xref: /openbmc/linux/fs/f2fs/super.c (revision abfbd895)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37 
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41 
42 /* f2fs-wide shrinker description */
43 static struct shrinker f2fs_shrinker_info = {
44 	.scan_objects = f2fs_shrink_scan,
45 	.count_objects = f2fs_shrink_count,
46 	.seeks = DEFAULT_SEEKS,
47 };
48 
49 enum {
50 	Opt_gc_background,
51 	Opt_disable_roll_forward,
52 	Opt_norecovery,
53 	Opt_discard,
54 	Opt_noheap,
55 	Opt_user_xattr,
56 	Opt_nouser_xattr,
57 	Opt_acl,
58 	Opt_noacl,
59 	Opt_active_logs,
60 	Opt_disable_ext_identify,
61 	Opt_inline_xattr,
62 	Opt_inline_data,
63 	Opt_inline_dentry,
64 	Opt_flush_merge,
65 	Opt_nobarrier,
66 	Opt_fastboot,
67 	Opt_extent_cache,
68 	Opt_noextent_cache,
69 	Opt_noinline_data,
70 	Opt_err,
71 };
72 
73 static match_table_t f2fs_tokens = {
74 	{Opt_gc_background, "background_gc=%s"},
75 	{Opt_disable_roll_forward, "disable_roll_forward"},
76 	{Opt_norecovery, "norecovery"},
77 	{Opt_discard, "discard"},
78 	{Opt_noheap, "no_heap"},
79 	{Opt_user_xattr, "user_xattr"},
80 	{Opt_nouser_xattr, "nouser_xattr"},
81 	{Opt_acl, "acl"},
82 	{Opt_noacl, "noacl"},
83 	{Opt_active_logs, "active_logs=%u"},
84 	{Opt_disable_ext_identify, "disable_ext_identify"},
85 	{Opt_inline_xattr, "inline_xattr"},
86 	{Opt_inline_data, "inline_data"},
87 	{Opt_inline_dentry, "inline_dentry"},
88 	{Opt_flush_merge, "flush_merge"},
89 	{Opt_nobarrier, "nobarrier"},
90 	{Opt_fastboot, "fastboot"},
91 	{Opt_extent_cache, "extent_cache"},
92 	{Opt_noextent_cache, "noextent_cache"},
93 	{Opt_noinline_data, "noinline_data"},
94 	{Opt_err, NULL},
95 };
96 
97 /* Sysfs support for f2fs */
98 enum {
99 	GC_THREAD,	/* struct f2fs_gc_thread */
100 	SM_INFO,	/* struct f2fs_sm_info */
101 	NM_INFO,	/* struct f2fs_nm_info */
102 	F2FS_SBI,	/* struct f2fs_sb_info */
103 };
104 
105 struct f2fs_attr {
106 	struct attribute attr;
107 	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
108 	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
109 			 const char *, size_t);
110 	int struct_type;
111 	int offset;
112 };
113 
114 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
115 {
116 	if (struct_type == GC_THREAD)
117 		return (unsigned char *)sbi->gc_thread;
118 	else if (struct_type == SM_INFO)
119 		return (unsigned char *)SM_I(sbi);
120 	else if (struct_type == NM_INFO)
121 		return (unsigned char *)NM_I(sbi);
122 	else if (struct_type == F2FS_SBI)
123 		return (unsigned char *)sbi;
124 	return NULL;
125 }
126 
127 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
128 			struct f2fs_sb_info *sbi, char *buf)
129 {
130 	unsigned char *ptr = NULL;
131 	unsigned int *ui;
132 
133 	ptr = __struct_ptr(sbi, a->struct_type);
134 	if (!ptr)
135 		return -EINVAL;
136 
137 	ui = (unsigned int *)(ptr + a->offset);
138 
139 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
140 }
141 
142 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
143 			struct f2fs_sb_info *sbi,
144 			const char *buf, size_t count)
145 {
146 	unsigned char *ptr;
147 	unsigned long t;
148 	unsigned int *ui;
149 	ssize_t ret;
150 
151 	ptr = __struct_ptr(sbi, a->struct_type);
152 	if (!ptr)
153 		return -EINVAL;
154 
155 	ui = (unsigned int *)(ptr + a->offset);
156 
157 	ret = kstrtoul(skip_spaces(buf), 0, &t);
158 	if (ret < 0)
159 		return ret;
160 	*ui = t;
161 	return count;
162 }
163 
164 static ssize_t f2fs_attr_show(struct kobject *kobj,
165 				struct attribute *attr, char *buf)
166 {
167 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
168 								s_kobj);
169 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
170 
171 	return a->show ? a->show(a, sbi, buf) : 0;
172 }
173 
174 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
175 						const char *buf, size_t len)
176 {
177 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
178 									s_kobj);
179 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
180 
181 	return a->store ? a->store(a, sbi, buf, len) : 0;
182 }
183 
184 static void f2fs_sb_release(struct kobject *kobj)
185 {
186 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
187 								s_kobj);
188 	complete(&sbi->s_kobj_unregister);
189 }
190 
191 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
192 static struct f2fs_attr f2fs_attr_##_name = {			\
193 	.attr = {.name = __stringify(_name), .mode = _mode },	\
194 	.show	= _show,					\
195 	.store	= _store,					\
196 	.struct_type = _struct_type,				\
197 	.offset = _offset					\
198 }
199 
200 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
201 	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
202 		f2fs_sbi_show, f2fs_sbi_store,			\
203 		offsetof(struct struct_name, elname))
204 
205 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
206 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
207 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
208 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
209 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
210 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
211 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
212 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
213 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
214 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
215 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
216 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
217 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
218 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
219 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, cp_interval);
220 
221 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
222 static struct attribute *f2fs_attrs[] = {
223 	ATTR_LIST(gc_min_sleep_time),
224 	ATTR_LIST(gc_max_sleep_time),
225 	ATTR_LIST(gc_no_gc_sleep_time),
226 	ATTR_LIST(gc_idle),
227 	ATTR_LIST(reclaim_segments),
228 	ATTR_LIST(max_small_discards),
229 	ATTR_LIST(batched_trim_sections),
230 	ATTR_LIST(ipu_policy),
231 	ATTR_LIST(min_ipu_util),
232 	ATTR_LIST(min_fsync_blocks),
233 	ATTR_LIST(max_victim_search),
234 	ATTR_LIST(dir_level),
235 	ATTR_LIST(ram_thresh),
236 	ATTR_LIST(ra_nid_pages),
237 	ATTR_LIST(cp_interval),
238 	NULL,
239 };
240 
241 static const struct sysfs_ops f2fs_attr_ops = {
242 	.show	= f2fs_attr_show,
243 	.store	= f2fs_attr_store,
244 };
245 
246 static struct kobj_type f2fs_ktype = {
247 	.default_attrs	= f2fs_attrs,
248 	.sysfs_ops	= &f2fs_attr_ops,
249 	.release	= f2fs_sb_release,
250 };
251 
252 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
253 {
254 	struct va_format vaf;
255 	va_list args;
256 
257 	va_start(args, fmt);
258 	vaf.fmt = fmt;
259 	vaf.va = &args;
260 	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
261 	va_end(args);
262 }
263 
264 static void init_once(void *foo)
265 {
266 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
267 
268 	inode_init_once(&fi->vfs_inode);
269 }
270 
271 static int parse_options(struct super_block *sb, char *options)
272 {
273 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
274 	struct request_queue *q;
275 	substring_t args[MAX_OPT_ARGS];
276 	char *p, *name;
277 	int arg = 0;
278 
279 	if (!options)
280 		return 0;
281 
282 	while ((p = strsep(&options, ",")) != NULL) {
283 		int token;
284 		if (!*p)
285 			continue;
286 		/*
287 		 * Initialize args struct so we know whether arg was
288 		 * found; some options take optional arguments.
