1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/fs_context.h> 12 #include <linux/sched/mm.h> 13 #include <linux/statfs.h> 14 #include <linux/buffer_head.h> 15 #include <linux/kthread.h> 16 #include <linux/parser.h> 17 #include <linux/mount.h> 18 #include <linux/seq_file.h> 19 #include <linux/proc_fs.h> 20 #include <linux/random.h> 21 #include <linux/exportfs.h> 22 #include <linux/blkdev.h> 23 #include <linux/quotaops.h> 24 #include <linux/f2fs_fs.h> 25 #include <linux/sysfs.h> 26 #include <linux/quota.h> 27 #include <linux/unicode.h> 28 #include <linux/part_stat.h> 29 #include <linux/zstd.h> 30 #include <linux/lz4.h> 31 32 #include "f2fs.h" 33 #include "node.h" 34 #include "segment.h" 35 #include "xattr.h" 36 #include "gc.h" 37 #include "iostat.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/f2fs.h> 41 42 static struct kmem_cache *f2fs_inode_cachep; 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 46 const char *f2fs_fault_name[FAULT_MAX] = { 47 [FAULT_KMALLOC] = "kmalloc", 48 [FAULT_KVMALLOC] = "kvmalloc", 49 [FAULT_PAGE_ALLOC] = "page alloc", 50 [FAULT_PAGE_GET] = "page get", 51 [FAULT_ALLOC_NID] = "alloc nid", 52 [FAULT_ORPHAN] = "orphan", 53 [FAULT_BLOCK] = "no more block", 54 [FAULT_DIR_DEPTH] = "too big dir depth", 55 [FAULT_EVICT_INODE] = "evict_inode fail", 56 [FAULT_TRUNCATE] = "truncate fail", 57 [FAULT_READ_IO] = "read IO error", 58 [FAULT_CHECKPOINT] = "checkpoint error", 59 [FAULT_DISCARD] = "discard error", 60 [FAULT_WRITE_IO] = "write IO error", 61 [FAULT_SLAB_ALLOC] = "slab alloc", 62 [FAULT_DQUOT_INIT] = "dquot initialize", 63 [FAULT_LOCK_OP] = "lock_op", 64 [FAULT_BLKADDR] = "invalid blkaddr", 65 }; 66 67 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 68 unsigned int type) 69 { 70 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 71 72 if (rate) { 73 atomic_set(&ffi->inject_ops, 0); 74 ffi->inject_rate = rate; 75 } 76 77 if (type) 78 ffi->inject_type = type; 79 80 if (!rate && !type) 81 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 82 } 83 #endif 84 85 /* f2fs-wide shrinker description */ 86 static struct shrinker f2fs_shrinker_info = { 87 .scan_objects = f2fs_shrink_scan, 88 .count_objects = f2fs_shrink_count, 89 .seeks = DEFAULT_SEEKS, 90 }; 91 92 enum { 93 Opt_gc_background, 94 Opt_disable_roll_forward, 95 Opt_norecovery, 96 Opt_discard, 97 Opt_nodiscard, 98 Opt_noheap, 99 Opt_heap, 100 Opt_user_xattr, 101 Opt_nouser_xattr, 102 Opt_acl, 103 Opt_noacl, 104 Opt_active_logs, 105 Opt_disable_ext_identify, 106 Opt_inline_xattr, 107 Opt_noinline_xattr, 108 Opt_inline_xattr_size, 109 Opt_inline_data, 110 Opt_inline_dentry, 111 Opt_noinline_dentry, 112 Opt_flush_merge, 113 Opt_noflush_merge, 114 Opt_barrier, 115 Opt_nobarrier, 116 Opt_fastboot, 117 Opt_extent_cache, 118 Opt_noextent_cache, 119 Opt_noinline_data, 120 Opt_data_flush, 121 Opt_reserve_root, 122 Opt_resgid, 123 Opt_resuid, 124 Opt_mode, 125 Opt_io_size_bits, 126 Opt_fault_injection, 127 Opt_fault_type, 128 Opt_lazytime, 129 Opt_nolazytime, 130 Opt_quota, 131 Opt_noquota, 132 Opt_usrquota, 133 Opt_grpquota, 134 Opt_prjquota, 135 Opt_usrjquota, 136 Opt_grpjquota, 137 Opt_prjjquota, 138 Opt_offusrjquota, 139 Opt_offgrpjquota, 140 Opt_offprjjquota, 141 Opt_jqfmt_vfsold, 142 Opt_jqfmt_vfsv0, 143 Opt_jqfmt_vfsv1, 144 Opt_alloc, 145 Opt_fsync, 146 Opt_test_dummy_encryption, 147 Opt_inlinecrypt, 148 Opt_checkpoint_disable, 149 Opt_checkpoint_disable_cap, 150 Opt_checkpoint_disable_cap_perc, 151 Opt_checkpoint_enable, 152 Opt_checkpoint_merge, 153 Opt_nocheckpoint_merge, 154 Opt_compress_algorithm, 155 Opt_compress_log_size, 156 Opt_compress_extension, 157 Opt_nocompress_extension, 158 Opt_compress_chksum, 159 Opt_compress_mode, 160 Opt_compress_cache, 161 Opt_atgc, 162 Opt_gc_merge, 163 Opt_nogc_merge, 164 Opt_discard_unit, 165 Opt_memory_mode, 166 Opt_age_extent_cache, 167 Opt_errors, 168 Opt_err, 169 }; 170 171 static match_table_t f2fs_tokens = { 172 {Opt_gc_background, "background_gc=%s"}, 173 {Opt_disable_roll_forward, "disable_roll_forward"}, 174 {Opt_norecovery, "norecovery"}, 175 {Opt_discard, "discard"}, 176 {Opt_nodiscard, "nodiscard"}, 177 {Opt_noheap, "no_heap"}, 178 {Opt_heap, "heap"}, 179 {Opt_user_xattr, "user_xattr"}, 180 {Opt_nouser_xattr, "nouser_xattr"}, 181 {Opt_acl, "acl"}, 182 {Opt_noacl, "noacl"}, 183 {Opt_active_logs, "active_logs=%u"}, 184 {Opt_disable_ext_identify, "disable_ext_identify"}, 185 {Opt_inline_xattr, "inline_xattr"}, 186 {Opt_noinline_xattr, "noinline_xattr"}, 187 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 188 {Opt_inline_data, "inline_data"}, 189 {Opt_inline_dentry, "inline_dentry"}, 190 {Opt_noinline_dentry, "noinline_dentry"}, 191 {Opt_flush_merge, "flush_merge"}, 192 {Opt_noflush_merge, "noflush_merge"}, 193 {Opt_barrier, "barrier"}, 194 {Opt_nobarrier, "nobarrier"}, 195 {Opt_fastboot, "fastboot"}, 196 {Opt_extent_cache, "extent_cache"}, 197 {Opt_noextent_cache, "noextent_cache"}, 198 {Opt_noinline_data, "noinline_data"}, 199 {Opt_data_flush, "data_flush"}, 200 {Opt_reserve_root, "reserve_root=%u"}, 201 {Opt_resgid, "resgid=%u"}, 202 {Opt_resuid, "resuid=%u"}, 203 {Opt_mode, "mode=%s"}, 204 {Opt_io_size_bits, "io_bits=%u"}, 205 {Opt_fault_injection, "fault_injection=%u"}, 206 {Opt_fault_type, "fault_type=%u"}, 207 {Opt_lazytime, "lazytime"}, 208 {Opt_nolazytime, "nolazytime"}, 209 {Opt_quota, "quota"}, 210 {Opt_noquota, "noquota"}, 211 {Opt_usrquota, "usrquota"}, 212 {Opt_grpquota, "grpquota"}, 213 {Opt_prjquota, "prjquota"}, 214 {Opt_usrjquota, "usrjquota=%s"}, 215 {Opt_grpjquota, "grpjquota=%s"}, 216 {Opt_prjjquota, "prjjquota=%s"}, 217 {Opt_offusrjquota, "usrjquota="}, 218 {Opt_offgrpjquota, "grpjquota="}, 219 {Opt_offprjjquota, "prjjquota="}, 220 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 221 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 222 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 223 {Opt_alloc, "alloc_mode=%s"}, 224 {Opt_fsync, "fsync_mode=%s"}, 225 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 226 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 227 {Opt_inlinecrypt, "inlinecrypt"}, 228 {Opt_checkpoint_disable, "checkpoint=disable"}, 229 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 230 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 231 {Opt_checkpoint_enable, "checkpoint=enable"}, 232 {Opt_checkpoint_merge, "checkpoint_merge"}, 233 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 234 {Opt_compress_algorithm, "compress_algorithm=%s"}, 235 {Opt_compress_log_size, "compress_log_size=%u"}, 236 {Opt_compress_extension, "compress_extension=%s"}, 237 {Opt_nocompress_extension, "nocompress_extension=%s"}, 238 {Opt_compress_chksum, "compress_chksum"}, 239 {Opt_compress_mode, "compress_mode=%s"}, 240 {Opt_compress_cache, "compress_cache"}, 241 {Opt_atgc, "atgc"}, 242 {Opt_gc_merge, "gc_merge"}, 243 {Opt_nogc_merge, "nogc_merge"}, 244 {Opt_discard_unit, "discard_unit=%s"}, 245 {Opt_memory_mode, "memory=%s"}, 246 {Opt_age_extent_cache, "age_extent_cache"}, 247 {Opt_errors, "errors=%s"}, 248 {Opt_err, NULL}, 249 }; 250 251 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 252 { 253 struct va_format vaf; 254 va_list args; 255 int level; 256 257 va_start(args, fmt); 258 259 level = printk_get_level(fmt); 260 vaf.fmt = printk_skip_level(fmt); 261 vaf.va = &args; 262 printk("%c%cF2FS-fs (%s): %pV\n", 263 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 264 265 va_end(args); 266 } 267 268 #if IS_ENABLED(CONFIG_UNICODE) 269 static const struct f2fs_sb_encodings { 270 __u16 magic; 271 char *name; 272 unsigned int version; 273 } f2fs_sb_encoding_map[] = { 274 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 275 }; 276 277 static const struct f2fs_sb_encodings * 278 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 279 { 280 __u16 magic = le16_to_cpu(sb->s_encoding); 281 int i; 282 283 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 284 if (magic == f2fs_sb_encoding_map[i].magic) 285 return &f2fs_sb_encoding_map[i]; 286 287 return NULL; 288 } 289 290 struct kmem_cache *f2fs_cf_name_slab; 291 static int __init f2fs_create_casefold_cache(void) 292 { 293 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 294 F2FS_NAME_LEN); 295 return f2fs_cf_name_slab ? 0 : -ENOMEM; 296 } 297 298 static void f2fs_destroy_casefold_cache(void) 299 { 300 kmem_cache_destroy(f2fs_cf_name_slab); 301 } 302 #else 303 static int __init f2fs_create_casefold_cache(void) { return 0; } 304 static void f2fs_destroy_casefold_cache(void) { } 305 #endif 306 307 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 308 { 309 block_t limit = min((sbi->user_block_count >> 3), 310 sbi->user_block_count - sbi->reserved_blocks); 311 312 /* limit is 12.5% */ 313 if (test_opt(sbi, RESERVE_ROOT) && 314 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 315 F2FS_OPTION(sbi).root_reserved_blocks = limit; 316 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 317 F2FS_OPTION(sbi).root_reserved_blocks); 318 } 319 if (!test_opt(sbi, RESERVE_ROOT) && 320 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 321 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 322 !gid_eq(F2FS_OPTION(sbi).s_resgid, 323 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 324 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 325 from_kuid_munged(&init_user_ns, 326 F2FS_OPTION(sbi).s_resuid), 327 from_kgid_munged(&init_user_ns, 328 F2FS_OPTION(sbi).s_resgid)); 329 } 330 331 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi) 332 { 333 unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec; 334 unsigned int avg_vblocks; 335 unsigned int wanted_reserved_segments; 336 block_t avail_user_block_count; 337 338 if (!F2FS_IO_ALIGNED(sbi)) 339 return 0; 340 341 /* average valid block count in section in worst case */ 342 avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi); 343 344 /* 345 * we need enough free space when migrating one section in worst case 346 */ 347 wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) * 348 reserved_segments(sbi); 349 wanted_reserved_segments -= reserved_segments(sbi); 350 351 avail_user_block_count = sbi->user_block_count - 352 sbi->current_reserved_blocks - 353 F2FS_OPTION(sbi).root_reserved_blocks; 354 355 if (wanted_reserved_segments * sbi->blocks_per_seg > 356 avail_user_block_count) { 357 f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u", 358 wanted_reserved_segments, 359 avail_user_block_count >> sbi->log_blocks_per_seg); 360 return -ENOSPC; 361 } 362 363 SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments; 364 365 f2fs_info(sbi, "IO align feature needs additional reserved segment: %u", 366 wanted_reserved_segments); 367 368 return 0; 369 } 370 371 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 372 { 373 if (!F2FS_OPTION(sbi).unusable_cap_perc) 374 return; 375 376 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 377 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 378 else 379 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 380 F2FS_OPTION(sbi).unusable_cap_perc; 381 382 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 383 F2FS_OPTION(sbi).unusable_cap, 384 F2FS_OPTION(sbi).unusable_cap_perc); 385 } 386 387 static void init_once(void *foo) 388 { 389 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 390 391 inode_init_once(&fi->vfs_inode); 392 } 393 394 #ifdef CONFIG_QUOTA 395 static const char * const quotatypes[] = INITQFNAMES; 396 #define QTYPE2NAME(t) (quotatypes[t]) 397 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 398 substring_t *args) 399 { 400 struct f2fs_sb_info *sbi = F2FS_SB(sb); 401 char *qname; 402 int ret = -EINVAL; 403 404 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 405 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 406 return -EINVAL; 407 } 408 if (f2fs_sb_has_quota_ino(sbi)) { 409 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 410 return 0; 411 } 412 413 qname = match_strdup(args); 414 if (!qname) { 415 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 416 return -ENOMEM; 417 } 418 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 419 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 420 ret = 0; 421 else 422 f2fs_err(sbi, "%s quota file already specified", 423 QTYPE2NAME(qtype)); 424 goto errout; 425 } 426 if (strchr(qname, '/')) { 427 f2fs_err(sbi, "quotafile must be on filesystem root"); 428 goto errout; 429 } 430 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 431 set_opt(sbi, QUOTA); 432 return 0; 433 errout: 434 kfree(qname); 435 return ret; 436 } 437 438 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 439 { 440 struct f2fs_sb_info *sbi = F2FS_SB(sb); 441 442 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 443 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 444 return -EINVAL; 445 } 446 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 447 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 448 return 0; 449 } 450 451 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 452 { 453 /* 454 * We do the test below only for project quotas. 'usrquota' and 455 * 'grpquota' mount options are allowed even without quota feature 456 * to support legacy quotas in quota files. 457 */ 458 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 459 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 460 return -1; 461 } 462 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 463 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 464 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 465 if (test_opt(sbi, USRQUOTA) && 466 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 467 clear_opt(sbi, USRQUOTA); 468 469 if (test_opt(sbi, GRPQUOTA) && 470 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 471 clear_opt(sbi, GRPQUOTA); 472 473 if (test_opt(sbi, PRJQUOTA) && 474 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 475 clear_opt(sbi, PRJQUOTA); 476 477 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 478 test_opt(sbi, PRJQUOTA)) { 479 f2fs_err(sbi, "old and new quota format mixing"); 480 return -1; 481 } 482 483 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 484 f2fs_err(sbi, "journaled quota format not specified"); 485 return -1; 486 } 487 } 488 489 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 490 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 491 F2FS_OPTION(sbi).s_jquota_fmt = 0; 492 } 493 return 0; 494 } 495 #endif 496 497 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 498 const char *opt, 499 const substring_t *arg, 500 bool is_remount) 501 { 502 struct f2fs_sb_info *sbi = F2FS_SB(sb); 503 struct fs_parameter param = { 504 .type = fs_value_is_string, 505 .string = arg->from ? arg->from : "", 506 }; 507 struct fscrypt_dummy_policy *policy = 508 &F2FS_OPTION(sbi).dummy_enc_policy; 509 int err; 510 511 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 512 f2fs_warn(sbi, "test_dummy_encryption option not supported"); 513 return -EINVAL; 514 } 515 516 if (!f2fs_sb_has_encrypt(sbi)) { 517 f2fs_err(sbi, "Encrypt feature is off"); 518 return -EINVAL; 519 } 520 521 /* 522 * This mount option is just for testing, and it's not worthwhile to 523 * implement the extra complexity (e.g. RCU protection) that would be 524 * needed to allow it to be set or changed during remount. We do allow 525 * it to be specified during remount, but only if there is no change. 526 */ 527 if (is_remount && !fscrypt_is_dummy_policy_set(policy)) { 528 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 529 return -EINVAL; 530 } 531 532 err = fscrypt_parse_test_dummy_encryption(¶m, policy); 533 if (err) { 534 if (err == -EEXIST) 535 f2fs_warn(sbi, 536 "Can't change test_dummy_encryption on remount"); 537 else if (err == -EINVAL) 538 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 539 opt); 540 else 541 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 542 opt, err); 543 return -EINVAL; 544 } 545 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 546 return 0; 547 } 548 549 #ifdef CONFIG_F2FS_FS_COMPRESSION 550 static bool is_compress_extension_exist(struct f2fs_sb_info *sbi, 551 const char *new_ext, bool is_ext) 552 { 553 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 554 int ext_cnt; 555 int i; 556 557 if (is_ext) { 558 ext = F2FS_OPTION(sbi).extensions; 559 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 560 } else { 561 ext = F2FS_OPTION(sbi).noextensions; 562 ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 563 } 564 565 for (i = 0; i < ext_cnt; i++) { 566 if (!strcasecmp(new_ext, ext[i])) 567 return true; 568 } 569 570 return false; 571 } 572 573 /* 574 * 1. The same extension name cannot not appear in both compress and non-compress extension 575 * at the same time. 576 * 2. If the compress extension specifies all files, the types specified by the non-compress 577 * extension will be treated as special cases and will not be compressed. 578 * 3. Don't allow the non-compress extension specifies all files. 579 */ 580 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 581 { 582 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 583 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 584 int ext_cnt, noext_cnt, index = 0, no_index = 0; 585 586 ext = F2FS_OPTION(sbi).extensions; 587 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 588 noext = F2FS_OPTION(sbi).noextensions; 589 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 590 591 if (!noext_cnt) 592 return 0; 593 594 for (no_index = 0; no_index < noext_cnt; no_index++) { 595 if (!strcasecmp("*", noext[no_index])) { 596 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 597 return -EINVAL; 598 } 599 for (index = 0; index < ext_cnt; index++) { 600 if (!strcasecmp(ext[index], noext[no_index])) { 601 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 602 ext[index]); 603 return -EINVAL; 604 } 605 } 606 } 607 return 0; 608 } 609 610 #ifdef CONFIG_F2FS_FS_LZ4 611 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 612 { 613 #ifdef CONFIG_F2FS_FS_LZ4HC 614 unsigned int level; 615 616 if (strlen(str) == 3) { 617 F2FS_OPTION(sbi).compress_level = 0; 618 return 0; 619 } 620 621 str += 3; 622 623 if (str[0] != ':') { 624 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 625 return -EINVAL; 626 } 627 if (kstrtouint(str + 1, 10, &level)) 628 return -EINVAL; 629 630 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) { 631 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 632 return -EINVAL; 633 } 634 635 F2FS_OPTION(sbi).compress_level = level; 636 return 0; 637 #else 638 if (strlen(str) == 3) { 639 F2FS_OPTION(sbi).compress_level = 0; 640 return 0; 641 } 642 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 643 return -EINVAL; 644 #endif 645 } 646 #endif 647 648 #ifdef CONFIG_F2FS_FS_ZSTD 649 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 650 { 651 unsigned int level; 652 int len = 4; 653 654 if (strlen(str) == len) { 655 F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 656 return 0; 657 } 658 659 str += len; 660 661 if (str[0] != ':') { 662 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 663 return -EINVAL; 664 } 665 if (kstrtouint(str + 1, 10, &level)) 666 return -EINVAL; 667 668 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) { 669 f2fs_info(sbi, "invalid zstd compress level: %d", level); 670 return -EINVAL; 671 } 672 673 F2FS_OPTION(sbi).compress_level = level; 674 return 0; 675 } 676 #endif 677 #endif 678 679 static int parse_options(struct super_block *sb, char *options, bool is_remount) 680 { 681 struct f2fs_sb_info *sbi = F2FS_SB(sb); 682 substring_t args[MAX_OPT_ARGS]; 683 #ifdef CONFIG_F2FS_FS_COMPRESSION 684 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 685 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 686 int ext_cnt, noext_cnt; 687 #endif 688 char *p, *name; 689 int arg = 0; 690 kuid_t uid; 691 kgid_t gid; 692 int ret; 693 694 if (!options) 695 goto default_check; 696 697 while ((p = strsep(&options, ",")) != NULL) { 698 int token; 699 700 if (!