FS_XATTR 432 case Opt_user_xattr: 433 set_opt(sbi, XATTR_USER); 434 break; 435 case Opt_nouser_xattr: 436 clear_opt(sbi, XATTR_USER); 437 break; 438 case Opt_inline_xattr: 439 set_opt(sbi, INLINE_XATTR); 440 break; 441 case Opt_noinline_xattr: 442 clear_opt(sbi, INLINE_XATTR); 443 break; 444 case Opt_inline_xattr_size: 445 if (args->from && match_int(args, &arg)) 446 return -EINVAL; 447 set_opt(sbi, INLINE_XATTR_SIZE); 448 F2FS_OPTION(sbi).inline_xattr_size = arg; 449 break; 450 #else 451 case Opt_user_xattr: 452 f2fs_info(sbi, "user_xattr options not supported"); 453 break; 454 case Opt_nouser_xattr: 455 f2fs_info(sbi, "nouser_xattr options not supported"); 456 break; 457 case Opt_inline_xattr: 458 f2fs_info(sbi, "inline_xattr options not supported"); 459 break; 460 case Opt_noinline_xattr: 461 f2fs_info(sbi, "noinline_xattr options not supported"); 462 break; 463 #endif 464 #ifdef CONFIG_F2FS_FS_POSIX_ACL 465 case Opt_acl: 466 set_opt(sbi, POSIX_ACL); 467 break; 468 case Opt_noacl: 469 clear_opt(sbi, POSIX_ACL); 470 break; 471 #else 472 case Opt_acl: 473 f2fs_info(sbi, "acl options not supported"); 474 break; 475 case Opt_noacl: 476 f2fs_info(sbi, "noacl options not supported"); 477 break; 478 #endif 479 case Opt_active_logs: 480 if (args->from && match_int(args, &arg)) 481 return -EINVAL; 482 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 483 return -EINVAL; 484 F2FS_OPTION(sbi).active_logs = arg; 485 break; 486 case Opt_disable_ext_identify: 487 set_opt(sbi, DISABLE_EXT_IDENTIFY); 488 break; 489 case Opt_inline_data: 490 set_opt(sbi, INLINE_DATA); 491 break; 492 case Opt_inline_dentry: 493 set_opt(sbi, INLINE_DENTRY); 494 break; 495 case Opt_noinline_dentry: 496 clear_opt(sbi, INLINE_DENTRY); 497 break; 498 case Opt_flush_merge: 499 set_opt(sbi, FLUSH_MERGE); 500 break; 501 case Opt_noflush_merge: 502 clear_opt(sbi, FLUSH_MERGE); 503 break; 504 case Opt_nobarrier: 505 set_opt(sbi, NOBARRIER); 506 break; 507 case Opt_fastboot: 508 set_opt(sbi, FASTBOOT); 509 break; 510 case Opt_extent_cache: 511 set_opt(sbi, EXTENT_CACHE); 512 break; 513 case Opt_noextent_cache: 514 clear_opt(sbi, EXTENT_CACHE); 515 break; 516 case Opt_noinline_data: 517 clear_opt(sbi, INLINE_DATA); 518 break; 519 case Opt_data_flush: 520 set_opt(sbi, DATA_FLUSH); 521 break; 522 case Opt_reserve_root: 523 if (args->from && match_int(args, &arg)) 524 return -EINVAL; 525 if (test_opt(sbi, RESERVE_ROOT)) { 526 f2fs_info(sbi, "Preserve previous reserve_root=%u", 527 F2FS_OPTION(sbi).root_reserved_blocks); 528 } else { 529 F2FS_OPTION(sbi).root_reserved_blocks = arg; 530 set_opt(sbi, RESERVE_ROOT); 531 } 532 break; 533 case Opt_resuid: 534 if (args->from && match_int(args, &arg)) 535 return -EINVAL; 536 uid = make_kuid(current_user_ns(), arg); 537 if (!uid_valid(uid)) { 538 f2fs_err(sbi, "Invalid uid value %d", arg); 539 return -EINVAL; 540 } 541 F2FS_OPTION(sbi).s_resuid = uid; 542 break; 543 case Opt_resgid: 544 if (args->from && match_int(args, &arg)) 545 return -EINVAL; 546 gid = make_kgid(current_user_ns(), arg); 547 if (!gid_valid(gid)) { 548 f2fs_err(sbi, "Invalid gid value %d", arg); 549 return -EINVAL; 550 } 551 F2FS_OPTION(sbi).s_resgid = gid; 552 break; 553 case Opt_mode: 554 name = match_strdup(&args[0]); 555 556 if (!name) 557 return -ENOMEM; 558 if (strlen(name) == 8 && 559 !strncmp(name, "adaptive", 8)) { 560 if (f2fs_sb_has_blkzoned(sbi)) { 561 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 562 kvfree(name); 563 return -EINVAL; 564 } 565 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 566 } else if (strlen(name) == 3 && 567 !strncmp(name, "lfs", 3)) { 568 set_opt_mode(sbi, F2FS_MOUNT_LFS); 569 } else { 570 kvfree(name); 571 return -EINVAL; 572 } 573 kvfree(name); 574 break; 575 case Opt_io_size_bits: 576 if (args->from && match_int(args, &arg)) 577 return -EINVAL; 578 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) { 579 f2fs_warn(sbi, "Not support %d, larger than %d", 580 1 << arg, BIO_MAX_PAGES); 581 return -EINVAL; 582 } 583 F2FS_OPTION(sbi).write_io_size_bits = arg; 584 break; 585 #ifdef CONFIG_F2FS_FAULT_INJECTION 586 case Opt_fault_injection: 587 if (args->from && match_int(args, &arg)) 588 return -EINVAL; 589 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 590 set_opt(sbi, FAULT_INJECTION); 591 break; 592 593 case Opt_fault_type: 594 if (args->from && match_int(args, &arg)) 595 return -EINVAL; 596 f2fs_build_fault_attr(sbi, 0, arg); 597 set_opt(sbi, FAULT_INJECTION); 598 break; 599 #else 600 case Opt_fault_injection: 601 f2fs_info(sbi, "fault_injection options not supported"); 602 break; 603 604 case Opt_fault_type: 605 f2fs_info(sbi, "fault_type options not supported"); 606 break; 607 #endif 608 case Opt_lazytime: 609 sb->s_flags |= SB_LAZYTIME; 610 break; 611 case Opt_nolazytime: 612 sb->s_flags &= ~SB_LAZYTIME; 613 break; 614 #ifdef CONFIG_QUOTA 615 case Opt_quota: 616 case Opt_usrquota: 617 set_opt(sbi, USRQUOTA); 618 break; 619 case Opt_grpquota: 620 set_opt(sbi, GRPQUOTA); 621 break; 622 case Opt_prjquota: 623 set_opt(sbi, PRJQUOTA); 624 break; 625 case Opt_usrjquota: 626 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 627 if (ret) 628 return ret; 629 break; 630 case Opt_grpjquota: 631 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 632 if (ret) 633 return ret; 634 break; 635 case Opt_prjjquota: 636 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 637 if (ret) 638 return ret; 639 break; 640 case Opt_offusrjquota: 641 ret = f2fs_clear_qf_name(sb, USRQUOTA); 642 if (ret) 643 return ret; 644 break; 645 case Opt_offgrpjquota: 646 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 647 if (ret) 648 return ret; 649 break; 650 case Opt_offprjjquota: 651 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 652 if (ret) 653 return ret; 654 break; 655 case Opt_jqfmt_vfsold: 656 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 657 break; 658 case Opt_jqfmt_vfsv0: 659 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 660 break; 661 case Opt_jqfmt_vfsv1: 662 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 663 break; 664 case Opt_noquota: 665 clear_opt(sbi, QUOTA); 666 clear_opt(sbi, USRQUOTA); 667 clear_opt(sbi, GRPQUOTA); 668 clear_opt(sbi, PRJQUOTA); 669 break; 670 #else 671 case Opt_quota: 672 case Opt_usrquota: 673 case Opt_grpquota: 674 case Opt_prjquota: 675 case Opt_usrjquota: 676 case Opt_grpjquota: 677 case Opt_prjjquota: 678 case Opt_offusrjquota: 679 case Opt_offgrpjquota: 680 case Opt_offprjjquota: 681 case Opt_jqfmt_vfsold: 682 case Opt_jqfmt_vfsv0: 683 case Opt_jqfmt_vfsv1: 684 case Opt_noquota: 685 f2fs_info(sbi, "quota operations not supported"); 686 break; 687 #endif 688 case Opt_whint: 689 name = match_strdup(&args[0]); 690 if (!name) 691 return -ENOMEM; 692 if (strlen(name) == 10 && 693 !strncmp(name, "user-based", 10)) { 694 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 695 } else if (strlen(name) == 3 && 696 !strncmp(name, "off", 3)) { 697 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 698 } else if (strlen(name) == 8 && 699 !strncmp(name, "fs-based", 8)) { 700 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 701 } else { 702 kvfree(name); 703 return -EINVAL; 704 } 705 kvfree(name); 706 break; 707 case Opt_alloc: 708 name = match_strdup(&args[0]); 709 if (!name) 710 return -ENOMEM; 711 712 if (strlen(name) == 7 && 713 !strncmp(name, "default", 7)) { 714 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 715 } else if (strlen(name) == 5 && 716 !strncmp(name, "reuse", 5)) { 717 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 718 } else { 719 kvfree(name); 720 return -EINVAL; 721 } 722 kvfree(name); 723 break; 724 case Opt_fsync: 725 name = match_strdup(&args[0]); 726 if (!name) 727 return -ENOMEM; 728 if (strlen(name) == 5 && 729 !strncmp(name, "posix", 5)) { 730 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 731 } else if (strlen(name) == 6 && 732 !strncmp(name, "strict", 6)) { 733 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 734 } else if (strlen(name) == 9 && 735 !strncmp(name, "nobarrier", 9)) { 736 F2FS_OPTION(sbi).fsync_mode = 737 FSYNC_MODE_NOBARRIER; 738 } else { 739 kvfree(name); 740 return -EINVAL; 741 } 742 kvfree(name); 743 break; 744 case Opt_test_dummy_encryption: 745 #ifdef CONFIG_FS_ENCRYPTION 746 if (!f2fs_sb_has_encrypt(sbi)) { 747 f2fs_err(sbi, "Encrypt feature is off"); 748 return -EINVAL; 749 } 750 751 F2FS_OPTION(sbi).test_dummy_encryption = true; 752 f2fs_info(sbi, "Test dummy encryption mode enabled"); 753 #else 754 f2fs_info(sbi, "Test dummy encryption mount option ignored"); 755 #endif 756 break; 757 case Opt_checkpoint_disable_cap_perc: 758 if (args->from && match_int(args, &arg)) 759 return -EINVAL; 760 if (arg < 0 || arg > 100) 761 return -EINVAL; 762 if (arg == 100) 763 F2FS_OPTION(sbi).unusable_cap = 764 sbi->user_block_count; 765 else 766 F2FS_OPTION(sbi).unusable_cap = 767 (sbi->user_block_count / 100) * arg; 768 set_opt(sbi, DISABLE_CHECKPOINT); 769 break; 770 case Opt_checkpoint_disable_cap: 771 if (args->from && match_int(args, &arg)) 772 return -EINVAL; 773 F2FS_OPTION(sbi).unusable_cap = arg; 774 set_opt(sbi, DISABLE_CHECKPOINT); 775 break; 776 case Opt_checkpoint_disable: 777 set_opt(sbi, DISABLE_CHECKPOINT); 778 break; 779 case Opt_checkpoint_enable: 780 clear_opt(sbi, DISABLE_CHECKPOINT); 781 break; 782 default: 783 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 784 p); 785 return -EINVAL; 786 } 787 } 788 #ifdef CONFIG_QUOTA 789 if (f2fs_check_quota_options(sbi)) 790 return -EINVAL; 791 #else 792 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 793 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 794 return -EINVAL; 795 } 796 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 797 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 798 return -EINVAL; 799 } 800 #endif 801 802 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { 803 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO", 804 F2FS_IO_SIZE_KB(sbi)); 805 return -EINVAL; 806 } 807 808 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 809 int min_size, max_size; 810 811 if (!f2fs_sb_has_extra_attr(sbi) || 812 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 813 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 814 return -EINVAL; 815 } 816 if (!test_opt(sbi, INLINE_XATTR)) { 817 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 818 return -EINVAL; 819 } 820 821 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 822 max_size = MAX_INLINE_XATTR_SIZE; 823 824 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 825 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 826 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 827 min_size, max_size); 828 return -EINVAL; 829 } 830 } 831 832 if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) { 833 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n"); 834 return -EINVAL; 835 } 836 837 /* Not pass down write hints if the number of active logs is lesser 838 * than NR_CURSEG_TYPE. 839 */ 840 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 841 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 842 return 0; 843 } 844 845 static struct inode *f2fs_alloc_inode(struct super_block *sb) 846 { 847 struct f2fs_inode_info *fi; 848 849 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 850 if (!fi) 851 return NULL; 852 853 init_once((void *) fi); 854 855 /* Initialize f2fs-specific inode info */ 856 atomic_set(&fi->dirty_pages, 0); 857 init_rwsem(&fi->i_sem); 858 INIT_LIST_HEAD(&fi->dirty_list); 859 INIT_LIST_HEAD(&fi->gdirty_list); 860 INIT_LIST_HEAD(&fi->inmem_ilist); 861 INIT_LIST_HEAD(&fi->inmem_pages); 862 mutex_init(&fi->inmem_lock); 863 init_rwsem(&fi->i_gc_rwsem[READ]); 864 init_rwsem(&fi->i_gc_rwsem[WRITE]); 865 init_rwsem(&fi->i_mmap_sem); 866 init_rwsem(&fi->i_xattr_sem); 867 868 /* Will be used by directory only */ 869 fi->i_dir_level = F2FS_SB(sb)->dir_level; 870 871 return &fi->vfs_inode; 872 } 873 874 static int f2fs_drop_inode(struct inode *inode) 875 { 876 int ret; 877 /* 878 * This is to avoid a deadlock condition like below. 