289 		 */
290 		args[0].to = args[0].from = NULL;
291 		token = match_token(p, f2fs_tokens, args);
292 
293 		switch (token) {
294 		case Opt_gc_background:
295 			name = match_strdup(&args[0]);
296 
297 			if (!name)
298 				return -ENOMEM;
299 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
300 				set_opt(sbi, BG_GC);
301 				clear_opt(sbi, FORCE_FG_GC);
302 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
303 				clear_opt(sbi, BG_GC);
304 				clear_opt(sbi, FORCE_FG_GC);
305 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
306 				set_opt(sbi, BG_GC);
307 				set_opt(sbi, FORCE_FG_GC);
308 			} else {
309 				kfree(name);
310 				return -EINVAL;
311 			}
312 			kfree(name);
313 			break;
314 		case Opt_disable_roll_forward:
315 			set_opt(sbi, DISABLE_ROLL_FORWARD);
316 			break;
317 		case Opt_norecovery:
318 			/* this option mounts f2fs with ro */
319 			set_opt(sbi, DISABLE_ROLL_FORWARD);
320 			if (!f2fs_readonly(sb))
321 				return -EINVAL;
322 			break;
323 		case Opt_discard:
324 			q = bdev_get_queue(sb->s_bdev);
325 			if (blk_queue_discard(q)) {
326 				set_opt(sbi, DISCARD);
327 			} else {
328 				f2fs_msg(sb, KERN_WARNING,
329 					"mounting with \"discard\" option, but "
330 					"the device does not support discard");
331 			}
332 			break;
333 		case Opt_noheap:
334 			set_opt(sbi, NOHEAP);
335 			break;
336 #ifdef CONFIG_F2FS_FS_XATTR
337 		case Opt_user_xattr:
338 			set_opt(sbi, XATTR_USER);
339 			break;
340 		case Opt_nouser_xattr:
341 			clear_opt(sbi, XATTR_USER);
342 			break;
343 		case Opt_inline_xattr:
344 			set_opt(sbi, INLINE_XATTR);
345 			break;
346 #else
347 		case Opt_user_xattr:
348 			f2fs_msg(sb, KERN_INFO,
349 				"user_xattr options not supported");
350 			break;
351 		case Opt_nouser_xattr:
352 			f2fs_msg(sb, KERN_INFO,
353 				"nouser_xattr options not supported");
354 			break;
355 		case Opt_inline_xattr:
356 			f2fs_msg(sb, KERN_INFO,
357 				"inline_xattr options not supported");
358 			break;
359 #endif
360 #ifdef CONFIG_F2FS_FS_POSIX_ACL
361 		case Opt_acl:
362 			set_opt(sbi, POSIX_ACL);
363 			break;
364 		case Opt_noacl:
365 			clear_opt(sbi, POSIX_ACL);
366 			break;
367 #else
368 		case Opt_acl:
369 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
370 			break;
371 		case Opt_noacl:
372 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
373 			break;
374 #endif
375 		case Opt_active_logs:
376 			if (args->from && match_int(args, &arg))
377 				return -EINVAL;
378 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
379 				return -EINVAL;
380 			sbi->active_logs = arg;
381 			break;
382 		case Opt_disable_ext_identify:
383 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
384 			break;
385 		case Opt_inline_data:
386 			set_opt(sbi, INLINE_DATA);
387 			break;
388 		case Opt_inline_dentry:
389 			set_opt(sbi, INLINE_DENTRY);
390 			break;
391 		case Opt_flush_merge:
392 			set_opt(sbi, FLUSH_MERGE);
393 			break;
394 		case Opt_nobarrier:
395 			set_opt(sbi, NOBARRIER);
396 			break;
397 		case Opt_fastboot:
398 			set_opt(sbi, FASTBOOT);
399 			break;
400 		case Opt_extent_cache:
401 			set_opt(sbi, EXTENT_CACHE);
402 			break;
403 		case Opt_noextent_cache:
404 			clear_opt(sbi, EXTENT_CACHE);
405 			break;
406 		case Opt_noinline_data:
407 			clear_opt(sbi, INLINE_DATA);
408 			break;
409 		default:
410 			f2fs_msg(sb, KERN_ERR,
411 				"Unrecognized mount option \"%s\" or missing value",
412 				p);
413 			return -EINVAL;
414 		}
415 	}
416 	return 0;
417 }
418 
419 static struct inode *f2fs_alloc_inode(struct super_block *sb)
420 {
421 	struct f2fs_inode_info *fi;
422 
423 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
424 	if (!fi)
425 		return NULL;
426 
427 	init_once((void *) fi);
428 
429 	/* Initialize f2fs-specific inode info */
430 	fi->vfs_inode.i_version = 1;
431 	atomic_set(&fi->dirty_pages, 0);
432 	fi->i_current_depth = 1;
433 	fi->i_advise = 0;
434 	init_rwsem(&fi->i_sem);
435 	INIT_LIST_HEAD(&fi->inmem_pages);
436 	mutex_init(&fi->inmem_lock);
437 
438 	set_inode_flag(fi, FI_NEW_INODE);
439 
440 	if (test_opt(F2FS_SB(sb), INLINE_XATTR))
441 		set_inode_flag(fi, FI_INLINE_XATTR);
442 
443 	/* Will be used by directory only */
444 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
445 
446 #ifdef CONFIG_F2FS_FS_ENCRYPTION
447 	fi->i_crypt_info = NULL;
448 #endif
449 	return &fi->vfs_inode;
450 }
451 
452 static int f2fs_drop_inode(struct inode *inode)
453 {
454 	/*
455 	 * This is to avoid a deadlock condition like below.