*p) 701 continue; 702 /* 703 * Initialize args struct so we know whether arg was 704 * found; some options take optional arguments. 705 */ 706 args[0].to = args[0].from = NULL; 707 token = match_token(p, f2fs_tokens, args); 708 709 switch (token) { 710 case Opt_gc_background: 711 name = match_strdup(&args[0]); 712 713 if (!name) 714 return -ENOMEM; 715 if (!strcmp(name, "on")) { 716 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 717 } else if (!strcmp(name, "off")) { 718 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 719 } else if (!strcmp(name, "sync")) { 720 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 721 } else { 722 kfree(name); 723 return -EINVAL; 724 } 725 kfree(name); 726 break; 727 case Opt_disable_roll_forward: 728 set_opt(sbi, DISABLE_ROLL_FORWARD); 729 break; 730 case Opt_norecovery: 731 /* this option mounts f2fs with ro */ 732 set_opt(sbi, NORECOVERY); 733 if (!f2fs_readonly(sb)) 734 return -EINVAL; 735 break; 736 case Opt_discard: 737 if (!f2fs_hw_support_discard(sbi)) { 738 f2fs_warn(sbi, "device does not support discard"); 739 break; 740 } 741 set_opt(sbi, DISCARD); 742 break; 743 case Opt_nodiscard: 744 if (f2fs_hw_should_discard(sbi)) { 745 f2fs_warn(sbi, "discard is required for zoned block devices"); 746 return -EINVAL; 747 } 748 clear_opt(sbi, DISCARD); 749 break; 750 case Opt_noheap: 751 set_opt(sbi, NOHEAP); 752 break; 753 case Opt_heap: 754 clear_opt(sbi, NOHEAP); 755 break; 756 #ifdef CONFIG_F2FS_FS_XATTR 757 case Opt_user_xattr: 758 set_opt(sbi, XATTR_USER); 759 break; 760 case Opt_nouser_xattr: 761 clear_opt(sbi, XATTR_USER); 762 break; 763 case Opt_inline_xattr: 764 set_opt(sbi, INLINE_XATTR); 765 break; 766 case Opt_noinline_xattr: 767 clear_opt(sbi, INLINE_XATTR); 768 break; 769 case Opt_inline_xattr_size: 770 if (args->from && match_int(args, &arg)) 771 return -EINVAL; 772 set_opt(sbi, INLINE_XATTR_SIZE); 773 F2FS_OPTION(sbi).inline_xattr_size = arg; 774 break; 775 #else 776 case Opt_user_xattr: 777 f2fs_info(sbi, "user_xattr options not supported"); 778 break; 779 case Opt_nouser_xattr: 780 f2fs_info(sbi, "nouser_xattr options not supported"); 781 break; 782 case Opt_inline_xattr: 783 f2fs_info(sbi, "inline_xattr options not supported"); 784 break; 785 case Opt_noinline_xattr: 786 f2fs_info(sbi, "noinline_xattr options not supported"); 787 break; 788 #endif 789 #ifdef CONFIG_F2FS_FS_POSIX_ACL 790 case Opt_acl: 791 set_opt(sbi, POSIX_ACL); 792 break; 793 case Opt_noacl: 794 clear_opt(sbi, POSIX_ACL); 795 break; 796 #else 797 case Opt_acl: 798 f2fs_info(sbi, "acl options not supported"); 799 break; 800 case Opt_noacl: 801 f2fs_info(sbi, "noacl options not supported"); 802 break; 803 #endif 804 case Opt_active_logs: 805 if (args->from && match_int(args, &arg)) 806 return -EINVAL; 807 if (arg != 2 && arg != 4 && 808 arg != NR_CURSEG_PERSIST_TYPE) 809 return -EINVAL; 810 F2FS_OPTION(sbi).active_logs = arg; 811 break; 812 case Opt_disable_ext_identify: 813 set_opt(sbi, DISABLE_EXT_IDENTIFY); 814 break; 815 case Opt_inline_data: 816 set_opt(sbi, INLINE_DATA); 817 break; 818 case Opt_inline_dentry: 819 set_opt(sbi, INLINE_DENTRY); 820 break; 821 case Opt_noinline_dentry: 822 clear_opt(sbi, INLINE_DENTRY); 823 break; 824 case Opt_flush_merge: 825 set_opt(sbi, FLUSH_MERGE); 826 break; 827 case Opt_noflush_merge: 828 clear_opt(sbi, FLUSH_MERGE); 829 break; 830 case Opt_nobarrier: 831 set_opt(sbi, NOBARRIER); 832 break; 833 case Opt_barrier: 834 clear_opt(sbi, NOBARRIER); 835 break; 836 case Opt_fastboot: 837 set_opt(sbi, FASTBOOT); 838 break; 839 case Opt_extent_cache: 840 set_opt(sbi, READ_EXTENT_CACHE); 841 break; 842 case Opt_noextent_cache: 843 clear_opt(sbi, READ_EXTENT_CACHE); 844 break; 845 case Opt_noinline_data: 846 clear_opt(sbi, INLINE_DATA); 847 break; 848 case Opt_data_flush: 849 set_opt(sbi, DATA_FLUSH); 850 break; 851 case Opt_reserve_root: 852 if (args->from && match_int(args, &arg)) 853 return -EINVAL; 854 if (test_opt(sbi, RESERVE_ROOT)) { 855 f2fs_info(sbi, "Preserve previous reserve_root=%u", 856 F2FS_OPTION(sbi).root_reserved_blocks); 857 } else { 858 F2FS_OPTION(sbi).root_reserved_blocks = arg; 859 set_opt(sbi, RESERVE_ROOT); 860 } 861 break; 862 case Opt_resuid: 863 if (args->from && match_int(args, &arg)) 864 return -EINVAL; 865 uid = make_kuid(current_user_ns(), arg); 866 if (!uid_valid(uid)) { 867 f2fs_err(sbi, "Invalid uid value %d", arg); 868 return -EINVAL; 869 } 870 F2FS_OPTION(sbi).s_resuid = uid; 871 break; 872 case Opt_resgid: 873 if (args->from && match_int(args, &arg)) 874 return -EINVAL; 875 gid = make_kgid(current_user_ns(), arg); 876 if (!gid_valid(gid)) { 877 f2fs_err(sbi, "Invalid gid value %d", arg); 878 return -EINVAL; 879 } 880 F2FS_OPTION(sbi).s_resgid = gid; 881 break; 882 case Opt_mode: 883 name = match_strdup(&args[0]); 884 885 if (!name) 886 return -ENOMEM; 887 if (!strcmp(name, "adaptive")) { 888 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 889 } else if (!strcmp(name, "lfs")) { 890 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 891 } else if (!strcmp(name, "fragment:segment")) { 892 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 893 } else if (!strcmp(name, "fragment:block")) { 894 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 895 } else { 896 kfree(name); 897 return -EINVAL; 898 } 899 kfree(name); 900 break; 901 case Opt_io_size_bits: 902 if (args->from && match_int(args, &arg)) 903 return -EINVAL; 904 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) { 905 f2fs_warn(sbi, "Not support %ld, larger than %d", 906 BIT(arg), BIO_MAX_VECS); 907 return -EINVAL; 908 } 909 F2FS_OPTION(sbi).write_io_size_bits = arg; 910 break; 911 #ifdef CONFIG_F2FS_FAULT_INJECTION 912 case Opt_fault_injection: 913 if (args->from && match_int(args, &arg)) 914 return -EINVAL; 915 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 916 set_opt(sbi, FAULT_INJECTION); 917 break; 918 919 case Opt_fault_type: 920 if (args->from && match_int(args, &arg)) 921 return -EINVAL; 922 f2fs_build_fault_attr(sbi, 0, arg); 923 set_opt(sbi, FAULT_INJECTION); 924 break; 925 #else 926 case Opt_fault_injection: 927 f2fs_info(sbi, "fault_injection options not supported"); 928 break; 929 930 case Opt_fault_type: 931 f2fs_info(sbi, "fault_type options not supported"); 932 break; 933 #endif 934 case Opt_lazytime: 935 sb->s_flags |= SB_LAZYTIME; 936 break; 937 case Opt_nolazytime: 938 sb->s_flags &= ~SB_LAZYTIME; 939 break; 940 #ifdef CONFIG_QUOTA 941 case Opt_quota: 942 case Opt_usrquota: 943 set_opt(sbi, USRQUOTA); 944 break; 945 case Opt_grpquota: 946 set_opt(sbi, GRPQUOTA); 947 break; 948 case Opt_prjquota: 949 set_opt(sbi, PRJQUOTA); 950 break; 951 case Opt_usrjquota: 952 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 953 if (ret) 954 return ret; 955 break; 956 case Opt_grpjquota: 957 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 958 if (ret) 959 return ret; 960 break; 961 case Opt_prjjquota: 962 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 963 if (ret) 964 return ret; 965 break; 966 case Opt_offusrjquota: 967 ret = f2fs_clear_qf_name(sb, USRQUOTA); 968 if (ret) 969 return ret; 970 break; 971 case Opt_offgrpjquota: 972 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 973 if (ret) 974 return ret; 975 break; 976 case Opt_offprjjquota: 977 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 978 if (ret) 979 return ret; 980 break; 981 case Opt_jqfmt_vfsold: 982 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 983 break; 984 case Opt_jqfmt_vfsv0: 985 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 986 break; 987 case Opt_jqfmt_vfsv1: 988 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 989 break; 990 case Opt_noquota: 991 clear_opt(sbi, QUOTA); 992 clear_opt(sbi, USRQUOTA); 993 clear_opt(sbi, GRPQUOTA); 994 clear_opt(sbi, PRJQUOTA); 995 break; 996 #else 997 case Opt_quota: 998 case Opt_usrquota: 999 case Opt_grpquota: 1000 case Opt_prjquota: 1001 case Opt_usrjquota: 1002 case Opt_grpjquota: 1003 case Opt_prjjquota: 1004 case Opt_offusrjquota: 1005 case Opt_offgrpjquota: 1006 case Opt_offprjjquota: 1007 case Opt_jqfmt_vfsold: 1008 case Opt_jqfmt_vfsv0: 1009 case Opt_jqfmt_vfsv1: 1010 case Opt_noquota: 1011 f2fs_info(sbi, "quota operations not supported"); 1012 break; 1013 #endif 1014 case Opt_alloc: 1015 name = match_strdup(&args[0]); 1016 if (!name) 1017 return -ENOMEM; 1018 1019 if (!strcmp(name, "default")) { 1020 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1021 } else if (!strcmp(name, "reuse")) { 1022 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 1023 } else { 1024 kfree(name); 1025 return -EINVAL; 1026 } 1027 kfree(name); 1028 break; 1029 case Opt_fsync: 1030 name = match_strdup(&args[0]); 1031 if (!name) 1032 return -ENOMEM; 1033 if (!strcmp(name, "posix")) { 1034 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1035 } else if (!strcmp(name, "strict")) { 1036 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 1037 } else if (!strcmp(name, "nobarrier")) { 1038 F2FS_OPTION(sbi).fsync_mode = 1039 FSYNC_MODE_NOBARRIER; 1040 } else { 1041 kfree(name); 1042 return -EINVAL; 1043 } 1044 kfree(name); 1045 break; 1046 case Opt_test_dummy_encryption: 1047 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 1048 is_remount); 1049 if (ret) 1050 return ret; 1051 break; 1052 case Opt_inlinecrypt: 1053 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1054 sb->s_flags |= SB_INLINECRYPT; 1055 #else 1056 f2fs_info(sbi, "inline encryption not supported"); 1057 #endif 1058 break; 1059 case Opt_checkpoint_disable_cap_perc: 1060 if (args->from && match_int(args, &arg)) 1061 return -EINVAL; 1062 if (arg < 0 || arg > 100) 1063 return -EINVAL; 1064 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1065 set_opt(sbi, DISABLE_CHECKPOINT); 1066 break; 1067 case Opt_checkpoint_disable_cap: 1068 if (args->from && match_int(args, &arg)) 1069 return -EINVAL; 1070 F2FS_OPTION(sbi).unusable_cap = arg; 1071 set_opt(sbi, DISABLE_CHECKPOINT); 1072 break; 1073 case Opt_checkpoint_disable: 1074 set_opt(sbi, DISABLE_CHECKPOINT); 1075 break; 1076 case Opt_checkpoint_enable: 1077 clear_opt(sbi, DISABLE_CHECKPOINT); 1078 break; 1079 case Opt_checkpoint_merge: 1080 set_opt(sbi, MERGE_CHECKPOINT); 1081 break; 1082 case Opt_nocheckpoint_merge: 1083 clear_opt(sbi, MERGE_CHECKPOINT); 1084 break; 1085 #ifdef CONFIG_F2FS_FS_COMPRESSION 1086 case Opt_compress_algorithm: 1087 if (!f2fs_sb_has_compression(sbi)) { 1088 f2fs_info(sbi, "Image doesn't support compression"); 1089 break; 1090 } 1091 name = match_strdup(&args[0]); 1092 if (!name) 1093 return -ENOMEM; 1094 if (!strcmp(name, "lzo")) { 1095 #ifdef CONFIG_F2FS_FS_LZO 1096 F2FS_OPTION(sbi).compress_level = 0; 1097 F2FS_OPTION(sbi).compress_algorithm = 1098 COMPRESS_LZO; 1099 #else 1100 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1101 #endif 1102 } else if (!strncmp(name, "lz4", 3)) { 1103 #ifdef CONFIG_F2FS_FS_LZ4 1104 ret = f2fs_set_lz4hc_level(sbi, name); 1105 if (ret) { 1106 kfree(name); 1107 return -EINVAL; 1108 } 1109 F2FS_OPTION(sbi).compress_algorithm = 1110 COMPRESS_LZ4; 1111 #else 1112 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1113 #endif 1114 } else if (!strncmp(name, "zstd", 4)) { 1115 #ifdef CONFIG_F2FS_FS_ZSTD 1116 ret = f2fs_set_zstd_level(sbi, name); 1117 if (ret) { 1118 kfree(name); 1119 return -EINVAL; 1120 } 1121 F2FS_OPTION(sbi).compress_algorithm = 1122 COMPRESS_ZSTD; 1123 #else 1124 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1125 #endif 1126 } else if (!strcmp(name, "lzo-rle")) { 1127 #ifdef CONFIG_F2FS_FS_LZORLE 1128 F2FS_OPTION(sbi).compress_level = 0; 1129 F2FS_OPTION(sbi).compress_algorithm = 1130 COMPRESS_LZORLE; 1131 #else 1132 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1133 #endif 1134 } else { 1135 kfree(name); 1136 return -EINVAL; 1137 } 1138 kfree(name); 1139 break; 1140 case Opt_compress_log_size: 1141 if (!f2fs_sb_has_compression(sbi)) { 1142 f2fs_info(sbi, "Image doesn't support compression"); 1143 break; 1144 } 1145 if (args->from && match_int(args, &arg)) 1146 return -EINVAL; 1147 if (arg < MIN_COMPRESS_LOG_SIZE || 1148 arg > MAX_COMPRESS_LOG_SIZE) { 1149 f2fs_err(sbi, 1150 "Compress cluster log size is out of range"); 1151 return -EINVAL; 1152 } 1153 F2FS_OPTION(sbi).compress_log_size = arg; 1154 break; 1155 case Opt_compress_extension: 1156 if (!f2fs_sb_has_compression(sbi)) { 1157 f2fs_info(sbi, "Image doesn't support compression"); 1158 break; 1159 } 1160 name = match_strdup(&args[0]); 1161 if (!name) 1162 return -ENOMEM; 1163 1164 ext = F2FS_OPTION(sbi).extensions; 1165 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1166 1167 if (strlen(name) >= F2FS_EXTENSION_LEN || 1168 ext_cnt >= COMPRESS_EXT_NUM) { 1169 f2fs_err(sbi, 1170 "invalid extension length/number"); 1171 kfree(name); 1172 return -EINVAL; 1173 } 1174 1175 if (is_compress_extension_exist(sbi, name, true)) { 1176 kfree(name); 1177 break; 1178 } 1179 1180 strcpy(ext[ext_cnt], name); 1181 F2FS_OPTION(sbi).compress_ext_cnt++; 1182 kfree(name); 1183 break; 1184 case Opt_nocompress_extension: 1185 if (!f2fs_sb_has_compression(sbi)) { 1186 f2fs_info(sbi, "Image doesn't support compression"); 1187 break; 1188 } 1189 name = match_strdup(&args[0]); 1190 if (!name) 1191 return -ENOMEM; 1192 1193 noext = F2FS_OPTION(sbi).noextensions; 1194 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1195 1196 if (strlen(name) >= F2FS_EXTENSION_LEN || 1197 noext_cnt >= COMPRESS_EXT_NUM) { 1198 f2fs_err(sbi, 1199 "invalid extension length/number"); 1200 kfree(name); 1201 return -EINVAL; 1202 } 1203 1204 if (is_compress_extension_exist(sbi, name, false)) { 1205 kfree(name); 1206 break; 1207 } 1208 1209 strcpy(noext[noext_cnt], name); 1210 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1211 kfree(name); 1212 break; 1213 case Opt_compress_chksum: 1214 if (!f2fs_sb_has_compression(sbi)) { 1215 f2fs_info(sbi, "Image doesn't support compression"); 1216 break; 1217 } 1218 F2FS_OPTION(sbi).compress_chksum = true; 1219 break; 1220 case Opt_compress_mode: 1221 if (!f2fs_sb_has_compression(sbi)) { 1222 f2fs_info(sbi, "Image doesn't support compression"); 1223 break; 1224 } 1225 name = match_strdup(&args[0]); 1226 if (!name) 1227 return -ENOMEM; 1228 if (!strcmp(name, "fs")) { 1229 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1230 } else if (!strcmp(name, "user")) { 1231 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1232 } else { 1233 kfree(name); 1234 return -EINVAL; 1235 } 1236 kfree(name); 1237 break; 1238 case Opt_compress_cache: 1239 if (!f2fs_sb_has_compression(sbi)) { 1240 f2fs_info(sbi, "Image doesn't support compression"); 1241 break; 1242 } 1243 set_opt(sbi, COMPRESS_CACHE); 1244 break; 1245 #else 1246 case Opt_compress_algorithm: 1247 case Opt_compress_log_size: 1248 case Opt_compress_extension: 1249 case Opt_nocompress_extension: 1250 case Opt_compress_chksum: 1251 case Opt_compress_mode: 1252 case Opt_compress_cache: 1253 f2fs_info(sbi, "compression options not supported"); 1254 break; 1255 #endif 1256 case Opt_atgc: 1257 set_opt(sbi, ATGC); 1258 break; 1259 case Opt_gc_merge: 1260 set_opt(sbi, GC_MERGE); 1261 break; 1262 case Opt_nogc_merge: 1263 clear_opt(sbi, GC_MERGE); 1264 break; 1265 case Opt_discard_unit: 1266 name = match_strdup(&args[0]); 1267 if (!name) 1268 return -ENOMEM; 1269 if (!strcmp(name, "block")) { 1270 F2FS_OPTION(sbi).discard_unit = 1271 DISCARD_UNIT_BLOCK; 1272 } else if (!strcmp(name, "segment")) { 1273 F2FS_OPTION(sbi).discard_unit = 1274 DISCARD_UNIT_SEGMENT; 1275 } else if (!strcmp(name, "section")) { 1276 F2FS_OPTION(sbi).discard_unit = 1277 DISCARD_UNIT_SECTION; 1278 } else { 1279 kfree(name); 1280 return -EINVAL; 1281 } 1282 kfree(name); 1283 break; 1284 case Opt_memory_mode: 1285 name = match_strdup(&args[0]); 1286 if (!name) 1287 return -ENOMEM; 1288 if (!strcmp(name, "normal")) { 1289 F2FS_OPTION(sbi).memory_mode = 1290 MEMORY_MODE_NORMAL; 1291 } else if (!strcmp(name, "low")) { 1292 F2FS_OPTION(sbi).memory_mode = 1293 MEMORY_MODE_LOW; 1294 } else { 1295 kfree(name); 1296 return -EINVAL; 1297 } 1298 kfree(name); 1299 break; 1300 case Opt_age_extent_cache: 1301 set_opt(sbi, AGE_EXTENT_CACHE); 1302 break; 1303 case Opt_errors: 1304 name = match_strdup(&args[0]); 1305 if (!name) 1306 return -ENOMEM; 1307 if (!strcmp(name, "remount-ro")) { 1308 F2FS_OPTION(sbi).errors = 1309 MOUNT_ERRORS_READONLY; 1310 } else if (!strcmp(name, "continue")) { 1311 F2FS_OPTION(sbi).errors = 1312 MOUNT_ERRORS_CONTINUE; 1313 } else if (!strcmp(name, "panic")) { 1314 F2FS_OPTION(sbi).errors = 1315 MOUNT_ERRORS_PANIC; 1316 } else { 1317 kfree(name); 1318 return -EINVAL; 1319 } 1320 kfree(name); 1321 break; 1322 default: 1323 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1324 p); 1325 return -EINVAL; 1326 } 1327 } 1328 default_check: 1329 #ifdef CONFIG_QUOTA 1330 if (f2fs_check_quota_options(sbi)) 1331 return -EINVAL; 1332 #else 1333 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1334 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1335 return -EINVAL; 1336 } 1337 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1338 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1339 return -EINVAL; 1340 } 1341 #endif 1342 #if !IS_ENABLED(CONFIG_UNICODE) 1343 if (f2fs_sb_has_casefold(sbi)) { 1344 f2fs_err(sbi, 1345 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1346 return -EINVAL; 1347 } 1348 #endif 1349 /* 1350 * The BLKZONED feature indicates that the drive was formatted with 1351 * zone alignment optimization. This is optional for host-aware 1352 * devices, but mandatory for host-managed zoned block devices. 