879 * writeback_single_inode(inode) 880 * - f2fs_write_data_page 881 * - f2fs_gc -> iput -> evict 882 * - inode_wait_for_writeback(inode) 883 */ 884 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 885 if (!inode->i_nlink && !is_bad_inode(inode)) { 886 /* to avoid evict_inode call simultaneously */ 887 atomic_inc(&inode->i_count); 888 spin_unlock(&inode->i_lock); 889 890 /* some remained atomic pages should discarded */ 891 if (f2fs_is_atomic_file(inode)) 892 f2fs_drop_inmem_pages(inode); 893 894 /* should remain fi->extent_tree for writepage */ 895 f2fs_destroy_extent_node(inode); 896 897 sb_start_intwrite(inode->i_sb); 898 f2fs_i_size_write(inode, 0); 899 900 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 901 inode, NULL, 0, DATA); 902 truncate_inode_pages_final(inode->i_mapping); 903 904 if (F2FS_HAS_BLOCKS(inode)) 905 f2fs_truncate(inode); 906 907 sb_end_intwrite(inode->i_sb); 908 909 spin_lock(&inode->i_lock); 910 atomic_dec(&inode->i_count); 911 } 912 trace_f2fs_drop_inode(inode, 0); 913 return 0; 914 } 915 ret = generic_drop_inode(inode); 916 trace_f2fs_drop_inode(inode, ret); 917 return ret; 918 } 919 920 int f2fs_inode_dirtied(struct inode *inode, bool sync) 921 { 922 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 923 int ret = 0; 924 925 spin_lock(&sbi->inode_lock[DIRTY_META]); 926 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 927 ret = 1; 928 } else { 929 set_inode_flag(inode, FI_DIRTY_INODE); 930 stat_inc_dirty_inode(sbi, DIRTY_META); 931 } 932 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 933 list_add_tail(&F2FS_I(inode)->gdirty_list, 934 &sbi->inode_list[DIRTY_META]); 935 inc_page_count(sbi, F2FS_DIRTY_IMETA); 936 } 937 spin_unlock(&sbi->inode_lock[DIRTY_META]); 938 return ret; 939 } 940 941 void f2fs_inode_synced(struct inode *inode) 942 { 943 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 944 945 spin_lock(&sbi->inode_lock[DIRTY_META]); 946 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 947 spin_unlock(&sbi->inode_lock[DIRTY_META]); 948 return; 949 } 950 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 951 list_del_init(&F2FS_I(inode)->gdirty_list); 952 dec_page_count(sbi, F2FS_DIRTY_IMETA); 953 } 954 clear_inode_flag(inode, FI_DIRTY_INODE); 955 clear_inode_flag(inode, FI_AUTO_RECOVER); 956 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 957 spin_unlock(&sbi->inode_lock[DIRTY_META]); 958 } 959 960 /* 961 * f2fs_dirty_inode() is called from __mark_inode_dirty() 962 * 963 * We should call set_dirty_inode to write the dirty inode through write_inode. 964 */ 965 static void f2fs_dirty_inode(struct inode *inode, int flags) 966 { 967 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 968 969 if (inode->i_ino == F2FS_NODE_INO(sbi) || 970 inode->i_ino == F2FS_META_INO(sbi)) 971 return; 972 973 if (flags == I_DIRTY_TIME) 974 return; 975 976 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 977 clear_inode_flag(inode, FI_AUTO_RECOVER); 978 979 f2fs_inode_dirtied(inode, false); 980 } 981 982 static void f2fs_free_inode(struct inode *inode) 983 { 984 fscrypt_free_inode(inode); 985 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 986 } 987 988 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 989 { 990 percpu_counter_destroy(&sbi->alloc_valid_block_count); 991 percpu_counter_destroy(&sbi->total_valid_inode_count); 992 } 993 994 static void destroy_device_list(struct f2fs_sb_info *sbi) 995 { 996 int i; 997 998 for (i = 0; i < sbi->s_ndevs; i++) { 999 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1000 #ifdef CONFIG_BLK_DEV_ZONED 1001 kvfree(FDEV(i).blkz_seq); 1002 #endif 1003 } 1004 kvfree(sbi->devs); 1005 } 1006 1007 static void f2fs_put_super(struct super_block *sb) 1008 { 1009 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1010 int i; 1011 bool dropped; 1012 1013 f2fs_quota_off_umount(sb); 1014 1015 /* prevent remaining shrinker jobs */ 1016 mutex_lock(&sbi->umount_mutex); 1017 1018 /* 1019 * We don't need to do checkpoint when superblock is clean. 1020 * But, the previous checkpoint was not done by umount, it needs to do 1021 * clean checkpoint again. 1022 */ 1023 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1024 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1025 struct cp_control cpc = { 1026 .reason = CP_UMOUNT, 1027 }; 1028 f2fs_write_checkpoint(sbi, &cpc); 1029 } 1030 1031 /* be sure to wait for any on-going discard commands */ 1032 dropped = f2fs_issue_discard_timeout(sbi); 1033 1034 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1035 !sbi->discard_blks && !dropped) { 1036 struct cp_control cpc = { 1037 .reason = CP_UMOUNT | CP_TRIMMED, 1038 }; 1039 f2fs_write_checkpoint(sbi, &cpc); 1040 } 1041 1042 /* 1043 * normally superblock is clean, so we need to release this. 1044 * In addition, EIO will skip do checkpoint, we need this as well. 1045 */ 1046 f2fs_release_ino_entry(sbi, true); 1047 1048 f2fs_leave_shrinker(sbi); 1049 mutex_unlock(&sbi->umount_mutex); 1050 1051 /* our cp_error case, we can wait for any writeback page */ 1052 f2fs_flush_merged_writes(sbi); 1053 1054 f2fs_wait_on_all_pages_writeback(sbi); 1055 1056 f2fs_bug_on(sbi, sbi->fsync_node_num); 1057 1058 iput(sbi->node_inode); 1059 sbi->node_inode = NULL; 1060 1061 iput(sbi->meta_inode); 1062 sbi->meta_inode = NULL; 1063 1064 /* 1065 * iput() can update stat information, if f2fs_write_checkpoint() 1066 * above failed with error. 1067 */ 1068 f2fs_destroy_stats(sbi); 1069 1070 /* destroy f2fs internal modules */ 1071 f2fs_destroy_node_manager(sbi); 1072 f2fs_destroy_segment_manager(sbi); 1073 1074 kvfree(sbi->ckpt); 1075 1076 f2fs_unregister_sysfs(sbi); 1077 1078 sb->s_fs_info = NULL; 1079 if (sbi->s_chksum_driver) 1080 crypto_free_shash(sbi->s_chksum_driver); 1081 kvfree(sbi->raw_super); 1082 1083 destroy_device_list(sbi); 1084 mempool_destroy(sbi->write_io_dummy); 1085 #ifdef CONFIG_QUOTA 1086 for (i = 0; i < MAXQUOTAS; i++) 1087 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1088 #endif 1089 destroy_percpu_info(sbi); 1090 for (i = 0; i < NR_PAGE_TYPE; i++) 1091 kvfree(sbi->write_io[i]); 1092 kvfree(sbi); 1093 } 1094 1095 int f2fs_sync_fs(struct super_block *sb, int sync) 1096 { 1097 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1098 int err = 0; 1099 1100 if (unlikely(f2fs_cp_error(sbi))) 1101 return 0; 1102 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1103 return 0; 1104 1105 trace_f2fs_sync_fs(sb, sync); 1106 1107 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1108 return -EAGAIN; 1109 1110 if (sync) { 1111 struct cp_control cpc; 1112 1113 cpc.reason = __get_cp_reason(sbi); 1114 1115 mutex_lock(&sbi->gc_mutex); 1116 err = f2fs_write_checkpoint(sbi, &cpc); 1117 mutex_unlock(&sbi->gc_mutex); 1118 } 1119 f2fs_trace_ios(NULL, 1); 1120 1121 return err; 1122 } 1123 1124 static int f2fs_freeze(struct super_block *sb) 1125 { 1126 if (f2fs_readonly(sb)) 1127 return 0; 1128 1129 /* IO error happened before */ 1130 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1131 return -EIO; 1132 1133 /* must be clean, since sync_filesystem() was already called */ 1134 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1135 return -EINVAL; 1136 return 0; 1137 } 1138 1139 static int f2fs_unfreeze(struct super_block *sb) 1140 { 1141 return 0; 1142 } 1143 1144 #ifdef CONFIG_QUOTA 1145 static int f2fs_statfs_project(struct super_block *sb, 1146 kprojid_t projid, struct kstatfs *buf) 1147 { 1148 struct kqid qid; 1149 struct dquot *dquot; 1150 u64 limit; 1151 u64 curblock; 1152 1153 qid = make_kqid_projid(projid); 1154 dquot = dqget(sb, qid); 1155 if (IS_ERR(dquot)) 1156 return PTR_ERR(dquot); 1157 spin_lock(&dquot->dq_dqb_lock); 1158 1159 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 1160 dquot->dq_dqb.dqb_bsoftlimit : 1161 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 1162 if (limit && buf->f_blocks > limit) { 1163 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 1164 buf->f_blocks = limit; 1165 buf->f_bfree = buf->f_bavail = 1166 (buf->f_blocks > curblock) ? 1167 (buf->f_blocks - curblock) : 0; 1168 } 1169 1170 limit = dquot->dq_dqb.dqb_isoftlimit ? 1171 dquot->dq_dqb.dqb_isoftlimit : 1172 dquot->dq_dqb.dqb_ihardlimit; 1173 if (limit && buf->f_files > limit) { 1174 buf->f_files = limit; 1175 buf->f_ffree = 1176 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1177 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1178 } 1179 1180 spin_unlock(&dquot->dq_dqb_lock); 1181 dqput(dquot); 1182 return 0; 1183 } 1184 #endif 1185 1186 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1187 { 1188 struct super_block *sb = dentry->d_sb; 1189 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1190 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1191 block_t total_count, user_block_count, start_count; 1192 u64 avail_node_count; 1193 1194 total_count = le64_to_cpu(sbi->raw_super->block_count); 1195 user_block_count = sbi->user_block_count; 1196 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1197 buf->f_type = F2FS_SUPER_MAGIC; 1198 buf->f_bsize = sbi->blocksize; 1199 1200 buf->f_blocks = total_count - start_count; 1201 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1202 sbi->current_reserved_blocks; 1203 1204 spin_lock(&sbi->stat_lock); 1205 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1206 buf->f_bfree = 0; 1207 else 1208 buf->f_bfree -= sbi->unusable_block_count; 1209 spin_unlock(&sbi->stat_lock); 1210 1211 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1212 buf->f_bavail = buf->f_bfree - 1213 F2FS_OPTION(sbi).root_reserved_blocks; 1214 else 1215 buf->f_bavail = 0; 1216 1217 avail_node_count = sbi->total_node_count - sbi->nquota_files - 1218 F2FS_RESERVED_NODE_NUM; 1219 1220 if (avail_node_count > user_block_count) { 1221 buf->f_files = user_block_count; 1222 buf->f_ffree = buf->f_bavail; 1223 } else { 1224 buf->f_files = avail_node_count; 1225 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1226 buf->f_bavail); 1227 } 1228 1229 buf->f_namelen = F2FS_NAME_LEN; 1230 buf->f_fsid.val[0] = (u32)id; 1231 buf->f_fsid.val[1] = (u32)(id >> 32); 1232 1233 #ifdef CONFIG_QUOTA 1234 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1235 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1236 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1237 } 1238 #endif 1239 return 0; 1240 } 1241 1242 static inline void f2fs_show_quota_options(struct seq_file *seq, 1243 struct super_block *sb) 1244 { 1245 #ifdef CONFIG_QUOTA 1246 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1247 1248 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1249 char *fmtname = ""; 1250 1251 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1252 case QFMT_VFS_OLD: 1253 fmtname = "vfsold"; 1254 break; 1255 case QFMT_VFS_V0: 1256 fmtname = "vfsv0"; 1257 break; 1258 case QFMT_VFS_V1: 1259 fmtname = "vfsv1"; 1260 break; 1261 } 1262 seq_printf(seq, ",jqfmt=%s", fmtname); 1263 } 1264 1265 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1266 seq_show_option(seq, "usrjquota", 1267 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1268 1269 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1270 seq_show_option(seq, "grpjquota", 1271 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1272 1273 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1274 seq_show_option(seq, "prjjquota", 1275 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1276 #endif 1277 } 1278 1279 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1280 { 1281 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1282 1283 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 1284 if (test_opt(sbi, FORCE_FG_GC)) 1285 seq_printf(seq, ",background_gc=%s", "sync"); 1286 else 1287 seq_printf(seq, ",background_gc=%s", "on"); 1288 } else { 1289 seq_printf(seq, ",background_gc=%s", "off"); 1290 } 1291 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1292 seq_puts(seq, ",disable_roll_forward"); 1293 if (test_opt(sbi, DISCARD)) 1294 seq_puts(seq, ",discard"); 1295 else 1296 seq_puts(seq, ",nodiscard"); 1297 if (test_opt(sbi, NOHEAP)) 1298 seq_puts(seq, ",no_heap"); 1299 else 1300 seq_puts(seq, ",heap"); 1301 #ifdef CONFIG_F2FS_FS_XATTR 1302 if (test_opt(sbi, XATTR_USER)) 1303 seq_puts(seq, ",user_xattr"); 1304 else 1305 seq_puts(seq, ",nouser_xattr"); 1306 if (test_opt(sbi, INLINE_XATTR)) 1307 seq_puts(seq, ",inline_xattr"); 1308 else 1309 seq_puts(seq, ",noinline_xattr"); 1310 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1311 seq_printf(seq, ",inline_xattr_size=%u", 1312 F2FS_OPTION(sbi).inline_xattr_size); 1313 #endif 1314 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1315 if (test_opt(sbi, POSIX_ACL)) 1316 seq_puts(seq, ",acl"); 1317 else 1318 seq_puts(seq, ",noacl"); 1319 #endif 1320 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1321 seq_puts(seq, ",disable_ext_identify"); 1322 if (test_opt(sbi, INLINE_DATA)) 1323 seq_puts(seq, ",inline_data"); 1324 else 1325 seq_puts(seq, ",noinline_data"); 1326 if (test_opt(sbi, INLINE_DENTRY)) 1327 seq_puts(seq, ",inline_dentry"); 1328 else 1329 seq_puts(seq, ",noinline_dentry"); 1330 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1331 seq_puts(seq, ",flush_merge"); 1332 if (test_opt(sbi, NOBARRIER)) 1333 seq_puts(seq, ",nobarrier"); 1334 if (test_opt(sbi, FASTBOOT)) 1335 seq_puts(seq, ",fastboot"); 1336 if (test_opt(sbi, EXTENT_CACHE)) 1337 seq_puts(seq, ",extent_cache"); 1338 else 1339 seq_puts(seq, ",noextent_cache"); 1340 if (test_opt(sbi, DATA_FLUSH)) 1341 seq_puts(seq, ",data_flush"); 1342 1343 seq_puts(seq, ",mode="); 1344 if (test_opt(sbi, ADAPTIVE)) 1345 seq_puts(seq, "adaptive"); 1346 else if (test_opt(sbi, LFS)) 1347 seq_puts(seq, "lfs"); 1348 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1349 if (test_opt(sbi, RESERVE_ROOT)) 1350 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1351 F2FS_OPTION(sbi).root_reserved_blocks, 1352 from_kuid_munged(&init_user_ns, 1353 F2FS_OPTION(sbi).s_resuid), 1354 from_kgid_munged(&init_user_ns, 1355 F2FS_OPTION(sbi).s_resgid)); 1356 if (F2FS_IO_SIZE_BITS(sbi)) 1357 seq_printf(seq, ",io_bits=%u", 1358 F2FS_OPTION(sbi).write_io_size_bits); 1359 #ifdef CONFIG_F2FS_FAULT_INJECTION 1360 if (test_opt(sbi, FAULT_INJECTION)) { 1361 seq_printf(seq, ",fault_injection=%u", 1362 F2FS_OPTION(sbi).fault_info.inject_rate); 1363 seq_printf(seq, ",fault_type=%u", 1364 F2FS_OPTION(sbi).fault_info.inject_type); 1365 } 1366 #endif 1367 #ifdef CONFIG_QUOTA 1368 if (test_opt(sbi, QUOTA)) 1369 seq_puts(seq, ",quota"); 1370 if (test_opt(sbi, USRQUOTA)) 1371 seq_puts(seq, ",usrquota"); 1372 if (test_opt(sbi, GRPQUOTA)) 1373 seq_puts(seq, ",grpquota"); 1374 if (test_opt(sbi, PRJQUOTA)) 1375 seq_puts(seq, ",prjquota"); 1376 #endif 1377 f2fs_show_quota_options(seq, sbi->sb); 1378 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1379 seq_printf(seq, ",whint_mode=%s", "user-based"); 1380 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1381 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1382 #ifdef CONFIG_FS_ENCRYPTION 1383 if (F2FS_OPTION(sbi).test_dummy_encryption) 1384 seq_puts(seq, ",test_dummy_encryption"); 1385 #endif 1386 1387 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1388 seq_printf(seq, ",alloc_mode=%s", "default"); 1389 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1390 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1391 1392 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1393 seq_printf(seq, ",checkpoint=disable:%u", 1394 F2FS_OPTION(sbi).unusable_cap); 1395 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1396 seq_printf(seq, ",fsync_mode=%s", "posix"); 1397 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1398 seq_printf(seq, ",fsync_mode=%s", "strict"); 1399 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1400 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1401 return 0; 1402 } 1403 1404 static void default_options(struct f2fs_sb_info *sbi) 1405 { 1406 /* init some FS parameters */ 1407 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE; 1408 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1409 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1410 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1411 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1412 F2FS_OPTION(sbi).test_dummy_encryption = false; 1413 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1414 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1415 1416 set_opt(sbi, BG_GC); 1417 set_opt(sbi, INLINE_XATTR); 1418 set_opt(sbi, INLINE_DATA); 1419 set_opt(sbi, INLINE_DENTRY); 1420 set_opt(sbi, EXTENT_CACHE); 1421 set_opt(sbi, NOHEAP); 1422 clear_opt(sbi, DISABLE_CHECKPOINT); 1423 F2FS_OPTION(sbi).unusable_cap = 0; 1424 sbi->sb->s_flags |= SB_LAZYTIME; 1425 set_opt(sbi, FLUSH_MERGE); 1426 set_opt(sbi, DISCARD); 1427 if (f2fs_sb_has_blkzoned(sbi)) 1428 set_opt_mode(sbi, F2FS_MOUNT_LFS); 1429 else 1430 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 1431 1432 #ifdef CONFIG_F2FS_FS_XATTR 1433 set_opt(sbi, XATTR_USER); 1434 #endif 1435 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1436 set_opt(sbi, POSIX_ACL); 1437 #endif 1438 1439 f2fs_build_fault_attr(sbi, 0, 0); 1440 } 1441 1442 #ifdef CONFIG_QUOTA 1443 static int f2fs_enable_quotas(struct super_block *sb); 1444 #endif 1445 1446 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 1447 { 1448 unsigned int s_flags = sbi->sb->s_flags; 1449 struct cp_control cpc; 1450 int err = 0; 1451 int ret; 1452 block_t unusable; 1453 1454 if (s_flags & SB_RDONLY) { 1455 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 1456 return -EINVAL; 1457 } 1458 sbi->sb->s_flags |= SB_ACTIVE; 1459 1460 f2fs_update_time(sbi, DISABLE_TIME); 1461 1462 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 1463 mutex_lock(&sbi->gc_mutex); 1464 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1465 if (err == -ENODATA) { 1466 err = 0; 1467 break; 1468 } 1469 if (err && err != -EAGAIN) 1470 break; 1471 } 1472 1473 ret = sync_filesystem(sbi->sb); 1474 if (ret || err) { 1475 err = ret ? ret: err; 1476 goto restore_flag; 1477 } 1478 1479 unusable = f2fs_get_unusable_blocks(sbi); 1480 if (f2fs_disable_cp_again(sbi, unusable)) { 1481 err = -EAGAIN; 1482 goto restore_flag; 1483 } 1484 1485 mutex_lock(&sbi->gc_mutex); 1486 cpc.reason = CP_PAUSE; 1487 set_sbi_flag(sbi, SBI_CP_DISABLED); 1488 err = f2fs_write_checkpoint(sbi, &cpc); 1489 if (err) 1490 goto out_unlock; 1491 1492 spin_lock(&sbi->stat_lock); 1493 sbi->unusable_block_count = unusable; 1494 spin_unlock(&sbi->stat_lock); 1495 1496 out_unlock: 1497 mutex_unlock(&sbi->gc_mutex); 1498 restore_flag: 1499 sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1500 return err; 1501 } 1502 1503 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 1504 { 1505 mutex_lock(&sbi->gc_mutex); 1506 f2fs_dirty_to_prefree(sbi); 1507 1508 clear_sbi_flag(sbi, SBI_CP_DISABLED); 1509 set_sbi_flag(sbi, SBI_IS_DIRTY); 1510 mutex_unlock(&sbi->gc_mutex); 1511 1512 f2fs_sync_fs(sbi->sb, 1); 1513 } 1514 1515 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1516 { 1517 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1518 struct f2fs_mount_info org_mount_opt; 1519 unsigned long old_sb_flags; 1520 int err; 1521 bool need_restart_gc = false; 1522 bool need_stop_gc = false; 1523 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1524 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); 1525 bool checkpoint_changed; 1526 #ifdef CONFIG_QUOTA 1527 int i, j; 1528 #endif 1529 1530 /* 1531 * Save the old mount options in case we 1532 * need to restore them. 1533 */ 1534 org_mount_opt = sbi->mount_opt; 1535 old_sb_flags = sb->s_flags; 1536 1537 #ifdef CONFIG_QUOTA 1538 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1539 for (i = 0; i < MAXQUOTAS; i++) { 1540 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1541 org_mount_opt.s_qf_names[i] = 1542 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1543 GFP_KERNEL); 1544 if (!org_mount_opt.s_qf_names[i]) { 1545 for (j = 0; j < i; j++) 1546 kvfree(org_mount_opt.s_qf_names[j]); 1547 return -ENOMEM; 1548 } 1549 } else { 1550 org_mount_opt.s_qf_names[i] = NULL; 1551 } 1552 } 1553 #endif 1554 1555 /* recover superblocks we couldn't write due to previous RO mount */ 1556 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1557 err = f2fs_commit_super(sbi, false); 1558 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 1559 err); 1560 if (!err) 1561 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1562 } 1563 1564 default_options(sbi); 1565 1566 /* parse mount options */ 1567 err = parse_options(sb, data); 1568 if (err) 1569 goto restore_opts; 1570 checkpoint_changed = 1571 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); 1572 1573 /* 1574 * Previous and new state of filesystem is RO, 1575 * so skip checking GC and FLUSH_MERGE conditions. 1576 */ 1577 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1578 goto skip; 1579 1580 #ifdef CONFIG_QUOTA 1581 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1582 err = dquot_suspend(sb, -1); 1583 if (err < 0) 1584 goto restore_opts; 1585 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 1586 /* dquot_resume needs RW */ 1587 sb->s_flags &= ~SB_RDONLY; 1588 if (sb_any_quota_suspended(sb)) { 1589 dquot_resume(sb, -1); 1590 } else if (f2fs_sb_has_quota_ino(sbi)) { 1591 err = f2fs_enable_quotas(sb); 1592 if (err) 1593 goto restore_opts; 1594 } 1595 } 1596 #endif 1597 /* disallow enable/disable extent_cache dynamically */ 1598 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1599 err = -EINVAL; 1600 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 1601 goto restore_opts; 1602 } 1603 1604 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 1605 err = -EINVAL; 1606 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 1607 goto restore_opts; 1608 } 1609 1610 /* 1611 * We stop the GC thread if FS is mounted as RO 1612 * or if background_gc = off is passed in mount 1613 * option. Also sync the filesystem. 1614 */ 1615 if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) { 1616 if (sbi->gc_thread) { 1617 f2fs_stop_gc_thread(sbi); 1618 need_restart_gc = true; 1619 } 1620 } else if (!sbi->gc_thread) { 1621 err = f2fs_start_gc_thread(sbi); 1622 if (err) 1623 goto restore_opts; 1624 need_stop_gc = true; 1625 } 1626 1627 if (*flags & SB_RDONLY || 1628 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 1629 writeback_inodes_sb(sb, WB_REASON_SYNC); 1630 sync_inodes_sb(sb); 1631 1632 set_sbi_flag(sbi, SBI_IS_DIRTY); 1633 set_sbi_flag(sbi, SBI_IS_CLOSE); 1634 f2fs_sync_fs(sb, 1); 1635 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1636 } 1637 1638 if (checkpoint_changed) { 1639 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 1640 err = f2fs_disable_checkpoint(sbi); 1641 if (err) 1642 goto restore_gc; 1643 } else { 1644 f2fs_enable_checkpoint(sbi); 1645 } 1646 } 1647 1648 /* 1649 * We stop issue flush thread if FS is mounted as RO 1650 * or if flush_merge is not passed in mount option. 