456 	 * writeback_single_inode(inode)
457 	 *  - f2fs_write_data_page
458 	 *    - f2fs_gc -> iput -> evict
459 	 *       - inode_wait_for_writeback(inode)
460 	 */
461 	if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
462 		if (!inode->i_nlink && !is_bad_inode(inode)) {
463 			/* to avoid evict_inode call simultaneously */
464 			atomic_inc(&inode->i_count);
465 			spin_unlock(&inode->i_lock);
466 
467 			/* some remained atomic pages should discarded */
468 			if (f2fs_is_atomic_file(inode))
469 				commit_inmem_pages(inode, true);
470 
471 			/* should remain fi->extent_tree for writepage */
472 			f2fs_destroy_extent_node(inode);
473 
474 			sb_start_intwrite(inode->i_sb);
475 			i_size_write(inode, 0);
476 
477 			if (F2FS_HAS_BLOCKS(inode))
478 				f2fs_truncate(inode, true);
479 
480 			sb_end_intwrite(inode->i_sb);
481 
482 #ifdef CONFIG_F2FS_FS_ENCRYPTION
483 			if (F2FS_I(inode)->i_crypt_info)
484 				f2fs_free_encryption_info(inode,
485 					F2FS_I(inode)->i_crypt_info);
486 #endif
487 			spin_lock(&inode->i_lock);
488 			atomic_dec(&inode->i_count);
489 		}
490 		return 0;
491 	}
492 	return generic_drop_inode(inode);
493 }
494 
495 /*
496  * f2fs_dirty_inode() is called from __mark_inode_dirty()
497  *
498  * We should call set_dirty_inode to write the dirty inode through write_inode.
499  */
500 static void f2fs_dirty_inode(struct inode *inode, int flags)
501 {
502 	set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
503 }
504 
505 static void f2fs_i_callback(struct rcu_head *head)
506 {
507 	struct inode *inode = container_of(head, struct inode, i_rcu);
508 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
509 }
510 
511 static void f2fs_destroy_inode(struct inode *inode)
512 {
513 	call_rcu(&inode->i_rcu, f2fs_i_callback);
514 }
515 
516 static void f2fs_put_super(struct super_block *sb)
517 {
518 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
519 
520 	if (sbi->s_proc) {
521 		remove_proc_entry("segment_info", sbi->s_proc);
522 		remove_proc_entry(sb->s_id, f2fs_proc_root);
523 	}
524 	kobject_del(&sbi->s_kobj);
525 
526 	stop_gc_thread(sbi);
527 
528 	/* prevent remaining shrinker jobs */
529 	mutex_lock(&sbi->umount_mutex);
530 
531 	/*
532 	 * We don't need to do checkpoint when superblock is clean.
533 	 * But, the previous checkpoint was not done by umount, it needs to do
534 	 * clean checkpoint again.
535 	 */
536 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
537 			!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
538 		struct cp_control cpc = {
539 			.reason = CP_UMOUNT,
540 		};
541 		write_checkpoint(sbi, &cpc);
542 	}
543 
544 	/* write_checkpoint can update stat informaion */
545 	f2fs_destroy_stats(sbi);
546 
547 	/*
548 	 * normally superblock is clean, so we need to release this.
549 	 * In addition, EIO will skip do checkpoint, we need this as well.