1353 */ 1354 if (f2fs_sb_has_blkzoned(sbi)) { 1355 #ifdef CONFIG_BLK_DEV_ZONED 1356 if (F2FS_OPTION(sbi).discard_unit != 1357 DISCARD_UNIT_SECTION) { 1358 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1359 F2FS_OPTION(sbi).discard_unit = 1360 DISCARD_UNIT_SECTION; 1361 } 1362 1363 if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) { 1364 f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature"); 1365 return -EINVAL; 1366 } 1367 #else 1368 f2fs_err(sbi, "Zoned block device support is not enabled"); 1369 return -EINVAL; 1370 #endif 1371 } 1372 1373 #ifdef CONFIG_F2FS_FS_COMPRESSION 1374 if (f2fs_test_compress_extension(sbi)) { 1375 f2fs_err(sbi, "invalid compress or nocompress extension"); 1376 return -EINVAL; 1377 } 1378 #endif 1379 1380 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) { 1381 f2fs_err(sbi, "Should set mode=lfs with %luKB-sized IO", 1382 F2FS_IO_SIZE_KB(sbi)); 1383 return -EINVAL; 1384 } 1385 1386 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1387 int min_size, max_size; 1388 1389 if (!f2fs_sb_has_extra_attr(sbi) || 1390 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1391 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1392 return -EINVAL; 1393 } 1394 if (!test_opt(sbi, INLINE_XATTR)) { 1395 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1396 return -EINVAL; 1397 } 1398 1399 min_size = MIN_INLINE_XATTR_SIZE; 1400 max_size = MAX_INLINE_XATTR_SIZE; 1401 1402 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1403 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1404 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1405 min_size, max_size); 1406 return -EINVAL; 1407 } 1408 } 1409 1410 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) { 1411 f2fs_err(sbi, "LFS is not compatible with checkpoint=disable"); 1412 return -EINVAL; 1413 } 1414 1415 if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) { 1416 f2fs_err(sbi, "LFS is not compatible with ATGC"); 1417 return -EINVAL; 1418 } 1419 1420 if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) { 1421 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode"); 1422 return -EINVAL; 1423 } 1424 1425 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1426 f2fs_err(sbi, "Allow to mount readonly mode only"); 1427 return -EROFS; 1428 } 1429 return 0; 1430 } 1431 1432 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1433 { 1434 struct f2fs_inode_info *fi; 1435 1436 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) 1437 return NULL; 1438 1439 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1440 if (!fi) 1441 return NULL; 1442 1443 init_once((void *) fi); 1444 1445 /* Initialize f2fs-specific inode info */ 1446 atomic_set(&fi->dirty_pages, 0); 1447 atomic_set(&fi->i_compr_blocks, 0); 1448 init_f2fs_rwsem(&fi->i_sem); 1449 spin_lock_init(&fi->i_size_lock); 1450 INIT_LIST_HEAD(&fi->dirty_list); 1451 INIT_LIST_HEAD(&fi->gdirty_list); 1452 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1453 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1454 init_f2fs_rwsem(&fi->i_xattr_sem); 1455 1456 /* Will be used by directory only */ 1457 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1458 1459 return &fi->vfs_inode; 1460 } 1461 1462 static int f2fs_drop_inode(struct inode *inode) 1463 { 1464 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1465 int ret; 1466 1467 /* 1468 * during filesystem shutdown, if checkpoint is disabled, 1469 * drop useless meta/node dirty pages. 1470 */ 1471 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1472 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1473 inode->i_ino == F2FS_META_INO(sbi)) { 1474 trace_f2fs_drop_inode(inode, 1); 1475 return 1; 1476 } 1477 } 1478 1479 /* 1480 * This is to avoid a deadlock condition like below. 1481 * writeback_single_inode(inode) 1482 * - f2fs_write_data_page 1483 * - f2fs_gc -> iput -> evict 1484 * - inode_wait_for_writeback(inode) 1485 */ 1486 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1487 if (!inode->i_nlink && !is_bad_inode(inode)) { 1488 /* to avoid evict_inode call simultaneously */ 1489 atomic_inc(&inode->i_count); 1490 spin_unlock(&inode->i_lock); 1491 1492 /* should remain fi->extent_tree for writepage */ 1493 f2fs_destroy_extent_node(inode); 1494 1495 sb_start_intwrite(inode->i_sb); 1496 f2fs_i_size_write(inode, 0); 1497 1498 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1499 inode, NULL, 0, DATA); 1500 truncate_inode_pages_final(inode->i_mapping); 1501 1502 if (F2FS_HAS_BLOCKS(inode)) 1503 f2fs_truncate(inode); 1504 1505 sb_end_intwrite(inode->i_sb); 1506 1507 spin_lock(&inode->i_lock); 1508 atomic_dec(&inode->i_count); 1509 } 1510 trace_f2fs_drop_inode(inode, 0); 1511 return 0; 1512 } 1513 ret = generic_drop_inode(inode); 1514 if (!ret) 1515 ret = fscrypt_drop_inode(inode); 1516 trace_f2fs_drop_inode(inode, ret); 1517 return ret; 1518 } 1519 1520 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1521 { 1522 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1523 int ret = 0; 1524 1525 spin_lock(&sbi->inode_lock[DIRTY_META]); 1526 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1527 ret = 1; 1528 } else { 1529 set_inode_flag(inode, FI_DIRTY_INODE); 1530 stat_inc_dirty_inode(sbi, DIRTY_META); 1531 } 1532 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1533 list_add_tail(&F2FS_I(inode)->gdirty_list, 1534 &sbi->inode_list[DIRTY_META]); 1535 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1536 } 1537 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1538 return ret; 1539 } 1540 1541 void f2fs_inode_synced(struct inode *inode) 1542 { 1543 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1544 1545 spin_lock(&sbi->inode_lock[DIRTY_META]); 1546 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1547 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1548 return; 1549 } 1550 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1551 list_del_init(&F2FS_I(inode)->gdirty_list); 1552 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1553 } 1554 clear_inode_flag(inode, FI_DIRTY_INODE); 1555 clear_inode_flag(inode, FI_AUTO_RECOVER); 1556 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1557 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1558 } 1559 1560 /* 1561 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1562 * 1563 * We should call set_dirty_inode to write the dirty inode through write_inode. 1564 */ 1565 static void f2fs_dirty_inode(struct inode *inode, int flags) 1566 { 1567 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1568 1569 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1570 inode->i_ino == F2FS_META_INO(sbi)) 1571 return; 1572 1573 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1574 clear_inode_flag(inode, FI_AUTO_RECOVER); 1575 1576 f2fs_inode_dirtied(inode, false); 1577 } 1578 1579 static void f2fs_free_inode(struct inode *inode) 1580 { 1581 fscrypt_free_inode(inode); 1582 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1583 } 1584 1585 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1586 { 1587 percpu_counter_destroy(&sbi->total_valid_inode_count); 1588 percpu_counter_destroy(&sbi->rf_node_block_count); 1589 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1590 } 1591 1592 static void destroy_device_list(struct f2fs_sb_info *sbi) 1593 { 1594 int i; 1595 1596 for (i = 0; i < sbi->s_ndevs; i++) { 1597 if (i > 0) 1598 blkdev_put(FDEV(i).bdev, sbi->sb); 1599 #ifdef CONFIG_BLK_DEV_ZONED 1600 kvfree(FDEV(i).blkz_seq); 1601 #endif 1602 } 1603 kvfree(sbi->devs); 1604 } 1605 1606 static void f2fs_put_super(struct super_block *sb) 1607 { 1608 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1609 int i; 1610 int err = 0; 1611 bool done; 1612 1613 /* unregister procfs/sysfs entries in advance to avoid race case */ 1614 f2fs_unregister_sysfs(sbi); 1615 1616 f2fs_quota_off_umount(sb); 1617 1618 /* prevent remaining shrinker jobs */ 1619 mutex_lock(&sbi->umount_mutex); 1620 1621 /* 1622 * flush all issued checkpoints and stop checkpoint issue thread. 1623 * after then, all checkpoints should be done by each process context. 1624 */ 1625 f2fs_stop_ckpt_thread(sbi); 1626 1627 /* 1628 * We don't need to do checkpoint when superblock is clean. 1629 * But, the previous checkpoint was not done by umount, it needs to do 1630 * clean checkpoint again. 1631 */ 1632 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1633 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1634 struct cp_control cpc = { 1635 .reason = CP_UMOUNT, 1636 }; 1637 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1638 err = f2fs_write_checkpoint(sbi, &cpc); 1639 } 1640 1641 /* be sure to wait for any on-going discard commands */ 1642 done = f2fs_issue_discard_timeout(sbi); 1643 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) { 1644 struct cp_control cpc = { 1645 .reason = CP_UMOUNT | CP_TRIMMED, 1646 }; 1647 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1648 err = f2fs_write_checkpoint(sbi, &cpc); 1649 } 1650 1651 /* 1652 * normally superblock is clean, so we need to release this. 1653 * In addition, EIO will skip do checkpoint, we need this as well. 1654 */ 1655 f2fs_release_ino_entry(sbi, true); 1656 1657 f2fs_leave_shrinker(sbi); 1658 mutex_unlock(&sbi->umount_mutex); 1659 1660 /* our cp_error case, we can wait for any writeback page */ 1661 f2fs_flush_merged_writes(sbi); 1662 1663 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1664 1665 if (err || f2fs_cp_error(sbi)) { 1666 truncate_inode_pages_final(NODE_MAPPING(sbi)); 1667 truncate_inode_pages_final(META_MAPPING(sbi)); 1668 } 1669 1670 for (i = 0; i < NR_COUNT_TYPE; i++) { 1671 if (!get_pages(sbi, i)) 1672 continue; 1673 f2fs_err(sbi, "detect filesystem reference count leak during " 1674 "umount, type: %d, count: %lld", i, get_pages(sbi, i)); 1675 f2fs_bug_on(sbi, 1); 1676 } 1677 1678 f2fs_bug_on(sbi, sbi->fsync_node_num); 1679 1680 f2fs_destroy_compress_inode(sbi); 1681 1682 iput(sbi->node_inode); 1683 sbi->node_inode = NULL; 1684 1685 iput(sbi->meta_inode); 1686 sbi->meta_inode = NULL; 1687 1688 /* 1689 * iput() can update stat information, if f2fs_write_checkpoint() 1690 * above failed with error. 1691 */ 1692 f2fs_destroy_stats(sbi); 1693 1694 /* destroy f2fs internal modules */ 1695 f2fs_destroy_node_manager(sbi); 1696 f2fs_destroy_segment_manager(sbi); 1697 1698 /* flush s_error_work before sbi destroy */ 1699 flush_work(&sbi->s_error_work); 1700 1701 f2fs_destroy_post_read_wq(sbi); 1702 1703 kvfree(sbi->ckpt); 1704 1705 sb->s_fs_info = NULL; 1706 if (sbi->s_chksum_driver) 1707 crypto_free_shash(sbi->s_chksum_driver); 1708 kfree(sbi->raw_super); 1709 1710 destroy_device_list(sbi); 1711 f2fs_destroy_page_array_cache(sbi); 1712 f2fs_destroy_xattr_caches(sbi); 1713 mempool_destroy(sbi->write_io_dummy); 1714 #ifdef CONFIG_QUOTA 1715 for (i = 0; i < MAXQUOTAS; i++) 1716 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1717 #endif 1718 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1719 destroy_percpu_info(sbi); 1720 f2fs_destroy_iostat(sbi); 1721 for (i = 0; i < NR_PAGE_TYPE; i++) 1722 kvfree(sbi->write_io[i]); 1723 #if IS_ENABLED(CONFIG_UNICODE) 1724 utf8_unload(sb->s_encoding); 1725 #endif 1726 kfree(sbi); 1727 } 1728 1729 int f2fs_sync_fs(struct super_block *sb, int sync) 1730 { 1731 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1732 int err = 0; 1733 1734 if (unlikely(f2fs_cp_error(sbi))) 1735 return 0; 1736 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1737 return 0; 1738 1739 trace_f2fs_sync_fs(sb, sync); 1740 1741 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1742 return -EAGAIN; 1743 1744 if (sync) { 1745 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1746 err = f2fs_issue_checkpoint(sbi); 1747 } 1748 1749 return err; 1750 } 1751 1752 static int f2fs_freeze(struct super_block *sb) 1753 { 1754 if (f2fs_readonly(sb)) 1755 return 0; 1756 1757 /* IO error happened before */ 1758 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1759 return -EIO; 1760 1761 /* must be clean, since sync_filesystem() was already called */ 1762 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1763 return -EINVAL; 1764 1765 /* Let's flush checkpoints and stop the thread. */ 1766 f2fs_flush_ckpt_thread(F2FS_SB(sb)); 1767 1768 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 1769 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1770 return 0; 1771 } 1772 1773 static int f2fs_unfreeze(struct super_block *sb) 1774 { 1775 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1776 return 0; 1777 } 1778 1779 #ifdef CONFIG_QUOTA 1780 static int f2fs_statfs_project(struct super_block *sb, 1781 kprojid_t projid, struct kstatfs *buf) 1782 { 1783 struct kqid qid; 1784 struct dquot *dquot; 1785 u64 limit; 1786 u64 curblock; 1787 1788 qid = make_kqid_projid(projid); 1789 dquot = dqget(sb, qid); 1790 if (IS_ERR(dquot)) 1791 return PTR_ERR(dquot); 1792 spin_lock(&dquot->dq_dqb_lock); 1793 1794 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1795 dquot->dq_dqb.dqb_bhardlimit); 1796 if (limit) 1797 limit >>= sb->s_blocksize_bits; 1798 1799 if (limit && buf->f_blocks > limit) { 1800 curblock = (dquot->dq_dqb.dqb_curspace + 1801 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1802 buf->f_blocks = limit; 1803 buf->f_bfree = buf->f_bavail = 1804 (buf->f_blocks > curblock) ? 1805 (buf->f_blocks - curblock) : 0; 1806 } 1807 1808 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1809 dquot->dq_dqb.dqb_ihardlimit); 1810 1811 if (limit && buf->f_files > limit) { 1812 buf->f_files = limit; 1813 buf->f_ffree = 1814 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1815 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1816 } 1817 1818 spin_unlock(&dquot->dq_dqb_lock); 1819 dqput(dquot); 1820 return 0; 1821 } 1822 #endif 1823 1824 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1825 { 1826 struct super_block *sb = dentry->d_sb; 1827 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1828 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1829 block_t total_count, user_block_count, start_count; 1830 u64 avail_node_count; 1831 unsigned int total_valid_node_count; 1832 1833 total_count = le64_to_cpu(sbi->raw_super->block_count); 1834 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1835 buf->f_type = F2FS_SUPER_MAGIC; 1836 buf->f_bsize = sbi->blocksize; 1837 1838 buf->f_blocks = total_count - start_count; 1839 1840 spin_lock(&sbi->stat_lock); 1841 1842 user_block_count = sbi->user_block_count; 1843 total_valid_node_count = valid_node_count(sbi); 1844 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1845 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1846 sbi->current_reserved_blocks; 1847 1848 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1849 buf->f_bfree = 0; 1850 else 1851 buf->f_bfree -= sbi->unusable_block_count; 1852 spin_unlock(&sbi->stat_lock); 1853 1854 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1855 buf->f_bavail = buf->f_bfree - 1856 F2FS_OPTION(sbi).root_reserved_blocks; 1857 else 1858 buf->f_bavail = 0; 1859 1860 if (avail_node_count > user_block_count) { 1861 buf->f_files = user_block_count; 1862 buf->f_ffree = buf->f_bavail; 1863 } else { 1864 buf->f_files = avail_node_count; 1865 buf->f_ffree = min(avail_node_count - total_valid_node_count, 1866 buf->f_bavail); 1867 } 1868 1869 buf->f_namelen = F2FS_NAME_LEN; 1870 buf->f_fsid = u64_to_fsid(id); 1871 1872 #ifdef CONFIG_QUOTA 1873 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1874 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1875 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1876 } 1877 #endif 1878 return 0; 1879 } 1880 1881 static inline void f2fs_show_quota_options(struct seq_file *seq, 1882 struct super_block *sb) 1883 { 1884 #ifdef CONFIG_QUOTA 1885 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1886 1887 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1888 char *fmtname = ""; 1889 1890 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1891 case QFMT_VFS_OLD: 1892 fmtname = "vfsold"; 1893 break; 1894 case QFMT_VFS_V0: 1895 fmtname = "vfsv0"; 1896 break; 1897 case QFMT_VFS_V1: 1898 fmtname = "vfsv1"; 1899 break; 1900 } 1901 seq_printf(seq, ",jqfmt=%s", fmtname); 1902 } 1903 1904 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1905 seq_show_option(seq, "usrjquota", 1906 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1907 1908 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1909 seq_show_option(seq, "grpjquota", 1910 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1911 1912 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1913 seq_show_option(seq, "prjjquota", 1914 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1915 #endif 1916 } 1917 1918 #ifdef CONFIG_F2FS_FS_COMPRESSION 1919 static inline void f2fs_show_compress_options(struct seq_file *seq, 1920 struct super_block *sb) 1921 { 1922 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1923 char *algtype = ""; 1924 int i; 1925 1926 if (!f2fs_sb_has_compression(sbi)) 1927 return; 1928 1929 switch (F2FS_OPTION(sbi).compress_algorithm) { 1930 case COMPRESS_LZO: 1931 algtype = "lzo"; 1932 break; 1933 case COMPRESS_LZ4: 1934 algtype = "lz4"; 1935 break; 1936 case COMPRESS_ZSTD: 1937 algtype = "zstd"; 1938 break; 1939 case COMPRESS_LZORLE: 1940 algtype = "lzo-rle"; 1941 break; 1942 } 1943 seq_printf(seq, ",compress_algorithm=%s", algtype); 1944 1945 if (F2FS_OPTION(sbi).compress_level) 1946 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1947 1948 seq_printf(seq, ",compress_log_size=%u", 1949 F2FS_OPTION(sbi).compress_log_size); 1950 1951 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1952 seq_printf(seq, ",compress_extension=%s", 1953 F2FS_OPTION(sbi).extensions[i]); 1954 } 1955 1956 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1957 seq_printf(seq, ",nocompress_extension=%s", 1958 F2FS_OPTION(sbi).noextensions[i]); 1959 } 1960 1961 if (F2FS_OPTION(sbi).compress_chksum) 1962 seq_puts(seq, ",compress_chksum"); 1963 1964 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1965 seq_printf(seq, ",compress_mode=%s", "fs"); 1966 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1967 seq_printf(seq, ",compress_mode=%s", "user"); 1968 1969 if (test_opt(sbi, COMPRESS_CACHE)) 1970 seq_puts(seq, ",compress_cache"); 1971 } 1972 #endif 1973 1974 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1975 { 1976 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1977 