1651 */ 1652 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1653 clear_opt(sbi, FLUSH_MERGE); 1654 f2fs_destroy_flush_cmd_control(sbi, false); 1655 } else { 1656 err = f2fs_create_flush_cmd_control(sbi); 1657 if (err) 1658 goto restore_gc; 1659 } 1660 skip: 1661 #ifdef CONFIG_QUOTA 1662 /* Release old quota file names */ 1663 for (i = 0; i < MAXQUOTAS; i++) 1664 kvfree(org_mount_opt.s_qf_names[i]); 1665 #endif 1666 /* Update the POSIXACL Flag */ 1667 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 1668 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 1669 1670 limit_reserve_root(sbi); 1671 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 1672 return 0; 1673 restore_gc: 1674 if (need_restart_gc) { 1675 if (f2fs_start_gc_thread(sbi)) 1676 f2fs_warn(sbi, "background gc thread has stopped"); 1677 } else if (need_stop_gc) { 1678 f2fs_stop_gc_thread(sbi); 1679 } 1680 restore_opts: 1681 #ifdef CONFIG_QUOTA 1682 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 1683 for (i = 0; i < MAXQUOTAS; i++) { 1684 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1685 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 1686 } 1687 #endif 1688 sbi->mount_opt = org_mount_opt; 1689 sb->s_flags = old_sb_flags; 1690 return err; 1691 } 1692 1693 #ifdef CONFIG_QUOTA 1694 /* Read data from quotafile */ 1695 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 1696 size_t len, loff_t off) 1697 { 1698 struct inode *inode = sb_dqopt(sb)->files[type]; 1699 struct address_space *mapping = inode->i_mapping; 1700 block_t blkidx = F2FS_BYTES_TO_BLK(off); 1701 int offset = off & (sb->s_blocksize - 1); 1702 int tocopy; 1703 size_t toread; 1704 loff_t i_size = i_size_read(inode); 1705 struct page *page; 1706 char *kaddr; 1707 1708 if (off > i_size) 1709 return 0; 1710 1711 if (off + len > i_size) 1712 len = i_size - off; 1713 toread = len; 1714 while (toread > 0) { 1715 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 1716 repeat: 1717 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 1718 if (IS_ERR(page)) { 1719 if (PTR_ERR(page) == -ENOMEM) { 1720 congestion_wait(BLK_RW_ASYNC, HZ/50); 1721 goto repeat; 1722 } 1723 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1724 return PTR_ERR(page); 1725 } 1726 1727 lock_page(page); 1728 1729 if (unlikely(page->mapping != mapping)) { 1730 f2fs_put_page(page, 1); 1731 goto repeat; 1732 } 1733 if (unlikely(!PageUptodate(page))) { 1734 f2fs_put_page(page, 1); 1735 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1736 return -EIO; 1737 } 1738 1739 kaddr = kmap_atomic(page); 1740 memcpy(data, kaddr + offset, tocopy); 1741 kunmap_atomic(kaddr); 1742 f2fs_put_page(page, 1); 1743 1744 offset = 0; 1745 toread -= tocopy; 1746 data += tocopy; 1747 blkidx++; 1748 } 1749 return len; 1750 } 1751 1752 /* Write to quotafile */ 1753 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 1754 const char *data, size_t len, loff_t off) 1755 { 1756 struct inode *inode = sb_dqopt(sb)->files[type]; 1757 struct address_space *mapping = inode->i_mapping; 1758 const struct address_space_operations *a_ops = mapping->a_ops; 1759 int offset = off & (sb->s_blocksize - 1); 1760 size_t towrite = len; 1761 struct page *page; 1762 char *kaddr; 1763 int err = 0; 1764 int tocopy; 1765 1766 while (towrite > 0) { 1767 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 1768 towrite); 1769 retry: 1770 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 1771 &page, NULL); 1772 if (unlikely(err)) { 1773 if (err == -ENOMEM) { 1774 congestion_wait(BLK_RW_ASYNC, HZ/50); 1775 goto retry; 1776 } 1777 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1778 break; 1779 } 1780 1781 kaddr = kmap_atomic(page); 1782 memcpy(kaddr + offset, data, tocopy); 1783 kunmap_atomic(kaddr); 1784 flush_dcache_page(page); 1785 1786 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 1787 page, NULL); 1788 offset = 0; 1789 towrite -= tocopy; 1790 off += tocopy; 1791 data += tocopy; 1792 cond_resched(); 1793 } 1794 1795 if (len == towrite) 1796 return err; 1797 inode->i_mtime = inode->i_ctime = current_time(inode); 1798 f2fs_mark_inode_dirty_sync(inode, false); 1799 return len - towrite; 1800 } 1801 1802 static struct dquot **f2fs_get_dquots(struct inode *inode) 1803 { 1804 return F2FS_I(inode)->i_dquot; 1805 } 1806 1807 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 1808 { 1809 return &F2FS_I(inode)->i_reserved_quota; 1810 } 1811 1812 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 1813 { 1814 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 1815 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 1816 return 0; 1817 } 1818 1819 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 1820 F2FS_OPTION(sbi).s_jquota_fmt, type); 1821 } 1822 1823 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 1824 { 1825 int enabled = 0; 1826 int i, err; 1827 1828 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 1829 err = f2fs_enable_quotas(sbi->sb); 1830 if (err) { 1831 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 1832 return 0; 1833 } 1834 return 1; 1835 } 1836 1837 for (i = 0; i < MAXQUOTAS; i++) { 1838 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1839 err = f2fs_quota_on_mount(sbi, i); 1840 if (!err) { 1841 enabled = 1; 1842 continue; 1843 } 1844 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 1845 err, i); 1846 } 1847 } 1848 return enabled; 1849 } 1850 1851 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 1852 unsigned int flags) 1853 { 1854 struct inode *qf_inode; 1855 unsigned long qf_inum; 1856 int err; 1857 1858 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 1859 1860 qf_inum = f2fs_qf_ino(sb, type); 1861 if (!qf_inum) 1862 return -EPERM; 1863 1864 qf_inode = f2fs_iget(sb, qf_inum); 1865 if (IS_ERR(qf_inode)) { 1866 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 1867 return PTR_ERR(qf_inode); 1868 } 1869 1870 /* Don't account quota for quota files to avoid recursion */ 1871 qf_inode->i_flags |= S_NOQUOTA; 1872 err = dquot_enable(qf_inode, type, format_id, flags); 1873 iput(qf_inode); 1874 return err; 1875 } 1876 1877 static int f2fs_enable_quotas(struct super_block *sb) 1878 { 1879 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1880 int type, err = 0; 1881 unsigned long qf_inum; 1882 bool quota_mopt[MAXQUOTAS] = { 1883 test_opt(sbi, USRQUOTA), 1884 test_opt(sbi, GRPQUOTA), 1885 test_opt(sbi, PRJQUOTA), 1886 }; 1887 1888 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 1889 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 1890 return 0; 1891 } 1892 1893 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 1894 1895 for (type = 0; type < MAXQUOTAS; type++) { 1896 qf_inum = f2fs_qf_ino(sb, type); 1897 if (qf_inum) { 1898 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 1899 DQUOT_USAGE_ENABLED | 1900 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 1901 if (err) { 1902 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 1903 type, err); 1904 for (type--; type >= 0; type--) 1905 dquot_quota_off(sb, type); 1906 set_sbi_flag(F2FS_SB(sb), 1907 SBI_QUOTA_NEED_REPAIR); 1908 return err; 1909 } 1910 } 1911 } 1912 return 0; 1913 } 1914 1915 int f2fs_quota_sync(struct super_block *sb, int type) 1916 { 1917 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1918 struct quota_info *dqopt = sb_dqopt(sb); 1919 int cnt; 1920 int ret; 1921 1922 /* 1923 * do_quotactl 1924 * f2fs_quota_sync 1925 * down_read(quota_sem) 1926 * dquot_writeback_dquots() 1927 * f2fs_dquot_commit 1928 * block_operation 1929 * down_read(quota_sem) 1930 */ 1931 f2fs_lock_op(sbi); 1932 1933 down_read(&sbi->quota_sem); 1934 ret = dquot_writeback_dquots(sb, type); 1935 if (ret) 1936 goto out; 1937 1938 /* 1939 * Now when everything is written we can discard the pagecache so 1940 * that userspace sees the changes. 1941 */ 1942 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 1943 struct address_space *mapping; 1944 1945 if (type != -1 && cnt != type) 1946 continue; 1947 if (!sb_has_quota_active(sb, cnt)) 1948 continue; 1949 1950 mapping = dqopt->files[cnt]->i_mapping; 1951 1952 ret = filemap_fdatawrite(mapping); 1953 if (ret) 1954 goto out; 1955 1956 /* if we are using journalled quota */ 1957 if (is_journalled_quota(sbi)) 1958 continue; 1959 1960 ret = filemap_fdatawait(mapping); 1961 if (ret) 1962 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1963 1964 inode_lock(dqopt->files[cnt]); 1965 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 1966 inode_unlock(dqopt->files[cnt]); 1967 } 1968 out: 1969 if (ret) 1970 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1971 up_read(&sbi->quota_sem); 1972 f2fs_unlock_op(sbi); 1973 return ret; 1974 } 1975 1976 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 1977 const struct path *path) 1978 { 1979 struct inode *inode; 1980 int err; 1981 1982 err = f2fs_quota_sync(sb, type); 1983 if (err) 1984 return err; 1985 1986 err = dquot_quota_on(sb, type, format_id, path); 1987 if (err) 1988 return err; 1989 1990 inode = d_inode(path->dentry); 1991 1992 inode_lock(inode); 1993 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 1994 f2fs_set_inode_flags(inode); 1995 inode_unlock(inode); 1996 f2fs_mark_inode_dirty_sync(inode, false); 1997 1998 return 0; 1999 } 2000 2001 static int f2fs_quota_off(struct super_block *sb, int type) 2002 { 2003 struct inode *inode = sb_dqopt(sb)->files[type]; 2004 int err; 2005 2006 if (!inode || !igrab(inode)) 2007 return dquot_quota_off(sb, type); 2008 2009 err = f2fs_quota_sync(sb, type); 2010 if (err) 2011 goto out_put; 2012 2013 err = dquot_quota_off(sb, type); 2014 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2015 goto out_put; 2016 2017 inode_lock(inode); 2018 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2019 f2fs_set_inode_flags(inode); 2020 inode_unlock(inode); 2021 f2fs_mark_inode_dirty_sync(inode, false); 2022 out_put: 2023 iput(inode); 2024 return err; 2025 } 2026 2027 void f2fs_quota_off_umount(struct super_block *sb) 2028 { 2029 int type; 2030 int err; 2031 2032 for (type = 0; type < MAXQUOTAS; type++) { 2033 err = f2fs_quota_off(sb, type); 2034 if (err) { 2035 int ret = dquot_quota_off(sb, type); 2036 2037 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 2038 type, err, ret); 2039 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2040 } 2041 } 2042 /* 2043 * In case of checkpoint=disable, we must flush quota blocks. 