550 	 */
551 	release_dirty_inode(sbi);
552 	release_discard_addrs(sbi);
553 
554 	f2fs_leave_shrinker(sbi);
555 	mutex_unlock(&sbi->umount_mutex);
556 
557 	iput(sbi->node_inode);
558 	iput(sbi->meta_inode);
559 
560 	/* destroy f2fs internal modules */
561 	destroy_node_manager(sbi);
562 	destroy_segment_manager(sbi);
563 
564 	kfree(sbi->ckpt);
565 	kobject_put(&sbi->s_kobj);
566 	wait_for_completion(&sbi->s_kobj_unregister);
567 
568 	sb->s_fs_info = NULL;
569 	brelse(sbi->raw_super_buf);
570 	kfree(sbi);
571 }
572 
573 int f2fs_sync_fs(struct super_block *sb, int sync)
574 {
575 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
576 
577 	trace_f2fs_sync_fs(sb, sync);
578 
579 	if (sync) {
580 		struct cp_control cpc;
581 
582 		cpc.reason = __get_cp_reason(sbi);
583 
584 		mutex_lock(&sbi->gc_mutex);
585 		write_checkpoint(sbi, &cpc);
586 		mutex_unlock(&sbi->gc_mutex);
587 	} else {
588 		f2fs_balance_fs(sbi);
589 	}
590 	f2fs_trace_ios(NULL, 1);
591 
592 	return 0;
593 }
594 
595 static int f2fs_freeze(struct super_block *sb)
596 {
597 	int err;
598 
599 	if (f2fs_readonly(sb))
600 		return 0;
601 
602 	err = f2fs_sync_fs(sb, 1);
603 	return err;
604 }
605 
606 static int f2fs_unfreeze(struct super_block *sb)
607 {
608 	return 0;
609 }
610 
611 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
612 {
613 	struct super_block *sb = dentry->d_sb;
614 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
615 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
616 	block_t total_count, user_block_count, start_count, ovp_count;
617 
618 	total_count = le64_to_cpu(sbi->raw_super->block_count);
619 	user_block_count = sbi->user_block_count;
620 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
621 	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
622 	buf->f_type = F2FS_SUPER_MAGIC;
623 	buf->f_bsize = sbi->blocksize;
624 
625 	buf->f_blocks = total_count - start_count;
626 	buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
627 	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
628 
629 	buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
630 	buf->f_ffree = buf->f_files - valid_inode_count(sbi);
631 
632 	buf->f_namelen = F2FS_NAME_LEN;
633 	buf->f_fsid.val[0] = (u32)id;
634 	buf->f_fsid.val[1] = (u32)(id >> 32);
635 
636 	return 0;
637 }
638 
639 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
640 {
641 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
642 
643 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
644 		if (test_opt(sbi, FORCE_FG_GC))
645 			seq_printf(seq, ",background_gc=%s", "sync");
646 		else
647 			seq_printf(seq, ",background_gc=%s", "on");
648 	} else {
649 		seq_printf(seq, ",background_gc=%s", "off");
650 	}
651 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
652 		seq_puts(seq, ",disable_roll_forward");
653 	if (test_opt(sbi, DISCARD))
654 		seq_puts(seq, ",discard");
655 	if (test_opt(sbi, NOHEAP))
656 		seq_puts(seq, ",no_heap_alloc");
657 #ifdef CONFIG_F2FS_FS_XATTR
658 	if (test_opt(sbi, XATTR_USER))
659 		seq_puts(seq, ",user_xattr");
660 	else
661 		seq_puts(seq, ",nouser_xattr");
662 	if (test_opt(sbi, INLINE_XATTR))
663 		seq_puts(seq, ",inline_xattr");
664 #endif
665 #ifdef CONFIG_F2FS_FS_POSIX_ACL
666 	if (test_opt(sbi, POSIX_ACL))
667 		seq_puts(seq, ",acl");
668 	else
669 		seq_puts(seq, ",noacl");
670 #endif
671 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
672 		seq_puts(seq, ",disable_ext_identify");
673 	if (test_opt(sbi, INLINE_DATA))
674 		seq_puts(seq, ",inline_data");
675 	else
676 		seq_puts(seq, ",noinline_data");
677 	if (test_opt(sbi, INLINE_DENTRY))
678 		seq_puts(seq, ",inline_dentry");
679 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
680 		seq_puts(seq, ",flush_merge");
681 	if (test_opt(sbi, NOBARRIER))
682 		seq_puts(seq, ",nobarrier");
683 	if (test_opt(sbi, FASTBOOT))
684 		seq_puts(seq, ",fastboot");
685 	if (test_opt(sbi, EXTENT_CACHE))
686 		seq_puts(seq, ",extent_cache");
687 	else
688 		seq_puts(seq, ",noextent_cache");
689 	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
690 
691 	return 0;
692 }
693 
694 static int segment_info_seq_show(struct seq_file *seq, void *offset)
695 {
696 	struct super_block *sb = seq->private;
697 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
698 	unsigned int total_segs =
699 			le32_to_cpu(sbi->raw_super->segment_count_main);
700 	int i;
701 
702 	seq_puts(seq, "format: segment_type|valid_blocks\n"
703 		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
704 
705 	for (i = 0; i < total_segs; i++) {
706 		struct seg_entry *se = get_seg_entry(sbi, i);
707 
708 		if ((i % 10) == 0)
709 			seq_printf(seq, "%-10d", i);
710 		seq_printf(seq, "%d|%-3u", se->type,
711 					get_valid_blocks(sbi, i, 1));
712 		if ((i % 10) == 9 || i == (total_segs - 1))
713 			seq_putc(seq, '\n');
714 		else
715 			seq_putc(seq, ' ');
716 	}
717 
718 	return 0;
719 }
720 
721 static int segment_info_open_fs(struct inode *inode, struct file *file)
722 {
723 	return single_open(file, segment_info_seq_show, PDE_DATA(inode));
724 }
725 
726 static const struct file_operations f2fs_seq_segment_info_fops = {
727 	.owner = THIS_MODULE,
728 	.open = segment_info_open_fs,
729 	.read = seq_read,
730 	.llseek = seq_lseek,
731 	.release = single_release,
732 };
733 
734 static void default_options(struct f2fs_sb_info *sbi)
735 {
736 	/* init some FS parameters */
737 	sbi->active_logs = NR_CURSEG_TYPE;
738 
739 	set_opt(sbi, BG_GC);
740 	set_opt(sbi, INLINE_DATA);
741 	set_opt(sbi, EXTENT_CACHE);
742 
743 #ifdef CONFIG_F2FS_FS_XATTR
744 	set_opt(sbi, XATTR_USER);
745 #endif
746 #ifdef CONFIG_F2FS_FS_POSIX_ACL
747 	set_opt(sbi, POSIX_ACL);
748 #endif
749 }
750 
751 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
752 {
753 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
754 	struct f2fs_mount_info org_mount_opt;
755 	int err, active_logs;
756 	bool need_restart_gc = false;
757 	bool need_stop_gc = false;
758 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
759 
760 	sync_filesystem(sb);
761 
762 	/*
763 	 * Save the old mount options in case we
764 	 * need to restore them.
765 	 */
766 	org_mount_opt = sbi->mount_opt;
767 	active_logs = sbi->active_logs;
768 
769 	sbi->mount_opt.opt = 0;
770 	default_options(sbi);
771 
772 	/* parse mount options */
773 	err = parse_options(sb, data);
774 	if (err)
775 		goto restore_opts;
776 
777 	/*
778 	 * Previous and new state of filesystem is RO,
779 	 * so skip checking GC and FLUSH_MERGE conditions.