1978 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1979 seq_printf(seq, ",background_gc=%s", "sync"); 1980 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1981 seq_printf(seq, ",background_gc=%s", "on"); 1982 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1983 seq_printf(seq, ",background_gc=%s", "off"); 1984 1985 if (test_opt(sbi, GC_MERGE)) 1986 seq_puts(seq, ",gc_merge"); 1987 else 1988 seq_puts(seq, ",nogc_merge"); 1989 1990 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1991 seq_puts(seq, ",disable_roll_forward"); 1992 if (test_opt(sbi, NORECOVERY)) 1993 seq_puts(seq, ",norecovery"); 1994 if (test_opt(sbi, DISCARD)) { 1995 seq_puts(seq, ",discard"); 1996 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 1997 seq_printf(seq, ",discard_unit=%s", "block"); 1998 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 1999 seq_printf(seq, ",discard_unit=%s", "segment"); 2000 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2001 seq_printf(seq, ",discard_unit=%s", "section"); 2002 } else { 2003 seq_puts(seq, ",nodiscard"); 2004 } 2005 if (test_opt(sbi, NOHEAP)) 2006 seq_puts(seq, ",no_heap"); 2007 else 2008 seq_puts(seq, ",heap"); 2009 #ifdef CONFIG_F2FS_FS_XATTR 2010 if (test_opt(sbi, XATTR_USER)) 2011 seq_puts(seq, ",user_xattr"); 2012 else 2013 seq_puts(seq, ",nouser_xattr"); 2014 if (test_opt(sbi, INLINE_XATTR)) 2015 seq_puts(seq, ",inline_xattr"); 2016 else 2017 seq_puts(seq, ",noinline_xattr"); 2018 if (test_opt(sbi, INLINE_XATTR_SIZE)) 2019 seq_printf(seq, ",inline_xattr_size=%u", 2020 F2FS_OPTION(sbi).inline_xattr_size); 2021 #endif 2022 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2023 if (test_opt(sbi, POSIX_ACL)) 2024 seq_puts(seq, ",acl"); 2025 else 2026 seq_puts(seq, ",noacl"); 2027 #endif 2028 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 2029 seq_puts(seq, ",disable_ext_identify"); 2030 if (test_opt(sbi, INLINE_DATA)) 2031 seq_puts(seq, ",inline_data"); 2032 else 2033 seq_puts(seq, ",noinline_data"); 2034 if (test_opt(sbi, INLINE_DENTRY)) 2035 seq_puts(seq, ",inline_dentry"); 2036 else 2037 seq_puts(seq, ",noinline_dentry"); 2038 if (test_opt(sbi, FLUSH_MERGE)) 2039 seq_puts(seq, ",flush_merge"); 2040 else 2041 seq_puts(seq, ",noflush_merge"); 2042 if (test_opt(sbi, NOBARRIER)) 2043 seq_puts(seq, ",nobarrier"); 2044 else 2045 seq_puts(seq, ",barrier"); 2046 if (test_opt(sbi, FASTBOOT)) 2047 seq_puts(seq, ",fastboot"); 2048 if (test_opt(sbi, READ_EXTENT_CACHE)) 2049 seq_puts(seq, ",extent_cache"); 2050 else 2051 seq_puts(seq, ",noextent_cache"); 2052 if (test_opt(sbi, AGE_EXTENT_CACHE)) 2053 seq_puts(seq, ",age_extent_cache"); 2054 if (test_opt(sbi, DATA_FLUSH)) 2055 seq_puts(seq, ",data_flush"); 2056 2057 seq_puts(seq, ",mode="); 2058 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 2059 seq_puts(seq, "adaptive"); 2060 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 2061 seq_puts(seq, "lfs"); 2062 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 2063 seq_puts(seq, "fragment:segment"); 2064 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2065 seq_puts(seq, "fragment:block"); 2066 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 2067 if (test_opt(sbi, RESERVE_ROOT)) 2068 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 2069 F2FS_OPTION(sbi).root_reserved_blocks, 2070 from_kuid_munged(&init_user_ns, 2071 F2FS_OPTION(sbi).s_resuid), 2072 from_kgid_munged(&init_user_ns, 2073 F2FS_OPTION(sbi).s_resgid)); 2074 if (F2FS_IO_SIZE_BITS(sbi)) 2075 seq_printf(seq, ",io_bits=%u", 2076 F2FS_OPTION(sbi).write_io_size_bits); 2077 #ifdef CONFIG_F2FS_FAULT_INJECTION 2078 if (test_opt(sbi, FAULT_INJECTION)) { 2079 seq_printf(seq, ",fault_injection=%u", 2080 F2FS_OPTION(sbi).fault_info.inject_rate); 2081 seq_printf(seq, ",fault_type=%u", 2082 F2FS_OPTION(sbi).fault_info.inject_type); 2083 } 2084 #endif 2085 #ifdef CONFIG_QUOTA 2086 if (test_opt(sbi, QUOTA)) 2087 seq_puts(seq, ",quota"); 2088 if (test_opt(sbi, USRQUOTA)) 2089 seq_puts(seq, ",usrquota"); 2090 if (test_opt(sbi, GRPQUOTA)) 2091 seq_puts(seq, ",grpquota"); 2092 if (test_opt(sbi, PRJQUOTA)) 2093 seq_puts(seq, ",prjquota"); 2094 #endif 2095 f2fs_show_quota_options(seq, sbi->sb); 2096 2097 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 2098 2099 if (sbi->sb->s_flags & SB_INLINECRYPT) 2100 seq_puts(seq, ",inlinecrypt"); 2101 2102 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 2103 seq_printf(seq, ",alloc_mode=%s", "default"); 2104 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2105 seq_printf(seq, ",alloc_mode=%s", "reuse"); 2106 2107 if (test_opt(sbi, DISABLE_CHECKPOINT)) 2108 seq_printf(seq, ",checkpoint=disable:%u", 2109 F2FS_OPTION(sbi).unusable_cap); 2110 if (test_opt(sbi, MERGE_CHECKPOINT)) 2111 seq_puts(seq, ",checkpoint_merge"); 2112 else 2113 seq_puts(seq, ",nocheckpoint_merge"); 2114 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 2115 seq_printf(seq, ",fsync_mode=%s", "posix"); 2116 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 2117 seq_printf(seq, ",fsync_mode=%s", "strict"); 2118 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 2119 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 2120 2121 #ifdef CONFIG_F2FS_FS_COMPRESSION 2122 f2fs_show_compress_options(seq, sbi->sb); 2123 #endif 2124 2125 if (test_opt(sbi, ATGC)) 2126 seq_puts(seq, ",atgc"); 2127 2128 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL) 2129 seq_printf(seq, ",memory=%s", "normal"); 2130 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW) 2131 seq_printf(seq, ",memory=%s", "low"); 2132 2133 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2134 seq_printf(seq, ",errors=%s", "remount-ro"); 2135 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE) 2136 seq_printf(seq, ",errors=%s", "continue"); 2137 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC) 2138 seq_printf(seq, ",errors=%s", "panic"); 2139 2140 return 0; 2141 } 2142 2143 static void default_options(struct f2fs_sb_info *sbi, bool remount) 2144 { 2145 /* init some FS parameters */ 2146 if (!remount) { 2147 set_opt(sbi, READ_EXTENT_CACHE); 2148 clear_opt(sbi, DISABLE_CHECKPOINT); 2149 2150 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2151 set_opt(sbi, DISCARD); 2152 2153 if (f2fs_sb_has_blkzoned(sbi)) 2154 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2155 else 2156 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2157 } 2158 2159 if (f2fs_sb_has_readonly(sbi)) 2160 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2161 else 2162 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2163 2164 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2165 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <= 2166 SMALL_VOLUME_SEGMENTS) 2167 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 2168 else 2169 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2170 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2171 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2172 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2173 if (f2fs_sb_has_compression(sbi)) { 2174 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2175 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2176 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2177 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2178 } 2179 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2180 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL; 2181 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE; 2182 2183 sbi->sb->s_flags &= ~SB_INLINECRYPT; 2184 2185 set_opt(sbi, INLINE_XATTR); 2186 set_opt(sbi, INLINE_DATA); 2187 set_opt(sbi, INLINE_DENTRY); 2188 set_opt(sbi, NOHEAP); 2189 set_opt(sbi, MERGE_CHECKPOINT); 2190 F2FS_OPTION(sbi).unusable_cap = 0; 2191 sbi->sb->s_flags |= SB_LAZYTIME; 2192 if (!f2fs_is_readonly(sbi)) 2193 set_opt(sbi, FLUSH_MERGE); 2194 if (f2fs_sb_has_blkzoned(sbi)) 2195 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2196 else 2197 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2198 2199 #ifdef CONFIG_F2FS_FS_XATTR 2200 set_opt(sbi, XATTR_USER); 2201 #endif 2202 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2203 set_opt(sbi, POSIX_ACL); 2204 #endif 2205 2206 f2fs_build_fault_attr(sbi, 0, 0); 2207 } 2208 2209 #ifdef CONFIG_QUOTA 2210 static int f2fs_enable_quotas(struct super_block *sb); 2211 #endif 2212 2213 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2214 { 2215 unsigned int s_flags = sbi->sb->s_flags; 2216 struct cp_control cpc; 2217 unsigned int gc_mode = sbi->gc_mode; 2218 int err = 0; 2219 int ret; 2220 block_t unusable; 2221 2222 if (s_flags & SB_RDONLY) { 2223 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2224 return -EINVAL; 2225 } 2226 sbi->sb->s_flags |= SB_ACTIVE; 2227 2228 /* check if we need more GC first */ 2229 unusable = f2fs_get_unusable_blocks(sbi); 2230 if (!f2fs_disable_cp_again(sbi, unusable)) 2231 goto skip_gc; 2232 2233 f2fs_update_time(sbi, DISABLE_TIME); 2234 2235 sbi->gc_mode = GC_URGENT_HIGH; 2236 2237 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2238 struct f2fs_gc_control gc_control = { 2239 .victim_segno = NULL_SEGNO, 2240 .init_gc_type = FG_GC, 2241 .should_migrate_blocks = false, 2242 .err_gc_skipped = true, 2243 .nr_free_secs = 1 }; 2244 2245 f2fs_down_write(&sbi->gc_lock); 2246 stat_inc_gc_call_count(sbi, FOREGROUND); 2247 err = f2fs_gc(sbi, &gc_control); 2248 if (err == -ENODATA) { 2249 err = 0; 2250 break; 2251 } 2252 if (err && err != -EAGAIN) 2253 break; 2254 } 2255 2256 ret = sync_filesystem(sbi->sb); 2257 if (ret || err) { 2258 err = ret ? ret : err; 2259 goto restore_flag; 2260 } 2261 2262 unusable = f2fs_get_unusable_blocks(sbi); 2263 if (f2fs_disable_cp_again(sbi, unusable)) { 2264 err = -EAGAIN; 2265 goto restore_flag; 2266 } 2267 2268 skip_gc: 2269 f2fs_down_write(&sbi->gc_lock); 2270 cpc.reason = CP_PAUSE; 2271 set_sbi_flag(sbi, SBI_CP_DISABLED); 2272 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2273 err = f2fs_write_checkpoint(sbi, &cpc); 2274 if (err) 2275 goto out_unlock; 2276 2277 spin_lock(&sbi->stat_lock); 2278 sbi->unusable_block_count = unusable; 2279 spin_unlock(&sbi->stat_lock); 2280 2281 out_unlock: 2282 f2fs_up_write(&sbi->gc_lock); 2283 restore_flag: 2284 sbi->gc_mode = gc_mode; 2285 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2286 return err; 2287 } 2288 2289 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2290 { 2291 int retry = DEFAULT_RETRY_IO_COUNT; 2292 2293 /* we should flush all the data to keep data consistency */ 2294 do { 2295 sync_inodes_sb(sbi->sb); 2296 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2297 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2298 2299 if (unlikely(retry < 0)) 2300 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2301 2302 f2fs_down_write(&sbi->gc_lock); 2303 f2fs_dirty_to_prefree(sbi); 2304 2305 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2306 set_sbi_flag(sbi, SBI_IS_DIRTY); 2307 f2fs_up_write(&sbi->gc_lock); 2308 2309 f2fs_sync_fs(sbi->sb, 1); 2310 2311 /* Let's ensure there's no pending checkpoint anymore */ 2312 f2fs_flush_ckpt_thread(sbi); 2313 } 2314 2315 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2316 { 2317 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2318 struct f2fs_mount_info org_mount_opt; 2319 unsigned long old_sb_flags; 2320 int err; 2321 bool need_restart_gc = false, need_stop_gc = false; 2322 bool need_restart_ckpt = false, need_stop_ckpt = false; 2323 bool need_restart_flush = false, need_stop_flush = false; 2324 bool need_restart_discard = false, need_stop_discard = false; 2325 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE); 2326 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE); 2327 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2328 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 2329 bool no_atgc = !test_opt(sbi, ATGC); 2330 bool no_discard = !test_opt(sbi, DISCARD); 2331 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2332 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2333 #ifdef CONFIG_QUOTA 2334 int i, j; 2335 #endif 2336 2337 /* 2338 * Save the old mount options in case we 2339 * need to restore them. 2340 */ 2341 org_mount_opt = sbi->mount_opt; 2342 old_sb_flags = sb->s_flags; 2343 2344 #ifdef CONFIG_QUOTA 2345 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2346 for (i = 0; i < MAXQUOTAS; i++) { 2347 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2348 org_mount_opt.s_qf_names[i] = 2349 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2350 GFP_KERNEL); 2351 if (!org_mount_opt.s_qf_names[i]) { 2352 for (j = 0; j < i; j++) 2353 kfree(org_mount_opt.s_qf_names[j]); 2354 return -ENOMEM; 2355 } 2356 } else { 2357 org_mount_opt.s_qf_names[i] = NULL; 2358 } 2359 } 2360 #endif 2361 2362 /* recover superblocks we couldn't write due to previous RO mount */ 2363 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2364 err = f2fs_commit_super(sbi, false); 2365 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2366 err); 2367 if (!err) 2368 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2369 } 2370 2371 default_options(sbi, true); 2372 2373 /* parse mount options */ 2374 err = parse_options(sb, data, true); 2375 if (err) 2376 goto restore_opts; 2377 2378 /* flush outstanding errors before changing fs state */ 2379 flush_work(&sbi->s_error_work); 2380 2381 /* 2382 * Previous and new state of filesystem is RO, 2383 * so skip checking GC and FLUSH_MERGE conditions. 2384 */ 2385 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2386 goto skip; 2387 2388 if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) { 2389 err = -EROFS; 2390 goto restore_opts; 2391 } 2392 2393 #ifdef CONFIG_QUOTA 2394 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2395 err = dquot_suspend(sb, -1); 2396 if (err < 0) 2397 goto restore_opts; 2398 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2399 /* dquot_resume needs RW */ 2400 sb->s_flags &= ~SB_RDONLY; 2401 if (sb_any_quota_suspended(sb)) { 2402 dquot_resume(sb, -1); 2403 } else if (f2fs_sb_has_quota_ino(sbi)) { 2404 err = f2fs_enable_quotas(sb); 2405 if (err) 2406 goto restore_opts; 2407 } 2408 } 2409 #endif 2410 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) { 2411 err = -EINVAL; 2412 f2fs_warn(sbi, "LFS is not compatible with IPU"); 2413 goto restore_opts; 2414 } 2415 2416 /* disallow enable atgc dynamically */ 2417 if (no_atgc == !!test_opt(sbi, ATGC)) { 2418 err = -EINVAL; 2419 f2fs_warn(sbi, "switch atgc option is not allowed"); 2420 goto restore_opts; 2421 } 2422 2423 /* disallow enable/disable extent_cache dynamically */ 2424 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) { 2425 err = -EINVAL; 2426 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2427 goto restore_opts; 2428 } 2429 /* disallow enable/disable age extent_cache dynamically */ 2430 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) { 2431 err = -EINVAL; 2432 f2fs_warn(sbi, "switch age_extent_cache option is not allowed"); 2433 goto restore_opts; 2434 } 2435 2436 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 2437 err = -EINVAL; 2438 f2fs_warn(sbi, "switch io_bits option is not allowed"); 2439 goto restore_opts; 2440 } 2441 2442 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2443 err = -EINVAL; 2444 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2445 goto restore_opts; 2446 } 2447 2448 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2449 err = -EINVAL; 2450 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2451 goto restore_opts; 2452 } 2453 2454 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2455 err = -EINVAL; 2456 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2457 goto restore_opts; 2458 } 2459 2460 /* 2461 * We stop the GC thread if FS is mounted as RO 2462 * or if background_gc = off is passed in mount 2463 * option. Also sync the filesystem. 2464 */ 2465 if ((*flags & SB_RDONLY) || 2466 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2467 !test_opt(sbi, GC_MERGE))) { 2468 if (sbi->gc_thread) { 2469 f2fs_stop_gc_thread(sbi); 2470 need_restart_gc = true; 2471 } 2472 } else if (!sbi->gc_thread) { 2473 err = f2fs_start_gc_thread(sbi); 2474 if (err) 2475 goto restore_opts; 2476 need_stop_gc = true; 2477 } 2478 2479 if (*flags & SB_RDONLY) { 2480 sync_inodes_sb(sb); 2481 2482 set_sbi_flag(sbi, SBI_IS_DIRTY); 2483 set_sbi_flag(sbi, SBI_IS_CLOSE); 2484 f2fs_sync_fs(sb, 1); 2485 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2486 } 2487 2488 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2489 !test_opt(sbi, MERGE_CHECKPOINT)) { 2490 f2fs_stop_ckpt_thread(sbi); 2491 need_restart_ckpt = true; 2492 } else { 2493 /* Flush if the prevous checkpoint, if exists. */ 2494 f2fs_flush_ckpt_thread(sbi); 2495 2496 err = f2fs_start_ckpt_thread(sbi); 2497 if (err) { 2498 f2fs_err(sbi, 2499 "Failed to start F2FS issue_checkpoint_thread (%d)", 2500 err); 2501 goto restore_gc; 2502 } 2503 need_stop_ckpt = true; 2504 } 2505 2506 /* 2507 * We stop issue flush thread if FS is mounted as RO 2508 * or if flush_merge is not passed in mount option. 