2044 * This can cause NULL exception for node_inode in end_io, since 2045 * put_super already dropped it. 2046 */ 2047 sync_filesystem(sb); 2048 } 2049 2050 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2051 { 2052 struct quota_info *dqopt = sb_dqopt(sb); 2053 int type; 2054 2055 for (type = 0; type < MAXQUOTAS; type++) { 2056 if (!dqopt->files[type]) 2057 continue; 2058 f2fs_inode_synced(dqopt->files[type]); 2059 } 2060 } 2061 2062 static int f2fs_dquot_commit(struct dquot *dquot) 2063 { 2064 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2065 int ret; 2066 2067 down_read(&sbi->quota_sem); 2068 ret = dquot_commit(dquot); 2069 if (ret < 0) 2070 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2071 up_read(&sbi->quota_sem); 2072 return ret; 2073 } 2074 2075 static int f2fs_dquot_acquire(struct dquot *dquot) 2076 { 2077 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2078 int ret; 2079 2080 down_read(&sbi->quota_sem); 2081 ret = dquot_acquire(dquot); 2082 if (ret < 0) 2083 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2084 up_read(&sbi->quota_sem); 2085 return ret; 2086 } 2087 2088 static int f2fs_dquot_release(struct dquot *dquot) 2089 { 2090 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2091 int ret; 2092 2093 down_read(&sbi->quota_sem); 2094 ret = dquot_release(dquot); 2095 if (ret < 0) 2096 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2097 up_read(&sbi->quota_sem); 2098 return ret; 2099 } 2100 2101 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2102 { 2103 struct super_block *sb = dquot->dq_sb; 2104 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2105 int ret; 2106 2107 down_read(&sbi->quota_sem); 2108 ret = dquot_mark_dquot_dirty(dquot); 2109 2110 /* if we are using journalled quota */ 2111 if (is_journalled_quota(sbi)) 2112 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2113 2114 up_read(&sbi->quota_sem); 2115 return ret; 2116 } 2117 2118 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2119 { 2120 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2121 int ret; 2122 2123 down_read(&sbi->quota_sem); 2124 ret = dquot_commit_info(sb, type); 2125 if (ret < 0) 2126 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2127 up_read(&sbi->quota_sem); 2128 return ret; 2129 } 2130 2131 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2132 { 2133 *projid = F2FS_I(inode)->i_projid; 2134 return 0; 2135 } 2136 2137 static const struct dquot_operations f2fs_quota_operations = { 2138 .get_reserved_space = f2fs_get_reserved_space, 2139 .write_dquot = f2fs_dquot_commit, 2140 .acquire_dquot = f2fs_dquot_acquire, 2141 .release_dquot = f2fs_dquot_release, 2142 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2143 .write_info = f2fs_dquot_commit_info, 2144 .alloc_dquot = dquot_alloc, 2145 .destroy_dquot = dquot_destroy, 2146 .get_projid = f2fs_get_projid, 2147 .get_next_id = dquot_get_next_id, 2148 }; 2149 2150 static const struct quotactl_ops f2fs_quotactl_ops = { 2151 .quota_on = f2fs_quota_on, 2152 .quota_off = f2fs_quota_off, 2153 .quota_sync = f2fs_quota_sync, 2154 .get_state = dquot_get_state, 2155 .set_info = dquot_set_dqinfo, 2156 .get_dqblk = dquot_get_dqblk, 2157 .set_dqblk = dquot_set_dqblk, 2158 .get_nextdqblk = dquot_get_next_dqblk, 2159 }; 2160 #else 2161 int f2fs_quota_sync(struct super_block *sb, int type) 2162 { 2163 return 0; 2164 } 2165 2166 void f2fs_quota_off_umount(struct super_block *sb) 2167 { 2168 } 2169 #endif 2170 2171 static const struct super_operations f2fs_sops = { 2172 .alloc_inode = f2fs_alloc_inode, 2173 .free_inode = f2fs_free_inode, 2174 .drop_inode = f2fs_drop_inode, 2175 .write_inode = f2fs_write_inode, 2176 .dirty_inode = f2fs_dirty_inode, 2177 .show_options = f2fs_show_options, 2178 #ifdef CONFIG_QUOTA 2179 .quota_read = f2fs_quota_read, 2180 .quota_write = f2fs_quota_write, 2181 .get_dquots = f2fs_get_dquots, 2182 #endif 2183 .evict_inode = f2fs_evict_inode, 2184 .put_super = f2fs_put_super, 2185 .sync_fs = f2fs_sync_fs, 2186 .freeze_fs = f2fs_freeze, 2187 .unfreeze_fs = f2fs_unfreeze, 2188 .statfs = f2fs_statfs, 2189 .remount_fs = f2fs_remount, 2190 }; 2191 2192 #ifdef CONFIG_FS_ENCRYPTION 2193 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2194 { 2195 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2196 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2197 ctx, len, NULL); 2198 } 2199 2200 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2201 void *fs_data) 2202 { 2203 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2204 2205 /* 2206 * Encrypting the root directory is not allowed because fsck 2207 * expects lost+found directory to exist and remain unencrypted 2208 * if LOST_FOUND feature is enabled. 2209 * 2210 */ 2211 if (f2fs_sb_has_lost_found(sbi) && 2212 inode->i_ino == F2FS_ROOT_INO(sbi)) 2213 return -EPERM; 2214 2215 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2216 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2217 ctx, len, fs_data, XATTR_CREATE); 2218 } 2219 2220 static bool f2fs_dummy_context(struct inode *inode) 2221 { 2222 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode)); 2223 } 2224 2225 static const struct fscrypt_operations f2fs_cryptops = { 2226 .key_prefix = "f2fs:", 2227 .get_context = f2fs_get_context, 2228 .set_context = f2fs_set_context, 2229 .dummy_context = f2fs_dummy_context, 2230 .empty_dir = f2fs_empty_dir, 2231 .max_namelen = F2FS_NAME_LEN, 2232 }; 2233 #endif 2234 2235 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 2236 u64 ino, u32 generation) 2237 { 2238 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2239 struct inode *inode; 2240 2241 if (f2fs_check_nid_range(sbi, ino)) 2242 return ERR_PTR(-ESTALE); 2243 2244 /* 2245 * f2fs_iget isn't quite right if the inode is currently unallocated! 2246 * However f2fs_iget currently does appropriate checks to handle stale 2247 * inodes so everything is OK. 2248 */ 2249 inode = f2fs_iget(sb, ino); 2250 if (IS_ERR(inode)) 2251 return ERR_CAST(inode); 2252 if (unlikely(generation && inode->i_generation != generation)) { 2253 /* we didn't find the right inode.. */ 2254 iput(inode); 2255 return ERR_PTR(-ESTALE); 2256 } 2257 return inode; 2258 } 2259 2260 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2261 int fh_len, int fh_type) 2262 { 2263 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 2264 f2fs_nfs_get_inode); 2265 } 2266 2267 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 2268 int fh_len, int fh_type) 2269 { 2270 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 2271 f2fs_nfs_get_inode); 2272 } 2273 2274 static const struct export_operations f2fs_export_ops = { 2275 .fh_to_dentry = f2fs_fh_to_dentry, 2276 .fh_to_parent = f2fs_fh_to_parent, 2277 .get_parent = f2fs_get_parent, 2278 }; 2279 2280 static loff_t max_file_blocks(void) 2281 { 2282 loff_t result = 0; 2283 loff_t leaf_count = DEF_ADDRS_PER_BLOCK; 2284 2285 /* 2286 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2287 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2288 * space in inode.i_addr, it will be more safe to reassign 2289 * result as zero. 2290 */ 2291 2292 /* two direct node blocks */ 2293 result += (leaf_count * 2); 2294 2295 /* two indirect node blocks */ 2296 leaf_count *= NIDS_PER_BLOCK; 2297 result += (leaf_count * 2); 2298 2299 /* one double indirect node block */ 2300 leaf_count *= NIDS_PER_BLOCK; 2301 result += leaf_count; 2302 2303 return result; 2304 } 2305 2306 static int __f2fs_commit_super(struct buffer_head *bh, 2307 struct f2fs_super_block *super) 2308 { 2309 lock_buffer(bh); 2310 if (super) 2311 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2312 set_buffer_dirty(bh); 2313 unlock_buffer(bh); 2314 2315 /* it's rare case, we can do fua all the time */ 2316 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2317 } 2318 2319 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2320 struct buffer_head *bh) 2321 { 2322 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2323 (bh->b_data + F2FS_SUPER_OFFSET); 2324 struct super_block *sb = sbi->sb; 2325 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2326 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2327 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2328 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2329 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2330 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2331 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2332 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2333 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2334 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2335 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2336 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2337 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2338 u64 main_end_blkaddr = main_blkaddr + 2339 (segment_count_main << log_blocks_per_seg); 2340 u64 seg_end_blkaddr = segment0_blkaddr + 2341 (segment_count << log_blocks_per_seg); 2342 2343 if (segment0_blkaddr != cp_blkaddr) { 2344 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2345 segment0_blkaddr, cp_blkaddr); 2346 return true; 2347 } 2348 2349 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2350 sit_blkaddr) { 2351 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2352 cp_blkaddr, sit_blkaddr, 2353 segment_count_ckpt << log_blocks_per_seg); 2354 return true; 2355 } 2356 2357 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2358 nat_blkaddr) { 2359 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2360 sit_blkaddr, nat_blkaddr, 2361 segment_count_sit << log_blocks_per_seg); 2362 return true; 2363 } 2364 2365 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2366 ssa_blkaddr) { 2367 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2368 nat_blkaddr, ssa_blkaddr, 2369 segment_count_nat << log_blocks_per_seg); 2370 return true; 2371 } 2372 2373 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2374 main_blkaddr) { 2375 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2376 ssa_blkaddr, main_blkaddr, 2377 segment_count_ssa << log_blocks_per_seg); 2378 return true; 2379 } 2380 2381 if (main_end_blkaddr > seg_end_blkaddr) { 2382 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 2383 main_blkaddr, 2384 segment0_blkaddr + 2385 (segment_count << log_blocks_per_seg), 2386 segment_count_main << log_blocks_per_seg); 2387 return true; 2388 } else if (main_end_blkaddr < seg_end_blkaddr) { 2389 int err = 0; 2390 char *res; 2391 2392 /* fix in-memory information all the time */ 2393 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2394 segment0_blkaddr) >> log_blocks_per_seg); 2395 2396 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2397 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2398 res = "internally"; 2399 } else { 2400 err = __f2fs_commit_super(bh, NULL); 2401 res = err ? "failed" : "done"; 2402 } 2403 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)", 2404 res, main_blkaddr, 2405 segment0_blkaddr + 2406 (segment_count << log_blocks_per_seg), 2407 segment_count_main << log_blocks_per_seg); 2408 if (err) 2409 return true; 2410 } 2411 return false; 2412 } 2413 2414 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2415 struct buffer_head *bh) 2416 { 2417 block_t segment_count, segs_per_sec, secs_per_zone; 2418 block_t total_sections, blocks_per_seg; 2419 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2420 (bh->b_data + F2FS_SUPER_OFFSET); 2421 unsigned int blocksize; 2422 size_t crc_offset = 0; 2423 __u32 crc = 0; 2424 2425 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 2426 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 2427 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2428 return -EINVAL; 2429 } 2430 2431 /* Check checksum_offset and crc in superblock */ 2432 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 2433 crc_offset = le32_to_cpu(raw_super->checksum_offset); 2434 if (crc_offset != 2435 offsetof(struct f2fs_super_block, crc)) { 2436 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 2437 crc_offset); 2438 return -EFSCORRUPTED; 2439 } 2440 crc = le32_to_cpu(raw_super->crc); 2441 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 2442 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 2443 return -EFSCORRUPTED; 2444 } 2445 } 2446 2447 /* Currently, support only 4KB page cache size */ 2448 if (F2FS_BLKSIZE != PAGE_SIZE) { 2449 f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB", 2450 PAGE_SIZE); 2451 return -EFSCORRUPTED; 2452 } 2453 2454 /* Currently, support only 4KB block size */ 2455 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 2456 if (blocksize != F2FS_BLKSIZE) { 2457 f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB", 2458 blocksize); 2459 return -EFSCORRUPTED; 2460 } 2461 2462 /* check log blocks per segment */ 2463 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2464 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 2465 le32_to_cpu(raw_super->log_blocks_per_seg)); 2466 return -EFSCORRUPTED; 2467 } 2468 2469 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2470 if (le32_to_cpu(raw_super->log_sectorsize) > 2471 F2FS_MAX_LOG_SECTOR_SIZE || 2472 le32_to_cpu(raw_super->log_sectorsize) < 2473 F2FS_MIN_LOG_SECTOR_SIZE) { 2474 f2fs_info(sbi, "Invalid log sectorsize (%u)", 2475 le32_to_cpu(raw_super->log_sectorsize)); 2476 return -EFSCORRUPTED; 2477 } 2478 