780 	 */
781 	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
782 		goto skip;
783 
784 	/* disallow enable/disable extent_cache dynamically */
785 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
786 		err = -EINVAL;
787 		f2fs_msg(sbi->sb, KERN_WARNING,
788 				"switch extent_cache option is not allowed");
789 		goto restore_opts;
790 	}
791 
792 	/*
793 	 * We stop the GC thread if FS is mounted as RO
794 	 * or if background_gc = off is passed in mount
795 	 * option. Also sync the filesystem.
796 	 */
797 	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
798 		if (sbi->gc_thread) {
799 			stop_gc_thread(sbi);
800 			f2fs_sync_fs(sb, 1);
801 			need_restart_gc = true;
802 		}
803 	} else if (!sbi->gc_thread) {
804 		err = start_gc_thread(sbi);
805 		if (err)
806 			goto restore_opts;
807 		need_stop_gc = true;
808 	}
809 
810 	/*
811 	 * We stop issue flush thread if FS is mounted as RO
812 	 * or if flush_merge is not passed in mount option.
813 	 */
814 	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
815 		destroy_flush_cmd_control(sbi);
816 	} else if (!SM_I(sbi)->cmd_control_info) {
817 		err = create_flush_cmd_control(sbi);
818 		if (err)
819 			goto restore_gc;
820 	}
821 skip:
822 	/* Update the POSIXACL Flag */
823 	 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
824 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
825 	return 0;
826 restore_gc:
827 	if (need_restart_gc) {
828 		if (start_gc_thread(sbi))
829 			f2fs_msg(sbi->sb, KERN_WARNING,
830 				"background gc thread has stopped");
831 	} else if (need_stop_gc) {
832 		stop_gc_thread(sbi);
833 	}
834 restore_opts:
835 	sbi->mount_opt = org_mount_opt;
836 	sbi->active_logs = active_logs;
837 	return err;
838 }
839 
840 static struct super_operations f2fs_sops = {
841 	.alloc_inode	= f2fs_alloc_inode,
842 	.drop_inode	= f2fs_drop_inode,
843 	.destroy_inode	= f2fs_destroy_inode,
844 	.write_inode	= f2fs_write_inode,
845 	.dirty_inode	= f2fs_dirty_inode,
846 	.show_options	= f2fs_show_options,
847 	.evict_inode	= f2fs_evict_inode,
848 	.put_super	= f2fs_put_super,
849 	.sync_fs	= f2fs_sync_fs,
850 	.freeze_fs	= f2fs_freeze,
851 	.unfreeze_fs	= f2fs_unfreeze,
852 	.statfs		= f2fs_statfs,
853 	.remount_fs	= f2fs_remount,
854 };
855 
856 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
857 		u64 ino, u32 generation)
858 {
859 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
860 	struct inode *inode;
861 
862 	if (check_nid_range(sbi, ino))
863 		return ERR_PTR(-ESTALE);
864 
865 	/*
866 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
867 	 * However f2fs_iget currently does appropriate checks to handle stale
868 	 * inodes so everything is OK.
869 	 */
870 	inode = f2fs_iget(sb, ino);
871 	if (IS_ERR(inode))
872 		return ERR_CAST(inode);
873 	if (unlikely(generation && inode->i_generation != generation)) {
874 		/* we didn't find the right inode.. */
875 		iput(inode);
876 		return ERR_PTR(-ESTALE);
877 	}
878 	return inode;
879 }
880 
881 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
882 		int fh_len, int fh_type)
883 {
884 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
885 				    f2fs_nfs_get_inode);
886 }
887 
888 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
889 		int fh_len, int fh_type)
890 {
891 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
892 				    f2fs_nfs_get_inode);
893 }
894 
895 static const struct export_operations f2fs_export_ops = {
896 	.fh_to_dentry = f2fs_fh_to_dentry,
897 	.fh_to_parent = f2fs_fh_to_parent,
898 	.get_parent = f2fs_get_parent,
899 };
900 
901 static loff_t max_file_size(unsigned bits)
902 {
903 	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
904 	loff_t leaf_count = ADDRS_PER_BLOCK;
905 
906 	/* two direct node blocks */
907 	result += (leaf_count * 2);
908 
909 	/* two indirect node blocks */
910 	leaf_count *= NIDS_PER_BLOCK;
911 	result += (leaf_count * 2);
912 
913 	/* one double indirect node block */
914 	leaf_count *= NIDS_PER_BLOCK;
915 	result += leaf_count;
916 
917 	result <<= bits;
918 	return result;
919 }
920 
921 static int sanity_check_raw_super(struct super_block *sb,
922 			struct f2fs_super_block *raw_super)
923 {
924 	unsigned int blocksize;
925 
926 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
927 		f2fs_msg(sb, KERN_INFO,
928 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
929 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
930 		return 1;
931 	}
932 
933 	/* Currently, support only 4KB page cache size */
934 	if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
935 		f2fs_msg(sb, KERN_INFO,
936 			"Invalid page_cache_size (%lu), supports only 4KB\n",
937 			PAGE_CACHE_SIZE);
938 		return 1;
939 	}
940 
941 	/* Currently, support only 4KB block size */
942 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
943 	if (blocksize != F2FS_BLKSIZE) {
944 		f2fs_msg(sb, KERN_INFO,
945 			"Invalid blocksize (%u), supports only 4KB\n",
946 			blocksize);
947 		return 1;
948 	}
949 
950 	/* Currently, support 512/1024/2048/4096 bytes sector size */
951 	if (le32_to_cpu(raw_super->log_sectorsize) >
952 				F2FS_MAX_LOG_SECTOR_SIZE ||
953 		le32_to_cpu(raw_super->log_sectorsize) <
954 				F2FS_MIN_LOG_SECTOR_SIZE) {
955 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
956 			le32_to_cpu(raw_super->log_sectorsize));
957 		return 1;
958 	}
959 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
960 		le32_to_cpu(raw_super->log_sectorsize) !=
961 			F2FS_MAX_LOG_SECTOR_SIZE) {
962 		f2fs_msg(sb, KERN_INFO,
963 			"Invalid log sectors per block(%u) log sectorsize(%u)",
964 			le32_to_cpu(raw_super->log_sectors_per_block),
965 			le32_to_cpu(raw_super->log_sectorsize));
966 		return 1;
967 	}
968 	return 0;
969 }
970 
971 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
972 {
973 	unsigned int total, fsmeta;
974 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
975 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
976 
977 	total = le32_to_cpu(raw_super->segment_count);
978 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
979 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
980 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
981 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
982 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
983 
984 	if (unlikely(fsmeta >= total))
985 		return 1;
986 
987 	if (unlikely(f2fs_cp_error(sbi))) {
988 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
989 		return 1;
990 	}
991 	return 0;
992 }
993 
994 static void init_sb_info(struct f2fs_sb_info *sbi)
995 {
996 	struct f2fs_super_block *raw_super = sbi->raw_super;
997 	int i;
998 
999 	sbi->log_sectors_per_block =
1000 		le32_to_cpu(raw_super->log_sectors_per_block);
1001 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1002 	sbi->blocksize = 1 << sbi->log_blocksize;
1003 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1004 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1005 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1006 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1007 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
1008 	sbi->total_node_count =
1009 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
1010 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1011 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1012 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1013 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1014 	sbi->cur_victim_sec = NULL_SECNO;
1015 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1016 
1017 	for (i = 0; i < NR_COUNT_TYPE; i++)
1018 		atomic_set(&sbi->nr_pages[i], 0);
1019 
1020 	sbi->dir_level = DEF_DIR_LEVEL;
1021 	sbi->cp_interval = DEF_CP_INTERVAL;
1022 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
1023 
1024 	INIT_LIST_HEAD(&sbi->s_list);
1025 	mutex_init(&sbi->umount_mutex);
1026 }
1027 
1028 /*
1029  * Read f2fs raw super block.