2509 */ 2510 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2511 clear_opt(sbi, FLUSH_MERGE); 2512 f2fs_destroy_flush_cmd_control(sbi, false); 2513 need_restart_flush = true; 2514 } else { 2515 err = f2fs_create_flush_cmd_control(sbi); 2516 if (err) 2517 goto restore_ckpt; 2518 need_stop_flush = true; 2519 } 2520 2521 if (no_discard == !!test_opt(sbi, DISCARD)) { 2522 if (test_opt(sbi, DISCARD)) { 2523 err = f2fs_start_discard_thread(sbi); 2524 if (err) 2525 goto restore_flush; 2526 need_stop_discard = true; 2527 } else { 2528 f2fs_stop_discard_thread(sbi); 2529 f2fs_issue_discard_timeout(sbi); 2530 need_restart_discard = true; 2531 } 2532 } 2533 2534 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2535 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2536 err = f2fs_disable_checkpoint(sbi); 2537 if (err) 2538 goto restore_discard; 2539 } else { 2540 f2fs_enable_checkpoint(sbi); 2541 } 2542 } 2543 2544 skip: 2545 #ifdef CONFIG_QUOTA 2546 /* Release old quota file names */ 2547 for (i = 0; i < MAXQUOTAS; i++) 2548 kfree(org_mount_opt.s_qf_names[i]); 2549 #endif 2550 /* Update the POSIXACL Flag */ 2551 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2552 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2553 2554 limit_reserve_root(sbi); 2555 adjust_unusable_cap_perc(sbi); 2556 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2557 return 0; 2558 restore_discard: 2559 if (need_restart_discard) { 2560 if (f2fs_start_discard_thread(sbi)) 2561 f2fs_warn(sbi, "discard has been stopped"); 2562 } else if (need_stop_discard) { 2563 f2fs_stop_discard_thread(sbi); 2564 } 2565 restore_flush: 2566 if (need_restart_flush) { 2567 if (f2fs_create_flush_cmd_control(sbi)) 2568 f2fs_warn(sbi, "background flush thread has stopped"); 2569 } else if (need_stop_flush) { 2570 clear_opt(sbi, FLUSH_MERGE); 2571 f2fs_destroy_flush_cmd_control(sbi, false); 2572 } 2573 restore_ckpt: 2574 if (need_restart_ckpt) { 2575 if (f2fs_start_ckpt_thread(sbi)) 2576 f2fs_warn(sbi, "background ckpt thread has stopped"); 2577 } else if (need_stop_ckpt) { 2578 f2fs_stop_ckpt_thread(sbi); 2579 } 2580 restore_gc: 2581 if (need_restart_gc) { 2582 if (f2fs_start_gc_thread(sbi)) 2583 f2fs_warn(sbi, "background gc thread has stopped"); 2584 } else if (need_stop_gc) { 2585 f2fs_stop_gc_thread(sbi); 2586 } 2587 restore_opts: 2588 #ifdef CONFIG_QUOTA 2589 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2590 for (i = 0; i < MAXQUOTAS; i++) { 2591 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2592 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2593 } 2594 #endif 2595 sbi->mount_opt = org_mount_opt; 2596 sb->s_flags = old_sb_flags; 2597 return err; 2598 } 2599 2600 #ifdef CONFIG_QUOTA 2601 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi) 2602 { 2603 /* need to recovery orphan */ 2604 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 2605 return true; 2606 /* need to recovery data */ 2607 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 2608 return false; 2609 if (test_opt(sbi, NORECOVERY)) 2610 return false; 2611 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG); 2612 } 2613 2614 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi) 2615 { 2616 bool readonly = f2fs_readonly(sbi->sb); 2617 2618 if (!f2fs_need_recovery(sbi)) 2619 return false; 2620 2621 /* it doesn't need to check f2fs_sb_has_readonly() */ 2622 if (f2fs_hw_is_readonly(sbi)) 2623 return false; 2624 2625 if (readonly) { 2626 sbi->sb->s_flags &= ~SB_RDONLY; 2627 set_sbi_flag(sbi, SBI_IS_WRITABLE); 2628 } 2629 2630 /* 2631 * Turn on quotas which were not enabled for read-only mounts if 2632 * filesystem has quota feature, so that they are updated correctly. 2633 */ 2634 return f2fs_enable_quota_files(sbi, readonly); 2635 } 2636 2637 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi, 2638 bool quota_enabled) 2639 { 2640 if (quota_enabled) 2641 f2fs_quota_off_umount(sbi->sb); 2642 2643 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) { 2644 clear_sbi_flag(sbi, SBI_IS_WRITABLE); 2645 sbi->sb->s_flags |= SB_RDONLY; 2646 } 2647 } 2648 2649 /* Read data from quotafile */ 2650 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2651 size_t len, loff_t off) 2652 { 2653 struct inode *inode = sb_dqopt(sb)->files[type]; 2654 struct address_space *mapping = inode->i_mapping; 2655 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2656 int offset = off & (sb->s_blocksize - 1); 2657 int tocopy; 2658 size_t toread; 2659 loff_t i_size = i_size_read(inode); 2660 struct page *page; 2661 2662 if (off > i_size) 2663 return 0; 2664 2665 if (off + len > i_size) 2666 len = i_size - off; 2667 toread = len; 2668 while (toread > 0) { 2669 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2670 repeat: 2671 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2672 if (IS_ERR(page)) { 2673 if (PTR_ERR(page) == -ENOMEM) { 2674 memalloc_retry_wait(GFP_NOFS); 2675 goto repeat; 2676 } 2677 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2678 return PTR_ERR(page); 2679 } 2680 2681 lock_page(page); 2682 2683 if (unlikely(page->mapping != mapping)) { 2684 f2fs_put_page(page, 1); 2685 goto repeat; 2686 } 2687 if (unlikely(!PageUptodate(page))) { 2688 f2fs_put_page(page, 1); 2689 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2690 return -EIO; 2691 } 2692 2693 memcpy_from_page(data, page, offset, tocopy); 2694 f2fs_put_page(page, 1); 2695 2696 offset = 0; 2697 toread -= tocopy; 2698 data += tocopy; 2699 blkidx++; 2700 } 2701 return len; 2702 } 2703 2704 /* Write to quotafile */ 2705 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2706 const char *data, size_t len, loff_t off) 2707 { 2708 struct inode *inode = sb_dqopt(sb)->files[type]; 2709 struct address_space *mapping = inode->i_mapping; 2710 const struct address_space_operations *a_ops = mapping->a_ops; 2711 int offset = off & (sb->s_blocksize - 1); 2712 size_t towrite = len; 2713 struct page *page; 2714 void *fsdata = NULL; 2715 int err = 0; 2716 int tocopy; 2717 2718 while (towrite > 0) { 2719 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2720 towrite); 2721 retry: 2722 err = a_ops->write_begin(NULL, mapping, off, tocopy, 2723 &page, &fsdata); 2724 if (unlikely(err)) { 2725 if (err == -ENOMEM) { 2726 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2727 goto retry; 2728 } 2729 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2730 break; 2731 } 2732 2733 memcpy_to_page(page, offset, data, tocopy); 2734 2735 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2736 page, fsdata); 2737 offset = 0; 2738 towrite -= tocopy; 2739 off += tocopy; 2740 data += tocopy; 2741 cond_resched(); 2742 } 2743 2744 if (len == towrite) 2745 return err; 2746 inode->i_mtime = inode_set_ctime_current(inode); 2747 f2fs_mark_inode_dirty_sync(inode, false); 2748 return len - towrite; 2749 } 2750 2751 int f2fs_dquot_initialize(struct inode *inode) 2752 { 2753 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) 2754 return -ESRCH; 2755 2756 return dquot_initialize(inode); 2757 } 2758 2759 static struct dquot **f2fs_get_dquots(struct inode *inode) 2760 { 2761 return F2FS_I(inode)->i_dquot; 2762 } 2763 2764 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2765 { 2766 return &F2FS_I(inode)->i_reserved_quota; 2767 } 2768 2769 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2770 { 2771 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2772 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2773 return 0; 2774 } 2775 2776 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2777 F2FS_OPTION(sbi).s_jquota_fmt, type); 2778 } 2779 2780 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2781 { 2782 int enabled = 0; 2783 int i, err; 2784 2785 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2786 err = f2fs_enable_quotas(sbi->sb); 2787 if (err) { 2788 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2789 return 0; 2790 } 2791 return 1; 2792 } 2793 2794 for (i = 0; i < MAXQUOTAS; i++) { 2795 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2796 err = f2fs_quota_on_mount(sbi, i); 2797 if (!err) { 2798 enabled = 1; 2799 continue; 2800 } 2801 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2802 err, i); 2803 } 2804 } 2805 return enabled; 2806 } 2807 2808 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2809 unsigned int flags) 2810 { 2811 struct inode *qf_inode; 2812 unsigned long qf_inum; 2813 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL; 2814 int err; 2815 2816 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2817 2818 qf_inum = f2fs_qf_ino(sb, type); 2819 if (!qf_inum) 2820 return -EPERM; 2821 2822 qf_inode = f2fs_iget(sb, qf_inum); 2823 if (IS_ERR(qf_inode)) { 2824 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2825 return PTR_ERR(qf_inode); 2826 } 2827 2828 /* Don't account quota for quota files to avoid recursion */ 2829 inode_lock(qf_inode); 2830 qf_inode->i_flags |= S_NOQUOTA; 2831 2832 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) { 2833 F2FS_I(qf_inode)->i_flags |= qf_flag; 2834 f2fs_set_inode_flags(qf_inode); 2835 } 2836 inode_unlock(qf_inode); 2837 2838 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2839 iput(qf_inode); 2840 return err; 2841 } 2842 2843 static int f2fs_enable_quotas(struct super_block *sb) 2844 { 2845 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2846 int type, err = 0; 2847 unsigned long qf_inum; 2848 bool quota_mopt[MAXQUOTAS] = { 2849 test_opt(sbi, USRQUOTA), 2850 test_opt(sbi, GRPQUOTA), 2851 test_opt(sbi, PRJQUOTA), 2852 }; 2853 2854 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2855 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2856 return 0; 2857 } 2858 2859 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2860 2861 for (type = 0; type < MAXQUOTAS; type++) { 2862 qf_inum = f2fs_qf_ino(sb, type); 2863 if (qf_inum) { 2864 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2865 DQUOT_USAGE_ENABLED | 2866 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2867 if (err) { 2868 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2869 type, err); 2870 for (type--; type >= 0; type--) 2871 dquot_quota_off(sb, type); 2872 set_sbi_flag(F2FS_SB(sb), 2873 SBI_QUOTA_NEED_REPAIR); 2874 return err; 2875 } 2876 } 2877 } 2878 return 0; 2879 } 2880 2881 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2882 { 2883 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2884 struct address_space *mapping = dqopt->files[type]->i_mapping; 2885 int ret = 0; 2886 2887 ret = dquot_writeback_dquots(sbi->sb, type); 2888 if (ret) 2889 goto out; 2890 2891 ret = filemap_fdatawrite(mapping); 2892 if (ret) 2893 goto out; 2894 2895 /* if we are using journalled quota */ 2896 if (is_journalled_quota(sbi)) 2897 goto out; 2898 2899 ret = filemap_fdatawait(mapping); 2900 2901 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2902 out: 2903 if (ret) 2904 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2905 return ret; 2906 } 2907 2908 int f2fs_quota_sync(struct super_block *sb, int type) 2909 { 2910 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2911 struct quota_info *dqopt = sb_dqopt(sb); 2912 int cnt; 2913 int ret = 0; 2914 2915 /* 2916 * Now when everything is written we can discard the pagecache so 2917 * that userspace sees the changes. 2918 */ 2919 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2920 2921 if (type != -1 && cnt != type) 2922 continue; 2923 2924 if (!sb_has_quota_active(sb, cnt)) 2925 continue; 2926 2927 if (!f2fs_sb_has_quota_ino(sbi)) 2928 inode_lock(dqopt->files[cnt]); 2929 2930 /* 2931 * do_quotactl 2932 * f2fs_quota_sync 2933 * f2fs_down_read(quota_sem) 2934 * dquot_writeback_dquots() 2935 * f2fs_dquot_commit 2936 * block_operation 2937 * f2fs_down_read(quota_sem) 2938 */ 2939 f2fs_lock_op(sbi); 2940 f2fs_down_read(&sbi->quota_sem); 2941 2942 ret = f2fs_quota_sync_file(sbi, cnt); 2943 2944 f2fs_up_read(&sbi->quota_sem); 2945 f2fs_unlock_op(sbi); 2946 2947 if (!f2fs_sb_has_quota_ino(sbi)) 2948 inode_unlock(dqopt->files[cnt]); 2949 2950 if (ret) 2951 break; 2952 } 2953 return ret; 2954 } 2955 2956 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2957 const struct path *path) 2958 { 2959 struct inode *inode; 2960 int err; 2961 2962 /* if quota sysfile exists, deny enabling quota with specific file */ 2963 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2964 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2965 return -EBUSY; 2966 } 2967 2968 if (path->dentry->d_sb != sb) 2969 return -EXDEV; 2970 2971 err = f2fs_quota_sync(sb, type); 2972 if (err) 2973 return err; 2974 2975 inode = d_inode(path->dentry); 2976 2977 err = filemap_fdatawrite(inode->i_mapping); 2978 if (err) 2979 return err; 2980 2981 err = filemap_fdatawait(inode->i_mapping); 2982 if (err) 2983 return err; 2984 2985 err = dquot_quota_on(sb, type, format_id, path); 2986 if (err) 2987 return err; 2988 2989 inode_lock(inode); 2990 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL; 2991 f2fs_set_inode_flags(inode); 2992 inode_unlock(inode); 2993 f2fs_mark_inode_dirty_sync(inode, false); 2994 2995 return 0; 2996 } 2997 2998 static int __f2fs_quota_off(struct super_block *sb, int type) 2999 { 3000 struct inode *inode = sb_dqopt(sb)->files[type]; 3001 int err; 3002 3003 if (!inode || !igrab(inode)) 3004 return dquot_quota_off(sb, type); 3005 3006 err = f2fs_quota_sync(sb, type); 3007 if (err) 3008 goto out_put; 3009 3010 err = dquot_quota_off(sb, type); 3011 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 3012 goto out_put; 3013 3014 inode_lock(inode); 3015 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL; 3016 f2fs_set_inode_flags(inode); 3017 inode_unlock(inode); 3018 f2fs_mark_inode_dirty_sync(inode, false); 3019 out_put: 3020 iput(inode); 3021 return err; 3022 } 3023 3024 static int f2fs_quota_off(struct super_block *sb, int type) 3025 { 3026 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3027 int err; 3028 3029 err = __f2fs_quota_off(sb, type); 3030 3031 /* 3032 * quotactl can shutdown journalled quota, result in inconsistence 3033 * between quota record and fs data by following updates, tag the 3034 * flag to let fsck be aware of it. 3035 */ 3036 if (is_journalled_quota(sbi)) 3037 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3038 return err; 3039 } 3040 3041 void f2fs_quota_off_umount(struct super_block *sb) 3042 { 3043 int type; 3044 int err; 3045 3046 for (type = 0; type < MAXQUOTAS; type++) { 3047 err = __f2fs_quota_off(sb, type); 3048 if (err) { 3049 int ret = dquot_quota_off(sb, type); 3050 3051 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 3052 type, err, ret); 3053 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 3054 } 3055 } 3056 /* 3057 * In case of checkpoint=disable, we must flush quota blocks. 3058 * This can cause NULL exception for node_inode in end_io, since 3059 * put_super already dropped it. 3060 */ 3061 sync_filesystem(sb); 3062 } 3063 3064 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 3065 { 3066 struct quota_info *dqopt = sb_dqopt(sb); 3067 int type; 3068 3069 for (type = 0; type < MAXQUOTAS; type++) { 3070 if (!dqopt->files[type]) 3071 continue; 3072 f2fs_inode_synced(dqopt->files[type]); 3073 } 3074 } 3075 3076 static int f2fs_dquot_commit(struct dquot *dquot) 3077 { 3078 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3079 int ret; 3080 3081 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 3082 ret = dquot_commit(dquot); 3083 if (ret < 0) 3084 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3085 f2fs_up_read(&sbi->quota_sem); 3086 return ret; 3087 } 3088 3089 static int f2fs_dquot_acquire(struct dquot *dquot) 3090 { 3091 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3092 int ret; 3093 3094 f2fs_down_read(&sbi->quota_sem); 3095 ret = dquot_acquire(dquot); 3096 if (ret < 0) 3097 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3098 f2fs_up_read(&sbi->quota_sem); 3099 return ret; 3100 } 3101 3102 static int f2fs_dquot_release(struct dquot *dquot) 3103 { 3104 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3105 int ret = dquot_release(dquot); 3106 3107 if (ret < 0) 3108 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3109 return ret; 3110 } 3111 3112 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 3113 { 3114 struct super_block *sb = dquot->dq_sb; 3115 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3116 int ret = dquot_mark_dquot_dirty(dquot); 3117 3118 /* if we are using journalled quota */ 3119 if (is_journalled_quota(sbi)) 3120 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 3121 3122 return ret; 3123 } 3124 3125 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 3126 { 3127 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3128 int ret = dquot_commit_info(sb, type); 3129 3130 if (ret < 0) 3131 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3132 return ret; 3133 } 3134 3135 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 3136 { 3137 *projid = F2FS_I(inode)->i_projid; 3138 return 0; 3139 } 3140 3141 static const struct dquot_operations f2fs_quota_operations = { 3142 .get_reserved_space = f2fs_get_reserved_space, 3143 .write_dquot = f2fs_dquot_commit, 3144 .acquire_dquot = f2fs_dquot_acquire, 3145 .release_dquot = f2fs_dquot_release, 3146 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 3147 .write_info = f2fs_dquot_commit_info, 3148 .alloc_dquot = dquot_alloc, 3149 .destroy_dquot = dquot_destroy, 3150 .get_projid = f2fs_get_projid, 3151 .get_next_id = dquot_get_next_id, 3152 }; 3153 3154 static const struct quotactl_ops f2fs_quotactl_ops = { 3155 .quota_on = f2fs_quota_on, 3156 .quota_off = f2fs_quota_off, 3157 .quota_sync = f2fs_quota_sync, 3158 .get_state = dquot_get_state, 3159 .set_info = dquot_set_dqinfo, 3160 .get_dqblk = dquot_get_dqblk, 3161 .set_dqblk = dquot_set_dqblk, 3162 .get_nextdqblk = dquot_get_next_dqblk, 3163 }; 3164 #else 3165 int f2fs_dquot_initialize(struct inode *inode) 3166 { 3167 return 0; 3168 } 3169 3170 int f2fs_quota_sync(struct super_block *sb, int type) 3171 { 3172 return 0; 3173 } 3174 3175 void f2fs_quota_off_umount(struct super_block *sb) 3176 { 3177 } 3178 #endif 3179 3180 static const struct super_operations f2fs_sops = { 3181 .alloc_inode = f2fs_alloc_inode, 3182 .free_inode = f2fs_free_inode, 3183 .drop_inode = f2fs_drop_inode, 3184 .write_inode = f2fs_write_inode, 3185 .dirty_inode = f2fs_dirty_inode, 3186 .show_options = f2fs_show_options, 3187 #ifdef CONFIG_QUOTA 3188 .quota_read = f2fs_quota_read, 3189 .quota_write = f2fs_quota_write, 3190 .get_dquots = f2fs_get_dquots, 3191 #endif 3192 .evict_inode = f2fs_evict_inode, 3193 .put_super = f2fs_put_super, 3194 .sync_fs = f2fs_sync_fs, 3195 .freeze_fs = f2fs_freeze, 3196 .unfreeze_fs = f2fs_unfreeze, 3197 .statfs = f2fs_statfs, 3198 .remount_fs = f2fs_remount, 3199 }; 3200 3201 #ifdef CONFIG_FS_ENCRYPTION 3202 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 3203 { 3204 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3205 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3206 ctx, len, NULL); 3207 } 3208 3209 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 3210 void *fs_data) 3211 { 3212 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3213 3214 /* 3215 * Encrypting the root directory is not allowed because fsck 3216 * expects lost+found directory to exist and remain unencrypted 3217 * if LOST_FOUND feature is enabled. 