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2479 le32_to_cpu(raw_super->log_sectorsize) != 2480 F2FS_MAX_LOG_SECTOR_SIZE) { 2481 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 2482 le32_to_cpu(raw_super->log_sectors_per_block), 2483 le32_to_cpu(raw_super->log_sectorsize)); 2484 return -EFSCORRUPTED; 2485 } 2486 2487 segment_count = le32_to_cpu(raw_super->segment_count); 2488 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2489 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2490 total_sections = le32_to_cpu(raw_super->section_count); 2491 2492 /* blocks_per_seg should be 512, given the above check */ 2493 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 2494 2495 if (segment_count > F2FS_MAX_SEGMENT || 2496 segment_count < F2FS_MIN_SEGMENTS) { 2497 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 2498 return -EFSCORRUPTED; 2499 } 2500 2501 if (total_sections > segment_count || 2502 total_sections < F2FS_MIN_SEGMENTS || 2503 segs_per_sec > segment_count || !segs_per_sec) { 2504 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 2505 segment_count, total_sections, segs_per_sec); 2506 return -EFSCORRUPTED; 2507 } 2508 2509 if ((segment_count / segs_per_sec) < total_sections) { 2510 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 2511 segment_count, segs_per_sec, total_sections); 2512 return -EFSCORRUPTED; 2513 } 2514 2515 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 2516 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 2517 segment_count, le64_to_cpu(raw_super->block_count)); 2518 return -EFSCORRUPTED; 2519 } 2520 2521 if (secs_per_zone > total_sections || !secs_per_zone) { 2522 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 2523 secs_per_zone, total_sections); 2524 return -EFSCORRUPTED; 2525 } 2526 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 2527 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 2528 (le32_to_cpu(raw_super->extension_count) + 2529 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 2530 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 2531 le32_to_cpu(raw_super->extension_count), 2532 raw_super->hot_ext_count, 2533 F2FS_MAX_EXTENSION); 2534 return -EFSCORRUPTED; 2535 } 2536 2537 if (le32_to_cpu(raw_super->cp_payload) > 2538 (blocks_per_seg - F2FS_CP_PACKS)) { 2539 f2fs_info(sbi, "Insane cp_payload (%u > %u)", 2540 le32_to_cpu(raw_super->cp_payload), 2541 blocks_per_seg - F2FS_CP_PACKS); 2542 return -EFSCORRUPTED; 2543 } 2544 2545 /* check reserved ino info */ 2546 if (le32_to_cpu(raw_super->node_ino) != 1 || 2547 le32_to_cpu(raw_super->meta_ino) != 2 || 2548 le32_to_cpu(raw_super->root_ino) != 3) { 2549 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 2550 le32_to_cpu(raw_super->node_ino), 2551 le32_to_cpu(raw_super->meta_ino), 2552 le32_to_cpu(raw_super->root_ino)); 2553 return -EFSCORRUPTED; 2554 } 2555 2556 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 2557 if (sanity_check_area_boundary(sbi, bh)) 2558 return -EFSCORRUPTED; 2559 2560 return 0; 2561 } 2562 2563 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 2564 { 2565 unsigned int total, fsmeta; 2566 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2567 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2568 unsigned int ovp_segments, reserved_segments; 2569 unsigned int main_segs, blocks_per_seg; 2570 unsigned int sit_segs, nat_segs; 2571 unsigned int sit_bitmap_size, nat_bitmap_size; 2572 unsigned int log_blocks_per_seg; 2573 unsigned int segment_count_main; 2574 unsigned int cp_pack_start_sum, cp_payload; 2575 block_t user_block_count, valid_user_blocks; 2576 block_t avail_node_count, valid_node_count; 2577 int i, j; 2578 2579 total = le32_to_cpu(raw_super->segment_count); 2580 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 2581 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 2582 fsmeta += sit_segs; 2583 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 2584 fsmeta += nat_segs; 2585 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 2586 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 2587 2588 if (unlikely(fsmeta >= total)) 2589 return 1; 2590 2591 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2592 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2593 2594 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 2595 ovp_segments == 0 || reserved_segments == 0)) { 2596 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 2597 return 1; 2598 } 2599 2600 user_block_count = le64_to_cpu(ckpt->user_block_count); 2601 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2602 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2603 if (!user_block_count || user_block_count >= 2604 segment_count_main << log_blocks_per_seg) { 2605 f2fs_err(sbi, "Wrong user_block_count: %u", 2606 user_block_count); 2607 return 1; 2608 } 2609 2610 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 2611 if (valid_user_blocks > user_block_count) { 2612 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 2613 valid_user_blocks, user_block_count); 2614 return 1; 2615 } 2616 2617 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 2618 avail_node_count = sbi->total_node_count - sbi->nquota_files - 2619 F2FS_RESERVED_NODE_NUM; 2620 if (valid_node_count > avail_node_count) { 2621 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 2622 valid_node_count, avail_node_count); 2623 return 1; 2624 } 2625 2626 main_segs = le32_to_cpu(raw_super->segment_count_main); 2627 blocks_per_seg = sbi->blocks_per_seg; 2628 2629 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2630 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 2631 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 2632 return 1; 2633 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 2634 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2635 le32_to_cpu(ckpt->cur_node_segno[j])) { 2636 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 2637 i, j, 2638 le32_to_cpu(ckpt->cur_node_segno[i])); 2639 return 1; 2640 } 2641 } 2642 } 2643 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 2644 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 2645 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 2646 return 1; 2647 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 2648 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 2649 le32_to_cpu(ckpt->cur_data_segno[j])) { 2650 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 2651 i, j, 2652 le32_to_cpu(ckpt->cur_data_segno[i])); 2653 return 1; 2654 } 2655 } 2656 } 2657 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2658 for (j = i; j < NR_CURSEG_DATA_TYPE; j++) { 2659 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2660 le32_to_cpu(ckpt->cur_data_segno[j])) { 2661 f2fs_err(sbi, "Data segment (%u) and Data segment (%u) has the same segno: %u", 2662 i, j, 2663 le32_to_cpu(ckpt->cur_node_segno[i])); 2664 return 1; 2665 } 2666 } 2667 } 2668 2669 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2670 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2671 2672 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 2673 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 2674 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 2675 sit_bitmap_size, nat_bitmap_size); 2676 return 1; 2677 } 2678 2679 cp_pack_start_sum = __start_sum_addr(sbi); 2680 cp_payload = __cp_payload(sbi); 2681 if (cp_pack_start_sum < cp_payload + 1 || 2682 cp_pack_start_sum > blocks_per_seg - 1 - 2683 NR_CURSEG_TYPE) { 2684 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 2685 cp_pack_start_sum); 2686 return 1; 2687 } 2688 2689 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 2690 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 2691 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 2692 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 2693 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 2694 le32_to_cpu(ckpt->checksum_offset)); 2695 return 1; 2696 } 2697 2698 if (unlikely(f2fs_cp_error(sbi))) { 2699 f2fs_err(sbi, "A bug case: need to run fsck"); 2700 return 1; 2701 } 2702 return 0; 2703 } 2704 2705 static void init_sb_info(struct f2fs_sb_info *sbi) 2706 { 2707 struct f2fs_super_block *raw_super = sbi->raw_super; 2708 int i; 2709 2710 sbi->log_sectors_per_block = 2711 le32_to_cpu(raw_super->log_sectors_per_block); 2712 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 2713 sbi->blocksize = 1 << sbi->log_blocksize; 2714 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2715 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 2716 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2717 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2718 sbi->total_sections = le32_to_cpu(raw_super->section_count); 2719 sbi->total_node_count = 2720 (le32_to_cpu(raw_super->segment_count_nat) / 2) 2721 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 2722 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 2723 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 2724 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 2725 sbi->cur_victim_sec = NULL_SECNO; 2726 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 2727 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 2728 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 2729 sbi->migration_granularity = sbi->segs_per_sec; 2730 2731 sbi->dir_level = DEF_DIR_LEVEL; 2732 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 2733 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 2734 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 2735 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 2736 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 2737 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 2738 DEF_UMOUNT_DISCARD_TIMEOUT; 2739 clear_sbi_flag(sbi, SBI_NEED_FSCK); 2740 2741 for (i = 0; i < NR_COUNT_TYPE; i++) 2742 atomic_set(&sbi->nr_pages[i], 0); 2743 2744 for (i = 0; i < META; i++) 2745 atomic_set(&sbi->wb_sync_req[i], 0); 2746 2747 INIT_LIST_HEAD(&sbi->s_list); 2748 mutex_init(&sbi->umount_mutex); 2749 init_rwsem(&sbi->io_order_lock); 2750 spin_lock_init(&sbi->cp_lock); 2751 2752 sbi->dirty_device = 0; 2753 spin_lock_init(&sbi->dev_lock); 2754 2755 init_rwsem(&sbi->sb_lock); 2756 } 2757 2758 static int init_percpu_info(struct f2fs_sb_info *sbi) 2759 { 2760 int err; 2761 2762 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 2763 if (err) 2764 return err; 2765 2766 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 2767 GFP_KERNEL); 2768 if (err) 2769 percpu_counter_destroy(&sbi->alloc_valid_block_count); 2770 2771 return err; 2772 } 2773 2774 #ifdef CONFIG_BLK_DEV_ZONED 2775 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 2776 { 2777 struct block_device *bdev = FDEV(devi).bdev; 2778 sector_t nr_sectors = bdev->bd_part->nr_sects; 2779 sector_t sector = 0; 2780 struct blk_zone *zones; 2781 unsigned int i, nr_zones; 2782 unsigned int n = 0; 2783 int err = -EIO; 2784 2785 if (!f2fs_sb_has_blkzoned(sbi)) 2786 return 0; 2787 2788 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 2789 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 2790 return -EINVAL; 2791 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 2792 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 2793 __ilog2_u32(sbi->blocks_per_blkz)) 2794 return -EINVAL; 2795 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 2796 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 2797 sbi->log_blocks_per_blkz; 2798 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 2799 FDEV(devi).nr_blkz++; 2800 2801 FDEV(devi).blkz_seq = f2fs_kzalloc(sbi, 2802 BITS_TO_LONGS(FDEV(devi).nr_blkz) 2803 * sizeof(unsigned long), 2804 GFP_KERNEL); 2805 if (!FDEV(devi).blkz_seq) 2806 return -ENOMEM; 2807 2808 #define F2FS_REPORT_NR_ZONES 4096 2809 2810 zones = f2fs_kzalloc(sbi, 2811 array_size(F2FS_REPORT_NR_ZONES, 2812 sizeof(struct blk_zone)), 2813 GFP_KERNEL); 2814 if (!zones) 2815 return -ENOMEM; 2816 2817 /* Get block zones type */ 2818 while (zones && sector < nr_sectors) { 2819 2820 nr_zones = F2FS_REPORT_NR_ZONES; 2821 err = blkdev_report_zones(bdev, sector, zones, &nr_zones); 2822 if (err) 2823 break; 2824 if (!nr_zones) { 2825 err = -EIO; 2826 break; 2827 } 2828 2829 for (i = 0; i < nr_zones; i++) { 2830 if (zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL) 2831 set_bit(n, FDEV(devi).blkz_seq); 2832 sector += zones[i].len; 2833 n++; 2834 } 2835 } 2836 2837 kvfree(zones); 2838 2839 return err; 2840 } 2841 #endif 2842 2843 /* 2844 * Read f2fs raw super block. 