1030  * Because we have two copies of super block, so read the first one at first,
1031  * if the first one is invalid, move to read the second one.
1032  */
1033 static int read_raw_super_block(struct super_block *sb,
1034 			struct f2fs_super_block **raw_super,
1035 			struct buffer_head **raw_super_buf,
1036 			int *recovery)
1037 {
1038 	int block = 0;
1039 	struct buffer_head *buffer;
1040 	struct f2fs_super_block *super;
1041 	int err = 0;
1042 
1043 retry:
1044 	buffer = sb_bread(sb, block);
1045 	if (!buffer) {
1046 		*recovery = 1;
1047 		f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1048 				block + 1);
1049 		if (block == 0) {
1050 			block++;
1051 			goto retry;
1052 		} else {
1053 			err = -EIO;
1054 			goto out;
1055 		}
1056 	}
1057 
1058 	super = (struct f2fs_super_block *)
1059 		((char *)(buffer)->b_data + F2FS_SUPER_OFFSET);
1060 
1061 	/* sanity checking of raw super */
1062 	if (sanity_check_raw_super(sb, super)) {
1063 		brelse(buffer);
1064 		*recovery = 1;
1065 		f2fs_msg(sb, KERN_ERR,
1066 			"Can't find valid F2FS filesystem in %dth superblock",
1067 								block + 1);
1068 		if (block == 0) {
1069 			block++;
1070 			goto retry;
1071 		} else {
1072 			err = -EINVAL;
1073 			goto out;
1074 		}
1075 	}
1076 
1077 	if (!*raw_super) {
1078 		*raw_super_buf = buffer;
1079 		*raw_super = super;
1080 	} else {
1081 		/* already have a valid superblock */
1082 		brelse(buffer);
1083 	}
1084 
1085 	/* check the validity of the second superblock */
1086 	if (block == 0) {
1087 		block++;
1088 		goto retry;
1089 	}
1090 
1091 out:
1092 	/* No valid superblock */
1093 	if (!*raw_super)
1094 		return err;
1095 
1096 	return 0;
1097 }
1098 
1099 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1100 {
1101 	struct buffer_head *sbh = sbi->raw_super_buf;
1102 	sector_t block = sbh->b_blocknr;
1103 	int err;
1104 
1105 	/* write back-up superblock first */
1106 	sbh->b_blocknr = block ? 0 : 1;
1107 	mark_buffer_dirty(sbh);
1108 	err = sync_dirty_buffer(sbh);
1109 
1110 	sbh->b_blocknr = block;
1111 
1112 	/* if we are in recovery path, skip writing valid superblock */
1113 	if (recover || err)
1114 		goto out;
1115 
1116 	/* write current valid superblock */
1117 	mark_buffer_dirty(sbh);
1118 	err = sync_dirty_buffer(sbh);
1119 out:
1120 	clear_buffer_write_io_error(sbh);
1121 	set_buffer_uptodate(sbh);
1122 	return err;
1123 }
1124 
1125 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1126 {
1127 	struct f2fs_sb_info *sbi;
1128 	struct f2fs_super_block *raw_super;
1129 	struct buffer_head *raw_super_buf;
1130 	struct inode *root;
1131 	long err;
1132 	bool retry = true, need_fsck = false;
1133 	char *options = NULL;
1134 	int recovery, i;
1135 
1136 try_onemore:
1137 	err = -EINVAL;
1138 	raw_super = NULL;
1139 	raw_super_buf = NULL;
1140 	recovery = 0;
1141 
1142 	/* allocate memory for f2fs-specific super block info */
1143 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1144 	if (!sbi)
1145 		return -ENOMEM;
1146 
1147 	/* set a block size */
1148 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1149 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1150 		goto free_sbi;
1151 	}
1152 
1153 	err = read_raw_super_block(sb, &raw_super, &raw_super_buf, &recovery);
1154 	if (err)
1155 		goto free_sbi;
1156 
1157 	sb->s_fs_info = sbi;
1158 	default_options(sbi);
1159 	/* parse mount options */
1160 	options = kstrdup((const char *)data, GFP_KERNEL);
1161 	if (data && !options) {
1162 		err = -ENOMEM;
1163 		goto free_sb_buf;
1164 	}
1165 
1166 	err = parse_options(sb, options);
1167 	if (err)
1168 		goto free_options;
1169 
1170 	sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
1171 	sb->s_max_links = F2FS_LINK_MAX;
1172 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1173 
1174 	sb->s_op = &f2fs_sops;
1175 	sb->s_xattr = f2fs_xattr_handlers;
1176 	sb->s_export_op = &f2fs_export_ops;
1177 	sb->s_magic = F2FS_SUPER_MAGIC;
1178 	sb->s_time_gran = 1;
1179 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1180 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1181 	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1182 
1183 	/* init f2fs-specific super block info */
1184 	sbi->sb = sb;
1185 	sbi->raw_super = raw_super;
1186 	sbi->raw_super_buf = raw_super_buf;
1187 	mutex_init(&sbi->gc_mutex);
1188 	mutex_init(&sbi->writepages);
1189 	mutex_init(&sbi->cp_mutex);
1190 	init_rwsem(&sbi->node_write);
1191 
1192 	/* disallow all the data/node/meta page writes */