3218 * 3219 */ 3220 if (f2fs_sb_has_lost_found(sbi) && 3221 inode->i_ino == F2FS_ROOT_INO(sbi)) 3222 return -EPERM; 3223 3224 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3225 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3226 ctx, len, fs_data, XATTR_CREATE); 3227 } 3228 3229 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 3230 { 3231 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 3232 } 3233 3234 static bool f2fs_has_stable_inodes(struct super_block *sb) 3235 { 3236 return true; 3237 } 3238 3239 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 3240 int *ino_bits_ret, int *lblk_bits_ret) 3241 { 3242 *ino_bits_ret = 8 * sizeof(nid_t); 3243 *lblk_bits_ret = 8 * sizeof(block_t); 3244 } 3245 3246 static struct block_device **f2fs_get_devices(struct super_block *sb, 3247 unsigned int *num_devs) 3248 { 3249 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3250 struct block_device **devs; 3251 int i; 3252 3253 if (!f2fs_is_multi_device(sbi)) 3254 return NULL; 3255 3256 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL); 3257 if (!devs) 3258 return ERR_PTR(-ENOMEM); 3259 3260 for (i = 0; i < sbi->s_ndevs; i++) 3261 devs[i] = FDEV(i).bdev; 3262 *num_devs = sbi->s_ndevs; 3263 return devs; 3264 } 3265 3266 static const struct fscrypt_operations f2fs_cryptops = { 3267 .key_prefix = "f2fs:", 3268 .get_context = f2fs_get_context, 3269 .set_context = f2fs_set_context, 3270 .get_dummy_policy = f2fs_get_dummy_policy, 3271 .empty_dir = f2fs_empty_dir, 3272 .has_stable_inodes = f2fs_has_stable_inodes, 3273 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 3274 .get_devices = f2fs_get_devices, 3275 }; 3276 #endif 3277 3278 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3279 u64 ino, u32 generation) 3280 { 3281 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3282 struct inode *inode; 3283 3284 if (f2fs_check_nid_range(sbi, ino)) 3285 return ERR_PTR(-ESTALE); 3286 3287 /* 3288 * f2fs_iget isn't quite right if the inode is currently unallocated! 3289 * However f2fs_iget currently does appropriate checks to handle stale 3290 * inodes so everything is OK. 3291 */ 3292 inode = f2fs_iget(sb, ino); 3293 if (IS_ERR(inode)) 3294 return ERR_CAST(inode); 3295 if (unlikely(generation && inode->i_generation != generation)) { 3296 /* we didn't find the right inode.. */ 3297 iput(inode); 3298 return ERR_PTR(-ESTALE); 3299 } 3300 return inode; 3301 } 3302 3303 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3304 int fh_len, int fh_type) 3305 { 3306 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3307 f2fs_nfs_get_inode); 3308 } 3309 3310 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3311 int fh_len, int fh_type) 3312 { 3313 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3314 f2fs_nfs_get_inode); 3315 } 3316 3317 static const struct export_operations f2fs_export_ops = { 3318 .fh_to_dentry = f2fs_fh_to_dentry, 3319 .fh_to_parent = f2fs_fh_to_parent, 3320 .get_parent = f2fs_get_parent, 3321 }; 3322 3323 loff_t max_file_blocks(struct inode *inode) 3324 { 3325 loff_t result = 0; 3326 loff_t leaf_count; 3327 3328 /* 3329 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3330 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3331 * space in inode.i_addr, it will be more safe to reassign 3332 * result as zero. 3333 */ 3334 3335 if (inode && f2fs_compressed_file(inode)) 3336 leaf_count = ADDRS_PER_BLOCK(inode); 3337 else 3338 leaf_count = DEF_ADDRS_PER_BLOCK; 3339 3340 /* two direct node blocks */ 3341 result += (leaf_count * 2); 3342 3343 /* two indirect node blocks */ 3344 leaf_count *= NIDS_PER_BLOCK; 3345 result += (leaf_count * 2); 3346 3347 /* one double indirect node block */ 3348 leaf_count *= NIDS_PER_BLOCK; 3349 result += leaf_count; 3350 3351 return result; 3352 } 3353 3354 static int __f2fs_commit_super(struct buffer_head *bh, 3355 struct f2fs_super_block *super) 3356 { 3357 lock_buffer(bh); 3358 if (super) 3359 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 3360 set_buffer_dirty(bh); 3361 unlock_buffer(bh); 3362 3363 /* it's rare case, we can do fua all the time */ 3364 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 3365 } 3366 3367 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3368 struct buffer_head *bh) 3369 { 3370 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3371 (bh->b_data + F2FS_SUPER_OFFSET); 3372 struct super_block *sb = sbi->sb; 3373 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3374 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3375 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3376 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3377 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3378 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3379 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3380 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3381 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3382 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3383 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3384 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3385 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3386 u64 main_end_blkaddr = main_blkaddr + 3387 (segment_count_main << log_blocks_per_seg); 3388 u64 seg_end_blkaddr = segment0_blkaddr + 3389 (segment_count << log_blocks_per_seg); 3390 3391 if (segment0_blkaddr != cp_blkaddr) { 3392 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3393 segment0_blkaddr, cp_blkaddr); 3394 return true; 3395 } 3396 3397 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3398 sit_blkaddr) { 3399 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3400 cp_blkaddr, sit_blkaddr, 3401 segment_count_ckpt << log_blocks_per_seg); 3402 return true; 3403 } 3404 3405 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3406 nat_blkaddr) { 3407 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3408 sit_blkaddr, nat_blkaddr, 3409 segment_count_sit << log_blocks_per_seg); 3410 return true; 3411 } 3412 3413 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3414 ssa_blkaddr) { 3415 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3416 nat_blkaddr, ssa_blkaddr, 3417 segment_count_nat << log_blocks_per_seg); 3418 return true; 3419 } 3420 3421 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3422 main_blkaddr) { 3423 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3424 ssa_blkaddr, main_blkaddr, 3425 segment_count_ssa << log_blocks_per_seg); 3426 return true; 3427 } 3428 3429 if (main_end_blkaddr > seg_end_blkaddr) { 3430 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3431 main_blkaddr, seg_end_blkaddr, 3432 segment_count_main << log_blocks_per_seg); 3433 return true; 3434 } else if (main_end_blkaddr < seg_end_blkaddr) { 3435 int err = 0; 3436 char *res; 3437 3438 /* fix in-memory information all the time */ 3439 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3440 segment0_blkaddr) >> log_blocks_per_seg); 3441 3442 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) { 3443 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3444 res = "internally"; 3445 } else { 3446 err = __f2fs_commit_super(bh, NULL); 3447 res = err ? "failed" : "done"; 3448 } 3449 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3450 res, main_blkaddr, seg_end_blkaddr, 3451 segment_count_main << log_blocks_per_seg); 3452 if (err) 3453 return true; 3454 } 3455 return false; 3456 } 3457 3458 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3459 struct buffer_head *bh) 3460 { 3461 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3462 block_t total_sections, blocks_per_seg; 3463 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3464 (bh->b_data + F2FS_SUPER_OFFSET); 3465 size_t crc_offset = 0; 3466 __u32 crc = 0; 3467 3468 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3469 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3470 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3471 return -EINVAL; 3472 } 3473 3474 /* Check checksum_offset and crc in superblock */ 3475 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3476 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3477 if (crc_offset != 3478 offsetof(struct f2fs_super_block, crc)) { 3479 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3480 crc_offset); 3481 return -EFSCORRUPTED; 3482 } 3483 crc = le32_to_cpu(raw_super->crc); 3484 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3485 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3486 return -EFSCORRUPTED; 3487 } 3488 } 3489 3490 /* Currently, support only 4KB block size */ 3491 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3492 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3493 le32_to_cpu(raw_super->log_blocksize), 3494 F2FS_BLKSIZE_BITS); 3495 return -EFSCORRUPTED; 3496 } 3497 3498 /* check log blocks per segment */ 3499 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3500 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3501 le32_to_cpu(raw_super->log_blocks_per_seg)); 3502 return -EFSCORRUPTED; 3503 } 3504 3505 /* Currently, support 512/1024/2048/4096 bytes sector size */ 3506 if (le32_to_cpu(raw_super->log_sectorsize) > 3507 F2FS_MAX_LOG_SECTOR_SIZE || 3508 le32_to_cpu(raw_super->log_sectorsize) < 3509 F2FS_MIN_LOG_SECTOR_SIZE) { 3510 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3511 le32_to_cpu(raw_super->log_sectorsize)); 3512 return -EFSCORRUPTED; 3513 } 3514 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3515 le32_to_cpu(raw_super->log_sectorsize) != 3516 F2FS_MAX_LOG_SECTOR_SIZE) { 3517 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3518 le32_to_cpu(raw_super->log_sectors_per_block), 3519 le32_to_cpu(raw_super->log_sectorsize)); 3520 return -EFSCORRUPTED; 3521 } 3522 3523 segment_count = le32_to_cpu(raw_super->segment_count); 3524 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3525 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3526 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3527 total_sections = le32_to_cpu(raw_super->section_count); 3528 3529 /* blocks_per_seg should be 512, given the above check */ 3530 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg)); 3531 3532 if (segment_count > F2FS_MAX_SEGMENT || 3533 segment_count < F2FS_MIN_SEGMENTS) { 3534 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3535 return -EFSCORRUPTED; 3536 } 3537 3538 if (total_sections > segment_count_main || total_sections < 1 || 3539 segs_per_sec > segment_count || !segs_per_sec) { 3540 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3541 segment_count, total_sections, segs_per_sec); 3542 return -EFSCORRUPTED; 3543 } 3544 3545 if (segment_count_main != total_sections * segs_per_sec) { 3546 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3547 segment_count_main, total_sections, segs_per_sec); 3548 return -EFSCORRUPTED; 3549 } 3550 3551 if ((segment_count / segs_per_sec) < total_sections) { 3552 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3553 segment_count, segs_per_sec, total_sections); 3554 return -EFSCORRUPTED; 3555 } 3556 3557 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3558 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3559 segment_count, le64_to_cpu(raw_super->block_count)); 3560 return -EFSCORRUPTED; 3561 } 3562 3563 if (RDEV(0).path[0]) { 3564 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3565 int i = 1; 3566 3567 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3568 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3569 i++; 3570 } 3571 if (segment_count != dev_seg_count) { 3572 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3573 segment_count, dev_seg_count); 3574 return -EFSCORRUPTED; 3575 } 3576 } else { 3577 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3578 !bdev_is_zoned(sbi->sb->s_bdev)) { 3579 f2fs_info(sbi, "Zoned block device path is missing"); 3580 return -EFSCORRUPTED; 3581 } 3582 } 3583 3584 if (secs_per_zone > total_sections || !secs_per_zone) { 3585 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3586 secs_per_zone, total_sections); 3587 return -EFSCORRUPTED; 3588 } 3589 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3590 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3591 (le32_to_cpu(raw_super->extension_count) + 3592 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3593 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3594 le32_to_cpu(raw_super->extension_count), 3595 raw_super->hot_ext_count, 3596 F2FS_MAX_EXTENSION); 3597 return -EFSCORRUPTED; 3598 } 3599 3600 if (le32_to_cpu(raw_super->cp_payload) >= 3601 (blocks_per_seg - F2FS_CP_PACKS - 3602 NR_CURSEG_PERSIST_TYPE)) { 3603 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3604 le32_to_cpu(raw_super->cp_payload), 3605 blocks_per_seg - F2FS_CP_PACKS - 3606 NR_CURSEG_PERSIST_TYPE); 3607 return -EFSCORRUPTED; 3608 } 3609 3610 /* check reserved ino info */ 3611 if (le32_to_cpu(raw_super->node_ino) != 1 || 3612 le32_to_cpu(raw_super->meta_ino) != 2 || 3613 le32_to_cpu(raw_super->root_ino) != 3) { 3614 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3615 le32_to_cpu(raw_super->node_ino), 3616 le32_to_cpu(raw_super->meta_ino), 3617 le32_to_cpu(raw_super->root_ino)); 3618 return -EFSCORRUPTED; 3619 } 3620 3621 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3622 if (sanity_check_area_boundary(sbi, bh)) 3623 return -EFSCORRUPTED; 3624 3625 return 0; 3626 } 3627 3628 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3629 { 3630 unsigned int total, fsmeta; 3631 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3632 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3633 unsigned int ovp_segments, reserved_segments; 3634 unsigned int main_segs, blocks_per_seg; 3635 unsigned int sit_segs, nat_segs; 3636 unsigned int sit_bitmap_size, nat_bitmap_size; 3637 unsigned int log_blocks_per_seg; 3638 unsigned int segment_count_main; 3639 unsigned int cp_pack_start_sum, cp_payload; 3640 block_t user_block_count, valid_user_blocks; 3641 block_t avail_node_count, valid_node_count; 3642 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3643 int i, j; 3644 3645 total = le32_to_cpu(raw_super->segment_count); 3646 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3647 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3648 fsmeta += sit_segs; 3649 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3650 fsmeta += nat_segs; 3651 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3652 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3653 3654 if (unlikely(fsmeta >= total)) 3655 return 1; 3656 3657 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3658 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3659 3660 if (!f2fs_sb_has_readonly(sbi) && 3661 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3662 ovp_segments == 0 || reserved_segments == 0)) { 3663 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3664 return 1; 3665 } 3666 user_block_count = le64_to_cpu(ckpt->user_block_count); 3667 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3668 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3669 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3670 if (!user_block_count || user_block_count >= 3671 segment_count_main << log_blocks_per_seg) { 3672 f2fs_err(sbi, "Wrong user_block_count: %u", 3673 user_block_count); 3674 return 1; 3675 } 3676 3677 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3678 if (valid_user_blocks > user_block_count) { 3679 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3680 valid_user_blocks, user_block_count); 3681 return 1; 3682 } 3683 3684 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3685 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3686 if (valid_node_count > avail_node_count) { 3687 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3688 valid_node_count, avail_node_count); 3689 return 1; 3690 } 3691 3692 main_segs = le32_to_cpu(raw_super->segment_count_main); 3693 blocks_per_seg = sbi->blocks_per_seg; 3694 3695 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3696 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3697 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3698 return 1; 3699 3700 if (f2fs_sb_has_readonly(sbi)) 3701 goto check_data; 3702 3703 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3704 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3705 le32_to_cpu(ckpt->cur_node_segno[j])) { 3706 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3707 i, j, 3708 le32_to_cpu(ckpt->cur_node_segno[i])); 3709 return 1; 3710 } 3711 } 3712 } 3713 check_data: 3714 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3715 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3716 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3717 return 1; 3718 3719 if (f2fs_sb_has_readonly(sbi)) 3720 goto skip_cross; 3721 3722 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3723 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3724 le32_to_cpu(ckpt->cur_data_segno[j])) { 3725 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3726 i, j, 3727 le32_to_cpu(ckpt->cur_data_segno[i])); 3728 return 1; 3729 } 3730 } 3731 } 3732 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3733 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3734 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3735 le32_to_cpu(ckpt->cur_data_segno[j])) { 3736 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3737 i, j, 3738 le32_to_cpu(ckpt->cur_node_segno[i])); 3739 return 1; 3740 } 3741 } 3742 } 3743 skip_cross: 3744 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3745 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3746 3747 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3748 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3749 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3750 sit_bitmap_size, nat_bitmap_size); 3751 return 1; 3752 } 3753 3754 cp_pack_start_sum = __start_sum_addr(sbi); 3755 cp_payload = __cp_payload(sbi); 3756 if (cp_pack_start_sum < cp_payload + 1 || 3757 cp_pack_start_sum > blocks_per_seg - 1 - 3758 NR_CURSEG_PERSIST_TYPE) { 3759 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3760 cp_pack_start_sum); 3761 return 1; 3762 } 3763 3764 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3765 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3766 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3767 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3768 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3769 le32_to_cpu(ckpt->checksum_offset)); 3770 return 1; 3771 } 3772 3773 nat_blocks = nat_segs << log_blocks_per_seg; 3774 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3775 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3776 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3777 (cp_payload + F2FS_CP_PACKS + 3778 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3779 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3780 cp_payload, nat_bits_blocks); 3781 return 1; 3782 } 3783 3784 if (unlikely(f2fs_cp_error(sbi))) { 3785 f2fs_err(sbi, "A bug case: need to run fsck"); 3786 return 1; 3787 } 3788 return 0; 3789 } 3790 3791 static void init_sb_info(struct f2fs_sb_info *sbi) 3792 { 3793 struct f2fs_super_block *raw_super = sbi->raw_super; 3794 int i; 3795 3796 sbi->log_sectors_per_block = 3797 le32_to_cpu(raw_super->log_sectors_per_block); 3798 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3799 sbi->blocksize = BIT(sbi->log_blocksize); 3800 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3801 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg); 