2845 * Because we have two copies of super block, so read both of them 2846 * to get the first valid one. If any one of them is broken, we pass 2847 * them recovery flag back to the caller. 2848 */ 2849 static int read_raw_super_block(struct f2fs_sb_info *sbi, 2850 struct f2fs_super_block **raw_super, 2851 int *valid_super_block, int *recovery) 2852 { 2853 struct super_block *sb = sbi->sb; 2854 int block; 2855 struct buffer_head *bh; 2856 struct f2fs_super_block *super; 2857 int err = 0; 2858 2859 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 2860 if (!super) 2861 return -ENOMEM; 2862 2863 for (block = 0; block < 2; block++) { 2864 bh = sb_bread(sb, block); 2865 if (!bh) { 2866 f2fs_err(sbi, "Unable to read %dth superblock", 2867 block + 1); 2868 err = -EIO; 2869 continue; 2870 } 2871 2872 /* sanity checking of raw super */ 2873 err = sanity_check_raw_super(sbi, bh); 2874 if (err) { 2875 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 2876 block + 1); 2877 brelse(bh); 2878 continue; 2879 } 2880 2881 if (!*raw_super) { 2882 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 2883 sizeof(*super)); 2884 *valid_super_block = block; 2885 *raw_super = super; 2886 } 2887 brelse(bh); 2888 } 2889 2890 /* Fail to read any one of the superblocks*/ 2891 if (err < 0) 2892 *recovery = 1; 2893 2894 /* No valid superblock */ 2895 if (!*raw_super) 2896 kvfree(super); 2897 else 2898 err = 0; 2899 2900 return err; 2901 } 2902 2903 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 2904 { 2905 struct buffer_head *bh; 2906 __u32 crc = 0; 2907 int err; 2908 2909 if ((recover && f2fs_readonly(sbi->sb)) || 2910 bdev_read_only(sbi->sb->s_bdev)) { 2911 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2912 return -EROFS; 2913 } 2914 2915 /* we should update superblock crc here */ 2916 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 2917 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 2918 offsetof(struct f2fs_super_block, crc)); 2919 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 2920 } 2921 2922 /* write back-up superblock first */ 2923 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 2924 if (!bh) 2925 return -EIO; 2926 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2927 brelse(bh); 2928 2929 /* if we are in recovery path, skip writing valid superblock */ 2930 if (recover || err) 2931 return err; 2932 2933 /* write current valid superblock */ 2934 bh = sb_bread(sbi->sb, sbi->valid_super_block); 2935 if (!bh) 2936 return -EIO; 2937 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2938 brelse(bh); 2939 return err; 2940 } 2941 2942 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 2943 { 2944 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2945 unsigned int max_devices = MAX_DEVICES; 2946 int i; 2947 2948 /* Initialize single device information */ 2949 if (!RDEV(0).path[0]) { 2950 if (!bdev_is_zoned(sbi->sb->s_bdev)) 2951 return 0; 2952 max_devices = 1; 2953 } 2954 2955 /* 2956 * Initialize multiple devices information, or single 2957 * zoned block device information. 2958 */ 2959 sbi->devs = f2fs_kzalloc(sbi, 2960 array_size(max_devices, 2961 sizeof(struct f2fs_dev_info)), 2962 GFP_KERNEL); 2963 if (!sbi->devs) 2964 return -ENOMEM; 2965 2966 for (i = 0; i < max_devices; i++) { 2967 2968 if (i > 0 && !RDEV(i).path[0]) 2969 break; 2970 2971 if (max_devices == 1) { 2972 /* Single zoned block device mount */ 2973 FDEV(0).bdev = 2974 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 2975 sbi->sb->s_mode, sbi->sb->s_type); 2976 } else { 2977 /* Multi-device mount */ 2978 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 2979 FDEV(i).total_segments = 2980 le32_to_cpu(RDEV(i).total_segments); 2981 if (i == 0) { 2982 FDEV(i).start_blk = 0; 2983 FDEV(i).end_blk = FDEV(i).start_blk + 2984 (FDEV(i).total_segments << 2985 sbi->log_blocks_per_seg) - 1 + 2986 le32_to_cpu(raw_super->segment0_blkaddr); 2987 } else { 2988 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 2989 FDEV(i).end_blk = FDEV(i).start_blk + 2990 (FDEV(i).total_segments << 2991 sbi->log_blocks_per_seg) - 1; 2992 } 2993 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 2994 sbi->sb->s_mode, sbi->sb->s_type); 2995 } 2996 if (IS_ERR(FDEV(i).bdev)) 2997 return PTR_ERR(FDEV(i).bdev); 2998 2999 /* to release errored devices */ 3000 sbi->s_ndevs = i + 1; 3001 3002 #ifdef CONFIG_BLK_DEV_ZONED 3003 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3004 !f2fs_sb_has_blkzoned(sbi)) { 3005 f2fs_err(sbi, "Zoned block device feature not enabled\n"); 3006 return -EINVAL; 3007 } 3008 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3009 if (init_blkz_info(sbi, i)) { 3010 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 3011 return -EINVAL; 3012 } 3013 if (max_devices == 1) 3014 break; 3015 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3016 i, FDEV(i).path, 3017 FDEV(i).total_segments, 3018 FDEV(i).start_blk, FDEV(i).end_blk, 3019 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3020 "Host-aware" : "Host-managed"); 3021 continue; 3022 } 3023 #endif 3024 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3025 i, FDEV(i).path, 3026 FDEV(i).total_segments, 3027 FDEV(i).start_blk, FDEV(i).end_blk); 3028 } 3029 f2fs_info(sbi, 3030 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3031 return 0; 3032 } 3033 3034 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3035 { 3036 struct f2fs_sm_info *sm_i = SM_I(sbi); 3037 3038 /* adjust parameters according to the volume size */ 3039 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3040 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3041 sm_i->dcc_info->discard_granularity = 1; 3042 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3043 } 3044 3045 sbi->readdir_ra = 1; 3046 } 3047 3048 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3049 { 3050 struct f2fs_sb_info *sbi; 3051 struct f2fs_super_block *raw_super; 3052 struct inode *root; 3053 int err; 3054 bool skip_recovery = false, need_fsck = false; 3055 char *options = NULL; 3056 int recovery, i, valid_super_block; 3057 struct curseg_info *seg_i; 3058 int retry_cnt = 1; 3059 3060 try_onemore: 3061 err = -EINVAL; 3062 raw_super = NULL; 3063 valid_super_block = -1; 3064 recovery = 0; 3065 3066 /* allocate memory for f2fs-specific super block info */ 3067 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3068 if (!sbi) 3069 return -ENOMEM; 3070 3071 sbi->sb = sb; 3072 3073 /* Load the checksum driver */ 3074 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3075 if (IS_ERR(sbi->s_chksum_driver)) { 3076 f2fs_err(sbi, "Cannot load crc32 driver."); 3077 err = PTR_ERR(sbi->s_chksum_driver); 3078 sbi->s_chksum_driver = NULL; 3079 goto free_sbi; 3080 } 3081 3082 /* set a block size */ 3083 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3084 f2fs_err(sbi, "unable to set blocksize"); 3085 goto free_sbi; 3086 } 3087 3088 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3089 &recovery); 3090 if (err) 3091 goto free_sbi; 3092 3093 sb->s_fs_info = sbi; 3094 sbi->raw_super = raw_super; 3095 3096 /* precompute checksum seed for metadata */ 3097 if (f2fs_sb_has_inode_chksum(sbi)) 3098 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3099 sizeof(raw_super->uuid)); 3100 3101 /* 3102 * The BLKZONED feature indicates that the drive was formatted with 3103 * zone alignment optimization. This is optional for host-aware 3104 * devices, but mandatory for host-managed zoned block devices. 3105 */ 3106 #ifndef CONFIG_BLK_DEV_ZONED 3107 if (f2fs_sb_has_blkzoned(sbi)) { 3108 f2fs_err(sbi, "Zoned block device support is not enabled"); 3109 err = -EOPNOTSUPP; 3110 goto free_sb_buf; 3111 } 3112 #endif 3113 default_options(sbi); 3114 /* parse mount options */ 3115 options = kstrdup((const char *)data, GFP_KERNEL); 3116 if (data && !options) { 3117 err = -ENOMEM; 3118 goto free_sb_buf; 3119 } 3120 3121 err = parse_options(sb, options); 3122 if (err) 3123 goto free_options; 3124 3125 sbi->max_file_blocks = max_file_blocks(); 3126 sb->s_maxbytes = sbi->max_file_blocks << 3127 le32_to_cpu(raw_super->log_blocksize); 3128 sb->s_max_links = F2FS_LINK_MAX; 3129 3130 #ifdef CONFIG_QUOTA 3131 sb->dq_op = &f2fs_quota_operations; 3132 sb->s_qcop = &f2fs_quotactl_ops; 3133 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3134 3135 if (f2fs_sb_has_quota_ino(sbi)) { 3136 for (i = 0; i < MAXQUOTAS; i++) { 3137 if (f2fs_qf_ino(sbi->sb, i)) 3138 sbi->nquota_files++; 3139 } 3140 } 3141 #endif 3142 3143 sb->s_op = &f2fs_sops; 3144 #ifdef CONFIG_FS_ENCRYPTION 3145 sb->s_cop = &f2fs_cryptops; 3146 #endif 3147 sb->s_xattr = f2fs_xattr_handlers; 3148 sb->s_export_op = &f2fs_export_ops; 3149 sb->s_magic = F2FS_SUPER_MAGIC; 3150 sb->s_time_gran = 1; 3151 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3152 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3153 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 3154 sb->s_iflags |= SB_I_CGROUPWB; 3155 3156 /* init f2fs-specific super block info */ 3157 sbi->valid_super_block = valid_super_block; 3158 mutex_init(&sbi->gc_mutex); 3159 mutex_init(&sbi->writepages); 3160 mutex_init(&sbi->cp_mutex); 3161 mutex_init(&sbi->resize_mutex); 3162 init_rwsem(&sbi->node_write); 3163 init_rwsem(&sbi->node_change); 3164 3165 /* disallow all the data/node/meta page writes */ 3166 set_sbi_flag(sbi, SBI_POR_DOING); 3167 spin_lock_init(&sbi->stat_lock); 3168 3169 /* init iostat info */ 3170 spin_lock_init(&sbi->iostat_lock); 3171 sbi->iostat_enable = false; 3172 3173 for (i = 0; i < NR_PAGE_TYPE; i++) { 3174 int n = (i == META) ? 