1193 	set_sbi_flag(sbi, SBI_POR_DOING);
1194 	spin_lock_init(&sbi->stat_lock);
1195 
1196 	init_rwsem(&sbi->read_io.io_rwsem);
1197 	sbi->read_io.sbi = sbi;
1198 	sbi->read_io.bio = NULL;
1199 	for (i = 0; i < NR_PAGE_TYPE; i++) {
1200 		init_rwsem(&sbi->write_io[i].io_rwsem);
1201 		sbi->write_io[i].sbi = sbi;
1202 		sbi->write_io[i].bio = NULL;
1203 	}
1204 
1205 	init_rwsem(&sbi->cp_rwsem);
1206 	init_waitqueue_head(&sbi->cp_wait);
1207 	init_sb_info(sbi);
1208 
1209 	/* get an inode for meta space */
1210 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1211 	if (IS_ERR(sbi->meta_inode)) {
1212 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1213 		err = PTR_ERR(sbi->meta_inode);
1214 		goto free_options;
1215 	}
1216 
1217 	err = get_valid_checkpoint(sbi);
1218 	if (err) {
1219 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1220 		goto free_meta_inode;
1221 	}
1222 
1223 	/* sanity checking of checkpoint */
1224 	err = -EINVAL;
1225 	if (sanity_check_ckpt(sbi)) {
1226 		f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1227 		goto free_cp;
1228 	}
1229 
1230 	sbi->total_valid_node_count =
1231 				le32_to_cpu(sbi->ckpt->valid_node_count);
1232 	sbi->total_valid_inode_count =
1233 				le32_to_cpu(sbi->ckpt->valid_inode_count);
1234 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1235 	sbi->total_valid_block_count =
1236 				le64_to_cpu(sbi->ckpt->valid_block_count);
1237 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1238 	sbi->alloc_valid_block_count = 0;
1239 	INIT_LIST_HEAD(&sbi->dir_inode_list);
1240 	spin_lock_init(&sbi->dir_inode_lock);
1241 
1242 	init_extent_cache_info(sbi);
1243 
1244 	init_ino_entry_info(sbi);
1245 
1246 	/* setup f2fs internal modules */
1247 	err = build_segment_manager(sbi);
1248 	if (err) {
1249 		f2fs_msg(sb, KERN_ERR,
1250 			"Failed to initialize F2FS segment manager");
1251 		goto free_sm;
1252 	}
1253 	err = build_node_manager(sbi);
1254 	if (err) {
1255 		f2fs_msg(sb, KERN_ERR,
1256 			"Failed to initialize F2FS node manager");
1257 		goto free_nm;
1258 	}
1259 
1260 	build_gc_manager(sbi);
1261 
1262 	/* get an inode for node space */
1263 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1264 	if (IS_ERR(sbi->node_inode)) {
1265 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1266 		err = PTR_ERR(sbi->node_inode);
1267 		goto free_nm;
1268 	}
1269 
1270 	f2fs_join_shrinker(sbi);
1271 
1272 	/* if there are nt orphan nodes free them */
1273 	err = recover_orphan_inodes(sbi);
1274 	if (err)
1275 		goto free_node_inode;
1276 
1277 	/* read root inode and dentry */
1278 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1279 	if (IS_ERR(root)) {
1280 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1281 		err = PTR_ERR(root);
1282 		goto free_node_inode;
1283 	}
1284 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1285 		iput(root);
1286 		err = -EINVAL;
1287 		goto free_node_inode;
1288 	}
1289 
1290 	sb->s_root = d_make_root(root); /* allocate root dentry */
1291 	if (!sb->s_root) {
1292 		err = -ENOMEM;
1293 		goto free_root_inode;
1294 	}
1295 
1296 	err = f2fs_build_stats(sbi);
1297 	if (err)
1298 		goto free_root_inode;
1299 
1300 	if (f2fs_proc_root)
1301 		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1302 
1303 	if (sbi->s_proc)
1304 		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1305 				 &f2fs_seq_segment_info_fops, sb);
1306 
1307 	sbi->s_kobj.kset = f2fs_kset;
1308 	init_completion(&sbi->s_kobj_unregister);
1309 	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1310 							"%s", sb->s_id);
1311 	if (err)
1312 		goto free_proc;
1313 
1314 	/* recover fsynced data */
1315 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1316 		/*
1317 		 * mount should be failed, when device has readonly mode, and
1318 		 * previous checkpoint was not done by clean system shutdown.
1319 		 */
1320 		if (bdev_read_only(sb->s_bdev) &&
1321 				!is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1322 			err = -EROFS;
1323 			goto free_kobj;
1324 		}
1325 
1326 		if (need_fsck)
1327 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1328 
1329 		err = recover_fsync_data(sbi);
1330 		if (err) {
1331 			need_fsck = true;
1332 			f2fs_msg(sb, KERN_ERR,
1333 				"Cannot recover all fsync data errno=%ld", err);
1334 			goto free_kobj;
1335 		}
1336 	}
1337 	/* recover_fsync_data() cleared this already */
1338 	clear_sbi_flag(sbi, SBI_POR_DOING);
1339 
1340 	/*
1341 	 * If filesystem is not mounted as read-only then
1342 	 * do start the gc_thread.