3802 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3803 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3804 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3805 sbi->total_node_count = 3806 (le32_to_cpu(raw_super->segment_count_nat) / 2) 3807 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 3808 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3809 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3810 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3811 sbi->cur_victim_sec = NULL_SECNO; 3812 sbi->gc_mode = GC_NORMAL; 3813 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3814 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3815 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3816 sbi->migration_granularity = sbi->segs_per_sec; 3817 sbi->seq_file_ra_mul = MIN_RA_MUL; 3818 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3819 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3820 spin_lock_init(&sbi->gc_remaining_trials_lock); 3821 atomic64_set(&sbi->current_atomic_write, 0); 3822 3823 sbi->dir_level = DEF_DIR_LEVEL; 3824 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3825 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3826 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3827 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3828 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3829 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3830 DEF_UMOUNT_DISCARD_TIMEOUT; 3831 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3832 3833 for (i = 0; i < NR_COUNT_TYPE; i++) 3834 atomic_set(&sbi->nr_pages[i], 0); 3835 3836 for (i = 0; i < META; i++) 3837 atomic_set(&sbi->wb_sync_req[i], 0); 3838 3839 INIT_LIST_HEAD(&sbi->s_list); 3840 mutex_init(&sbi->umount_mutex); 3841 init_f2fs_rwsem(&sbi->io_order_lock); 3842 spin_lock_init(&sbi->cp_lock); 3843 3844 sbi->dirty_device = 0; 3845 spin_lock_init(&sbi->dev_lock); 3846 3847 init_f2fs_rwsem(&sbi->sb_lock); 3848 init_f2fs_rwsem(&sbi->pin_sem); 3849 } 3850 3851 static int init_percpu_info(struct f2fs_sb_info *sbi) 3852 { 3853 int err; 3854 3855 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3856 if (err) 3857 return err; 3858 3859 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 3860 if (err) 3861 goto err_valid_block; 3862 3863 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3864 GFP_KERNEL); 3865 if (err) 3866 goto err_node_block; 3867 return 0; 3868 3869 err_node_block: 3870 percpu_counter_destroy(&sbi->rf_node_block_count); 3871 err_valid_block: 3872 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3873 return err; 3874 } 3875 3876 #ifdef CONFIG_BLK_DEV_ZONED 3877 3878 struct f2fs_report_zones_args { 3879 struct f2fs_sb_info *sbi; 3880 struct f2fs_dev_info *dev; 3881 }; 3882 3883 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3884 void *data) 3885 { 3886 struct f2fs_report_zones_args *rz_args = data; 3887 block_t unusable_blocks = (zone->len - zone->capacity) >> 3888 F2FS_LOG_SECTORS_PER_BLOCK; 3889 3890 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3891 return 0; 3892 3893 set_bit(idx, rz_args->dev->blkz_seq); 3894 if (!rz_args->sbi->unusable_blocks_per_sec) { 3895 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; 3896 return 0; 3897 } 3898 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { 3899 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); 3900 return -EINVAL; 3901 } 3902 return 0; 3903 } 3904 3905 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3906 { 3907 struct block_device *bdev = FDEV(devi).bdev; 3908 sector_t nr_sectors = bdev_nr_sectors(bdev); 3909 struct f2fs_report_zones_args rep_zone_arg; 3910 u64 zone_sectors; 3911 int ret; 3912 3913 if (!f2fs_sb_has_blkzoned(sbi)) 3914 return 0; 3915 3916 zone_sectors = bdev_zone_sectors(bdev); 3917 if (!is_power_of_2(zone_sectors)) { 3918 f2fs_err(sbi, "F2FS does not support non power of 2 zone sizes\n"); 3919 return -EINVAL; 3920 } 3921 3922 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3923 SECTOR_TO_BLOCK(zone_sectors)) 3924 return -EINVAL; 3925 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors); 3926 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors), 3927 sbi->blocks_per_blkz); 3928 if (nr_sectors & (zone_sectors - 1)) 3929 FDEV(devi).nr_blkz++; 3930 3931 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3932 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3933 * sizeof(unsigned long), 3934 GFP_KERNEL); 3935 if (!FDEV(devi).blkz_seq) 3936 return -ENOMEM; 3937 3938 rep_zone_arg.sbi = sbi; 3939 rep_zone_arg.dev = &FDEV(devi); 3940 3941 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3942 &rep_zone_arg); 3943 if (ret < 0) 3944 return ret; 3945 return 0; 3946 } 3947 #endif 3948 3949 /* 3950 * Read f2fs raw super block. 3951 * Because we have two copies of super block, so read both of them 3952 * to get the first valid one. If any one of them is broken, we pass 3953 * them recovery flag back to the caller. 3954 */ 3955 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3956 struct f2fs_super_block **raw_super, 3957 int *valid_super_block, int *recovery) 3958 { 3959 struct super_block *sb = sbi->sb; 3960 int block; 3961 struct buffer_head *bh; 3962 struct f2fs_super_block *super; 3963 int err = 0; 3964 3965 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3966 if (!super) 3967 return -ENOMEM; 3968 3969 for (block = 0; block < 2; block++) { 3970 bh = sb_bread(sb, block); 3971 if (!bh) { 3972 f2fs_err(sbi, "Unable to read %dth superblock", 3973 block + 1); 3974 err = -EIO; 3975 *recovery = 1; 3976 continue; 3977 } 3978 3979 /* sanity checking of raw super */ 3980 err = sanity_check_raw_super(sbi, bh); 3981 if (err) { 3982 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3983 block + 1); 3984 brelse(bh); 3985 *recovery = 1; 3986 continue; 3987 } 3988 3989 if (!*raw_super) { 3990 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3991 sizeof(*super)); 3992 *valid_super_block = block; 3993 *raw_super = super; 3994 } 3995 brelse(bh); 3996 } 3997 3998 /* No valid superblock */ 3999 if (!*raw_super) 4000 kfree(super); 4001 else 4002 err = 0; 4003 4004 return err; 4005 } 4006 4007 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 4008 { 4009 struct buffer_head *bh; 4010 __u32 crc = 0; 4011 int err; 4012 4013 if ((recover && f2fs_readonly(sbi->sb)) || 4014 f2fs_hw_is_readonly(sbi)) { 4015 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 4016 return -EROFS; 4017 } 4018 4019 /* we should update superblock crc here */ 4020 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 4021 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 4022 offsetof(struct f2fs_super_block, crc)); 4023 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 4024 } 4025 4026 /* write back-up superblock first */ 4027 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 4028 if (!bh) 4029 return -EIO; 4030 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 4031 brelse(bh); 4032 4033 /* if we are in recovery path, skip writing valid superblock */ 4034 if (recover || err) 4035 return err; 4036 4037 /* write current valid superblock */ 4038 bh = sb_bread(sbi->sb, sbi->valid_super_block); 4039 if (!bh) 4040 return -EIO; 4041 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 4042 brelse(bh); 4043 return err; 4044 } 4045 4046 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason) 4047 { 4048 unsigned long flags; 4049 4050 spin_lock_irqsave(&sbi->error_lock, flags); 4051 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0)) 4052 sbi->stop_reason[reason]++; 4053 spin_unlock_irqrestore(&sbi->error_lock, flags); 4054 } 4055 4056 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi) 4057 { 4058 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4059 unsigned long flags; 4060 int err; 4061 4062 f2fs_down_write(&sbi->sb_lock); 4063 4064 spin_lock_irqsave(&sbi->error_lock, flags); 4065 if (sbi->error_dirty) { 4066 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4067 MAX_F2FS_ERRORS); 4068 sbi->error_dirty = false; 4069 } 4070 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON); 4071 spin_unlock_irqrestore(&sbi->error_lock, flags); 4072 4073 err = f2fs_commit_super(sbi, false); 4074 4075 f2fs_up_write(&sbi->sb_lock); 4076 if (err) 4077 f2fs_err(sbi, "f2fs_commit_super fails to record err:%d", err); 4078 } 4079 4080 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag) 4081 { 4082 unsigned long flags; 4083 4084 spin_lock_irqsave(&sbi->error_lock, flags); 4085 if (!test_bit(flag, (unsigned long *)sbi->errors)) { 4086 set_bit(flag, (unsigned long *)sbi->errors); 4087 sbi->error_dirty = true; 4088 } 4089 spin_unlock_irqrestore(&sbi->error_lock, flags); 4090 } 4091 4092 static bool f2fs_update_errors(struct f2fs_sb_info *sbi) 4093 { 4094 unsigned long flags; 4095 bool need_update = false; 4096 4097 spin_lock_irqsave(&sbi->error_lock, flags); 4098 if (sbi->error_dirty) { 4099 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4100 MAX_F2FS_ERRORS); 4101 sbi->error_dirty = false; 4102 need_update = true; 4103 } 4104 spin_unlock_irqrestore(&sbi->error_lock, flags); 4105 4106 return need_update; 4107 } 4108 4109 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error) 4110 { 4111 int err; 4112 4113 f2fs_down_write(&sbi->sb_lock); 4114 4115 if (!f2fs_update_errors(sbi)) 4116 goto out_unlock; 4117 4118 err = f2fs_commit_super(sbi, false); 4119 if (err) 4120 f2fs_err(sbi, "f2fs_commit_super fails to record errors:%u, err:%d", 4121 error, err); 4122 out_unlock: 4123 f2fs_up_write(&sbi->sb_lock); 4124 } 4125 4126 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error) 4127 { 4128 f2fs_save_errors(sbi, error); 4129 f2fs_record_errors(sbi, error); 4130 } 4131 4132 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error) 4133 { 4134 f2fs_save_errors(sbi, error); 4135 4136 if (!sbi->error_dirty) 4137 return; 4138 if (!test_bit(error, (unsigned long *)sbi->errors)) 4139 return; 4140 schedule_work(&sbi->s_error_work); 4141 } 4142 4143 static bool system_going_down(void) 4144 { 4145 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 4146 || system_state == SYSTEM_RESTART; 4147 } 4148 4149 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason, 4150 bool irq_context) 4151 { 4152 struct super_block *sb = sbi->sb; 4153 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN; 4154 bool continue_fs = !shutdown && 4155 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE; 4156 4157 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4158 4159 if (!f2fs_hw_is_readonly(sbi)) { 4160 save_stop_reason(sbi, reason); 4161 4162 if (irq_context && !shutdown) 4163 schedule_work(&sbi->s_error_work); 4164 else 4165 f2fs_record_stop_reason(sbi); 4166 } 4167 4168 /* 4169 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 4170 * could panic during 'reboot -f' as the underlying device got already 4171 * disabled. 4172 */ 4173 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC && 4174 !shutdown && !system_going_down() && 4175 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) 4176 panic("F2FS-fs (device %s): panic forced after error\n", 4177 sb->s_id); 4178 4179 if (shutdown) 4180 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 4181 4182 /* continue filesystem operators if errors=continue */ 4183 if (continue_fs || f2fs_readonly(sb)) 4184 return; 4185 4186 f2fs_warn(sbi, "Remounting filesystem read-only"); 4187 /* 4188 * Make sure updated value of ->s_mount_flags will be visible before 4189 * ->s_flags update 4190 */ 4191 smp_wmb(); 4192 sb->s_flags |= SB_RDONLY; 4193 } 4194 4195 static void f2fs_record_error_work(struct work_struct *work) 4196 { 4197 struct f2fs_sb_info *sbi = container_of(work, 4198 struct f2fs_sb_info, s_error_work); 4199 4200 f2fs_record_stop_reason(sbi); 4201 } 4202 4203 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 4204 { 4205 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4206 unsigned int max_devices = MAX_DEVICES; 4207 unsigned int logical_blksize; 4208 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags); 4209 int i; 4210 4211 /* Initialize single device information */ 4212 if (!RDEV(0).path[0]) { 4213 if (!bdev_is_zoned(sbi->sb->s_bdev)) 4214 return 0; 4215 max_devices = 1; 4216 } 4217 4218 /* 4219 * Initialize multiple devices information, or single 4220 * zoned block device information. 4221 */ 4222 sbi->devs = f2fs_kzalloc(sbi, 4223 array_size(max_devices, 4224 sizeof(struct f2fs_dev_info)), 4225 GFP_KERNEL); 4226 if (!sbi->devs) 4227 return -ENOMEM; 4228 4229 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 4230 sbi->aligned_blksize = true; 4231 4232 for (i = 0; i < max_devices; i++) { 4233 if (i == 0) 4234 FDEV(0).bdev = sbi->sb->s_bdev; 4235 else if (!RDEV(i).path[0]) 4236 break; 4237 4238 if (max_devices > 1) { 4239 /* Multi-device mount */ 4240 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 4241 FDEV(i).total_segments = 4242 le32_to_cpu(RDEV(i).total_segments); 4243 if (i == 0) { 4244 FDEV(i).start_blk = 0; 4245 FDEV(i).end_blk = FDEV(i).start_blk + 4246 (FDEV(i).total_segments << 4247 sbi->log_blocks_per_seg) - 1 + 4248 le32_to_cpu(raw_super->segment0_blkaddr); 4249 } else { 4250 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 4251 FDEV(i).end_blk = FDEV(i).start_blk + 4252 (FDEV(i).total_segments << 4253 sbi->log_blocks_per_seg) - 1; 4254 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 4255 mode, sbi->sb, NULL); 4256 } 4257 } 4258 if (IS_ERR(FDEV(i).bdev)) 4259 return PTR_ERR(FDEV(i).bdev); 4260 4261 /* to release errored devices */ 4262 sbi->s_ndevs = i + 1; 4263 4264 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 4265 sbi->aligned_blksize = false; 4266 4267 #ifdef CONFIG_BLK_DEV_ZONED 4268 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 4269 !f2fs_sb_has_blkzoned(sbi)) { 4270 f2fs_err(sbi, "Zoned block device feature not enabled"); 4271 return -EINVAL; 4272 } 4273 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 4274 if (init_blkz_info(sbi, i)) { 4275 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 4276 return -EINVAL; 4277 } 4278 if (max_devices == 1) 4279 break; 4280 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 4281 i, FDEV(i).path, 4282 FDEV(i).total_segments, 4283 FDEV(i).start_blk, FDEV(i).end_blk, 4284 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 4285 "Host-aware" : "Host-managed"); 4286 continue; 4287 } 4288 #endif 4289 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 4290 i, FDEV(i).path, 4291 FDEV(i).total_segments, 4292 FDEV(i).start_blk, FDEV(i).end_blk); 4293 } 4294 f2fs_info(sbi, 4295 "IO Block Size: %8ld KB", F2FS_IO_SIZE_KB(sbi)); 4296 return 0; 4297 } 4298 4299 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 4300 { 4301 #if IS_ENABLED(CONFIG_UNICODE) 4302 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 4303 const struct f2fs_sb_encodings *encoding_info; 4304 struct unicode_map *encoding; 4305 __u16 encoding_flags; 4306 4307 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 4308 if (!encoding_info) { 4309 f2fs_err(sbi, 4310 "Encoding requested by superblock is unknown"); 4311 return -EINVAL; 4312 } 4313 4314 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 4315 encoding = utf8_load(encoding_info->version); 4316 if (IS_ERR(encoding)) { 4317 f2fs_err(sbi, 4318 "can't mount with superblock charset: %s-%u.%u.%u " 4319 "not supported by the kernel. flags: 0x%x.", 4320 encoding_info->name, 4321 unicode_major(encoding_info->version), 4322 unicode_minor(encoding_info->version), 4323 unicode_rev(encoding_info->version), 4324 encoding_flags); 4325 return PTR_ERR(encoding); 4326 } 4327 f2fs_info(sbi, "Using encoding defined by superblock: " 4328 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4329 unicode_major(encoding_info->version), 4330 unicode_minor(encoding_info->version), 4331 unicode_rev(encoding_info->version), 4332 encoding_flags); 4333 4334 sbi->sb->s_encoding = encoding; 4335 sbi->sb->s_encoding_flags = encoding_flags; 4336 } 4337 #else 4338 if (f2fs_sb_has_casefold(sbi)) { 4339 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 4340 return -EINVAL; 4341 } 4342 #endif 4343 return 0; 4344 } 4345 4346 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 4347 { 4348 /* adjust parameters according to the volume size */ 4349 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) { 4350 if (f2fs_block_unit_discard(sbi)) 4351 SM_I(sbi)->dcc_info->discard_granularity = 4352 MIN_DISCARD_GRANULARITY; 4353 if (!f2fs_lfs_mode(sbi)) 4354 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) | 4355 BIT(F2FS_IPU_HONOR_OPU_WRITE); 4356 } 4357 4358 sbi->readdir_ra = true; 4359 } 4360 4361 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 4362 { 4363 struct f2fs_sb_info *sbi; 4364 struct f2fs_super_block *raw_super; 4365 struct inode *root; 4366 int err; 4367 bool skip_recovery = false, need_fsck = false; 4368 char *options = NULL; 4369 int recovery, i, valid_super_block; 4370 struct curseg_info *seg_i; 4371 int retry_cnt = 1; 4372 #ifdef CONFIG_QUOTA 4373 bool quota_enabled = false; 4374 #endif 4375 4376 try_onemore: 4377 err = -EINVAL; 4378 raw_super = NULL; 4379 valid_super_block = -1; 4380 recovery = 0; 4381 4382 /* allocate memory for f2fs-specific super block info */ 4383 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 4384 if (!sbi) 4385 return -ENOMEM; 4386 4387 sbi->sb = sb; 4388 4389 /* initialize locks within allocated memory */ 4390 init_f2fs_rwsem(&sbi->gc_lock); 4391 mutex_init(&sbi->writepages); 4392 init_f2fs_rwsem(&sbi->cp_global_sem); 4393 init_f2fs_rwsem(&sbi->node_write); 4394 init_f2fs_rwsem(&sbi->node_change); 4395 spin_lock_init(&sbi->stat_lock); 4396 init_f2fs_rwsem(&sbi->cp_rwsem); 4397 init_f2fs_rwsem(&sbi->quota_sem); 4398 init_waitqueue_head(&sbi->cp_wait); 4399 spin_lock_init(&sbi->error_lock); 4400 4401 for (i = 0; i < NR_INODE_TYPE; i++) { 4402 INIT_LIST_HEAD(&sbi->inode_list[i]); 4403 spin_lock_init(&sbi->inode_lock[i]); 4404 } 4405 mutex_init(&sbi->flush_lock); 4406 4407 /* Load the checksum driver */ 4408 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 4409 if (IS_ERR(sbi->s_chksum_driver)) { 4410 f2fs_err(sbi, "Cannot load crc32 driver."); 4411 err = PTR_ERR(sbi->s_chksum_driver); 4412 sbi->s_chksum_driver = NULL; 4413 goto free_sbi; 4414 } 4415 4416 /* set a block size */ 4417 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 4418 f2fs_err(sbi, "unable to set blocksize"); 4419 goto free_sbi; 4420 } 4421 4422 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4423 &recovery); 4424 if (err) 4425 goto free_sbi; 4426 4427 sb->s_fs_info = sbi; 4428 sbi->raw_super = raw_super; 4429 4430 