1: NR_TEMP_TYPE; 3175 int j; 3176 3177 sbi->write_io[i] = 3178 f2fs_kmalloc(sbi, 3179 array_size(n, 3180 sizeof(struct f2fs_bio_info)), 3181 GFP_KERNEL); 3182 if (!sbi->write_io[i]) { 3183 err = -ENOMEM; 3184 goto free_bio_info; 3185 } 3186 3187 for (j = HOT; j < n; j++) { 3188 init_rwsem(&sbi->write_io[i][j].io_rwsem); 3189 sbi->write_io[i][j].sbi = sbi; 3190 sbi->write_io[i][j].bio = NULL; 3191 spin_lock_init(&sbi->write_io[i][j].io_lock); 3192 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 3193 } 3194 } 3195 3196 init_rwsem(&sbi->cp_rwsem); 3197 init_rwsem(&sbi->quota_sem); 3198 init_waitqueue_head(&sbi->cp_wait); 3199 init_sb_info(sbi); 3200 3201 err = init_percpu_info(sbi); 3202 if (err) 3203 goto free_bio_info; 3204 3205 if (F2FS_IO_SIZE(sbi) > 1) { 3206 sbi->write_io_dummy = 3207 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 3208 if (!sbi->write_io_dummy) { 3209 err = -ENOMEM; 3210 goto free_percpu; 3211 } 3212 } 3213 3214 /* get an inode for meta space */ 3215 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 3216 if (IS_ERR(sbi->meta_inode)) { 3217 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 3218 err = PTR_ERR(sbi->meta_inode); 3219 goto free_io_dummy; 3220 } 3221 3222 err = f2fs_get_valid_checkpoint(sbi); 3223 if (err) { 3224 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 3225 goto free_meta_inode; 3226 } 3227 3228 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 3229 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3230 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 3231 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3232 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 3233 } 3234 3235 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 3236 set_sbi_flag(sbi, SBI_NEED_FSCK); 3237 3238 /* Initialize device list */ 3239 err = f2fs_scan_devices(sbi); 3240 if (err) { 3241 f2fs_err(sbi, "Failed to find devices"); 3242 goto free_devices; 3243 } 3244 3245 sbi->total_valid_node_count = 3246 le32_to_cpu(sbi->ckpt->valid_node_count); 3247 percpu_counter_set(&sbi->total_valid_inode_count, 3248 le32_to_cpu(sbi->ckpt->valid_inode_count)); 3249 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 3250 sbi->total_valid_block_count = 3251 le64_to_cpu(sbi->ckpt->valid_block_count); 3252 sbi->last_valid_block_count = sbi->total_valid_block_count; 3253 sbi->reserved_blocks = 0; 3254 sbi->current_reserved_blocks = 0; 3255 limit_reserve_root(sbi); 3256 3257 for (i = 0; i < NR_INODE_TYPE; i++) { 3258 INIT_LIST_HEAD(&sbi->inode_list[i]); 3259 spin_lock_init(&sbi->inode_lock[i]); 3260 } 3261 mutex_init(&sbi->flush_lock); 3262 3263 f2fs_init_extent_cache_info(sbi); 3264 3265 f2fs_init_ino_entry_info(sbi); 3266 3267 f2fs_init_fsync_node_info(sbi); 3268 3269 /* setup f2fs internal modules */ 3270 err = f2fs_build_segment_manager(sbi); 3271 if (err) { 3272 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 3273 err); 3274 goto free_sm; 3275 } 3276 err = f2fs_build_node_manager(sbi); 3277 if (err) { 3278 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 3279 err); 3280 goto free_nm; 3281 } 3282 3283 /* For write statistics */ 3284 if (sb->s_bdev->bd_part) 3285 sbi->sectors_written_start = 3286 (u64)part_stat_read(sb->s_bdev->bd_part, 3287 sectors[STAT_WRITE]); 3288 3289 /* Read accumulated write IO statistics if exists */ 3290 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 3291 if (__exist_node_summaries(sbi)) 3292 sbi->kbytes_written = 3293 le64_to_cpu(seg_i->journal->info.kbytes_written); 3294 3295 f2fs_build_gc_manager(sbi); 3296 3297 err = f2fs_build_stats(sbi); 3298 if (err) 3299 goto free_nm; 3300 3301 /* get an inode for node space */ 3302 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 3303 if (IS_ERR(sbi->node_inode)) { 3304 f2fs_err(sbi, "Failed to read node inode"); 3305 err = PTR_ERR(sbi->node_inode); 3306 goto free_stats; 3307 } 3308 3309 /* read root inode and dentry */ 3310 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 3311 if (IS_ERR(root)) { 3312 f2fs_err(sbi, "Failed to read root inode"); 3313 err = PTR_ERR(root); 3314 goto free_node_inode; 3315 } 3316 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 3317 !root->i_size || !root->i_nlink) { 3318 iput(root); 3319 err = -EINVAL; 3320 goto free_node_inode; 3321 } 3322 3323 sb->s_root = d_make_root(root); /* allocate root dentry */ 3324 if (!sb->s_root) { 3325 err = -ENOMEM; 3326 goto free_node_inode; 3327 } 3328 3329 err = f2fs_register_sysfs(sbi); 3330 if (err) 3331 goto free_root_inode; 3332 3333 #ifdef CONFIG_QUOTA 3334 /* Enable quota usage during mount */ 3335 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 3336 err = f2fs_enable_quotas(sb); 3337 if (err) 3338 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 3339 } 3340 #endif 3341 /* if there are nt orphan nodes free them */ 3342 err = f2fs_recover_orphan_inodes(sbi); 3343 if (err) 3344 goto free_meta; 3345 3346 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 3347 goto reset_checkpoint; 3348 3349 /* recover fsynced data */ 3350 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 3351 /* 3352 * mount should be failed, when device has readonly mode, and 3353 * previous checkpoint was not done by clean system shutdown. 3354 */ 3355 if (f2fs_hw_is_readonly(sbi)) { 3356 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3357 err = -EROFS; 3358 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable"); 3359 goto free_meta; 3360 } 3361 f2fs_info(sbi, "write access unavailable, skipping recovery"); 3362 goto reset_checkpoint; 3363 } 3364 3365 if (need_fsck) 3366 set_sbi_flag(sbi, SBI_NEED_FSCK); 3367 3368 if (skip_recovery) 3369 goto reset_checkpoint; 3370 3371 err = f2fs_recover_fsync_data(sbi, false); 3372 if (err < 0) { 3373 if (err != -ENOMEM) 3374 skip_recovery = true; 3375 need_fsck = true; 3376 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 3377 err); 3378 goto free_meta; 3379 } 3380 } else { 3381 err = f2fs_recover_fsync_data(sbi, true); 3382 3383 if (!f2fs_readonly(sb) && err > 0) { 3384 err = -EINVAL; 3385 f2fs_err(sbi, "Need to recover fsync data"); 3386 goto free_meta; 3387 } 3388 } 3389 reset_checkpoint: 3390 /* f2fs_recover_fsync_data() cleared this already */ 3391 clear_sbi_flag(sbi, SBI_POR_DOING); 3392 3393 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 3394 err = f2fs_disable_checkpoint(sbi); 3395 if (err) 3396 goto sync_free_meta; 3397 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 3398 f2fs_enable_checkpoint(sbi); 3399 } 3400 3401 /* 3402 * If filesystem is not mounted as read-only then 3403 * do start the gc_thread. 3404 */ 3405 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 3406 /* After POR, we can run background GC thread.*/ 3407 err = f2fs_start_gc_thread(sbi); 3408 if (err) 3409 goto sync_free_meta; 3410 } 3411 kvfree(options); 3412 3413 /* recover broken superblock */ 3414 if (recovery) { 3415 err = f2fs_commit_super(sbi, true); 3416 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 3417 sbi->valid_super_block ? 1 : 2, err); 3418 } 3419 3420 f2fs_join_shrinker(sbi); 3421 3422 f2fs_tuning_parameters(sbi); 3423 3424 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 3425 cur_cp_version(F2FS_CKPT(sbi))); 3426 f2fs_update_time(sbi, CP_TIME); 3427 f2fs_update_time(sbi, REQ_TIME); 3428 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3429 return 0; 3430 3431 sync_free_meta: 3432 /* safe to flush all the data */ 3433 sync_filesystem(sbi->sb); 3434 retry_cnt = 0; 3435 3436 free_meta: 3437 #ifdef CONFIG_QUOTA 3438 f2fs_truncate_quota_inode_pages(sb); 3439 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 3440 f2fs_quota_off_umount(sbi->sb); 3441 #endif 3442 /* 3443 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 3444 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 3445 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 3446 * falls into an infinite loop in f2fs_sync_meta_pages(). 3447 */ 3448 truncate_inode_pages_final(META_MAPPING(sbi)); 3449 /* evict some inodes being cached by GC */ 3450 evict_inodes(sb); 3451 f2fs_unregister_sysfs(sbi); 3452 free_root_inode: 3453 dput(sb->s_root); 3454 sb->s_root = NULL; 3455 free_node_inode: 3456 f2fs_release_ino_entry(sbi, true); 3457 truncate_inode_pages_final(NODE_MAPPING(sbi)); 3458 iput(sbi->node_inode); 3459 sbi->node_inode = NULL; 3460 free_stats: 3461 f2fs_destroy_stats(sbi); 3462 free_nm: 3463 f2fs_destroy_node_manager(sbi); 3464 free_sm: 3465 f2fs_destroy_segment_manager(sbi); 3466 free_devices: 3467 destroy_device_list(sbi); 3468 kvfree(sbi->ckpt); 3469 free_meta_inode: 3470 make_bad_inode(sbi->meta_inode); 3471 iput(sbi->meta_inode); 3472 sbi->meta_inode = NULL; 3473 free_io_dummy: 3474 mempool_destroy(sbi->write_io_dummy); 3475 free_percpu: 3476 destroy_percpu_info(sbi); 3477 free_bio_info: 3478 for (i = 0; i < NR_PAGE_TYPE; i++) 3479 kvfree(sbi->write_io[i]); 3480 free_options: 3481 #ifdef CONFIG_QUOTA 3482 for (i = 0; i < MAXQUOTAS; i++) 3483 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 3484 #endif 3485 kvfree(options); 3486 free_sb_buf: 3487 kvfree(raw_super); 3488 free_sbi: 3489 if (sbi->s_chksum_driver) 3490 crypto_free_shash(sbi->s_chksum_driver); 3491 kvfree(sbi); 3492 3493 /* give only one another chance */ 3494 if (retry_cnt > 0 && skip_recovery) { 3495 retry_cnt--; 3496 shrink_dcache_sb(sb); 3497 goto try_onemore; 3498 } 3499 return err; 3500 } 3501 3502 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 3503 const char *dev_name, void *data) 3504 { 3505 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 3506 } 3507 3508 static void kill_f2fs_super(struct super_block *sb) 3509 { 3510 if (sb->s_root) { 3511 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3512 3513 set_sbi_flag(sbi, SBI_IS_CLOSE); 3514 f2fs_stop_gc_thread(sbi); 3515 f2fs_stop_discard_thread(sbi); 3516 3517 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 3518 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3519 struct cp_control cpc = { 3520 .reason = CP_UMOUNT, 3521 }; 3522 f2fs_write_checkpoint(sbi, &cpc); 3523 } 3524 3525 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 3526 sb->s_flags &= ~SB_RDONLY; 3527 } 3528 kill_block_super(sb); 3529 } 3530 3531 static struct file_system_type f2fs_fs_type = { 3532 .owner = THIS_MODULE, 3533 .name = "f2fs", 3534 .mount = f2fs_mount, 3535 .kill_sb = kill_f2fs_super, 3536 .fs_flags = FS_REQUIRES_DEV, 3537 }; 3538 MODULE_ALIAS_FS("f2fs"); 3539 3540 static int __init init_inodecache(void) 3541 { 3542 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 3543 sizeof(struct f2fs_inode_info), 0, 3544 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 3545 if (!f2fs_inode_cachep) 3546 return -ENOMEM; 3547 return 0; 3548 } 3549 3550 static void destroy_inodecache(void) 3551 { 3552 /* 3553 * Make sure all delayed rcu free inodes are flushed before we 3554 * destroy cache. 3555 */ 3556 rcu_barrier(); 3557 kmem_cache_destroy(f2fs_inode_cachep); 3558 } 3559 3560 static int __init init_f2fs_fs(void) 3561 { 3562 int err; 3563 3564 if (PAGE_SIZE != F2FS_BLKSIZE) { 3565 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 3566 PAGE_SIZE, F2FS_BLKSIZE); 3567 return -EINVAL; 3568 } 3569 3570 f2fs_build_trace_ios(); 3571 3572 err = init_inodecache(); 3573 if (err) 3574 goto fail; 3575 err = f2fs_create_node_manager_caches(); 3576 if (err) 3577 goto free_inodecache; 3578 err = f2fs_create_segment_manager_caches(); 3579 if (err) 3580 goto free_node_manager_caches; 3581 err = f2fs_create_checkpoint_caches(); 3582 if (err) 3583 goto free_segment_manager_caches; 3584 err = f2fs_create_extent_cache(); 3585 if (err) 3586 goto free_checkpoint_caches; 3587 err = f2fs_init_sysfs(); 3588 if (err) 3589 goto free_extent_cache; 3590 err = register_shrinker(&f2fs_shrinker_info); 3591 if (err) 3592 goto free_sysfs; 3593 err = register_filesystem(&f2fs_fs_type); 3594 if (err) 3595 goto free_shrinker; 3596 f2fs_create_root_stats(); 3597 err = f2fs_init_post_read_processing(); 3598 if (err) 3599 goto free_root_stats; 3600 return 0; 3601 3602 free_root_stats: 3603 f2fs_destroy_root_stats(); 3604 unregister_filesystem(&f2fs_fs_type); 3605 free_shrinker: 3606 unregister_shrinker(&f2fs_shrinker_info); 3607 free_sysfs: 3608 f2fs_exit_sysfs(); 3609 free_extent_cache: 3610 f2fs_destroy_extent_cache(); 3611 free_checkpoint_caches: 3612 f2fs_destroy_checkpoint_caches(); 3613 free_segment_manager_caches: 3614 f2fs_destroy_segment_manager_caches(); 3615 free_node_manager_caches: 3616 f2fs_destroy_node_manager_caches(); 3617 free_inodecache: 3618 destroy_inodecache(); 3619 fail: 3620 return err; 3621 } 3622 3623 static void __exit exit_f2fs_fs(void) 3624 { 3625 f2fs_destroy_post_read_processing(); 3626 f2fs_destroy_root_stats(); 3627 unregister_filesystem(&f2fs_fs_type); 3628 unregister_shrinker(&f2fs_shrinker_info); 3629 f2fs_exit_sysfs(); 3630 f2fs_destroy_extent_cache(); 3631 f2fs_destroy_checkpoint_caches(); 3632 f2fs_destroy_segment_manager_caches(); 3633 f2fs_destroy_node_manager_caches(); 3634 destroy_inodecache(); 3635 f2fs_destroy_trace_ios(); 3636 } 3637 3638 module_init(init_f2fs_fs) 3639 module_exit(exit_f2fs_fs) 3640 3641 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 3642 MODULE_DESCRIPTION("Flash Friendly File System"); 3643 MODULE_LICENSE("GPL"); 3644 3645