1343 	 */
1344 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1345 		/* After POR, we can run background GC thread.*/
1346 		err = start_gc_thread(sbi);
1347 		if (err)
1348 			goto free_kobj;
1349 	}
1350 	kfree(options);
1351 
1352 	/* recover broken superblock */
1353 	if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) {
1354 		f2fs_msg(sb, KERN_INFO, "Recover invalid superblock");
1355 		f2fs_commit_super(sbi, true);
1356 	}
1357 
1358 	sbi->cp_expires = round_jiffies_up(jiffies);
1359 
1360 	return 0;
1361 
1362 free_kobj:
1363 	kobject_del(&sbi->s_kobj);
1364 free_proc:
1365 	if (sbi->s_proc) {
1366 		remove_proc_entry("segment_info", sbi->s_proc);
1367 		remove_proc_entry(sb->s_id, f2fs_proc_root);
1368 	}
1369 	f2fs_destroy_stats(sbi);
1370 free_root_inode:
1371 	dput(sb->s_root);
1372 	sb->s_root = NULL;
1373 free_node_inode:
1374 	mutex_lock(&sbi->umount_mutex);
1375 	f2fs_leave_shrinker(sbi);
1376 	iput(sbi->node_inode);
1377 	mutex_unlock(&sbi->umount_mutex);
1378 free_nm:
1379 	destroy_node_manager(sbi);
1380 free_sm:
1381 	destroy_segment_manager(sbi);
1382 free_cp:
1383 	kfree(sbi->ckpt);
1384 free_meta_inode:
1385 	make_bad_inode(sbi->meta_inode);
1386 	iput(sbi->meta_inode);
1387 free_options:
1388 	kfree(options);
1389 free_sb_buf:
1390 	brelse(raw_super_buf);
1391 free_sbi:
1392 	kfree(sbi);
1393 
1394 	/* give only one another chance */
1395 	if (retry) {
1396 		retry = false;
1397 		shrink_dcache_sb(sb);
1398 		goto try_onemore;
1399 	}
1400 	return err;
1401 }
1402 
1403 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1404 			const char *dev_name, void *data)
1405 {
1406 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1407 }
1408 
1409 static void kill_f2fs_super(struct super_block *sb)
1410 {
1411 	if (sb->s_root)
1412 		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1413 	kill_block_super(sb);
1414 }
1415 
1416 static struct file_system_type f2fs_fs_type = {
1417 	.owner		= THIS_MODULE,
1418 	.name		= "f2fs",
1419 	.mount		= f2fs_mount,
1420 	.kill_sb	= kill_f2fs_super,
1421 	.fs_flags	= FS_REQUIRES_DEV,
1422 };
1423 MODULE_ALIAS_FS("f2fs");
1424 
1425 static int __init init_inodecache(void)
1426 {
1427 	f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1428 			sizeof(struct f2fs_inode_info));
1429 	if (!f2fs_inode_cachep)
1430 		return -ENOMEM;
1431 	return 0;
1432 }
1433 
1434 static void destroy_inodecache(void)
1435 {
1436 	/*
1437 	 * Make sure all delayed rcu free inodes are flushed before we
1438 	 * destroy cache.
1439 	 */
1440 	rcu_barrier();
1441 	kmem_cache_destroy(f2fs_inode_cachep);
1442 }
1443 
1444 static int __init init_f2fs_fs(void)
1445 {
1446 	int err;
1447 
1448 	f2fs_build_trace_ios();
1449 
1450 	err = init_inodecache();
1451 	if (err)
1452 		goto fail;
1453 	err = create_node_manager_caches();
1454 	if (err)
1455 		goto free_inodecache;
1456 	err = create_segment_manager_caches();
1457 	if (err)
1458 		goto free_node_manager_caches;
1459 	err = create_checkpoint_caches();
1460 	if (err)
1461 		goto free_segment_manager_caches;
1462 	err = create_extent_cache();
1463 	if (err)
1464 		goto free_checkpoint_caches;
1465 	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1466 	if (!f2fs_kset) {
1467 		err = -ENOMEM;
1468 		goto free_extent_cache;
1469 	}
1470 	err = f2fs_init_crypto();
1471 	if (err)
1472 		goto free_kset;
1473 
1474 	err = register_shrinker(&f2fs_shrinker_info);
1475 	if (err)
1476 		goto free_crypto;
1477 
1478 	err = register_filesystem(&f2fs_fs_type);
1479 	if (err)
1480 		goto free_shrinker;
1481 	f2fs_create_root_stats();
1482 	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1483 	return 0;
1484 
1485 free_shrinker:
1486 	unregister_shrinker(&f2fs_shrinker_info);
1487 free_crypto:
1488 	f2fs_exit_crypto();
1489 free_kset:
1490 	kset_unregister(f2fs_kset);
1491 free_extent_cache:
1492 	destroy_extent_cache();
1493 free_checkpoint_caches:
1494 	destroy_checkpoint_caches();
1495 free_segment_manager_caches:
1496 	destroy_segment_manager_caches();
1497 free_node_manager_caches:
1498 	destroy_node_manager_caches();
1499 free_inodecache:
1500 	destroy_inodecache();
1501 fail:
1502 	return err;
1503 }
1504 
1505 static void __exit exit_f2fs_fs(void)
1506 {
1507 	remove_proc_entry("fs/f2fs", NULL);
1508 	f2fs_destroy_root_stats();
1509 	unregister_shrinker(&f2fs_shrinker_info);
1510 	unregister_filesystem(&f2fs_fs_type);
1511 	f2fs_exit_crypto();
1512 	destroy_extent_cache();
1513 	destroy_checkpoint_caches();
1514 	destroy_segment_manager_caches();
1515 	destroy_node_manager_caches();
1516 	destroy_inodecache();
1517 	kset_unregister(f2fs_kset);
1518 	f2fs_destroy_trace_ios();
1519 }
1520 
1521 module_init(init_f2fs_fs)
1522 module_exit(exit_f2fs_fs)
1523 
1524 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1525 MODULE_DESCRIPTION("Flash Friendly File System");
1526 MODULE_LICENSE("GPL");
1527