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work); 4431 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS); 4432 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON); 4433 4434 /* precompute checksum seed for metadata */ 4435 if (f2fs_sb_has_inode_chksum(sbi)) 4436 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 4437 sizeof(raw_super->uuid)); 4438 4439 default_options(sbi, false); 4440 /* parse mount options */ 4441 options = kstrdup((const char *)data, GFP_KERNEL); 4442 if (data && !options) { 4443 err = -ENOMEM; 4444 goto free_sb_buf; 4445 } 4446 4447 err = parse_options(sb, options, false); 4448 if (err) 4449 goto free_options; 4450 4451 sb->s_maxbytes = max_file_blocks(NULL) << 4452 le32_to_cpu(raw_super->log_blocksize); 4453 sb->s_max_links = F2FS_LINK_MAX; 4454 4455 err = f2fs_setup_casefold(sbi); 4456 if (err) 4457 goto free_options; 4458 4459 #ifdef CONFIG_QUOTA 4460 sb->dq_op = &f2fs_quota_operations; 4461 sb->s_qcop = &f2fs_quotactl_ops; 4462 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4463 4464 if (f2fs_sb_has_quota_ino(sbi)) { 4465 for (i = 0; i < MAXQUOTAS; i++) { 4466 if (f2fs_qf_ino(sbi->sb, i)) 4467 sbi->nquota_files++; 4468 } 4469 } 4470 #endif 4471 4472 sb->s_op = &f2fs_sops; 4473 #ifdef CONFIG_FS_ENCRYPTION 4474 sb->s_cop = &f2fs_cryptops; 4475 #endif 4476 #ifdef CONFIG_FS_VERITY 4477 sb->s_vop = &f2fs_verityops; 4478 #endif 4479 sb->s_xattr = f2fs_xattr_handlers; 4480 sb->s_export_op = &f2fs_export_ops; 4481 sb->s_magic = F2FS_SUPER_MAGIC; 4482 sb->s_time_gran = 1; 4483 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4484 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4485 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 4486 sb->s_iflags |= SB_I_CGROUPWB; 4487 4488 /* init f2fs-specific super block info */ 4489 sbi->valid_super_block = valid_super_block; 4490 4491 /* disallow all the data/node/meta page writes */ 4492 set_sbi_flag(sbi, SBI_POR_DOING); 4493 4494 err = f2fs_init_write_merge_io(sbi); 4495 if (err) 4496 goto free_bio_info; 4497 4498 init_sb_info(sbi); 4499 4500 err = f2fs_init_iostat(sbi); 4501 if (err) 4502 goto free_bio_info; 4503 4504 err = init_percpu_info(sbi); 4505 if (err) 4506 goto free_iostat; 4507 4508 if (F2FS_IO_ALIGNED(sbi)) { 4509 sbi->write_io_dummy = 4510 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 4511 if (!sbi->write_io_dummy) { 4512 err = -ENOMEM; 4513 goto free_percpu; 4514 } 4515 } 4516 4517 /* init per sbi slab cache */ 4518 err = f2fs_init_xattr_caches(sbi); 4519 if (err) 4520 goto free_io_dummy; 4521 err = f2fs_init_page_array_cache(sbi); 4522 if (err) 4523 goto free_xattr_cache; 4524 4525 /* get an inode for meta space */ 4526 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4527 if (IS_ERR(sbi->meta_inode)) { 4528 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4529 err = PTR_ERR(sbi->meta_inode); 4530 goto free_page_array_cache; 4531 } 4532 4533 err = f2fs_get_valid_checkpoint(sbi); 4534 if (err) { 4535 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4536 goto free_meta_inode; 4537 } 4538 4539 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4540 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4541 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4542 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4543 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4544 } 4545 4546 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4547 set_sbi_flag(sbi, SBI_NEED_FSCK); 4548 4549 /* Initialize device list */ 4550 err = f2fs_scan_devices(sbi); 4551 if (err) { 4552 f2fs_err(sbi, "Failed to find devices"); 4553 goto free_devices; 4554 } 4555 4556 err = f2fs_init_post_read_wq(sbi); 4557 if (err) { 4558 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4559 goto free_devices; 4560 } 4561 4562 sbi->total_valid_node_count = 4563 le32_to_cpu(sbi->ckpt->valid_node_count); 4564 percpu_counter_set(&sbi->total_valid_inode_count, 4565 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4566 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4567 sbi->total_valid_block_count = 4568 le64_to_cpu(sbi->ckpt->valid_block_count); 4569 sbi->last_valid_block_count = sbi->total_valid_block_count; 4570 sbi->reserved_blocks = 0; 4571 sbi->current_reserved_blocks = 0; 4572 limit_reserve_root(sbi); 4573 adjust_unusable_cap_perc(sbi); 4574 4575 f2fs_init_extent_cache_info(sbi); 4576 4577 f2fs_init_ino_entry_info(sbi); 4578 4579 f2fs_init_fsync_node_info(sbi); 4580 4581 /* setup checkpoint request control and start checkpoint issue thread */ 4582 f2fs_init_ckpt_req_control(sbi); 4583 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4584 test_opt(sbi, MERGE_CHECKPOINT)) { 4585 err = f2fs_start_ckpt_thread(sbi); 4586 if (err) { 4587 f2fs_err(sbi, 4588 "Failed to start F2FS issue_checkpoint_thread (%d)", 4589 err); 4590 goto stop_ckpt_thread; 4591 } 4592 } 4593 4594 /* setup f2fs internal modules */ 4595 err = f2fs_build_segment_manager(sbi); 4596 if (err) { 4597 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4598 err); 4599 goto free_sm; 4600 } 4601 err = f2fs_build_node_manager(sbi); 4602 if (err) { 4603 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4604 err); 4605 goto free_nm; 4606 } 4607 4608 err = adjust_reserved_segment(sbi); 4609 if (err) 4610 goto free_nm; 4611 4612 /* For write statistics */ 4613 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4614 4615 /* Read accumulated write IO statistics if exists */ 4616 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4617 if (__exist_node_summaries(sbi)) 4618 sbi->kbytes_written = 4619 le64_to_cpu(seg_i->journal->info.kbytes_written); 4620 4621 f2fs_build_gc_manager(sbi); 4622 4623 err = f2fs_build_stats(sbi); 4624 if (err) 4625 goto free_nm; 4626 4627 /* get an inode for node space */ 4628 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4629 if (IS_ERR(sbi->node_inode)) { 4630 f2fs_err(sbi, "Failed to read node inode"); 4631 err = PTR_ERR(sbi->node_inode); 4632 goto free_stats; 4633 } 4634 4635 /* read root inode and dentry */ 4636 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4637 if (IS_ERR(root)) { 4638 f2fs_err(sbi, "Failed to read root inode"); 4639 err = PTR_ERR(root); 4640 goto free_node_inode; 4641 } 4642 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4643 !root->i_size || !root->i_nlink) { 4644 iput(root); 4645 err = -EINVAL; 4646 goto free_node_inode; 4647 } 4648 4649 sb->s_root = d_make_root(root); /* allocate root dentry */ 4650 if (!sb->s_root) { 4651 err = -ENOMEM; 4652 goto free_node_inode; 4653 } 4654 4655 err = f2fs_init_compress_inode(sbi); 4656 if (err) 4657 goto free_root_inode; 4658 4659 err = f2fs_register_sysfs(sbi); 4660 if (err) 4661 goto free_compress_inode; 4662 4663 #ifdef CONFIG_QUOTA 4664 /* Enable quota usage during mount */ 4665 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4666 err = f2fs_enable_quotas(sb); 4667 if (err) 4668 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4669 } 4670 4671 quota_enabled = f2fs_recover_quota_begin(sbi); 4672 #endif 4673 /* if there are any orphan inodes, free them */ 4674 err = f2fs_recover_orphan_inodes(sbi); 4675 if (err) 4676 goto free_meta; 4677 4678 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4679 goto reset_checkpoint; 4680 4681 /* recover fsynced data */ 4682 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4683 !test_opt(sbi, NORECOVERY)) { 4684 /* 4685 * mount should be failed, when device has readonly mode, and 4686 * previous checkpoint was not done by clean system shutdown. 4687 */ 4688 if (f2fs_hw_is_readonly(sbi)) { 4689 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4690 err = f2fs_recover_fsync_data(sbi, true); 4691 if (err > 0) { 4692 err = -EROFS; 4693 f2fs_err(sbi, "Need to recover fsync data, but " 4694 "write access unavailable, please try " 4695 "mount w/ disable_roll_forward or norecovery"); 4696 } 4697 if (err < 0) 4698 goto free_meta; 4699 } 4700 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4701 goto reset_checkpoint; 4702 } 4703 4704 if (need_fsck) 4705 set_sbi_flag(sbi, SBI_NEED_FSCK); 4706 4707 if (skip_recovery) 4708 goto reset_checkpoint; 4709 4710 err = f2fs_recover_fsync_data(sbi, false); 4711 if (err < 0) { 4712 if (err != -ENOMEM) 4713 skip_recovery = true; 4714 need_fsck = true; 4715 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4716 err); 4717 goto free_meta; 4718 } 4719 } else { 4720 err = f2fs_recover_fsync_data(sbi, true); 4721 4722 if (!f2fs_readonly(sb) && err > 0) { 4723 err = -EINVAL; 4724 f2fs_err(sbi, "Need to recover fsync data"); 4725 goto free_meta; 4726 } 4727 } 4728 4729 #ifdef CONFIG_QUOTA 4730 f2fs_recover_quota_end(sbi, quota_enabled); 4731 #endif 4732 4733 /* 4734 * If the f2fs is not readonly and fsync data recovery succeeds, 4735 * check zoned block devices' write pointer consistency. 4736 */ 4737 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 4738 err = f2fs_check_write_pointer(sbi); 4739 if (err) 4740 goto free_meta; 4741 } 4742 4743 reset_checkpoint: 4744 f2fs_init_inmem_curseg(sbi); 4745 4746 /* f2fs_recover_fsync_data() cleared this already */ 4747 clear_sbi_flag(sbi, SBI_POR_DOING); 4748 4749 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4750 err = f2fs_disable_checkpoint(sbi); 4751 if (err) 4752 goto sync_free_meta; 4753 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4754 f2fs_enable_checkpoint(sbi); 4755 } 4756 4757 /* 4758 * If filesystem is not mounted as read-only then 4759 * do start the gc_thread. 4760 */ 4761 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4762 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4763 /* After POR, we can run background GC thread.*/ 4764 err = f2fs_start_gc_thread(sbi); 4765 if (err) 4766 goto sync_free_meta; 4767 } 4768 kvfree(options); 4769 4770 /* recover broken superblock */ 4771 if (recovery) { 4772 err = f2fs_commit_super(sbi, true); 4773 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4774 sbi->valid_super_block ? 1 : 2, err); 4775 } 4776 4777 f2fs_join_shrinker(sbi); 4778 4779 f2fs_tuning_parameters(sbi); 4780 4781 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4782 cur_cp_version(F2FS_CKPT(sbi))); 4783 f2fs_update_time(sbi, CP_TIME); 4784 f2fs_update_time(sbi, REQ_TIME); 4785 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4786 return 0; 4787 4788 sync_free_meta: 4789 /* safe to flush all the data */ 4790 sync_filesystem(sbi->sb); 4791 retry_cnt = 0; 4792 4793 free_meta: 4794 #ifdef CONFIG_QUOTA 4795 f2fs_truncate_quota_inode_pages(sb); 4796 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4797 f2fs_quota_off_umount(sbi->sb); 4798 #endif 4799 /* 4800 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4801 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4802 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4803 * falls into an infinite loop in f2fs_sync_meta_pages(). 4804 */ 4805 truncate_inode_pages_final(META_MAPPING(sbi)); 4806 /* evict some inodes being cached by GC */ 4807 evict_inodes(sb); 4808 f2fs_unregister_sysfs(sbi); 4809 free_compress_inode: 4810 f2fs_destroy_compress_inode(sbi); 4811 free_root_inode: 4812 dput(sb->s_root); 4813 sb->s_root = NULL; 4814 free_node_inode: 4815 f2fs_release_ino_entry(sbi, true); 4816 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4817 iput(sbi->node_inode); 4818 sbi->node_inode = NULL; 4819 free_stats: 4820 f2fs_destroy_stats(sbi); 4821 free_nm: 4822 /* stop discard thread before destroying node manager */ 4823 f2fs_stop_discard_thread(sbi); 4824 f2fs_destroy_node_manager(sbi); 4825 free_sm: 4826 f2fs_destroy_segment_manager(sbi); 4827 stop_ckpt_thread: 4828 f2fs_stop_ckpt_thread(sbi); 4829 /* flush s_error_work before sbi destroy */ 4830 flush_work(&sbi->s_error_work); 4831 f2fs_destroy_post_read_wq(sbi); 4832 free_devices: 4833 destroy_device_list(sbi); 4834 kvfree(sbi->ckpt); 4835 free_meta_inode: 4836 make_bad_inode(sbi->meta_inode); 4837 iput(sbi->meta_inode); 4838 sbi->meta_inode = NULL; 4839 free_page_array_cache: 4840 f2fs_destroy_page_array_cache(sbi); 4841 free_xattr_cache: 4842 f2fs_destroy_xattr_caches(sbi); 4843 free_io_dummy: 4844 mempool_destroy(sbi->write_io_dummy); 4845 free_percpu: 4846 destroy_percpu_info(sbi); 4847 free_iostat: 4848 f2fs_destroy_iostat(sbi); 4849 free_bio_info: 4850 for (i = 0; i < NR_PAGE_TYPE; i++) 4851 kvfree(sbi->write_io[i]); 4852 4853 #if IS_ENABLED(CONFIG_UNICODE) 4854 utf8_unload(sb->s_encoding); 4855 sb->s_encoding = NULL; 4856 #endif 4857 free_options: 4858 #ifdef CONFIG_QUOTA 4859 for (i = 0; i < MAXQUOTAS; i++) 4860 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4861 #endif 4862 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4863 kvfree(options); 4864 free_sb_buf: 4865 kfree(raw_super); 4866 free_sbi: 4867 if (sbi->s_chksum_driver) 4868 crypto_free_shash(sbi->s_chksum_driver); 4869 kfree(sbi); 4870 4871 /* give only one another chance */ 4872 if (retry_cnt > 0 && skip_recovery) { 4873 retry_cnt--; 4874 shrink_dcache_sb(sb); 4875 goto try_onemore; 4876 } 4877 return err; 4878 } 4879 4880 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4881 const char *dev_name, void *data) 4882 { 4883 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4884 } 4885 4886 static void kill_f2fs_super(struct super_block *sb) 4887 { 4888 if (sb->s_root) { 4889 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4890 4891 set_sbi_flag(sbi, SBI_IS_CLOSE); 4892 f2fs_stop_gc_thread(sbi); 4893 f2fs_stop_discard_thread(sbi); 4894 4895 #ifdef CONFIG_F2FS_FS_COMPRESSION 4896 /* 4897 * latter evict_inode() can bypass checking and invalidating 4898 * compress inode cache. 4899 */ 4900 if (test_opt(sbi, COMPRESS_CACHE)) 4901 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4902 #endif 4903 4904 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4905 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4906 struct cp_control cpc = { 4907 .reason = CP_UMOUNT, 4908 }; 4909 stat_inc_cp_call_count(sbi, TOTAL_CALL); 4910 f2fs_write_checkpoint(sbi, &cpc); 4911 } 4912 4913 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4914 sb->s_flags &= ~SB_RDONLY; 4915 } 4916 kill_block_super(sb); 4917 } 4918 4919 static struct file_system_type f2fs_fs_type = { 4920 .owner = THIS_MODULE, 4921 .name = "f2fs", 4922 .mount = f2fs_mount, 4923 .kill_sb = kill_f2fs_super, 4924 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 4925 }; 4926 MODULE_ALIAS_FS("f2fs"); 4927 4928 static int __init init_inodecache(void) 4929 { 4930 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4931 sizeof(struct f2fs_inode_info), 0, 4932 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4933 return f2fs_inode_cachep ? 0 : -ENOMEM; 4934 } 4935 4936 static void destroy_inodecache(void) 4937 { 4938 /* 4939 * Make sure all delayed rcu free inodes are flushed before we 4940 * destroy cache. 4941 */ 4942 rcu_barrier(); 4943 kmem_cache_destroy(f2fs_inode_cachep); 4944 } 4945 4946 static int __init init_f2fs_fs(void) 4947 { 4948 int err; 4949 4950 if (PAGE_SIZE != F2FS_BLKSIZE) { 4951 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 4952 PAGE_SIZE, F2FS_BLKSIZE); 4953 return -EINVAL; 4954 } 4955 4956 err = init_inodecache(); 4957 if (err) 4958 goto fail; 4959 err = f2fs_create_node_manager_caches(); 4960 if (err) 4961 goto free_inodecache; 4962 err = f2fs_create_segment_manager_caches(); 4963 if (err) 4964 goto free_node_manager_caches; 4965 err = f2fs_create_checkpoint_caches(); 4966 if (err) 4967 goto free_segment_manager_caches; 4968 err = f2fs_create_recovery_cache(); 4969 if (err) 4970 goto free_checkpoint_caches; 4971 err = f2fs_create_extent_cache(); 4972 if (err) 4973 goto free_recovery_cache; 4974 err = f2fs_create_garbage_collection_cache(); 4975 if (err) 4976 goto free_extent_cache; 4977 err = f2fs_init_sysfs(); 4978 if (err) 4979 goto free_garbage_collection_cache; 4980 err = register_shrinker(&f2fs_shrinker_info, "f2fs-shrinker"); 4981 if (err) 4982 goto free_sysfs; 4983 err = register_filesystem(&f2fs_fs_type); 4984 if (err) 4985 goto free_shrinker; 4986 f2fs_create_root_stats(); 4987 err = f2fs_init_post_read_processing(); 4988 if (err) 4989 goto free_root_stats; 4990 err = f2fs_init_iostat_processing(); 4991 if (err) 4992 goto free_post_read; 4993 err = f2fs_init_bio_entry_cache(); 4994 if (err) 4995 goto free_iostat; 4996 err = f2fs_init_bioset(); 4997 if (err) 4998 goto free_bio_entry_cache; 4999 err = f2fs_init_compress_mempool(); 5000 if (err) 5001 goto free_bioset; 5002 err = f2fs_init_compress_cache(); 5003 if (err) 5004 goto free_compress_mempool; 5005 err = f2fs_create_casefold_cache(); 5006 if (err) 5007 goto free_compress_cache; 5008 return 0; 5009 free_compress_cache: 5010 f2fs_destroy_compress_cache(); 5011 free_compress_mempool: 5012 f2fs_destroy_compress_mempool(); 5013 free_bioset: 5014 f2fs_destroy_bioset(); 5015 free_bio_entry_cache: 5016 f2fs_destroy_bio_entry_cache(); 5017 free_iostat: 5018 f2fs_destroy_iostat_processing(); 5019 free_post_read: 5020 f2fs_destroy_post_read_processing(); 5021 free_root_stats: 5022 f2fs_destroy_root_stats(); 5023 unregister_filesystem(&f2fs_fs_type); 5024 free_shrinker: 5025 unregister_shrinker(&f2fs_shrinker_info); 5026 free_sysfs: 5027 f2fs_exit_sysfs(); 5028 free_garbage_collection_cache: 5029 f2fs_destroy_garbage_collection_cache(); 5030 free_extent_cache: 5031 f2fs_destroy_extent_cache(); 5032 free_recovery_cache: 5033 f2fs_destroy_recovery_cache(); 5034 free_checkpoint_caches: 5035 f2fs_destroy_checkpoint_caches(); 5036 free_segment_manager_caches: 5037 f2fs_destroy_segment_manager_caches(); 5038 free_node_manager_caches: 5039 f2fs_destroy_node_manager_caches(); 5040 free_inodecache: 5041 destroy_inodecache(); 5042 fail: 5043 return err; 5044 } 5045 5046 static void __exit exit_f2fs_fs(void) 5047 { 5048 f2fs_destroy_casefold_cache(); 5049 f2fs_destroy_compress_cache(); 5050 f2fs_destroy_compress_mempool(); 5051 f2fs_destroy_bioset(); 5052 f2fs_destroy_bio_entry_cache(); 5053 f2fs_destroy_iostat_processing(); 5054 f2fs_destroy_post_read_processing(); 5055 f2fs_destroy_root_stats(); 5056 unregister_filesystem(&f2fs_fs_type); 5057 unregister_shrinker(&f2fs_shrinker_info); 5058 f2fs_exit_sysfs(); 5059 f2fs_destroy_garbage_collection_cache(); 5060 f2fs_destroy_extent_cache(); 5061 f2fs_destroy_recovery_cache(); 5062 f2fs_destroy_checkpoint_caches(); 5063 f2fs_destroy_segment_manager_caches(); 5064 f2fs_destroy_node_manager_caches(); 5065 destroy_inodecache(); 5066 } 5067 5068 module_init(init_f2fs_fs) 5069 module_exit(exit_f2fs_fs) 5070 5071 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 5072 MODULE_DESCRIPTION("Flash Friendly File System"); 5073 MODULE_LICENSE("GPL"); 5074 MODULE_SOFTDEP("pre: crc32"); 5075 5076